
Piecewise Linear Expectation Analysis via 𝑘-Induction for
Probabilistic Programs

TENGSHUN YANG, SKLCS, Institute of Software, University of Chinese Academy of Sciences, China
HONGFEI FU∗, Shanghai Jiao Tong University, China
JINGYU KE, Shanghai Jiao Tong University, China
NAIJUN ZHAN, SKLCS, Institute of Software, University of Chinese Academy of Sciences, China
SHIYANG WU, Shanghai Jiao Tong University, China

Quantitative analysis of probabilistic programs aims at deriving tight numerical bounds for probabilistic prop-
erties such as expectation and assertion probability, and plays a crucial role in the verification of probabilistic
programs. Along this line of research, most existing works consider numerical bounds over the whole state
space monolithically and do not consider piecewise bounds. Clearly, monolithic bounds are either conservative,
or not expressive and succinct enough in general. To derive more succinct, expressive and precise numerical
bounds for probabilistic properties, we propose a novel approach for synthesizing piecewise linear bounds in
this work. To this end, we first show how to extract a piecewise feature w.r.t. a given quantitative property from
a probabilistic program using latticed 𝑘-induction that captures a wide and representative class of piecewise
bound functions. Second, we develop an algorithmic approach to synthesize piecewise linear upper and lower
bounds from the piecewise feature, for which we show that the synthesis of piecewise linear bounds can be
reduced to bilinear programming. Third, we implement our approach with the bilinear programming solver
Gurobi. The experimental results indicate that our approach is capable of generating tight or even accurate
piecewise linear bounds for an extensive set of benchmarks compared with the state of the art.

ACM Reference Format:
Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu. 2024. Piecewise Linear Expectation
Analysis via 𝑘-Induction for Probabilistic Programs. 1, 1 (March 2024), 45 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Probabilistic programming [33, 42, 59] is a programming paradigm that extends classical pro-
gramming languages with statements such as probabilistic branching and sampling. Probabilistic
programs provide a powerful model for randomized algorithms [7], machine learning [15], reliabil-
ity engineering [16], etc. Therefore, analysis of probabilistic programs is becoming increasingly
significant, and attracting more and more attention in recent years.
In this work, we consider the formal analysis of probabilistic programs that aims at deriving

guaranteed bounds for probabilistic properties. Unlike the formal analysis for classical programs
that mostly focuses on qualitative properties such as proving or refuting assertions, the analysis
of probabilistic programs concerns quantitative analysis in many situations, such as expected
runtime [1, 31, 37, 38], expected resource consumption [51, 60, 63], sensitivity [2], assertion proba-
bilities [21, 58, 62], and so forth.

∗The corresponding author

Authors’ addresses: Tengshun Yang, SKLCS, Institute of Software, University of Chinese Academy of Sciences, Beijing,
China, yangts@ios.ac.cn; Hongfei Fu, Shanghai Jiao Tong University, Shanghai, China, jt002845@sjtu.edu.cn; Jingyu Ke,
Shanghai Jiao Tong University, Shanghai, China, windocotber@gmail.com; Naijun Zhan, SKLCS, Institute of Software,
University of Chinese Academy of Sciences, Beijing, China, znj@ios.ac.cn; Shiyang Wu, Shanghai Jiao Tong University,
Shanghai, China, sunny1231@sjtu.edu.cn.

2024. XXXX-XXXX/2024/3-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2024.

ar
X

iv
:2

40
3.

17
56

7v
1

 [
cs

.P
L

]
 2

6
M

ar
 2

02
4

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Similar to classical programs, semantic equations of probabilistic programs are unsolvable in
general. Thus, as an alternative, most of the research focuses on computing numerical bounds on
quantitative properties instead of solving semantic equations exactly in the quantitative analysis of
probabilistic programs. In the literature, various approaches have been proposed to address this
issue, including template-based [17, 18, 20, 34], trace-abstraction-based [57], sampling-based [54],
etc. Most of these approaches consider to synthesize a monolithic upper- and/or lower-bound
for an underlined quantitative property over the whole state space of a probabilistic program of
interest. The disadvantages to synthesize a monolithic linear or polynomial function as a bound
are two-fold: First, a monolithic bound is either too conservative (e.g., only very coarse linear
bounds exist) or not succinct enough (e.g., although tight monolithic polynomial bounds exist, the
tightness usually requires complicated polynomials with higher degree). Second, it may be even
worse that no monolithic polynomial bounds exist. A simple example is given below to demonstrate
the aforementioned disadvantages.

Example 1.1. Consider the following example, which is a simplified version of the Growing
Walk in Beutner et al. [15]:

Growing Walk: while (0 ≤ 𝑥) {{𝑥 B 𝑥 + 1;𝑦 B 𝑦 + 𝑥} [0.5] {𝑥 B −1}}
The example models a simple random walk where the step size 𝑥 is increased by 1 with 50%
probability, and set to −1 with the other half probability. The program terminates when 𝑥 becomes
negative. We intend to analyze the expected value of the total distance, i.e., 𝑦, after the program
terminates. It can be shown that monolithic linear upper-bound cannot be obtained via inductive
synthesis with 1-induction, and monolithic polynomial bounds up to degree of 5 are much more
conservative than our piecewise linear bound. Our approach synthesizes a piecewise linear upper
bound [𝑥 < 0] ·𝑦 + [𝑥 ≥ 0] · (𝑥 +𝑦 + 2), which is actually the exact expected value of 𝑦 (the tightest
bound). With our approach, we can also obtain a piecewise linear lower bound [𝑥 < 0] · 𝑦 + [𝑥 ≥
0] · (𝑥 + 𝑦 + 13/8). □

Obviously, piecewise bounds are more accurate than monolithic bounds. However, the synthesis
of piecewise bounds over probabilistic programs is not well investigated in the literature. To our
best knowledge, a handful relevant work is Batz et al. [11] that proposes an approach to compute
piecewise bounds for probabilistic loops. Their work requires an upper bound to be verified as
an additional program input and it only return a super-invariant (i.e., a piecewise upper bound)
that is sufficient to verify the input upper bounds through counterexample-guided inductive
synthesis (CEGIS). They start the synthesis by predescribing the piecewise template from the
syntactic structure of the given loop and perform the template refinement heuristically when
existing template admits no admissible solution. Moreover, there is a limitation in this work that
requires all assignments in the program must yield a non-negative results. Another work [5]
proposes a data-driven approach that can synthesize piecewise (sub-)invariants. However, their
approach needs a suitable list of numerical features that requires prior knowledge of the program
or user’s assistance.
In this work, we consider how to automatically synthesize piecewise linear bounds for linear

quantitative properties of probabilistic loops with discrete probabilistic choices. Piecewise linear
functions are important in the sense that they constitute a basic class of piecewise numerical bounds,
and are widely used in hybrid systems [13, 14], floating point approximation [22, 47, 48], bilinear
term approximation [6], etc. A recent work [10] also demonstrates that probabilistic program
analysis requires piecewise feature.
Challenges and Gaps. To synthesize piecewise linear bounds for probabilistic programs, there are
two key challenges:

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 3

• Discover a suitable criterion to partition the state space of a probabilistic program to derive
the piecewise structure of a bound function. The criterion needs to be automated, since
specifying the piecewise structure by hand requires heavy manual expertise.
• Explore efficient algorithms to synthesize piecewise linear bounds.

We attack the first challenge by exploiting latticed 𝑘-induction [12, 45]. The 𝑘-induction principle
is a powerful proof tactics in the verification of hardwares and softwares [25, 26, 43, 56]. Latticed
𝑘-induction [12, 45] extends 𝑘-induction to lattices and has application in the formal analysis of
probabilistic programs [12], where the operators of latticed 𝑘-induction are defined by taking
pointwise minimum and maximum of bound functions. In this work, we use these 𝑘-induction
operators to synthesize piecewise linear bounds by extracting the piecewise pattern from the
pointwise minimum and maximum operations.
To address the second challenge, we show that the synthesis of piecewise linear bounds can

be achieved by a non-trivial application of Optional Stopping Theorem (OST) and bilinear pro-
gramming. Optional Stopping Theorem [67, Theorem 10.10] is a fundamental result in martingale
theory, while bilinear programming is a special non-convex programming that admits efficient
constraint solving algorithms [46].

In summary, our main contributions include the following:

• First, we develop a novel variant of latticed 𝑘-induction that is a combination of the 𝑘-
induction operators and OST. Our variant is non-trivial in two folds. The first is that our
variant uses OST instead of fixed point theory that is previously adopted in Batz et al. [12], Lu
and Xu [45]. This allows to derive both upper and lower bounds for quantitative properties
over probabilistic programs, and does not require a global lower bound of program values
(such as requiring non-negativity in Batz et al. [11, 12], Lu and Xu [45]). The second is that
the variant requires an extended version of OST as proposed in Wang et al. [64], and we
show that the classical OST [67, Chapter 10] does not suffice.
• Second, we propose a novel algorithm for synthesizing piecewise linear bounds w.r.t the
latticed 𝑘-induction conditions. Our algorithm tackles both upper and lower bounds by a
reduction to bilinear programming, and therefore can leverage efficient bilinear programming
solvers such as Gurobi [35]. A key contribution here is that we connect the derived constraints
and the unfolding of probabilistic loop, thus reducing the cumbersome calculation containing
pointwise minimize/maximize and addition to the concise calculation of the pre-expectation
of loop-free programs.
• Third, we implement a prototype of our approach. Experimental results over an extensive
set of benchmarks indicate that our approach is capable of generating tight piecewise linear
bounds compared with the state of the art.

Limitations. A major limitation is that our approach could only handle affine probabilistic loops
with finite discrete probabilistic choices, and linear return functions. Another limitation is that
our approach has the combinatorial explosion when the iteration number 𝑘 in the 𝑘-induction
increases, which is an inherent problem in latticed 𝑘-induction [12, 45]. However, for small 𝑘 , our
approach works efficiently.

2 PRELIMINARIES
We first review some necessary concepts from probability theory, then present the syntax of the
probabilistic loops we consider, and finally define the problem we aim to solve in this work.

, Vol. 1, No. 1, Article . Publication date: March 2024.

4 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

𝐶 ::= skip | 𝑥 := 𝑒 | 𝑥 :≈ 𝜇 | 𝐶;𝐶 | {𝐶} [𝑝] {𝐶} | if (𝜑) {𝐶} else {𝐶}
𝜑 ::= 𝑒 < 𝑒 | ¬𝜑 | 𝜑 ∧ 𝜑 𝑒 ::= 𝑐 | 𝑥 | 𝑐 · 𝑒 | 𝑒 + 𝑒 | 𝑒 − 𝑒

Fig. 1. Syntax of probabilistic while loop in the form (1)

2.1 Probability Theory and Martingales
Consider a probability space (Ω, F , P), where Ω is the sample space, F is a 𝜎-algebra on Ω and
P : F → [0, 1] is a probability measure on the measurable space (Ω, F). A random variable
is an F -measurable function 𝑋 : Ω → R ∪ {+∞,−∞}, i.e., a function satisfying that for all
𝑑 ∈ R ∪ {+∞,−∞}, {𝜔 ∈ Ω : 𝑋 (𝜔) ≤ 𝑑} ∈ F . The expectation of a random variable 𝑋 , denoted by
E(𝑋), is the Lebesgue integral of 𝑋 w.r.t. P, i.e., E(𝑋) =

∫
𝑋𝑑P. A filtration of the probability space

(Ω, F , P) is an infinite sequence {F𝑛}∞𝑛=0 such that for every 𝑛, the triple (Ω, F𝑛, P) is a probability
space and F𝑛 ⊆ F𝑛+1 ⊆ F . A stopping time w.r.t. {F𝑛}∞𝑛=0 is a random variable 𝜏 : Ω → N ∪ {0,∞}
such that for every 𝑛 ≥ 0, the event {𝜏 ≤ 𝑛} ∈ F𝑛 , i.e., {𝜔 ∈ Ω : 𝜏 (𝜔) ≤ 𝑛} ∈ F𝑛 . Intuitively, 𝜏 is
interpreted as the time at which the stochastic process shows a desired behavior. A discrete-time
stochastic process is a sequence Γ = {𝑋𝑛}∞𝑛=0 of random variables in (Ω, F , P). The process Γ is
adapted to a filtration {F𝑛}∞𝑛=0, if for all 𝑛 ≥ 0,𝑋𝑛 is a random variable in (Ω, F𝑛, P). A discrete-time
stochastic process Γ = {𝑋𝑛}∞𝑛=0 adapted to a filtration {F𝑛}∞𝑛=0 is amartingale (resp. supermartingale,
submartingale) if for all 𝑛 ≥ 0, E(|𝑋𝑛 |) < ∞ and it holds almost surely that E(𝑋𝑛+1 |F𝑛) = 𝑋𝑛 (resp.
E(𝑋𝑛+1 |F𝑛) ≤ 𝑋𝑛 , E(𝑋𝑛+1 |F𝑛) ≥ 𝑋𝑛). See Williams [67] for more details about martingale theory.
Applying martingales for probabilistic programs analysis is well-studied [17, 18, 21].

2.2 Affine Probabilistic Loops
In this work, we consider affine probabilistic while loops with the form

while (𝜑) {𝐶} (1)

where 𝜑 is the loop guard and𝐶 is the loop body without loops. Furthermore, the loop guard 𝜑 and
loop body 𝐶 are generated by the grammar in Figure 1,
where 𝑥 is a program variable taken from a countable set Vars of variables, 𝑐 ∈ R is a real constant, 𝑒
is an affine arithmetic expression that involves addition and scalar multiplication,𝜑 is a formula over
program variables that is a Boolean combination of arithmetic inequalities, and 𝜇 is a predefined
probability distribution. In this work, we consider 𝜇 to be a finite discrete probability distribution (i.e.,
distributions with a finite support) such as Bernoulli distribution and discrete uniform distribution.
The semantics of most statements, including skip, assignment, sequential composition, conditional,
and the while statement, follow their standard meaning in imperative programs. The semantics of
a statement {𝐶1}[𝑝]{𝐶2} is a probabilistic choice that flips a coin with bias 𝑝 ∈ [0, 1] and executes
the statement 𝐶1 if the coin yields head, and 𝐶2 otherwise. The semantics of a statement 𝑥 :≈ 𝜇
samples a value according to the predefined distribution 𝜇 and assigns the value to the variable 𝑥 .

To formally specify the semantics of a probabilistic while loop, we define the notion of program
states as follows. A program state is a function that maps every program variable to a real number.
We denote by 𝑆 the set of program states, i.e., 𝑆 ≜ {𝑠 | 𝑠 : Vars→ R}. Especially, the initial state
for the probabilistic while loop is denoted by 𝑠∗. The evaluation of an arithmetic expression 𝑒 and a
logical formula 𝜑 under a program state 𝑠 , denoted by 𝑒 (𝑠) and 𝜑 (𝑠) respectively, is defined in the
standard way.

The semantics of a probabilistic while loop of the form (1) can be interpreted by a discrete-time
Markov chain, where the state space is the set of all program states 𝑆 , and the transition probability

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 5

function P is given by the loop body 𝐶 and determines the probabilities P(𝑠, 𝑠′) for 𝑠, 𝑠′ ∈ 𝑆 such
that each probability value P(𝑠, 𝑠′) specifies the probability that given the current program state 𝑠 ,
the next program state is 𝑠′ after one loop iteration. Note that if the loop guard 𝜑 (𝑠) evaluates to
false, then we treat the program state 𝑠 as a deadlock state so that P(𝑠, 𝑠) = 1 and P(𝑠, 𝑠′) = 0 for
𝑠 ≠ 𝑠′ (i.e., when the loop terminates at a program state 𝑠 , we consider that the loop keeps iterating
at this state).
Given the Markov chain of a probabilistic while loop as described above, a path is an infinite

sequence 𝜋 = 𝑠0, 𝑠1, . . . , 𝑠𝑛, . . . of program states such that P(𝑠𝑛, 𝑠𝑛+1) > 0 for all 𝑛 ≥ 0. Intuitively,
each 𝑠𝑛 corresponds to the state right before the (𝑛 + 1)-th loop iteration. A program state 𝑠 is
reachable from an initial program state 𝑠∗ if there exists a path 𝜋 = 𝑠0, 𝑠1, . . . such that 𝑠0 = 𝑠∗

and 𝑠𝑛 = 𝑠 for some 𝑛 ≥ 0, and define Reach(𝑠∗) as the set of reachable states starting from the
initial state 𝑠∗. By the standard cylinder construction (see e.g. Baier and Katoen [4, Chapter 10]),
the Markov chain with a designated initial program state 𝑠∗ for the probabilistic loop induces a
probability space over paths and reachable states, for which we have a countable state space since
we consider probabilistic distributions with finite support. We denote the probability measure in
this probability space by P𝑠∗ and its related expectation operator by E𝑠∗ .
Given a probabilistic while loop 𝑃 of the form (1), a return function 𝑓 is a function 𝑓 : 𝑆 → R

that is used to specify the output of the loop 𝑃 in the sense that when the loop 𝑃 terminates at a
program state 𝑠 , then the return value of the loop is given as 𝑓 (𝑠). We denote by 𝑋𝑓 the random
variable for the return value of the loop given by a return function 𝑓 . In this work, we study the
following problem:

Piecewise Linear Bound Synthesis. Given a probabilistic loop 𝑃 of the form (1) and a
linear return function 𝑓 , synthesize piecewise linear upper and lower bounds on the expected
value of 𝑋𝑓 after the execution of 𝑃 .

3 LATTICED 𝑘-INDUCTION OPERATORS
In this section, we review the latticed 𝑘-induction operators given in Batz et al. [12], Lu and Xu
[45], and propose a new operator dual to the one in Batz et al. [12]. As a theoretical contribution,
we show that the operators in Batz et al. [12], Lu and Xu [45] are equivalent, so that we can focus
on the one in Batz et al. [12] and our dual operator in the development of our approach. Due to the
space constraints, all the proofs in this section are relegated to Appendix A.
To present the latticed 𝑘-induction operators, we first have a brief review of lattice theory.

Informally, a lattice is a partially ordered set (𝐸, ⊑) (where 𝐸 is a set and ⊑ is a partial order on 𝐸)
equipped with two operations, namely the meet operation ⊓ and the join operation ⊔. Given two
elements 𝑢, 𝑣 ∈ 𝐸, the meet 𝑢 ⊓ 𝑣 is defined as the infimum of {𝑢, 𝑣} and dually the join 𝑢 ⊔ 𝑣 is
defined as the supremum of {𝑢, 𝑣}. A partially ordered set (𝐸, ⊑) is a lattice if for any 𝑢, 𝑣 ∈ 𝐸, we
have that both 𝑢 ⊓ 𝑣 and 𝑢 ⊔ 𝑣 exist. Given a lattice (𝐸, ⊑), we say that an operator𝛷 : 𝐸 → 𝐸 is
monotone if for all 𝑢, 𝑣 ∈ 𝐸, 𝑢 ⊑ 𝑣 implies𝛷 (𝑢) ⊑ 𝛷 (𝑣). Throughout this section, we fix a lattice
(𝐸, ⊑) and a monotone operator𝛷 : 𝐸 → 𝐸 for (𝐸, ⊑).

3.1 𝑘-Induction Operators in Batz et al. [12], Lu and Xu [45]
We first present the 𝑘-induction operator in Batz et al. [12], which we call the upper 𝑘-induction
operator. Informally, the upper 𝑘-induction operator simply has a meet operation between the
application𝛷 (𝑣) of𝛷 to an element 𝑣 ∈ 𝐸 with a designated element 𝑢 ∈ 𝐸.

, Vol. 1, No. 1, Article . Publication date: March 2024.

6 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Definition 3.1 (The 𝑘-Induction Operator in Batz et al. [12]). Given any element 𝑢 ∈ 𝐸, the
upper 𝑘-induction operator𝛹𝑢 w.r.t. 𝑢 and the aforementioned monotone operator𝛷 is defined by:
𝛹𝑢 : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊓ 𝑢 .

The intuition is that the operator𝛹𝑢 pulls𝛷 (𝑣) down via the meet with 𝑢. In Batz et al. [12], a
fundamental result shows that this upper 𝑘-induction operator gives an extended form of Park
induction [52].

Theorem 3.2 (Park Induction from 𝑘-Induction [12]). For any 𝑢 ∈ 𝐸 and 𝑘 ∈ N, we have that
𝛷 (𝛹𝑘

𝑢 (𝑢)) ⊑ 𝑢 ⇐⇒ 𝛷 (𝛹𝑘
𝑢 (𝑢)) ⊑𝛹𝑘

𝑢 (𝑢) .

The upper 𝑘-induction operator 𝛷𝑢 in Definition 3.1 directly has the meet with a designated
element 𝑢 ∈ 𝐸. A natural tightening of this operator would be to consider the meet with the input
element 𝑣 itself. This variant is investigated in the work [45]. Formally,

Definition 3.3 (The 𝑘-Induction Operator in Lu and Xu [45]). The upper 𝑘-induction operator Ψ is
defined by: Ψ : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊓ 𝑣 .

Then we prove the following property of the operator Ψ:

Proposition 3.4. For any 𝑢 ∈ 𝐸,𝛷 (Ψ𝑘 (𝑢)) ⊑ 𝑢 ⇐⇒ 𝛷 (Ψ𝑘 (𝑢)) ⊑ Ψ𝑘 (𝑢).

Furthermore, by the properties of 𝑘-induction operators𝛹𝑢 and Ψ, we can prove the following
equivalence theorem which states that the iterated applications of the upper 𝑘-induction operators
𝛹𝑢 and Ψ on 𝑢 produce the same sequence of elements.

Theorem 3.5 (Eqivalence between𝛹𝑢 andΨ). For any element𝑢 ∈ 𝐸, the sequence {𝛹𝑘
𝑢 (𝑢)}𝑘≥0

of elements in 𝐸 coincides with the sequence {Ψ𝑘 (𝑢)}𝑘≥0. Formally, for any natural number 𝑘 ≥ 0, we
have that𝛹𝑘

𝑢 (𝑢) = Ψ𝑘 (𝑢).

From Theorem 3.2, Proposition 3.4 and Theorem 3.5, we have that

𝛷 (𝛹𝑘
𝑢 (𝑢)) ⊑ 𝑢 ⇔ 𝛷 (𝛹𝑘

𝑢 (𝑢)) ⊑𝛹𝑘
𝑢 (𝑢) ⇔ 𝛷 (Ψ𝑘 (𝑢)) ⊑ Ψ𝑘 (𝑢) ⇔ 𝛷 (Ψ𝑘 (𝑢)) ⊑ 𝑢.

3.2 Dual 𝑘-Induction Operators
Below we propose a dual version for the 𝑘-induction operator in Batz et al. [12]. The intuition is
simply to replace the meet operation in Definition 3.1 with join.

Definition 3.6 (Dual 𝑘-Induction Operator). Let 𝑢 ∈ 𝐸. The dual 𝑘-induction operator𝛹′𝑢 w.r.t. 𝑢
and the aforementioned monotone operator𝛷 is defined by:𝛹′𝑢 : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊔ 𝑢 .

We call the operator𝛹′𝑢 as the lower 𝑘-induction operator. Similar to the case of the upper 𝑘-
induction operator, one can define a variant that performs the join operation between the function
application𝛷 (𝑣) with the input element 𝑣 itself. This variant was examined in Lu and Xu [45], and
is restated as follows.

Definition 3.7 (Dual 𝑘-Induction Operator in Lu and Xu [45]). The lower 𝑘-induction operator Ψ′
is given by: Ψ′ : 𝐸 → 𝐸, 𝑣 ↦→ 𝛷 (𝑣) ⊔ 𝑣 .

We prove that both of these two lower 𝑘-induction operators have the following properties and
their equivalence.
Proposition 3.8. For any element 𝑢 ∈ 𝐸, the lower 𝑘-induction operators𝛹′𝑢 and Ψ′ have the

following properties:
𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊒ 𝑢 ⇐⇒ 𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊒ (𝛹′𝑢)𝑘 (𝑢)

𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ 𝑢 ⇐⇒ 𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ (Ψ′)𝑘 (𝑢)

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 7

Theorem 3.9 (Eqivalence between 𝛹′𝑢 and Ψ′). For any element 𝑢 ∈ 𝐸, we have that the
sequence {(𝛹′𝑢)𝑘 (𝑢)}𝑘≥0 of elements in 𝐸 coincides with the sequence {(Ψ′)𝑘 (𝑢)}𝑘≥0. Formally, for
any natural number 𝑘 ≥ 0, we have that (𝛹′𝑢)𝑘 (𝑢) = (Ψ′)𝑘 (𝑢).

Similarly, from Proposition 3.8 and Theorem 3.9, we have that

𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊒ 𝑢 ⇔ 𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊒ (𝛹′𝑢)𝑘 (𝑢) ⇔ 𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ (Ψ′)𝑘 (𝑢) ⇔ 𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ 𝑢.

4 PIECEWISE BOUNDS VIA LATTICED 𝑘-INDUCTION
In this section, we show how one can apply 𝑘-induction operators in Section 3 to synthesize
piecewise expectation bounds for probabilistic loops and their soundness. We first introduce
expectation functions over which we construct concrete 𝑘-induction operators, then define upper
and lower potential functions, and show their soundness to derive expectation bounds from the
properties of 𝑘-induction operators and an extended Optional Stopping Theorem [64]. Throughout
this section, we fix a probabilistic while loop 𝑃 = while(𝜑){𝐶} in the form of (1) and a return
function 𝑓 .

4.1 Expectation Functions
Definition 4.1 (Expectation Functions). An expectation function is a function ℎ : 𝑆 → R that

assigns to each reachable program state a real value. The partial order ⪯ over expectation functions
is defined in the pointwise fashion, i.e., ℎ1 ⪯ ℎ2 ⇐⇒ ∀𝑠 ∈ 𝑆, ℎ1 (𝑠) ≤ ℎ2 (𝑠). We denote the set of
expectation functions by E and the lattice by (E, ⪯), for which the meet operation ⊓ in the lattice
is given by ℎ1 ⊓ ℎ2 := min{ℎ1, ℎ2},where min is the pointwise minimum on functions, i.e., ∀𝑠 ∈
𝑆,min{ℎ1, ℎ2}(𝑠) = min{ℎ1 (𝑠), ℎ2 (𝑠)}, and the join operation ⊔ is given by ℎ1 ⊔ ℎ2 := max{ℎ1, ℎ2},
where max is the pointwise maximum.

Informally, an expectation function ℎ is that for each reachable program state 𝑠 ∈ 𝑆 , the value
ℎ(𝑠) is the expected value of return function 𝑓 after the execution of the while loop 𝑃 when the
loop starts with the program state 𝑠 . Note that although infinite expected values (i.e., ∞,−∞)
theoretically exist, in this work we consider only finite expected values.
It is straightforward to observe that the partially ordered set (E, ⪯) with the meet and join

operations defined above is a lattice, but our approach does not rely on the key properties (e.g.,
fixed point, Park induction, etc.) of lattices. We present expectation functions in terms of lattice
only to relate them with the 𝑘-induction operators presented in Section 3.
To instantiate the 𝑘-induction operators for expectation functions, we further construct the

monotone operator for the lattice (E, ⪯). To this end, we first define the notion of pre-expectation
as follows, wherein [𝜑] denotes the Iverson-bracket of 𝜑 , i.e., [𝜑] (𝑠) evaluates to 1 if 𝑠 |= 𝜑 and to 0
otherwise. Notice that the random assignment command 𝑥 :≈ 𝜇 (where 𝜇 is a discrete distribution)
can be written in an iterative style of {𝐶1} [𝑝] {𝐶2}.

Definition 4.2 (Pre-expectation [17, 63]). Given an expectation function ℎ : 𝑆 → R. We define its
pre-expectation across a loop-free program 𝐶 , 𝑝𝑟𝑒𝐶 (ℎ) : 𝑆 → R, recursively on the structure of 𝐶:

• 𝑝𝑟𝑒𝐶 (ℎ) := ℎ, if 𝐶 ≡ skip.
• 𝑝𝑟𝑒𝐶 (ℎ) := ℎ[𝑥/𝑒], if 𝐶 ≡ 𝑥 := 𝑒 . Here the substitution ℎ[𝑥/𝑒] is given by ℎ[𝑥/𝑒] (𝑠) =
ℎ(𝑠 [𝑥/𝑒]) for any 𝑠 ∈ 𝑆 , where 𝑠 [𝑥/𝑒] (𝑥) = 𝑒 (𝑠) and 𝑠 [𝑥/𝑒] (𝑦) = 𝑠 (𝑦) for all 𝑦 ∈ Vars\{𝑥}.
• 𝑝𝑟𝑒𝐶 (ℎ) := 𝑝𝑟𝑒𝐶1 (𝑝𝑟𝑒𝐶2 (ℎ)), if 𝐶 ≡ 𝐶1;𝐶2.
• 𝑝𝑟𝑒𝐶 (ℎ) := 𝑝 · 𝑝𝑟𝑒𝐶1 (ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (ℎ), if 𝐶 ≡ {𝐶1} [𝑝] {𝐶2}.
• 𝑝𝑟𝑒𝐶 (ℎ) := [𝜙] · 𝑝𝑟𝑒𝐶1 (ℎ) + [¬𝜙] · 𝑝𝑟𝑒𝐶2 (ℎ), if 𝐶 ≡ if (𝜙) {𝐶1} else {𝐶2}.

, Vol. 1, No. 1, Article . Publication date: March 2024.

8 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

The intuition of pre-expectation is that given an expectation function ℎ, the pre-expectation
𝑝𝑟𝑒𝐶 computes the expected value 𝑝𝑟𝑒𝐶 (ℎ) of ℎ after the execution of the command 𝐶 . With pre-
expectation, we then define the monotone operator to be the characteristic function 𝛷 𝑓 of the
probabilistic loop 𝑃 with respect to the return function 𝑓 as follows.

Definition 4.3 (Characteristic Function [17, 37]). The characteristic function𝛷 𝑓 : E → E is defined
by𝛷 𝑓 (ℎ) := [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (ℎ). The monotone operator for the lattice (E, ⪯) is defined as the
characteristic function𝛷 𝑓 .

Informally, the characteristic function𝛷 𝑓 outputs 𝑓 if the loop guard 𝜑 is violated and the loop
terminates in the next step, and the pre-expectation of ℎ w.r.t. the loop body 𝐶 otherwise. It is
straightforward to verify the monotonicity of𝛷 𝑓 . In the following, We omit the subscript 𝑓 in𝛷 𝑓

if it is clear from the context.
Given the monotone operator, we establish the concrete 𝑘-induction operators as follows. Recall

that by Theorem 3.5 and Theorem 3.9, we only need to consider the 𝑘-induction operators in
Definition 3.1 and Definition 3.6.

Definition 4.4 (𝑘-Induction Operators for (E, ⪯)). The upper 𝑘-induction operator 𝛹ℎ is defined
by𝛹ℎ : E → E, 𝑔 ↦→ min{𝛷 (𝑔), ℎ}, and the lower 𝑘-induction operator 𝛹

′
ℎ is given by𝛹

′
ℎ : E →

E, 𝑔 ↦→ max{𝛷 (𝑔), ℎ}.

4.2 Potential Functions
We define potential functions as expectation functions that fulfill 𝑘-induction conditions. For
deriving upper bounds of probabilistic loops, we introduce upper potential functions. For lower
bounds, we have lower potential functions.
Definition 4.5 (Potential Functions). Let 𝑘 be a positive integer. A 𝑘-upper potential function

is an expectation function ℎ that satisfies the upper 𝑘-induction condition𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ, and a

𝑘-lower potential function is an expectation function ℎ that satisfies the lower 𝑘-induction condition
𝛷 𝑓 ((𝛹

′
ℎ)𝑘−1 (ℎ)) ⪰ ℎ.

Below we explore the soundness of potential functions. Since the classical Optional Stopping
Theorem [27, 67] (see Appendix B.1) requires bounded changes of the step-wise difference |𝑋𝑛+1−𝑋𝑛 |
in a stochastic process {𝑋𝑛}𝑛≥0, which cannot handle our problem due to the assignment command
in the loop body. To address this difficulty, We have sought several extended versions of OST, as
proposed in Wang et al. [61, 63, 64], etc. Among which we find the OST varaint proposed in Wang
et al. [64] can handle our problem. We have copied its proof in Appendix B.2.
Theorem 4.6 (Extended OST [64]). Let {𝑋𝑛}∞𝑛=0 be a supermartingale adapted to a filtration
F = {F𝑛}∞𝑛=0 and 𝜏 be a stopping time w.r.t the filtration F . Suppose there exist positive real numbers
𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑐3 such that 𝑐2 > 𝑐3 and

(a) Concentration property. For all sufficiently large natural numbers 𝑛, it holds that P(𝜏 > 𝑛) ≤
𝑐1 · 𝑒−𝑐2 ·𝑛 .

(b) Exponential bound. For every natural number 𝑛 ≥ 0, it holds almost-surely that |𝑋𝑛+1 − 𝑋𝑛 | ≤
𝑏1 · 𝑛𝑏2 · 𝑒𝑐3 ·𝑛 .

Then we have that E(|𝑋𝜏 |) < ∞ and E(𝑋𝜏) ≤ E(𝑋0).

To handle the prerequisite (a) in Theorem 4.6, we consider to fulfill the concentration property by
synthesizing difference bounded ranking supermartingales to witness the exponentially-decreasing
concentration property (see Chatterjee et al. [18, 19] for details). For the prerequisite (b), we choose
a maximum amplifier 𝑐 > 0 such that the absolute value of every program variable 𝑥 is amplified

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 9

by at most 𝑐 during one loop iteration. The value 𝑐 can always be taken since the Vars of program
variables and the commands in one loop iteration is finite. We guarantee an exponential bound for
the stepwise difference by restricting the amplifier 𝑐 in the loop body with a constant, i.e., 𝑐 ≤ 𝑒𝑐3 ,
for some postitive value 𝑐3. The amplifier 𝑐 can be obtained by simple syntactic check for the loop.

Putting the above properties together, we have our main theorem below.We follow the definitions
and notations in Section 2. Recall that we denote 𝑠∗ as an initial program state, 𝑋𝑓 as the random
variable for the return value of the loop given a return function 𝑓 . Furthermore, we denote 𝜏 as
the random variable of the termination time of the loop, i.e., the number of loop iterations. The
theorem states that upper and lower bounds for the expected value of a return function can be
derived from upper and lower potential functions.

Theorem 4.7 (Soundness of Potential Functions). Let 𝑘 be a positive integer. Suppose that
there exist real numbers 𝑐1 > 0 and 𝑐2 > 𝑐3 > 0 such that (i) The maximum amplifier 𝑐 satisfies
𝑐 ≤ 𝑒𝑐3 and (ii) the termination time random variable 𝜏 of 𝑃 has the concentration property, i.e.,
P(𝜏 > 𝑛) ≤ 𝑐1 · 𝑒−𝑐2 ·𝑛 . Then the following hold:

• For any 𝑘-upper potential function ℎ, E𝑠∗ (𝑋𝑓) ≤ 𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗).

• For any 𝑘-lower potential function ℎ, E𝑠∗ (𝑋𝑓) ≥ (𝛹
′
ℎ)𝑘−1 (ℎ) (𝑠∗) ≥ ℎ(𝑠∗).

Proof. We first proof the soundness of upper potential functions. Let 𝑠𝑛 be the random vector
(random variable) of the program state at the 𝑛-th iteration of the probabilistic while loop 𝑃 , where
𝑠0 = 𝑠∗ and let 𝐻 = 𝛹

𝑘−1
ℎ (ℎ). By Definition 4.5 and Theorem 3.2, we obtain that ∀𝑠 ∈ Reach(𝑠∗),

𝛷 (𝐻) (𝑠) ≤ 𝐻 (𝑠). We define the stochastic process {𝑋𝑛}∞𝑛=0 by

𝑋𝑛 := [𝑠𝑛 |= 𝜑] · 𝐻 (𝑠𝑛) + [𝑠𝑛 ̸ |= 𝜑] · 𝑓 (𝑠𝑛).

We first prove that the stochastic process {𝑋𝑛} is a supermartingale. We discuss this in the following
two scenarios:
• if 𝑠𝑛 ̸ |= 𝜑 , by the semantics of probabilistic while loop (see Section 2.2), 𝑠𝑛+1 = 𝑠𝑛 , and thus
𝑋𝑛+1 = 𝑋𝑛 , which satisfies the conditions of supermartingale;
• if 𝑠𝑛 |= 𝜑 , we have

E𝑠∗ [𝑋𝑛+1 |F𝑛] = E𝑠∗ [[𝑠𝑛+1 |= 𝜑] · 𝐻 (𝑠𝑛+1) + [𝑠𝑛+1 ̸ |= 𝜑] · 𝑓 (𝑠𝑛+1)]
= [𝑠𝑛+1 |= 𝜑] · E𝑠∗ [𝐻 (𝑠𝑛+1)] + [𝑠𝑛+1 ̸ |= 𝜑] · E𝑠∗ [𝑓 (𝑠𝑛+1)]

(by definition of mathematic expectation)
= [𝑠𝑛+1 |= 𝜑] · 𝑝𝑟𝑒𝐶 (𝐻) (𝑠𝑛) + [𝑠𝑛+1 ̸ |= 𝜑] · E𝑠∗ [𝑓 (𝑠𝑛+1)]

(by definition of pre-expectation)

= 𝛷 (𝐻) (𝑠𝑛)
≤ 𝐻 (𝑠𝑛) (by property of 𝐻)
= 𝑋𝑛

Combining the condition (i), (ii) and 𝐻 is piecewise linear, we can derive that E𝑠∗ [𝑋𝑛] < ∞
holds. Thus {𝑋𝑛} is a supermartingale.

The condition (a) in Theorem 4.6 depends on the assumption that (ii) 𝑃 has the concentration
property.

Then we prove the condition (b) in Theorem 4.6. We discuss this in the following three scenarios:
• if 𝑠𝑛 ̸ |= 𝜑 , by the semantics of probabilistic while loop (see Section 2.2), we have 𝑠𝑛+1 = 𝑠𝑛 ,
and thus |𝑋𝑛+1 − 𝑋𝑛 | = 0;

, Vol. 1, No. 1, Article . Publication date: March 2024.

10 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

• if 𝑠𝑛 |= 𝜑 and if 𝑠𝑛+1 |= 𝜑 , since the condition (ii), we have that each program variable
𝑥𝑖 (𝑖 ∈ Z+) and the constant term 𝑥0 at state 𝑠𝑛 (∀𝑛) can be bounded by 𝐾𝑖 · 𝑐𝑛𝑖 for some
𝐾𝑖 , 𝑐𝑖 (𝑖 ∈ N). In addition that 𝐻 is piecewise linear, we have that 𝐻 (𝑠𝑛) ≤ 𝑀𝑛 · 𝑐𝑛 for𝑀𝑛 > 0.

|𝑋𝑛+1 − 𝑋𝑛 | = |𝐻 (𝑠𝑛+1) − 𝐻 (𝑠𝑛) |
≤ |𝐻 (𝑠𝑛+1) | + |𝐻 (𝑠𝑛) |
≤ 𝑀𝑛 · |𝑐 |𝑛 +𝑀𝑛+1 · |𝑐 |𝑛+1

≤ (𝑀𝑛 + |𝑐 | ·𝑀𝑛+1) · |𝑐 |𝑛

≤ 𝑏1 · 𝑒𝑐3𝑛

• if 𝑠𝑛 |= 𝜑 and if 𝑠𝑛+1 ̸ |= 𝜑 , this case is similar with the case of 𝑠𝑛 |= 𝜑 & 𝑠𝑛+1 |= 𝜑 . We have that

|𝑋𝑛+1 − 𝑋𝑛 | = |𝑓 (𝑠𝑛+1) − 𝐻 (𝑠𝑛) |
≤ |𝑓 (𝑠𝑛+1) | + |𝐻 (𝑠𝑛) |
≤ 𝑀𝑛 · |𝑐 |𝑛 +𝑀𝑛+1

= 𝑀𝑛 · |𝑐 |𝑛 +𝑀𝑛+1 · 𝑒0·𝑛

≤ 𝑏1 · 𝑒𝑐3𝑛

By applying Theorem 4.6, we have that E𝑠∗ (𝑋𝜏) ≤ E𝑠∗ (𝑋0). Since 𝜏 is the stopping time, there
will be 𝑠𝜏 ̸ |= 𝜑 , thus 𝑋𝜏 = 𝑓 (𝑠𝜏) = 𝑋𝑓 . We have E𝑠∗ (𝑋𝑓) ≤ E𝑠∗ (𝑋0) = 𝐻 (𝑠∗). The second inequality
can be derived directly from the property that𝛹

𝑘−1
ℎ (ℎ) ⪯ ℎ holds (see Appendix A.1 and Batz et al.

[12]).
The the case of lower potential functions is completely dual to the case of upper potential

functions since we can consider the stochastic process {−𝑋𝑛}, that is, define the stochastic process
by

𝑌𝑛 := [𝑠𝑛 |= 𝜑] · (−𝐻 (𝑠𝑛)) + [𝑠𝑛 ̸ |= 𝜑] · (−𝑓 (𝑠𝑛)).
The remaining proof is essentially the same.

□

5 SYNTHESIZING BOUNDS
In this section, we propose synthesis algorithms following the theoretical results in Section 4. Given
a probabilistic while loop 𝑃 in the form of (1), a linear return function 𝑓 and a positive integer 𝑘
(as the parameter in 𝑘-induction), our algorithms synthesize piecewise linear upper/lower bounds
for the expected value of the return function 𝑓 with the 𝑘-induction conditions. We only present
the synthesis of upper bounds, and the case of lower bound is completely dual, as we just need to
replace minimum with maximum and ⪯ with ⪰.

5.1 A Nutshell of Our Algorithm
Our algorithm consists of the following steps:
• Set up a linear template ℎ with unknown coefficients over program variables. The template ℎ
acts as the expectation function that is used to derive the piecewise linear bound𝛹

𝑘−1
ℎ (ℎ) as

in Definition 4.5 and Theorem 4.7.
• Apply the 𝑘-induction conditions to obtain the constraints on the unknown coefficients in
the template ℎ. For example, applying the upper 𝑘-induction condition from Definition 4.5
yields the constraint𝛷 𝑓 (𝛹

𝑘−1
ℎ (ℎ)) ⪯ ℎ.

• Transform the constraints from the previous step into a succinct canonical form.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 11

• Solve the constraints in the canonical form from the previous step. This include applying
Motzkin’s Transposition Theorem to reduce the constraints to bilinear programming and the
call of the Gurobi bilinear programming solver.

After solving the canonical constraints, we obtain an instantiation of the unknown coefficients in
the template ℎ, and therefore an instantiated expectation function ℎ∗. Thus, we obtain a piecewise
linear upper bound ℎ∗𝑢𝑝 =𝛹

𝑘−1
ℎ∗ (ℎ∗).

5.2 Zooming of Our Algorithm

Below we explain the details of our algorithm with the running example in Example 1.1. Consider
as input a probabilistic loop 𝑃 in the form of (1) with an initial program state 𝑠∗, a linear return
function 𝑓 and a positive integer 𝑘 . We assume an affine invariant 𝐼 at the entry point of the loop,
which is a conjunctive linear arithmetic formula over program variables that over-approximates
the reachable program states Reach(𝑠∗), i.e., for 𝑠 ∈ Reach(𝑠∗), 𝐼 (𝑠) evaluates to true (or 𝑠 |= 𝐼). We
restrict our attention to program states satisfying the invariant 𝐼 by replacing the definition for
⪯ (which is ℎ1 ⪯ ℎ2 ⇐⇒ ∀𝑠 ∈ 𝑆, ℎ1 (𝑠) ≤ ℎ2 (𝑠)) to ℎ1 ⪯ ℎ2 ⇐⇒ ∀𝑠 |= 𝐼 , ℎ1 (𝑠) ≤ ℎ2 (𝑠), whose
soundness follows from the over-approximation of reachable program states by the invariant 𝐼 .
Affine invariants can be obtained via external invariant generators (such as Sankaranarayanan et al.
[55]).

Example 5.1. Consider the Growing Walk in Example 1.1 as input. We take the invariant
𝐼 = [−1 ≤ 𝑥] and set 𝑘 = 2. □

Our algorithm includes four steps as follows.
Step 1. Predefining a Linear Template ℎ. Our algorithm establishes a linear template as ℎ =

cT · x + 𝑑 where x is the vector of program variables, c is the vector of unknown coefficients and 𝑑
is the unknown scalar term of the template.

Example 5.2. In the first step, we predefine a linear template ℎ = 𝑎 ·𝑥 +𝑏 ·𝑦+𝑐 for the probabilistic
loop in Example 5.1, where 𝑎, 𝑏, 𝑐 are unknown coefficients. □

Step 2. Deriving Constraints. The second step is to apply the 𝑘-induction conditions to the linear
template ℎ, and obtain the constraint𝛷 𝑓 (𝛹

𝑘−1
ℎ (ℎ)) ⪯ ℎ. To transform the constraint into an simpler

form, our algorithm further unrolls the 𝑘-induction conditions so that the minimum operations
appear at the outermost of the left-hand-side of the inequality. In detail, from the definition of the
operator𝛹ℎ (Definition 4.4), the unrolling is reduced to the recursive computation of pre-expectation
and the pointwise minimum operation. Following the definition of pre-expectation, the unrolling
can be done by the following reduction rules for functions 𝑓1, . . . , 𝑓𝑚 , 𝑔1, . . . , 𝑔𝑛 :
(R1) min{𝑓1, . . . , 𝑓𝑚} +min{𝑔1, . . . , 𝑔𝑛} = min1≤𝑖≤𝑚,1≤ 𝑗≤𝑛{𝑓𝑖 + 𝑔 𝑗 };
(R2) 𝑐 ·min{𝑓1, . . . , 𝑓𝑚} = min{𝑐 · 𝑓1, . . . , 𝑓𝑚} for constant 𝑐 ≥ 0;
(R3) [𝐵] ·min{𝑓1, . . . , 𝑓𝑚} = min{[𝐵] · 𝑓1, . . . , [𝐵] · 𝑓𝑚} for predicate 𝐵.
By iterative applications of the reduction rules, the constraint𝛷 𝑓 (𝛹

𝑘−1
ℎ (ℎ)) ⪯ ℎ can be trans-

formed into a succinct form with only one minimum operation:
min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ (2)

where ℎ is the linear template and each ℎ𝑖 (𝑖 = 1, . . . ,𝑚) is a piecewise expression derived from the
unrolling that does not contain the minimum operation.

Instead of directly applying the rules (R1) – (R3), our algorithm employs a more efficient approach
to obtain the constraint in the form of (2). We start by unfolding the probabilistic loop from one

, Vol. 1, No. 1, Article . Publication date: March 2024.

12 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

arbitrary initial state 𝑠∗ for at most 𝑘 times (the choice of this state is unimportant). We make a
decision whether we continue to unfold the loop once more at each state we reach (except for the
initial state), and this decision process continues until there are no unfolding to be executed or we
have already unfolded the loop from the initial state 𝑠∗ for 𝑘 times. Each strategy, composed of
the choices at each decision step, decides a distinct loop-free program 𝐶𝑑 . Let 𝐶1, . . . ,𝐶𝑚 be all the
loop-free programs generated by the above decision process.
We explore the relationship between the upper (resp. lower) 𝑘-induction constraint and the

unfolding of the probabilistic loop. We describe it in Proposition 5.3 and implement our automated
algorithm based on this proposition. Due to the space limit, the proof is relegated to Appendix C.1.

Proposition 5.3. The upper (resp. lower)𝑘-induction condition𝛷 𝑓 (𝛹
𝑘−1
ℎ (ℎ)) ⪯ ℎ (resp.𝛷 𝑓 (𝛹

′
ℎ)𝑘−1 (ℎ)) ⪰

ℎ) is equivalent withmin{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ (resp.max{ℎ1, ℎ2, . . . , ℎ𝑚} ⪰ ℎ), where each ℎ𝑖 uniquely
corresponds to one 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} and is equal to 𝑝𝑟𝑒𝐶𝑑

(ℎ).

We demonstrate our Proposition 5.3 through a pedagogical example and a dendrogram. We
first show the upper 2-induction constraints considered in the example simplified by symbolic
calculation, and then show the relations with the loop unrolling.

Example 5.4. : We consider a simple but general example 𝑃𝑎 :

while (𝜑 (𝑥)) {{𝑥 B 𝑎1𝑥 + 𝑏1} [𝑝] {𝑥 B 𝑎2𝑥 + 𝑏2}} (3)

where 𝑎𝑖 , 𝑏𝑖 (𝑖 = 1, 2) ∈ R, 𝑝 ∈ [0, 1] and 𝜑 (𝑥) is a linear inequality. We consider to calculate the
upper bound for the expected value of 𝑓 after executing the probabilistic while loop. □

We consider to derive the upper bound for the expected value of 𝑓 from upper 2-induction
condition:

𝛷 𝑓 (𝛹ℎ (ℎ)) ⪯ ℎ (4)

where𝛹ℎ (ℎ) = min{𝛷 𝑓 (ℎ(𝑥)), ℎ(𝑥)}, from the Definition 4.4, and the characteristic function𝛷 𝑓 in
this while loop 𝑃𝑎 is [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] (𝑝 · ℎ(𝑎1𝑥 + 𝑏1) + (1 − 𝑝) · ℎ(𝑎2𝑥 + 𝑏2)).

By unfolding the constraint (4), the left side of the inequality is in the form of min{ℎ1, ℎ2, ℎ3, ℎ4}.
In the following, we show all the expressions ℎ𝑖 and illustrate that each ℎ𝑖 (𝑖 = 1, 2, 3, 4) represents
for the pre-expectation of ℎ across the loop-free programs 𝐶𝑖 ∈ {𝐶1,𝐶2,𝐶3,𝐶4} generated by the
above unfolding of the loop (3) within 2 iterations. For ease of understanding, we take 𝐻1 =

[¬𝜑 (𝑎1𝑥 +𝑏1)] · 𝑓 (𝑎1𝑥 +𝑏1) + [𝜑 (𝑎1𝑥 +𝑏1)] · (𝑝 ·ℎ(𝑎1 (𝑎1𝑥 +𝑏1) +𝑏1) + (1−𝑝) ·ℎ(𝑎2 (𝑎1𝑥 +𝑏1) +𝑏2)),
which represents for the loop unrolling for once at the state of 𝑎1𝑥 + 𝑏1, and 𝐻2 = [¬𝜑 (𝑎2𝑥 + 𝑏2)] ·
𝑓 (𝑎2𝑥 +𝑏2) + [𝜑 (𝑎2𝑥 +𝑏2)] · (𝑝 ·ℎ(𝑎1 (𝑎2𝑥 +𝑏2) +𝑏1) + (1−𝑝) ·ℎ(𝑎2 (𝑎2𝑥 +𝑏2) +𝑏2)), which represents
for the loop unrolling for once at the state of 𝑎2𝑥 + 𝑏2. Note that if 𝜑 (𝑥) is not satisfied initially, the
loop will terminate and output 𝑓 (𝑥).
• ℎ1 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] (𝑝 ·ℎ(𝑎1𝑥 +𝑏1) + (1− 𝑝) ·ℎ(𝑎2𝑥 +𝑏2)): unfold the loop for once
and will reach two states: 𝑎1𝑥 + 𝑏1 and 𝑎2𝑥 + 𝑏2 (if the loop guard 𝜑 (𝑥) is satisfied), and we
do not continue the execution of the loop, i.e., we unfold the loop only for once and obtain a
loop-free program 𝐶1. Notice that ℎ1 is the pre-expectation of ℎ(𝑥) w.r.t. the program 𝐶1.
• ℎ2 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] · (𝑝 · ℎ(𝑎1𝑥 + 𝑏1) + (1 − 𝑝) ·𝐻2): execute the loop once and will
reach two states of 𝑎1𝑥 + 𝑏1 and 𝑎2𝑥 + 𝑏2 (if the loop guard 𝜑 (𝑥) is satisfied) respectively.
– At the state of 𝑎1𝑥 + 𝑏1 (with the probability 𝑝), we do not unfold the loop and obtain the
value ℎ(𝑎1𝑥 + 𝑏1);

– At the state of 𝑎2𝑥 + 𝑏2 (with the probability 1 − 𝑝), we continue the execution of the loop
and we will attain two branches:

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 13

(1) if 𝜑 (𝑎2𝑥 + 𝑏2) is not satisfied, output the return function 𝑓 (𝑎2𝑥 + 𝑏2);
(2) if 𝜑 (𝑎2𝑥 +𝑏2) is satisfied, we will arrive at the state of 𝑎1 (𝑎2𝑥 +𝑏2) +𝑏1 with the probability

of 𝑝 and arrive at the state of 𝑎2 (𝑎2𝑥 + 𝑏2) + 𝑏2 with the probability of 1 − 𝑝 , i.e. unfold
the loop for twice.

The unfolding process above generates a loop-free program 𝐶2. ℎ2 is the pre-expectation of
ℎ(𝑥) w.r.t. the program 𝐶2.
• ℎ3 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] · (𝑝 · 𝐻1 + (1 − 𝑝) · ℎ(𝑎2𝑥 + 𝑏2)): This case is similar with the
former one, the only difference is that we choose to continue the execution of the loop at the
state of 𝑎1𝑥 + 𝑏1 and do not unfold the loop at 𝑎2𝑥 + 𝑏2:
– At the state of 𝑎1𝑥 + 𝑏1 (with the probability 𝑝), we continue the execution of the loop and
we will attain two branches:

(1) if 𝜑 (𝑎1𝑥 + 𝑏1) is not satisfied, output the return function 𝑓 (𝑎1𝑥 + 𝑏1);
(2) if 𝜑 (𝑎1𝑥 +𝑏1) is satisfied, we will arrive at the state of 𝑎1 (𝑎1𝑥 +𝑏1) +𝑏1 with the probability

of 𝑝 and arrive at the state of 𝑎2 (𝑎1𝑥 + 𝑏1) + 𝑏2 with the probability of 1 − 𝑝 , i.e. unfold
the loop for twice.

– At the state of 𝑎2𝑥 + 𝑏2 (with the probability 1 − 𝑝), we do not unfold the loop and obtain
the value ℎ(𝑎2𝑥 + 𝑏2).

The above process generates a loop-free program 𝐶3 and ℎ3 is the pre-expectation of ℎ(𝑥)
w.r.t. the program 𝐶3.
• ℎ4 = [¬𝜑 (𝑥)] · 𝑓 (𝑥) + [𝜑 (𝑥)] · (𝑝 ·𝐻1 + (1− 𝑝) ·𝐻2): At both the states 𝑎1𝑥 +𝑏1 and 𝑎2𝑥 +𝑏2 ,
we choose to execute the loop for one more time, corresponding to the complete denerogram
in figure 2, i.e., we choose to unfold the loop twice at these two states. This generates a
loop-free program 𝐶4 and ℎ4 is the pre-expectation of ℎ(𝑥) w.r.t. the program 𝐶4.

Recap the constraint of upper 2-induction condition, we only can execute the loop for almost 2
times. Thus here are all the potential cases, which corresponds to each ℎ𝑖 in the set {ℎ1, ℎ2, ℎ3, ℎ4}.
A denerogram Fig. 2 is attached for this Example 5.4. Moreover, to illustrate the intuition more
completely, we supplement the explanation about the upper 𝑘-induction condition when 𝑘 > 2. See
a simplified dendrogram in the Figure 3 in Appendix C.2 for all the potential cases derived from
upper 3-induction condition.
Based on Proposition 5.3, an alternative approach to extract the constraint is by exploring all

the unfolded programs within 𝑘 loop iterations. Notice that the predicates in 𝑝𝑟𝑒𝐶𝑑
(ℎ) (for each

𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚}) are completely determined by the assignments and conditional branches in the
loop and the loop guard, while the linear expressions are completely determined by the loop body
and the loop iterations. Since these programs {𝐶1, . . . ,𝐶𝑚} are loop-free and structurally similar, we
can calculate 𝑝𝑟𝑒𝐶𝑑

(ℎ)(for each 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚}) at the same time by traversing 𝑘-unfolding of
program loop once, which reduces the runtime by avoiding excessive and repeatable computations.

Example 5.5. In the Growing Walk example, we apply 2-induction to synthesize a piecewise
linear upper bound. Starting from arbitrary program state 𝑠∗ = (𝑥,𝑦), we unroll the loop once and
arrives at two new program states (𝑥 + 1, 𝑥 + 𝑦 + 1) and (−1, 𝑦). At each new state, we perform the
decision process above independently and obtain the following four functions from the template ℎ:

ℎ1 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · ℎ(−1, 𝑦))
ℎ2 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.25 · ℎ(−1, 𝑦 + 𝑥) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · ℎ(−1, 𝑦))
ℎ3 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.25 · ℎ(−1, 𝑦 + 𝑥) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · 𝑦)
ℎ4 = [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · 𝑦)

(5)

Thus, we have the constraint ∀(𝑥,𝑦) |= 𝐼 .min{ℎ1, ℎ2, ℎ3, ℎ4} ⪯ ℎ. □

, Vol. 1, No. 1, Article . Publication date: March 2024.

14 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

satisfies output

satisfies output

No

unfolding or not?

satisfies output No No

unfolding or not?

Fig. 2. 2-induction condition for example 5.4

Step 3. Transforming to Canonical Form. In the third step, our algorithm transforms the
constraint of the form (2) to a canonical form given by

[𝐵1] =⇒ min{𝑒11, . . . , 𝑒𝑚1} ≤ ℎ, . . . , [𝐵𝑙] =⇒ min{𝑒1𝑙 , . . . , 𝑒𝑚𝑙 } ≤ ℎ (6)

where ℎ is the linear template, each 𝐵 𝑗 (𝑗 ∈ {1, ..., 𝑙}) is a conjunction of predicates in the program
variables that does not contain the unknown coefficients of the template, and each 𝑒𝑖 𝑗 is a monolithic
linear expression with the unknown coefficients from the template. The transformation first rewrites
the inequality (2) as

min{∑𝑘 [𝐵1𝑘] · 𝑒1𝑘 , . . . ,
∑

𝑘 [𝐵𝑚𝑘] · 𝑒𝑚𝑘 } ⪯ ℎ (7)

where for each 1 ≤ 𝑖 ≤ 𝑚, we have that ℎ𝑖 =
∑

𝑘 [𝐵𝑖𝑘] · 𝑒𝑖𝑘 for which each 𝐵𝑖𝑘 is a predicate
without the unknown coefficients and each 𝑒𝑖𝑘 is a monolithic linear expression with the unknown
coefficients. Then, for each conjunctive Boolean combination 𝐵 =

∧𝑚
𝑖=1 𝐵𝑖𝑘𝑖 where each 𝐵𝑖𝑘𝑖 is a

predicate from the summation
∑

𝑘 [𝐵𝑖𝑘] · 𝑒𝑖𝑘 , we have a constraint Ψ𝐵 that [𝐵] =⇒ min𝑚𝑖=1 𝑒𝑖𝑘𝑖 ≤ ℎ,
and the transformed inequalities (6) include exactly all those Ψ𝐵 ’s. In our algorithm, we remove
infeasible Ψ𝐵 (i.e., 𝐵 is unsatisfiable) by a SMT solver such as Z3 [24] whenever possible.

Example 5.6. Continue with Example 5.2 and Example 5.5. We transform the Eq. (5) into the
canonical form. We simply divide the state space of the program into two parts: [𝑥 < 0] and [𝑥 ≥ 0],
according to (5). By applying Step 3 with the removal of unsatisfiable predicates, we have the

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 15

following canonical form:
[𝑥 < 0] =⇒ min{𝑦} ≤ ℎ (8)

[𝑥 ≥ 0] =⇒ min


0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · ℎ(−1, 𝑦)
0.25 · ℎ(−1, 𝑦 + 𝑥 + 1) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · ℎ(−1, 𝑦)
0.25 · ℎ(−1, 𝑦 + 𝑥 + 1) + 0.25 · ℎ(𝑥 + 2, 2𝑥 + 𝑦 + 3) + 0.5 · 𝑦
0.5 · ℎ(𝑥 + 1, 𝑥 + 𝑦 + 1) + 0.5 · 𝑦


≤ ℎ (9)

□

Step 4. Solving Constraints. Below we explain how to solve the canonical constraints from Step
3. Note that the canonical form (6) contains minimum operation that renders it non-convex. We first
show that the minimum operation can be eliminated by transforming each constraint in the form of
(6) into an equivalent formulation via the unsatisfiability of a system of non-strict and strict linear
inequalities. Then the derived constraints can be transformed to bilinear constraints by applying
Motzkin’s Transposition Theorem, which can be solved using off-the-shell bilinear programming
solvers such as Gurobi. We consider a variant of Motzkin’s Transposition Theorem [50] below,
which can reduce computation in our problem.

Theorem 5.7 (Motzkin’s Transposition Theorem [50]). Let

𝑆 =



𝑛∑︁
𝑖=1

𝛼 (1,𝑖) · 𝑥𝑖 + 𝛽1 ≤ 0

...

𝑛∑︁
𝑖=1

𝛼 (𝑚,𝑖) · 𝑥𝑖 + 𝛽𝑚 ≤ 0


𝑎𝑛𝑑 𝑇 =



𝑛∑︁
𝑖=1

𝛼 (𝑚+1,𝑖) · 𝑥𝑖 + 𝛽𝑚+1 < 0

...

𝑛∑︁
𝑖=1

𝛼 (𝑚+𝑘,𝑖) · 𝑥𝑖 + 𝛽𝑚+𝑘 < 0


be systems of linear inequalities where 𝛼 (1,1) , ..., 𝛼 (𝑚+𝑘,𝑛) and 𝛽1, ..., 𝛽𝑚+𝑘 are coefficients taken reals.
If 𝑆 is satisfiable, then 𝑆 ∧𝑇 is unsatisfiable iff there exist non-negative reals 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 and at
least one coefficient 𝜆𝑖 for 𝑖 ∈ {𝑚 + 1, ...,𝑚 + 𝑘} is non-zero, such that:

0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,𝑛) , 0 = (
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛽𝑖) − 𝜆0. (10)

Theorem 5.7 is first proposed in Chatterjee et al. [20, Theorem 4.5 and Remark 4.6] without proof.
We give a complete proof in Appendix C.3. In what follows, we show how Theorem 5.7 can be
applied to solve our canonical constraints (6).
• First, we conjunct the affine invariant 𝐼 to every inequality in the canonical form (6) while
removing unsatisfiable predicates, and handle the inequality

[𝐼 ∧ 𝐵 𝑗] =⇒ min{𝑒1𝑗 , 𝑒2𝑗 , ..., 𝑒𝑚𝑗 } ≤ ℎ (11)

for each 𝑗 ∈ {1, 2, ...𝑙} in (6) separately by Theorem 5.7. In detail, let 𝑆 𝑗 be the the inequality
system 𝐼 ∧ 𝐵 𝑗 , and let 𝑇𝑗 be the collection {𝑒1𝑗 > ℎ, 𝑒2𝑗 > ℎ, ..., 𝑒𝑚𝑗 > ℎ} of strict linear
inequalities from (6). Then we have that the inequality (11) holds for all program states iff
𝑆 𝑗 ∧ 𝑇𝑗 is unsatisfiable. It follows from Theorem 5.7 that 𝑆 𝑗 ∧ 𝑇𝑗 is unsatisfiable iff there
exist non-negative real numbers 𝝀𝒋 = (𝜆0, 𝑗 , . . . , 𝜆𝑚 𝑗+𝑘 𝑗 , 𝑗) and at least one coefficient 𝜆𝑖 𝑗 for
𝑖 𝑗 ∈ {𝑚 𝑗 + 1, ...,𝑚 𝑗 + 𝑘 𝑗 } is non-zero that fulfills the equalities in (10). Notice that (10) is
bilinear, since we have two separate groups of variables, namely the group of unknown
coefficients in the template and the group of the fresh variables 𝝀𝒋 . Within each group, the
relationships are linear.

, Vol. 1, No. 1, Article . Publication date: March 2024.

16 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

• Second, our approach collects all those bilinear constraints and puts them together by con-
junction, and then solves the whole system of bilinear constraints by off-the-shelf bilinear
programming solvers.

Example 5.8. Continue with Example 5.6 and we use the invariant [𝑥 ≥ −1]. We list the bilinear
constraints derived from Eq. (9). By substituting ℎ(𝑥,𝑦) with 𝑎 ·𝑥 +𝑏 ·𝑦 +𝑐 , we obtain the following
inequalities:

−𝑥 ≤ 0 0.5(𝑎 − 𝑏) · 𝑥 − 0.5𝑏 < 0 0.75(𝑎 − 𝑏) · 𝑥 − (𝑏 − 0.25𝑎) < 0
0.75(𝑎 − 𝑏) · 𝑥 + 0.5(𝑏 − 1) · 𝑦 + (0.5𝑐 − 0.25𝑎 − 𝑏) < 0

0.5(𝑎 − 𝑏) · 𝑥 + 0.5(𝑏 − 1) · 𝑦 + 0.5(𝑐 − 𝑎 − 𝑏) < 0

Then by applying Motzkin Transposition Theorem, we obtain the following bilinear constraints:
∃𝜆0 ≥ 0, 𝜆1 ≥ 0, · · · , 𝜆5 ≥ 0 s.t. (𝜆2 ≠ 0 ∨ 𝜆3 ≠ 0 ∨ 𝜆4 ≠ 0 ∨ 𝜆5 ≠ 0)∧
0 = (−1) · 𝜆1 + 0.5(𝑎 − 𝑏) · 𝜆2 + 0.75(𝑎 − 𝑏) · 𝜆3 + 0.75(𝑎 − 𝑏) · 𝜆4 + 0.5(𝑎 − 𝑏) · 𝜆5 ∧
0 = 0.5(𝑏 − 1) · 𝜆4 + 0.5(𝑏 − 1) · 𝜆5 ∧
0 = −0.5𝑏 · 𝜆2 − (𝑏 − 0.25𝑎) · 𝜆3 + (0.5𝑐 − 0.25𝑎 − 𝑏) · 𝜆4 + 0.5(𝑐 − 𝑎 − 𝑏) · 𝜆5 − 𝜆0

□

Our algorithm directly calls Gurobi to solve the derived bilinear constraints. The derived con-
straints over the template coefficients only form a feasible domain (if feasible), and do not specify
which solution to the unknown coefficients lead to an optimal upper bound. To synthesize a tight
upper bound, we employ a heuristic choice of the objective function that guides the solver towards
values that are closer to the tightest possible upper bound. The objective function we employ is
of the form ℎ(𝑠) − 𝑓 (𝑠) for a designated program state 𝑠 of interest and minimize this objective
function. With the coefficients in the template ℎ solved from Gurobi, we reconstruct the piecewise
linear upper bound by applying the upper 𝑘-induction operator𝛹ℎ∗ for 𝑘 − 1 times, thus obtain
𝛹
𝑘−1
ℎ∗ (ℎ∗).

Example 5.9. Continuewith Example 5.8.We employ the objective functionℎ−𝑓 = 𝑎·𝑥+(𝑏−1)·𝑦+𝑐
when 𝑠 = (𝑥,𝑦) = (1, 1). Therefore, we obtain the candidate ℎ∗ = 𝑥 + 𝑦 + 2. We reconstruct the
piecewise upper bound by applying𝛹ℎ∗ for once and obtain [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 2). □

We present the pseudocode of our algorithm in Algorithm 1.

6 EXPERIMENTAL RESULTS
In this section, we present the experimental evaluation of our approach. Our experiments were
designed to address the following research questions:
RQ1. How is the ability of our approach to generate piecewise bounds?
RQ2. How does our approach compare with cegispro2?
RQ3. How does our approach compare with polynomial bounds?
We summarize our findings as follows:
• Our approach can synthesize tight piecewise bounds on most of our benchmarks, especially
on the benchmarks that we cannot obtain linear bounds via 1-induction. Moreover, with
increasing 𝑘 , we can obtain tighter piecewise bounds. The experimental results show that
our approaches can derive the exact bound of 𝑓 , i.e., the tightest upper bound, on some
benchmarks (e.g., Geo, Coin, Fair Coin, etc). We additionally show that on a significant
number of benchmarks (e.g., k-Geo, Bin-Ran, Growing Walk-variant, etc), the piecewise

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 17

Algorithm 1: The Algorithm for Our Approach
Input :Probabilistic loop 𝑃 in the form of (1) and a return function 𝑓
Output :Piecewise bounds for the expected value of 𝑓 after 𝑃 terminates

Pre-processing:
• Check the prerequisite (i) and (ii) in Theorem 4.7.
• Establish a monolithic linear template ℎ.
• Generate a trivial invariant 𝐼 by external invariant generators.
• Determine the parameter 𝑘 and a designated program state 𝑠 .

Constraints Extraction: Unfolding the loop within 𝑘 times and calculate 𝑝𝑟𝑒𝐶𝑑
(ℎ) for all

𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} to obtain the piecewise constraints;
Canonical Form Transformation: Transform the constraints into the form of (6) through an
iterative approach and obtain 𝑙 canonical constraints;
Constraints Solving: 𝐶𝑜𝑛𝑠 ← ∅ ;
for 𝑗 ← 1 to 𝑙 do

Extract the coefficients of the variables from canonical-formed constraints;
Construct bilinear constraints 𝐾𝑗 with auxiliary variables 𝝀 𝑗 ;
𝐶𝑜𝑛𝑠 ← 𝐶𝑜𝑛𝑠 ∪ 𝐾𝑗 ;

end
Call Gurobi to solve 𝐶𝑜𝑛𝑠 and obtain the piecewise bound with the solution ℎ∗.

bounds we synthesize are non-trivial (i.e., the program state space 𝑆 is partitioned into more
than [𝜑] and [¬𝜑]). See more details in Experimental Results.
• The most difference between our approach and cegispro2 is that they require an upper
/lower bound to be verified as an additional input, while we do not need this input. For a
further comparison, we feed the bounds synthesized through our approaches to cegispro2
and observe that on most benchmarks, our piecewise bounds are no worse than theirs.
Moreover, our approaches can handle more benchmarks since we do not have the restrictions
of non-negativity like theirs.
• Onmost of our benchmarks, our piecewise linear bounds are significantly tighter and conciser
than monolithic polynomial bounds synthesized via 1-induction.

Below we present the details of our experiments. We implement our approach in Python 3.9.12,
and use Gurobi libraries in Python for bilinear programming. All experiments are conducted on
a machine with Windows 10 (64 bit), Intel(R) Core(TM) i7-9750H CPU 2.60GHz and 16GB of
RAM. In our experiments, we do the pre-processing as followed: (1) We check the prerequisite (i)
in Theorem 4.7 through the following process: The maximum amplifier 𝑐 can be chosen as 1 on most
of our benchmarks so that the prerequisite can always be satisfied (by assigning 𝑐3 an infinitesimal
positive real). For the remaining few benchmarks, we observe that we can always take the right
values so that the prerequisites can be satisfied. For example, on the benchmark St-Petersburg,
the maximum amplifier 𝑐 is taken as 2, and we can take 𝑐3 = ln 2 and meanwhile, 𝑐2 = ln 4 to satisfy
the prerequisites. We check the prerequisite (ii) in Theorem 4.7 for each benchmark by syntactically
checking the transition probabilities in the loop. For example, on the benchmark St-Petersburg,
according to the probability parameter 𝑝 = 3

4 , we take 𝑐2 = ln 4 so that it satisfy the concentration
property. (2) Establish a monolithic linear template. (3) We minimize the impact of invariants by
deliberately choosing trivial interval-bound invariants that can be directly derived from the loop
guard and the increment/decrement statements in the loop body. (4) We set a default initial state 𝑠
that all program variables take the value 1.

, Vol. 1, No. 1, Article . Publication date: March 2024.

18 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

6.1 Piecewise Upper Bound Synthesis
Benchmarks. We choose upper-bound benchmarks from existing works [5, 11, 12, 15, 23, 29, 30, 32]
that fall into our scope and have the following adaptions. First, for those that do not have linear
return functions, we add simple linear return functions. Second, for those whose upper bound that
can be handled directly by 1-induction (except for several classical examples: k-Geo, RevBin, Fair
Coin), we adapt them by reasonable perturbations (such as changing the assignment statement,
changing the probability parameters, reducing the continuous distribution to discrete distribution,
etc) so that they require (𝑘 > 1)-induction. Third, for those whose upper bound that cannot be
handled by 𝑘-induction with small 𝑘 = 1, 2, 3, we adapt them by reasonable perturbations as above
so that they can be handled by (𝑘 > 1)-induction, while still cannot be handled by 1-induction.
Finally, we relegate examples with either repetitive patterns or cannot be handled by 𝑘-induction
with small 𝑘 = 1, 2, 3 or can be directly handled by 1-induction to Tables 5 and 6 in Appendix D.1. In
this section, We consider 7 original examples and 6 adapted examples adapted from the literature.
The examples Geo, k-Geo and Eqal-Prob-Grid are taken from Batz et al. [11, 12], for which
we replace the assertion probability with a linear return function 𝑔𝑜𝑎𝑙 in Eqal-Prob-Grid. We
consider the benchmark Zero-Conf-Variant adapted from Batz et al. [11], Feng et al. [29]. We
revise the original one with assignments and probabilistic parameters in this program, and add a
linear return function 𝑐𝑢𝑟𝑝𝑟𝑜𝑏𝑒 . The benchmark St-Petersburg variant is taken from Feng et al.
[29] where we replace the probability parameter 1

2 with
3
4 since the original program does not satisfy

the prerequisites in Theorem 4.7. From Bao et al. [5], Chen et al. [23], Feng et al. [30], we consider
the benchmarks Coin, Mart, RevBin and Fair Coin, and revise the assignments, guards on the
original benchmarks Bin series so that we obtain a more complex version Bin-Ran. The remaining
three examples, Expected Time, Growing Walk and its variant, are all adapted from Beutner et al.
[15], Gehr et al. [32] by reducing the continuous distributions to discrete distributions.
Experimental Results. We present the experimental results for the synthesis of piecewise upper
bounds on these 13 benchmarks in Table 1. In Table 1, 𝑡 stands for the execution time of our
approach, including the parsing from the program input and transforming the 𝑘-induction condition
constraints into the bilinear problems, and "TO" stands for timeout. "Inv" stands for the invariant,
"Solution" stands for the instantiated monolithic linear candidate solved by Gurobi, and "Piecewise
Bound" stands for our piecewise results. The time-out threshold of bilinear problem solving via
Gurobi is set to 300s. All the numerical data are cut to 10−4 precision. Moreover, in most cases, our
approach synthesizes these bounds in no more than one minute, and hence is time efficient. On
most of our benchmarks, we find that we cannot derive a monolithic linear upper bound directly
by simple induction but we can obtain a monolithic linear bound with 𝑘 > 1-induction, and hence
a piecewise linear bound. On some benchmarks, we can obtain tighter bound with increasing 𝑘 .
Comparison with Other Approaches. As far as we know, the work cegispro2 [11] is one of the
handful relevant approaches that synthesizes piecewise upper bounds on the expected value of a
return function 𝑓 . The main difference between cegispro2 and our approach is that cegispro2
requires an upper bound to be verified as an additional program input and it will only return a
super-invariant (i.e., a possibly piecewise upper-bound) that is sufficient to verify (i.e., globally
smaller) the input upper bounds, while we intend to synthesize a tight piecewise upper bound. For a
fair comparison, we only compare two simple benchmarks that paired with linear expectations and
a given upper bound to be verified: Geo and k-Geo. For the benchmark Geo, the piecewise upper
bounds through two methods are the same. For k-Geo, their piecewise results are [𝑘 > 𝑁] ·𝑦 + [𝑘 ≤
𝑁] · (−𝑘 + 𝑁 + 𝑥 + 𝑦 + 1), which is consistent with our result over Z≥0. While in the scope of real
number, our piecewise piecewise upper bound are tighter than theirs. Both of these two approaches
synthesize the piecewise upper bounds within 1.0s. To have a richer comparison, we further feed

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 19

Table 1. Upper Bounds for the Expected Value of 𝑓

Benchmark 𝑓 Inv 𝑘 = 1
2-induction 3-induction

Piecewise Upper Bound
t Solution t Solution

Geo 𝑥 [0 ≤ 𝑥] - 0.48 𝑥 + 1 1.41 𝑥 + 1 [𝑐 > 0] · 𝑥+ [𝑐 ≤ 0] · (𝑥 + 1)

k-Geo 𝑦
[0 ≤ 𝑥 ∧ 0 ≤ 𝑦
𝑘 ≤ 𝑁 + 1]

−𝑘 + 𝑁
+𝑥 + 𝑦 + 1 0.79 −𝑘 + 𝑁

+𝑥 + 𝑦 + 1 29.65 −𝑘 + 𝑁
+𝑥 + 𝑦 + 1

[𝑘 > 𝑁] · 𝑦+
[𝑘 ≤ 𝑁 − 1] · (−𝑘 + 𝑁 + 𝑥 + 𝑦 + 1)+

[𝑁 − 1 < 𝑘 ≤ 𝑁] · (−0.5𝑘 + 0.5𝑁 + 𝑥 + 𝑦 + 1)

Bin-ran 𝑦
[0 ≤ 𝑖 ≤ 11∧
0 ≤ 𝑥 ∧ 0 ≤ 𝑦] - 5.56 0.9𝑥 − 21𝑖

+𝑦 + 233 TO -
[𝑖 > 10] · 𝑦+

[8.5 < 𝑖 ≤ 10] · (0.9𝑥 − 21𝑖 + 𝑦 + 233)
[𝑖 ≤ 8.5] · (0.9𝑥 − 18.9𝑖 + 𝑦 + 215.1)

Coin 𝑖

[0 ≤ 𝑥 ≤ 1∧
0 ≤ 𝑦 ≤ 1∧

0 ≤ 𝑖
- 3.93 𝑖 + 8

3 or
𝑖 + 8

3𝑦 −
8
3𝑥 +

8
3

335.93 𝑖 + 8
3

[𝑥 ≠ 𝑦] · 𝑖+
[𝑥 = 𝑦] · (𝑖 + 8

3)

Mart 𝑖 [0 ≤ 𝑥] - 0.57 𝑖 + 2 1.52 𝑖 + 2 [𝑥 ≤ 0] · 𝑖 + [𝑥 > 0] · (𝑖 + 2)
Growing Walk 𝑦 [−1 ≤ 𝑥] - 0.48 𝑥 + 𝑦 + 2 1.52 𝑥 + 𝑦 + 2 [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 2)

Growing Walk
-variant

𝑦 [−1 ≤ 𝑥] 𝑥 + 𝑦 + 1 0.61 𝑥 + 𝑦 + 1 23.64 𝑥 + 𝑦 + 1
[𝑥 < 0] · 𝑦+

[0 ≤ 𝑥 < 1] · (0.5𝑥 + 𝑦 + 0.25)
+[𝑥 ≥ 1] · (𝑥 + 𝑦)

Expected
Time

𝑡 [−1 ≤ 𝑥 ≤ 10] - 0.64 12.1925𝑥 + 𝑡
+13.5502 22.94 4.4280𝑥 + 𝑡 + 6.2461

[𝑥 < 0] · 𝑡 + [0 ≤ 𝑥 < 1] · (𝑡 + 1)
[1 ≤ 𝑥 < 3.258] · (3.9852𝑥 + 𝑡 + 7.39)

[3.258 ≤ 𝑥 < 3.3772] · (4.4280𝑥 + 𝑡 + 6.2461)
[3.3772 ≤ 𝑥] · (3.5867𝑥 + 𝑡 + 9.0874)

Zero-Conf
-variant

cur
[0 ≤ start ≤ 1∧
0 ≤ est ≤ 1] - 4.68 −140.0est+

cur + 140.0 75.08 cur + 140.0
[est > 0] · cur+

[start == 0 ∧ est ≤ 0] · (cur + 140.0)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 42.0)

Eqal-
Prob-Grid

goal
[0 ≤ 𝑎 ≤ 10∧
0 ≤ 𝑏 ≤ 10
𝑔𝑜𝑎𝑙 ≥ 0]

- 38.99 goal + 1.50 TO - [𝑎 > 10 ∨ 𝑏 > 10 ∨ goal ≠ 0] · goal
[𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0] · 1.5

RevBin 𝑧 [𝑥 ≥ 0] 2𝑥 + 𝑧 0.65 2𝑥 + 𝑧 28.10 2𝑥 + 𝑧 [𝑥 < 1] · 𝑧+ [1 ≤ 𝑥 < 2] · (𝑧 + 𝑥 + 1)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥)

Fair Coin 𝑖
[0 ≤ 𝑥 ≤ 1∧
0 ≤ 𝑦 ≤ 1] 𝑖 − 2𝑦 + 2 4.06 𝑖 + 4

3 27.70 𝑖 + 4
3

[𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 ≤ 0 ∧ 𝑦 ≤ 0] · (𝑖 + 4

3)
St-Petersburg

variant
𝑦

[0 ≤ 𝑥 ≤ 1∧
𝑦 ≤ 0] - 0.48 3

2𝑦 1.44 3
2𝑦 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 32𝑦

our benchmarks in Table 1 to cegispro2 paired with the piecewise upper bound synthesized by our
approach. We find cegispro2 may have the parsing error that cannot adequately handle piecewise-
input. Additionally, it reports failure (violation of non-negativity) on 5 of our benchmarks. By
feeding suitable upper bounds (e.g., one segment from the piecewise bounds synthesized via our
approaches) for the remaining 6 benchmarks, we find on 4 benchmarks, cegispro2 produce the
consistent result with our input on Z≥0, while possibly incorrect over R. On Bin-Ran, the results
they produce are sophisticated to compare since it produces a bound with numerous segments.
On Coin, they do not seem to be able to output a result. The work kipro2 [12] verifies an input
upper bound by directly applying latticed 𝑘-induction which we demonstrate to have a piecewise
nature. Thus it is unreasonable to compare our approach with kipro2 as we pursue the more
general problem of synthesizing piecewise bounds rather than verification. Moreover, the work [5]
considers the probabilistic invariant synthesis via data-driven approach, while ours is based on
constraint solving and fully automated. The only relevant work with our upper bound synthesis
is the exact invariant synthesis. We evaluate our approaches on the common benchmarks and
show that on these benchmarks (eg., Geo, Coin, Mart, Fair Coin), the piecewise upper bound we
synthesize is actually the exact expected value of the return function 𝑓 .
Except for the existing tools, we additionally compare our piecewise linear upper bounds with

monolithic polynomial bounds synthesized via simple induction (i.e., 1-induction). We implement
the polynomial synthesis with Putinar’s Positivstellensatz [53] (see Appendix D.2 for more details).
For a fair comparison, we generate the polynomial bounds with the same invariant and optimal
objective functions for each benchmark, as shown in Table 2. In this table, "Monolithic Linear /
Polynomial via Simple Induction" stand for the monolithic linear/polynomial bounds synthesized

, Vol. 1, No. 1, Article . Publication date: March 2024.

20 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Table 2. Comparison with Monolithic Polynomial Bounds: Upper Case

Benchmark 𝑓

Monolithic Linear
via Simple Induction

(𝑘 = 1)

Our Approach Monolithic Polynomial
via Simple Induction

(𝑘 = 1)
PCT

𝑘 Piecewise Upper Bound

Geo 𝑥 - 3 [𝑐 > 0] · 𝑥+
[𝑐 ≤ 0] · (𝑥 + 1)

1.0000 − 1.9996 ∗ 𝑐 + 1.0000 ∗ 𝑥+
0.9996 ∗ 𝑐2 − 0.0002 ∗ 𝑥 ∗ 𝑐 + 0.0002 ∗ 𝑥 ∗ 𝑐2 0.0%

k-Geo 𝑦
−𝑘 + 𝑁+
𝑥 + 𝑦 + 1 3

[𝑘 > 𝑁] · 𝑦+
[𝑘 ≤ 𝑁 − 1] · (−𝑘 + 𝑁 + 𝑥 + 𝑦 + 1)+

[𝑁 − 1 < 𝑘 ≤ 𝑁] · (−0.5𝑘 + 0.5𝑁 + 𝑥 + 𝑦 + 1)

274.1142 − 53.62281 ∗ 𝑁 − 1.0000 ∗ 𝑘+
1.0000 ∗ 𝑦 + 1.0000 ∗ 𝑥 + 2.7311 ∗ 𝑁 2 2.82%

Bin-ran 𝑦 - 2
[𝑖 > 10] · 𝑦+

[8.5 < 𝑖 ≤ 10] · (0.9𝑥 − 21𝑖 + 𝑦 + 233)
[𝑖 ≤ 8.5] · (0.9𝑥 − 18.9𝑖 + 𝑦 + 215.1)

38.6287 + 12.07507 ∗ 𝑖 − 13.87917 ∗ 𝑦−
8.2916 ∗ 𝑥 − 0.5694 ∗ 𝑖2 − 0.1339 ∗ 𝑦 ∗ 𝑖+

0.0329 ∗ 𝑦2 − 0.0644 ∗ 𝑥 ∗ 𝑖 − 0.1277 ∗ 𝑥 ∗ 𝑦−
1.1617 ∗ 𝑥2 − 0.0462 ∗ 𝑖3 + 0.1205 ∗ 𝑦 ∗ 𝑖2+

0.0116 ∗ 𝑦2 ∗ 𝑖 − 0.0046 ∗ 𝑦3 + 0.1720 ∗ 𝑥 ∗ 𝑖2−
0.0005 ∗ 𝑥 ∗ 𝑦 ∗ 𝑖 − 0.0095 ∗ 𝑥 ∗ 𝑦2 + 0.3601 ∗ 𝑥2 ∗ 𝑖

−0.0392 ∗ 𝑥2 ∗ 𝑦 + 0.3248 ∗ 𝑥3

62.76%

Coin 𝑖 - 3 [𝑥 ≠ 𝑦] · 𝑖+
[𝑥 = 𝑦] · (𝑖 + 8

3)

2.6667 + 1.0000 ∗ 𝑖 − 0.6381 ∗ 𝑦+
4.2840 ∗ 𝑥 − 2.0286 ∗ 𝑦2 − 2.0067 ∗ 𝑥 ∗ 𝑦

+0.3893 ∗ 𝑥2
0.0%

Mart 𝑖 - 3 [𝑥 ≤ 0] · 𝑖+
[𝑥 > 0] · (𝑖 + 2)

0.0248 + 1.0000 ∗ 𝑖+
199999.6588 ∗ 𝑥 + 0.1643 ∗ 𝑥2 0.0%

Growing
Walk 𝑦 - 3 [𝑥 < 0] · 𝑦+

[𝑥 ≥ 0] · (𝑥 + 𝑦 + 2)
2.5000 + 1.0000 ∗ 𝑦 + 1.900 ∗ 𝑥
−0.5000 ∗ 𝑥2 + 0.1000 ∗ 𝑥3 0.0%

Growing Walk
variant 𝑦 𝑥 + 𝑦 + 1 3

[𝑥 < 0] · 𝑦+
[0 ≤ 𝑥 < 1] · (0.5𝑥 + 𝑦 + 0.25)

+[𝑥 ≥ 1] · (𝑥 + 𝑦)

1.0000 ∗ 𝑦 − 0.2380 ∗ 𝑥 + 0.1041 ∗ 𝑦2−
0.0686 ∗ 𝑥 ∗ 𝑦 + 0.0951 ∗ 𝑥2 + 0.03558 ∗ 𝑥 ∗ 𝑦2

+0.0686 ∗ 𝑥2 ∗ 𝑦 + 0.1430 ∗ 𝑥3
5.52%

Expected
Time 𝑡 - 3

[𝑥 < 0] · 𝑡 + [0 ≤ 𝑥 < 1] · (𝑡 + 1)
[1 ≤ 𝑥 < 3.258] · (3.9852𝑥 + 𝑡 + 7.39)

[3.258 ≤ 𝑥 < 3.3772] · (4.4280𝑥 + 𝑡 + 6.2461)
[3.3772 ≤ 𝑥] · (3.5867𝑥 + 𝑡 + 9.0874)

3.1203 + 0.9622 ∗ 𝑡 + 2.8278 ∗ 𝑥+
0.0015 ∗ 𝑡2 − 0.01558 ∗ 𝑥 ∗ 𝑡 − 0.1397 ∗ 𝑥2−
0.0003 ∗ 𝑥 ∗ 𝑡2 − 0.0002 ∗ 𝑥2 ∗ 𝑡 + 0.0025 ∗ 𝑥3

50.0%

Zero-Conf
-variant cur - 3

[est > 0] · cur+
[start == 0 ∧ est ≤ 0] · (cur + 140.0)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 42.0)

109.8660 − 0.1357 ∗ 𝑐𝑢𝑟 + 293795.0410 ∗ 𝑠𝑡𝑎𝑟𝑡+
209178.7117 ∗ 𝑒𝑠𝑡 + 0.0019 ∗ 𝑐𝑢𝑟 2 + 0.7202 ∗ 𝑠𝑡𝑎𝑟𝑡 ∗ 𝑐𝑢𝑟−

293865.0570 ∗ 𝑠𝑡𝑎𝑟𝑡2 + 1.0313 ∗ 𝑒𝑠𝑡 ∗ 𝑐𝑢𝑟+
274251.8886 ∗ 𝑒𝑠𝑡 ∗ 𝑠𝑡𝑎𝑟𝑡 − 209283.0750 ∗ 𝑒𝑠𝑡2

0.5 %

Eqal-
Prob-Grid goal - 2 [𝑎 > 10 ∨ 𝑏 > 10 ∨ goal ≠ 0] · goal

[𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0] · 1.5

1.6661 + 5.7396 ∗ 𝑔𝑜𝑎𝑙 − 9.4857 ∗ 10−5 ∗ 𝑏+
1.5707 ∗ 10−5 ∗ 𝑎 + 0.6003 ∗ 𝑔𝑜𝑎𝑙2 − 0.6740 ∗ 𝑏 ∗ 𝑔𝑜𝑎𝑙
+1.597510−5 ∗ 𝑏2 + 2.2074 ∗ 10−5 ∗ 𝑎 ∗ 𝑔𝑜𝑎𝑙

0.0%

RevBin 𝑧 2𝑥 + 𝑧 3
[𝑥 < 1] · 𝑧+

[1 ≤ 𝑥 < 2] · (𝑧 + 𝑥 + 1)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥)

1.0000 ∗ 𝑧 + 2.0000 ∗ 𝑥 0.0%

Fair Coin 𝑖 𝑖 − 2𝑦 + 2 3 [𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 ≤ 0 ∧ 𝑦 ≤ 0] · (𝑖 + 4

3)

1.3333 + 1.0000 ∗ 𝑖 − 0.4141 ∗ 𝑦−
0.4141 ∗ 𝑥 + 1.1743 ∗ 𝑖2 − 2.3486 ∗ 𝑦 ∗ 𝑖+

0.2551 ∗ 𝑦2 − 2.3486 ∗ 𝑥 ∗ 𝑖 + 3.6820 ∗ 𝑥 ∗ 𝑦
+0.2551 ∗ 𝑥2

0.0%

St-Petersburg
variant 𝑦 - 3 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 32𝑦

0.0197 + 1.5047 ∗ 𝑦 + 371727.7656 ∗ 𝑥
−0.5028 ∗ 𝑥 ∗ 𝑦 − 371727.7734 ∗ 𝑥2 0.0%

via 1-induction, and value "𝑘" stands for the 𝑘-induction principle we apply in this comparison.
We compare two results by uniformly taking the grid points of some interesting region (usually
a subset of invariant) and evaluate two results, and we compute the percentage of the points
that our piecewise upper bound are larger (i.e., not better) than monolithic polynomial, which is
shown in the last column "PCT" in Table 2. We show that on all benchmarks but two (Bin-Ran,
Expected Time), our piecewise linear bounds are significantly tighter and conciser than monolithic
polynomial bounds. For these two benchmarks, we guess that its exact expected value of 𝑓 is closer
to a piecewise polynomial.

6.2 Piecewise Lower Bound Synthesis
For the lower bounds, we consider the same benchmarks and return function 𝑓 as in Section 6.1 and
use the same global invariant for each benchmark. The experimental results are placed in Table 3.
In this table, we only show the piecewise result with at most 𝑘 = 3. We observe that on most
of the benchmarks, we can obtain a lower bound via simple induction (i.e., 1-induction), while
the piecewise lower bounds we synthesize gets better with increasing 𝑘 . Only on the benchmark
Growing Walk-variant, we requires (𝑘 > 1)-induction to synthesize a lower bound.

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 21

Table 3. Lower Bounds for the Expected Value of 𝑓

Benchmark 𝑓
1-induction 2-induction 3-induction

Piecewise Lower Bound
t Solution t Solution t Solution

Geo 𝑥 0.11 𝑥 0.47 𝑥 1.44 𝑥 [𝑐 > 0] · 𝑥 + [𝑐 ≤ 0] · (𝑥 + 3
4)

k-Geo 𝑦 0.14 𝑦 0.88 − 1
3𝑘 +

1
3𝑁 + 𝑦 29.49 𝑦 [𝑘 > 𝑁] · 𝑦 + [𝑘 ≤ 𝑁] · (𝑥 + 𝑦 + 0.5)

Bin-ran 𝑦 0.31 −0.5𝑖 + 𝑦 + 5 5.59 −0.7241𝑖 + 𝑦 + 7.2414 TO -
[𝑖 > 10] · 𝑦

[1.4 < 𝑖 ≤ 10] · (−0.6517𝑖 + 𝑦 + 0.45𝑥 + 7.1397)
[𝑖 ≤ 1.4] · (−0.7241𝑖 + 𝑦 + 7.2414)

Coin 𝑖 0.34 𝑖 3.69 𝑖 351.12 𝑖 [𝑦 ≠ 𝑥] · 𝑖 + [𝑦 = 𝑥] · (𝑖 + 13
8)

Mart 𝑖 0.17 𝑖 0.55 𝑖 1.68 𝑖 [𝑥 ≤ 0] · 𝑖 + [𝑥 > 0] · (𝑖 + 1.5)

Growing Walk 𝑦 0.12 𝑥 + 𝑦 0.48 𝑥 + 𝑦 1.73 𝑥 + 𝑦 [𝑥 < 0] · 𝑦 + [𝑥 ≥ 0] · (𝑥 + 𝑦 + 5
4)

Growing Walk
-variant 𝑦 - - 0.61 𝑦 − 1 23.53 𝑦 − 1

[𝑥 < 0] · 𝑦+
[0 ≤ 𝑥 < 1] · (𝑦 + 0.5𝑥 − 1) +
[1 ≤ 𝑥 < 2] · (𝑦 + 0.5𝑥 − 1.5)
+[2 ≤ 𝑥] · (𝑦 + 0.75𝑥 − 2)

Expected
Time 𝑡 0.14 1.1111𝑥 + 𝑡 0.66 1.1728𝑥 + 𝑡 23.76 1.240𝑥 + 𝑡 [𝑥 < 0] · 𝑡 + [0 ≤ 𝑥 < 1] · (0.124𝑥 + 𝑡 + 0.9)

[1 ≤ 𝑥 ≤ 10] · (1.1284𝑥 + 𝑡 + 1.9116)

Zero-Conf
-variant cur 0.27 cur 4.89 cur 77.81 cur

[est > 0] · cur+
[start == 0 ∧ est ≤ 0] · (cur + 1.9502)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 0.287)

Eqal-
Prob-Grid goal 0.31 goal 37.69 goal TO - [𝑎 > 10 ∨ 𝑏 > 10 ∨ 𝑏 < 10 ∨ goal ≠ 0] · goal

[𝑎 ≤ 10 ∧ 𝑏 == 10 ∧ goal = 0] · 1.5

RevBin 𝑧 0.12 𝑧 + 2𝑥 − 2 0.65 𝑧 + 2𝑥 − 2 28.36 𝑧 + 2𝑥 − 2
[𝑥 < 1] · 𝑧+

[1 ≤ 𝑥 < 2] · (𝑧 + 𝑥)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥 − 2)

Fair Coin 𝑖 0.30 𝑖 3.66 𝑖 25.93 𝑖 [𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+ [𝑥 = 0 ∧ 𝑦 = 0] · (𝑖 + 5
4)

St-Petersburg
variant 𝑦 0.12 𝑦 0.47 𝑦 1.47 𝑦 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 118 𝑦

Comparison with Other Approaches The relevant work [5, 11] require a (possibly piecewise) lower
bound (i.e., Pre-expectation E) to be verified as a program input and return a sub-invariant that
is sufficient to verify the input lower bound, which is the most difference from our work. They
produce the results by a proof rule derived from the original OST (see Section 6 & 7 in Batz et al.
[11] and Appendix B.1), while we apply an extended OST (see Theorem 4.6), so that some of our
benchmarks (e.g., Martingale, Expected Time) cannot be handled by cegispro2 or EXIST.
Likewise the upper case, we compare our piecewise linear upper bounds with monolithic poly-

nomial bounds synthesized via simple induction (i.e., 1-induction), as shown in Table 4. According
to the comparison results "PCT", we observe that on all benchmarks but two (Bin-Ran, Expected
Time), our piecewise linear lower bounds are significantly tighter (i.e., greater) and conciser than
monolithic polynomial lower bounds.

7 RELATEDWORKS
Our approach uses templates to synthesize piecewise bounds. Most template-based approaches
(e.g. Chakarov and Sankaranarayanan [17], Chatterjee et al. [18, 20]) focus on synthesizing mono-
lithic bounds or invariants over probabilistic programs. Compared with these approaches, our
approach targets piecewise bounds, and hence is orthogonal.

The work [12] proposes latticed 𝑘-induction. The differences with our result are three fold. First,
our result solves the automated synthesis of piecewise linear bounds, while the work [12] only
determines whether a given (possibly piecewise) bound is an upper bound or not for a probabilistic
while loop, and does not solve the automated synthesis of (piecewise) bounds. Second, we use
OST as the mathematical backbone, while the work [12] uses fixed point theory. The use of OST

, Vol. 1, No. 1, Article . Publication date: March 2024.

22 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Table 4. Comparison with Monolithic Polynomial Bounds: Lower Case

Benchmark 𝑓

Monolithic Linear
via Inductive Synthesis

(𝑘 = 1)

Our Approach Monolithic Polynomial
via Inductive Synthesis

(𝑘 = 1)
PCT

𝑘 Piecewise Lower Bound

Geo 𝑥 𝑥 4 [𝑐 > 0] · 𝑥+
[𝑐 ≤ 0] · (𝑥 + 7

8)

−0.0313 − 0.1902 ∗ 𝑐 + 1.0478 ∗ 𝑥−
0.3980 ∗ 𝑐2 + 0.0695 ∗ 𝑥 ∗ 𝑐 − 0.0019 ∗ 𝑥2−

0.1595 ∗ 𝑥 ∗ 𝑐2 + 0.07227 ∗ 𝑥2 ∗ 𝑐 − 0.0147 ∗ 𝑥3
0.0%

k-Geo 𝑦 𝑦 3 [𝑘 > 𝑁] · 𝑦+
[𝑘 ≤ 𝑁] · (𝑥 + 𝑦 + 0.5)

−221.2813 + 44.6223 ∗ 𝑁 − 0.7791 ∗ 𝑘 + 1.0000 ∗ 𝑦+
0.9281 ∗ 𝑥 − 2.1922 ∗ 𝑁 2 − 0.1043 ∗ 𝑥2 2.96%

Bin-ran 𝑦 −0.5𝑖 + 𝑦 + 5 2
[𝑖 > 10] · 𝑦

[1.4 < 𝑖 ≤ 10] · (−0.6517𝑖 + 𝑦 + 0.45𝑥 + 7.1397
[𝑖 ≤ 1.4] · (−0.7241𝑖 + 𝑦 + 7.2414)

−6.5656 − 17.5555 ∗ 𝑖 + 19.7273 ∗ 𝑦+
12.3734 ∗ 𝑥 + 0.6130 ∗ 𝑖2 + 0.1623 ∗ 𝑦 ∗ 𝑖
−0.0377 ∗ 𝑦2 + 0.1105 ∗ 𝑥 ∗ 𝑖 + 0.1624 ∗ 𝑥 ∗ 𝑦
+1.4912 ∗ 𝑥2 + 0.0530 ∗ 𝑖3 − 0.1521 ∗ 𝑦 ∗ 𝑖2−
0.0152 ∗ 𝑦2 ∗ 𝑖 + 0.0058 ∗ 𝑦3 − 0.2255 ∗ 𝑥 ∗ 𝑖2

+0.0002 ∗ 𝑥 ∗ 𝑦 ∗ 𝑖 + 0.0119 ∗ 𝑥 ∗ 𝑦2 − 0.4682 ∗ 𝑥2 ∗ 𝑖
+0.0507 ∗ 𝑥2 ∗ 𝑦 − 0.4160 ∗ 𝑥3

34.75%

Coin 𝑖 𝑖 4 [𝑦 ≠ 𝑥] · 𝑖 + [𝑦 = 𝑥] · (𝑖 + 129
64)

2.6655 + 1.0002 ∗ 𝑖 − 3622.3830 ∗ 𝑦−
5419.0667 ∗ 𝑥 − 0.0001 ∗ 𝑖2 + 0.0007 ∗ 𝑦 ∗ 𝑖+

3619.71553 ∗ 𝑦2 − 0.0008 ∗ 𝑥 ∗ 𝑖 + 1827.4383 ∗ 𝑥 ∗ 𝑦
+3594.2952 ∗ 𝑥2

2%

Mart 𝑖 𝑖 4 [𝑥 ≤ 0] · 𝑖+
[𝑥 > 0] · (𝑖 + 7

4)
1.0000 ∗ 𝑖 + 39.9996 ∗ 𝑥 − 199.9958 ∗ 𝑥2 1.0%

Growing
Walk 𝑦 𝑥 + 𝑦 4 [𝑥 < 0] · 𝑦+

[𝑥 ≥ 0] · (𝑥 + 𝑦 + 13
8)

−0.0004 + 1.0003 ∗ 𝑦 + 1.3463 ∗ 𝑥−
0.0001 ∗ 𝑦2 − 0.0010 ∗ 𝑥 ∗ 𝑦 − 0.0590 ∗ 𝑥2−

6.6040 ∗ 10−5 ∗ 𝑥 ∗ 𝑦2 + 0.0007 ∗ 𝑥2 ∗ 𝑦 − 0.0022 ∗ 𝑥3
0.0%

Growing Walk
variant 𝑦 - 3

[𝑥 < 0] · 𝑦+
[0 ≤ 𝑥 < 1] · (0.5𝑥 + 𝑦 − 1)
+[1 ≤ 𝑥 < 2] · (0.5𝑥 + 𝑦 − 1.5)
+[2 ≤ 𝑥] · (0.75𝑥 + 𝑦 − 2)

−1.0000 + 1.0000 ∗ 𝑦 − 0.3903 ∗ 𝑥−
0.0734 ∗ 𝑦2 + 0.0484 ∗ 𝑥 ∗ 𝑦 + 0.4758 ∗ 𝑥2−

0.0250 ∗ 𝑥 ∗ 𝑦2 − 0.0484 ∗ 𝑥2 ∗ 𝑦 − 0.0855 ∗ 𝑥3
0.01%

Expected
Time 𝑡 1.1111𝑥 + 𝑡 3

[𝑥 < 0] · 𝑡+
[0 ≤ 𝑥 < 1] · (0.124𝑥 + 𝑡 + 0.9)

[1 ≤ 𝑥 ≤ 10] · (1.1284𝑥 + 𝑡 + 1.9116)

−0.0784 + 1.0093 ∗ 𝑡 + 3.1426 ∗ 𝑥−
0.0010 ∗ 𝑡2 + 0.0083 ∗ 𝑥 ∗ 𝑡 − 0.1576 ∗ 𝑥2+

0.0002 ∗ 𝑥 ∗ 𝑡2 + 0.0002 ∗ 𝑥2 ∗ 𝑡 + 0.0043 ∗ 𝑥3
64.6 %

Zero-Conf
-variant cur 𝑐𝑢𝑟 3

[est > 0] · cur+
[start == 0 ∧ est ≤ 0] · (cur + 1.9502)
+[start ≥ 1 ∧ est ≤ 0] · (cur + 0.287)

140.2458 + 1.0098 ∗ 𝑐𝑢𝑟 − 424365.5964 ∗ 𝑠𝑡𝑎𝑟𝑡−
587675.0179 ∗ 𝑒𝑠𝑡 − 0.0066 ∗ 𝑠𝑡𝑎𝑟𝑡 ∗ 𝑐𝑢𝑟+
424267.3602 ∗ 𝑠𝑡𝑎𝑟𝑡2 − 0.0095 ∗ 𝑒𝑠𝑡 ∗ 𝑐𝑢𝑟−

504437.5495 ∗ 𝑒𝑠𝑡 ∗ 𝑠𝑡𝑎𝑟𝑡 + 587534.7143 ∗ 𝑒𝑠𝑡2
0.64%

Eqal-
Prob-Grid goal 𝑔𝑜𝑎𝑙 2 [𝑎 > 10 ∨ 𝑏 > 10 ∨ goal ≠ 0] · goal

[𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0] · 1.5
0.4950 ∗ 𝑔𝑜𝑎𝑙 − 0.2020 ∗ 𝑔𝑜𝑎𝑙2+

0.0053 ∗ 𝑏 ∗ 𝑔𝑜𝑎𝑙 − 0.0011 ∗ 𝑎 ∗ 𝑔𝑜𝑎𝑙 0.0 %

RevBin 𝑧 2𝑥 + 𝑧 − 2 3
[𝑥 < 1] · 𝑧+

[1 ≤ 𝑥 < 2] · (𝑧 + 𝑥)
+[𝑥 ≥ 2] · (𝑧 + 2𝑥 − 2)

−2.0000 + 1.0000 ∗ 𝑧 + 2.0000 ∗ 𝑥 0.0%

Fair Coin 𝑖 𝑖 4 [𝑥 > 0 ∨ 𝑦 > 0] · 𝑖+
[𝑥 ≤ 0 ∧ 𝑦 ≤ 0] · (𝑖 + 21

16)

1.0000 ∗ 𝑖 − 0.3932 ∗ 𝑦 − 0.39325 ∗ 𝑥
−0.3153 ∗ 𝑖2 + 0.6305 ∗ 𝑦 ∗ 𝑖 − 0.7242 ∗ 𝑦2
+0.6305 ∗ 𝑥 ∗ 𝑖 − 0.1796 ∗ 𝑥 ∗ 𝑦 − 0.7242 ∗ 𝑥2

0.0%

St-Petersburg
variant 𝑦 𝑦 3 [𝑥 > 0] · 𝑦 + [𝑥 ≤ 0] · 118 𝑦

−0.0017 + 1.0023 ∗ 𝑦 − 121479.0179 ∗ 𝑥
−0.0550 ∗ 𝑥 ∗ 𝑦 + 121479.0185 ∗ 𝑥2 0.0%

lifts the non-negativity (or a global lower bound) of program values as required in Batz et al. [12].
Third, the algorithm in Batz et al. [12] is a direction application of SMT solving such as Z3, while
we reduce our problem to bilinear programming. The work [45] proposes tightened variants of
𝑘-induction operators. We show that these tightened variants are actually equivalent with the
original 𝑘-induction operator in Batz et al. [12] and the dual 𝑘-induction operator proposed in our
result.
The work [11] proposes to compute the piecewise bounds for the expected value of post-

expectations 𝑓 in probabilistic loop. The main difference between their work and ours is that
they require an input upper bound to be verified as a program input and synthesize a piecewise
linear upper bound to verify the input upper bound via counterexample-guided inductive synthesis
(CEGIS), while we do not need this additional program input and our approach solves the bounds by
bilinear programming rather than CEGIS. Besides, compared with cegispro2, a major advantage is
that we do not require global non-negativity and we only need to predefine a monolithic template,
instead of a piecewise template. For the synthesis of lower bounds, this work apply a proof rule
in Hark et al. [36] derived from the original OST, while our approach apply an extended OST. Thus
some benchmarks in our work cannot be handled by cegispro2. The work [5] synthesize exact
and sub invariants for probabilistic while loops through data-driven learning and they also capture

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 23

piecewise feature for some benchmarks. However, this approach takes as input a suitable list of
features that is composed of numerical expressions over program variables. The list of features
always contains constructive numerical expressions of program variables and even user-supplied
features for more specific invariant, while our approach can capture the piecewise automatically
and without any additional knowledge. Apart from Bao et al. [5], Batz et al. [11], several works
(e.g. Chen et al. [23], Feng et al. [30], Katoen et al. [39]) aim to synthesize monolithic quantitative
sub-invariant for proving lower bounds.

Other approaches [3, 8, 9, 40, 41] focus on moment-based invariants generation and high-order
moments derivation for probabilistic programs. Moment-based method is highly efficient and is
guaranteed to compute moments exactly. This kind of work can even handle the probabilistic
program with non-polynomial expressions and continuous distribution, but they only consider
the probabilistic while loop in the form of while true {𝐶}, which is a rather restricted form. The
work [49] enlarges the theoretical foundation by support of if-statements (thus also guarded loops),
but they assume that all variables appearing in if-conditions (loop guards) are finitely valued, hence
cannot handle most of our benchmarks. Our approach can handle all the linear forms of loop guards
and if-conditions. The work [40] focus on the distribution estimation when the program terminates
using statistical approaches, given a concrete initial state, and hence orthogonal. In a similar
vein, the works [44, 60] bound higher central moments for running time and other monotonically
increasing quantities. However, they are limited to programs with constant size increments.

8 CONCLUSION AND FUTUREWORK
In this work, we propose a novel approach for synthesizing piecewise linear expectation bounds
over probabilistic loops. We extract a piecewise pattern from latticed 𝑘-induction, establish the
theoretical foundation via an existing extension of Optional Stopping Theorem, and solve the
bounds by bilinear programming. Experimental results show that our approach is efficient and
derives tight piecewise linear bounds over an extensive set of benchmarks. A future work is to
explore whether the derived bilinear programming problems can be reduced to semi-definite
programming by exploiting recent works in Wang et al. [65, 66]. Another future work is to consider
piecewise polynomial bounds for a larger class of quantitative properties via latticed 𝑘-induction.

, Vol. 1, No. 1, Article . Publication date: March 2024.

24 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

REFERENCES
[1] Alessandro Abate, Mirco Giacobbe, and Diptarko Roy. 2021. Learning Probabilistic Termination Proofs. In Computer

Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 3–26. https://doi.org/
10.1007/978-3-030-81688-9_1

[2] Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
2021. A pre-expectation calculus for probabilistic sensitivity. Proc. ACM Program. Lang. 5, POPL (2021), 1–28.
https://doi.org/10.1145/3434333

[3] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, and Miroslav Stankovic.
2022. Solving Invariant Generation for Unsolvable Loops. In Static Analysis - 29th International Symposium, SAS 2022,
Auckland, New Zealand, December 5-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13790), Gagandeep
Singh and Caterina Urban (Eds.). Springer, 19–43. https://doi.org/10.1007/978-3-031-22308-2_3

[4] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.
[5] Jialu Bao, Nitesh Trivedi, Drashti Pathak, Justin Hsu, and Subhajit Roy. 2022. Data-Driven Invariant Learning for

Probabilistic Programs. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August
7-10, 2022, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.).
Springer, 33–54. https://doi.org/10.1007/978-3-031-13185-1_3

[6] Andreas Bärmann, Robert Burlacu, Lukas Hager, and Thomas Kleinert. 2023. On piecewise linear approximations of
bilinear terms: structural comparison of univariate and bivariate mixed-integer programming formulations. J. Glob.
Optim. 85, 4 (2023), 789–819. https://doi.org/10.1007/S10898-022-01243-Y

[7] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016. Proving Differential
Privacy via Probabilistic Couplings. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM,
749–758. https://doi.org/10.1145/2933575.2934554

[8] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2019. Automatic Generation of Moment-Based Invariants for
Prob-Solvable Loops. In Automated Technology for Verification and Analysis - 17th International Symposium, ATVA
2019, Taipei, Taiwan, October 28-31, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11781), Yu-Fang Chen,
Chih-Hong Cheng, and Javier Esparza (Eds.). Springer, 255–276. https://doi.org/10.1007/978-3-030-31784-3_15

[9] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2020. Mora - Automatic Generation of Moment-Based Invariants.
In Tools and Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12078), Armin Biere and David Parker (Eds.). Springer,
492–498. https://doi.org/10.1007/978-3-030-45190-5_28

[10] Kevin Batz, Tom Jannik Biskup, Joost-Pieter Katoen, and Tobias Winkler. 2023. Programmatic Strategy Synthesis:
Resolving Nondeterminism in Probabilistic Programs. CoRR abs/2311.06889 (2023). https://doi.org/10.48550/ARXIV.
2311.06889 arXiv:2311.06889

[11] Kevin Batz, Mingshuai Chen, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
2023. Probabilistic Program Verification via Inductive Synthesis of Inductive Invariants. In Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part II (Lecture
Notes in Computer Science, Vol. 13994), Sriram Sankaranarayanan and Natasha Sharygina (Eds.). Springer, 410–429.
https://doi.org/10.1007/978-3-031-30820-8_25

[12] Kevin Batz, Mingshuai Chen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Philipp Schröer.
2021. Latticed k-Induction with an Application to Probabilistic Programs. In Computer Aided Verification - 33rd
International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 524–549. https://doi.org/10.1007/978-3-
030-81688-9_25

[13] GuillaumeO. Berger and Sriram Sankaranarayanan. 2023. Counterexample-guided computation of polyhedral Lyapunov
functions for piecewise linear systems. Autom. 155 (2023), 111165. https://doi.org/10.1016/J.AUTOMATICA.2023.111165

[14] Guillaume O. Berger and Sriram Sankaranarayanan. 2023. Template-Based Piecewise Affine Regression. In Learning
for Dynamics and Control Conference, L4DC 2023, 15-16 June 2023, Philadelphia, PA, USA (Proceedings of Machine
Learning Research, Vol. 211), Nikolai Matni, Manfred Morari, and George J. Pappas (Eds.). PMLR, 509–520. https:
//proceedings.mlr.press/v211/berger23a.html

[15] Raven Beutner, C.-H. Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal
probabilistic programming. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 536–551.
https://doi.org/10.1145/3519939.3523721

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1007/978-3-030-81688-9_1
https://doi.org/10.1145/3434333
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-13185-1_3
https://doi.org/10.1007/S10898-022-01243-Y
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-45190-5_28
https://doi.org/10.48550/ARXIV.2311.06889
https://doi.org/10.48550/ARXIV.2311.06889
https://arxiv.org/abs/2311.06889
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1016/J.AUTOMATICA.2023.111165
https://proceedings.mlr.press/v211/berger23a.html
https://proceedings.mlr.press/v211/berger23a.html
https://doi.org/10.1145/3519939.3523721

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 25

[16] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying quantitative reliability for programs that
execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM, 33–52. https://doi.org/10.1145/
2509136.2509546

[17] Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In
Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer,
511–526. https://doi.org/10.1007/978-3-642-39799-8_34

[18] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination Analysis of Probabilistic
Programs Through Positivstellensatz’s. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer, 3–22. https://doi.org/10.1007/978-3-319-41528-4_1

[19] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2016. Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 327–342. https://doi.org/10.1145/2837614.2837639

[20] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2018. Algorithmic Analysis of
Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs. ACM Trans. Program. Lang. Syst.
40, 2 (2018), 7:1–7:45. https://doi.org/10.1145/3174800

[21] Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic invariants for probabilistic termination. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 145–160. https://doi.org/10.1145/3009837.
3009873

[22] Chuangtao Chen, Weikang Qian, Mohsen Imani, Xunzhao Yin, and Cheng Zhuo. 2022. PAM: A Piecewise-Linearly-
Approximated Floating-Point Multiplier With Unbiasedness and Configurability. IEEE Trans. Computers 71, 10 (2022),
2473–2486. https://doi.org/10.1109/TC.2021.3131850

[23] Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop
Invariant Generation by Lagrange Interpolation. In Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel
Kroening and Corina S. Pasareanu (Eds.). Springer, 658–674. https://doi.org/10.1007/978-3-319-21690-4_44

[24] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[25] Leonardo Mendonça de Moura, Harald Rueß, and Maria Sorea. 2003. Bounded Model Checking and Induction: From
Refutation to Verification (Extended Abstract, Category A). In Computer Aided Verification, 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2725), Warren A. Hunt
Jr. and Fabio Somenzi (Eds.). Springer, 14–26. https://doi.org/10.1007/978-3-540-45069-6_2

[26] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer. 2011. Software Verification Using
k-Induction. In Static Analysis - 18th International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6887), Eran Yahav (Ed.). Springer, 351–368. https://doi.org/10.1007/978-3-642-
23702-7_26

[27] J. L. Doob. 1971. What is a Martingale? The American Mathematical Monthly 78, 5 (1971), 451–463. https://doi.org/10.
1080/00029890.1971.11992788 arXiv:https://doi.org/10.1080/00029890.1971.11992788

[28] Gy Farkas. 1894. A Fourier-féle mechanikai elv alkalmazásai. Mathematikaiés Természettudományi Értesitö 12 (1894),
457–472.

[29] Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023.
Lower Bounds for Possibly Divergent Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 696–726.
https://doi.org/10.1145/3586051

[30] Yijun Feng, Lijun Zhang, David N. Jansen, Naijun Zhan, and Bican Xia. 2017. Finding Polynomial Loop Invariants for
Probabilistic Programs. In Automated Technology for Verification and Analysis - 15th International Symposium, ATVA
2017, Pune, India, October 3-6, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10482), Deepak D’Souza and
K. Narayan Kumar (Eds.). Springer, 400–416. https://doi.org/10.1007/978-3-319-68167-2_26

[31] Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Verification,
Model Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January
13-15, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.).
Springer, 468–490. https://doi.org/10.1007/978-3-030-11245-5_22

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1109/TC.2021.3131850
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-540-45069-6_2
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1080/00029890.1971.11992788
https://doi.org/10.1080/00029890.1971.11992788
https://arxiv.org/abs/https://doi.org/10.1080/00029890.1971.11992788
https://doi.org/10.1145/3586051
https://doi.org/10.1007/978-3-319-68167-2_26
https://doi.org/10.1007/978-3-030-11245-5_22

26 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

[32] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, 62–83.
https://doi.org/10.1007/978-3-319-41528-4_4

[33] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic programming.
In Proceedings of the on Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, James D.
Herbsleb and Matthew B. Dwyer (Eds.). ACM, 167–181. https://doi.org/10.1145/2593882.2593900

[34] Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2013. Prinsys - On a Quest for Probabilistic Loop Invariants.
In Quantitative Evaluation of Systems - 10th International Conference, QEST 2013, Buenos Aires, Argentina, August 27-30,
2013. Proceedings (Lecture Notes in Computer Science, Vol. 8054), Kaustubh R. Joshi, Markus Siegle, Mariëlle Stoelinga,
and Pedro R. D’Argenio (Eds.). Springer, 193–208. https://doi.org/10.1007/978-3-642-40196-1_17

[35] Gurobi Optimization, L.: [n. d.]. Gurobi Optimizer Reference Manual (2023). http://www.gurobi.com
[36] Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2020. Aiming low is harder: induction

for lower bounds in probabilistic program verification. Proc. ACM Program. Lang. 4, POPL (2020), 37:1–37:28. https:
//doi.org/10.1145/3371105

[37] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition
Reasoning for Expected Run-Times of Probabilistic Programs. In Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science,
Vol. 9632), Peter Thiemann (Ed.). Springer, 364–389. https://doi.org/10.1007/978-3-662-49498-1_15

[38] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition
Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM 65, 5 (2018), 30:1–30:68. https://doi.org/10.1145/
3208102

[39] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Generation for
Probabilistic Programs: - Automated Support for Proof-BasedMethods. In Static Analysis - 17th International Symposium,
SAS 2010, Perpignan, France, September 14-16, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6337), Radhia
Cousot and Matthieu Martel (Eds.). Springer, 390–406. https://doi.org/10.1007/978-3-642-15769-1_24

[40] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efstathia Bura. 2022. Moment-Based
Invariants for Probabilistic Loops with Non-polynomial Assignments. In Quantitative Evaluation of Systems - 19th
International Conference, QEST 2022, Warsaw, Poland, September 12-16, 2022, Proceedings (Lecture Notes in Computer
Science, Vol. 13479), Erika Ábrahám and Marco Paolieri (Eds.). Springer, 3–25. https://doi.org/10.1007/978-3-031-16336-
4_1

[41] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efstathia Bura. 2023. Exact and Approxi-
mate Moment Derivation for Probabilistic Loops With Non-Polynomial Assignments. CoRR abs/2306.07072 (2023).
https://doi.org/10.48550/ARXIV.2306.07072 arXiv:2306.07072

[42] Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350. https://doi.org/10.
1016/0022-0000(81)90036-2

[43] Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh, and Arie Gurfinkel. 2019. Interpolating Strong Induction.
In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer, 367–385.
https://doi.org/10.1007/978-3-030-25543-5_21

[44] Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. 2019. Tail Probabilities for Randomized Program Runtimes via
Martingales for HigherMoments. In Tools and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11428), Tomás
Vojnar and Lijun Zhang (Eds.). Springer, 135–153. https://doi.org/10.1007/978-3-030-17465-1_8

[45] Jia Lu and Ming Xu. 2022. Bisection Value Iteration. In 29th Asia-Pacific Software Engineering Conference, APSEC 2022,
Virtual Event, Japan, December 6-9, 2022. IEEE, 109–118. https://doi.org/10.1109/APSEC57359.2022.00023

[46] Garth P. McCormick. 1976. Computability of global solutions to factorable nonconvex programs: Part I - Convex
underestimating problems. Math. Program. 10, 1 (1976), 147–175. https://doi.org/10.1007/BF01580665

[47] Antoine Miné. 2004. Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors. In Programming
Languages and Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings
(Lecture Notes in Computer Science, Vol. 2986), David A. Schmidt (Ed.). Springer, 3–17. https://doi.org/10.1007/978-3-
540-24725-8_2

[48] Antoine Miné. 2006. Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In Verification,
Model Checking, and Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/978-3-642-40196-1_17
http://www.gurobi.com
https://doi.org/10.1145/3371105
https://doi.org/10.1145/3371105
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1145/3208102
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1007/978-3-031-16336-4_1
https://doi.org/10.1007/978-3-031-16336-4_1
https://doi.org/10.48550/ARXIV.2306.07072
https://arxiv.org/abs/2306.07072
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/978-3-030-25543-5_21
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1109/APSEC57359.2022.00023
https://doi.org/10.1007/BF01580665
https://doi.org/10.1007/978-3-540-24725-8_2
https://doi.org/10.1007/978-3-540-24725-8_2

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 27

8-10, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3855), E. Allen Emerson and Kedar S. Namjoshi (Eds.).
Springer, 348–363. https://doi.org/10.1007/11609773_23

[49] Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. 2022. This is the moment for probabilistic
loops. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1497–1525. https://doi.org/10.1145/3563341

[50] Theodore Samuel Motzkin. 1936. Beiträge zur Theorie der linearen Ungleichungen. (No Title) (1936).
[51] Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for proba-

bilistic programs. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 496–512.
https://doi.org/10.1145/3192366.3192394

[52] D. PARK. 1969. Fixpoint Induction and Proofs of Program Properties. Machine Intelligence 5 (1969). https://cir.nii.ac.
jp/crid/1573950399497019904

[53] Mihai Putinar. 1993. Positive Polynomials on Compact Semi-algebraic Sets. Indiana University Mathematics Journal 42,
3 (1993), 969–984. http://www.jstor.org/stable/24897130

[54] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static analysis for probabilistic programs:
inferring whole program properties from finitely many paths. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan
(Eds.). ACM, 447–458. https://doi.org/10.1145/2491956.2462179

[55] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Constraint-Based Linear-Relations Analysis. In
Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings (Lecture Notes in
Computer Science, Vol. 3148), Roberto Giacobazzi (Ed.). Springer, 53–68. https://doi.org/10.1007/978-3-540-27864-1_7

[56] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety Properties Using Induction and a SAT-
Solver. In Formal Methods in Computer-Aided Design, Third International Conference, FMCAD 2000, Austin, Texas, USA,
November 1-3, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1954), Warren A. Hunt Jr. and Steven D. Johnson
(Eds.). Springer, 108–125. https://doi.org/10.1007/3-540-40922-X_8

[57] Calvin Smith, Justin Hsu, and Aws Albarghouthi. 2019. Trace abstraction modulo probability. Proc. ACM Program.
Lang. 3, POPL (2019), 39:1–39:31. https://doi.org/10.1145/3290352

[58] Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. 2021. Ranking and Repulsing Supermartingales for
Reachability in Randomized Programs. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 5:1–5:46. https://doi.org/10.1145/
3450967

[59] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An Introduction to Probabilistic
Programming. CoRR abs/1809.10756 (2018). arXiv:1809.10756 http://arxiv.org/abs/1809.10756

[60] Di Wang, Jan Hoffmann, and Thomas W. Reps. 2021. Central moment analysis for cost accumulators in proba-
bilistic programs. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 559–573.
https://doi.org/10.1145/3453483.3454062

[61] Di Wang, Jan Hoffmann, and Thomas W. Reps. 2021. Expected-Cost Analysis for Probabilistic Programs and Semantics-
Level Adaption of Optional Stopping Theorems. CoRR abs/2103.16105 (2021). arXiv:2103.16105 https://arxiv.org/abs/
2103.16105

[62] Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2021. Quantitative
analysis of assertion violations in probabilistic programs. In PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and
Eran Yahav (Eds.). ACM, 1171–1186. https://doi.org/10.1145/3453483.3454102

[63] Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019.
Cost analysis of nondeterministic probabilistic programs. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley
and Kathleen Fisher (Eds.). ACM, 204–220. https://doi.org/10.1145/3314221.3314581

[64] Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong. 2023. Template-Based Static Posterior Inference
for Bayesian Probabilistic Programming. CoRR abs/2307.13160 (2023). https://doi.org/10.48550/ARXIV.2307.13160
arXiv:2307.13160

[65] Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan, and Joost-Pieter Katoen. 2021. Synthesizing Invariant Barrier
Certificates via Difference-of-Convex Programming. In CAV (Lecture Notes in Computer Science, Vol. 12759). Springer,
443–466.

[66] Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan, and Joost-Pieter Katoen. 2022. Encoding inductive invariants as
barrier certificates: Synthesis via difference-of-convex programming. Information and Computation 289, Part (2022),
104965.

[67] David Williams. 1991. Probability with Martingales. Cambridge University Press.

, Vol. 1, No. 1, Article . Publication date: March 2024.

https://doi.org/10.1007/11609773_23
https://doi.org/10.1145/3563341
https://doi.org/10.1145/3192366.3192394
https://cir.nii.ac.jp/crid/1573950399497019904
https://cir.nii.ac.jp/crid/1573950399497019904
http://www.jstor.org/stable/24897130
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1007/978-3-540-27864-1_7
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1145/3290352
https://doi.org/10.1145/3450967
https://doi.org/10.1145/3450967
https://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
https://doi.org/10.1145/3453483.3454062
https://arxiv.org/abs/2103.16105
https://arxiv.org/abs/2103.16105
https://arxiv.org/abs/2103.16105
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.48550/ARXIV.2307.13160
https://arxiv.org/abs/2307.13160

28 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

A SUPPLEMENTARY MATERIAL FOR SECTION 3

A.1 Properties of the Upper 𝑘-Induction Operator in Lu and Xu [45]

Lemma A.1. Let Ψ be the 𝑘-induction operator in Lu and Xu [45] w.r.t.𝛷 . Then

(1) Ψ is monotonic, i.e., ∀𝑣1, 𝑣2 ∈ 𝐸, 𝑣1 ⊑ 𝑣2 implies Ψ(𝑣1) ⊑ Ψ(𝑣2).
(2) Iterations of Ψ starting from 𝑢 are descending, i.e.,

. . . ⊑ Ψ𝑘 (𝑢) ⊑ Ψ𝑘−1 (𝑢) ⊑ . . . ⊑ Ψ(𝑢) ⊑ 𝑢

And thus we have for all𝑚 < 𝑛 ∈ N,Ψ𝑛 (𝑢) ⊑ Ψ𝑚 (𝑢).

Proof. For item 1, observe that if we have𝑤1 ⊑ 𝑤2 and 𝑣1 ⊑ 𝑣2, then we have𝑤1 ⊓ 𝑣1 ⊑ 𝑤2 ⊓ 𝑣2.

Ψ(𝑣1) = 𝛷 (𝑣1) ⊓ 𝑣1 (by definition of Ψ)
⊑ 𝛷 (𝑣2) ⊓ 𝑣2 (by monotonicity of𝛷 and above property)
= Ψ(𝑣2) (by definition of Ψ)

For item 2, we can immediately derived from the definition of Ψ as

Ψ𝑘 (𝑢) = Ψ(Ψ𝑘−1 (𝑢)) (by definition of Ψ𝑘 (𝑢))
= 𝛷 (Ψ𝑘−1 (𝑢)) ⊓ Ψ𝑘−1 (𝑢) (by definition of Ψ)

⊑ Ψ𝑘−1 (𝑢) (by definition of ⊓)

□

Proposition 3.4. For any element 𝑢 ∈ 𝐸, we have that

𝛷 (Ψ𝑘 (𝑢)) ⊑ 𝑢 ⇐⇒ 𝛷 (Ψ𝑘 (𝑢)) ⊑ Ψ𝑘 (𝑢)

Proof. The if-direction is trivial as Ψ𝑘 (𝑢) ⊑ 𝑢 (by Lemma A.1(2)). For the only-if direction:

Ψ𝑘 (𝑢) ⊒ Ψ𝑘+1 (𝑢) (by Lemma A.1(2))

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘 (𝑢) (by definition of Ψ)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ(Ψ𝑘−1 (𝑢)) (by definition of Ψ𝑘 (𝑢))
= 𝛷 (Ψ𝑘 (𝑢)) ⊓ (𝛷 (Ψ𝑘−1 (𝑢)) ⊓ Ψ𝑘−1 (𝑢)) (by definition of Ψ)

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (Ψ𝑘−1 (𝑢))) ⊓ Ψ𝑘−1 (𝑢)) (by associative law)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.1(2))
...

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (𝑢)) ⊓ 𝑢 (by unfolding Ψ𝑘 until 𝑘 = 1)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ 𝑢 (by monotonicity of𝛷 and Lemma A.1(2))

= 𝛷 (Ψ𝑘 (𝑢)) (by the premise)

□

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 29

A.2 Equivalence between𝛹𝑢 and Ψ

Theorem 3.5. [Equivalence between𝛹𝑢 and Ψ] For any element 𝑢 ∈ 𝐸, the sequence {𝛹𝑘
𝑢 (𝑢)}𝑘≥0

of elements in 𝐸 coincides with the sequence {Ψ𝑘 (𝑢)}𝑘≥0. In other words, for any natural number
𝑘 ≥ 0, we have that𝛹𝑘

𝑢 (𝑢) = Ψ𝑘 (𝑢).

Proof. Proof by mathematical induction. We denote 𝑋𝑘 =𝛹𝑘
𝑢 (𝑢) and 𝑌𝑘 = Ψ𝑘 (𝑢). when 𝑘 = 0,

𝑋0 = 𝑢 = 𝑌0. When 𝑘 = 1, 𝑋1 = 𝛷 (𝑢) ⊓ 𝑢 = 𝑌1, by definition of two operators, respectively.
Now we suppose that 𝑋𝑘 = 𝑌𝑘 , i.e.,𝛹𝑘

𝑢 (𝑢) = Ψ𝑘 (𝑢), and we aim to prove that𝛹𝑘+1
𝑢 (𝑢) = Ψ𝑘+1 (𝑢).

𝑋𝑘+1 =𝛹𝑢 (𝛹𝑘
𝑢 (𝑢)) (by definition of𝛹𝑘+1

𝑢 (𝑢))
= 𝛷 (𝛹𝑘

𝑢 (𝑢) ⊓ 𝑢 (by definition of𝛹𝑢)

𝑌𝑘+1 = Ψ(Ψ𝑘 (𝑢)) (by definition of Ψ𝑘+1 (𝑢))
= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘 (𝑢) (by definition of Ψ)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ(Ψ𝑘−1 (𝑢)) (by definition of Ψ𝑘 (𝑢))
= 𝛷 (Ψ𝑘 (𝑢)) ⊓ (𝛷 (Ψ𝑘−1 (𝑢)) ⊓ Ψ𝑘−1 (𝑢)) (by definition of Ψ)

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (Ψ𝑘−1 (𝑢))) ⊓ Ψ𝑘−1 (𝑢)) (by associative law)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ Ψ𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.1(2))
...

= (𝛷 (Ψ𝑘 (𝑢)) ⊓𝛷 (𝑢)) ⊓ 𝑢 (by unfolding Ψ𝑘 until 𝑘 = 1)

= 𝛷 (Ψ𝑘 (𝑢)) ⊓ 𝑢 (by monotonicity of𝛷 and Lemma A.1(2))

Since we suppose that𝛹𝑘
𝑢 (𝑢) = Ψ𝑘 (𝑢), we obtain that𝛷 (𝛹𝑘

𝑢 (𝑢) ⊓ 𝑢 = 𝛷 (Ψ𝑘 (𝑢)) ⊓ 𝑢, thus we have
𝛹𝑘+1
𝑢 (𝑢) = Ψ𝑘+1 (𝑢), i.e., 𝑋𝑘+1 = 𝑌𝑘+1. □

A.3 Supplementary Properties for the Dual 𝑘-Induction Operators𝛹′𝑢 and Ψ

Lemma A.2. Fix a lattice (𝐸, ⊑) and a monotone operator𝛷 . For any element 𝑢 ∈ 𝐸, both of these
two dual 𝑘-induction operators𝛹′𝑢 and Ψ′ have the following properties:

(1) 𝛹′𝑢 (resp. Ψ′) is monotone.
(2) Iterations of𝛹′𝑢 (resp. Ψ′) starting from 𝑢 are ascending, i.e.,

𝑢 ⊑𝛹′𝑢 (𝑢) ⊑ . . . (𝛹′𝑢)𝑘−1 (𝑢) ⊑ (𝛹′𝑢)𝑘 (𝑢) . . .

𝑢 ⊑ Ψ′ (𝑢) ⊑ . . . (Ψ′)𝑘−1 (𝑢) ⊑ (Ψ′)𝑘 (𝑢) . . .
Thus we have for all𝑚 < 𝑛 ∈ N, (𝛹′𝑢)𝑚 (𝑢) ⊑ (𝛹′𝑢)𝑛 (𝑢) and (Ψ′)𝑚 (𝑢) ⊑ (Ψ′)𝑛 (𝑢).

Proof. We only prove the case of dual 𝑘-induction operator𝛹′𝑢 , since the proof of the properties
of the dual 𝑘-induction operator Ψ′ is similar with that of𝛹′𝑢 .

For item 1, observe that if we have𝑤1 ⊑ 𝑤2, then we have𝑤1 ⊔𝑢 ⊑ 𝑤2 ⊔𝑢. Assume that 𝑣1 ⊑ 𝑣2
𝛹′𝑢 (𝑣1) = 𝛷 (𝑣1) ⊔ 𝑢 (by definition of𝛹′

ℎ
)

⊑ 𝛷 (𝑣2) ⊔ 𝑢 (by monotonicity of𝛷 and above property)
=𝛹′𝑢 (𝑣2) (by definition of𝛹′

ℎ
)

, Vol. 1, No. 1, Article . Publication date: March 2024.

30 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

For item 2, we prove it by mathematical induction. We have 𝑢 ⊑𝛹′𝑢 (𝑢) as𝛹′𝑢 (𝑢) = 𝛷 (𝑢) ⊔ 𝑢. We
then assume that (𝛹′𝑢)𝑘 (𝑢) ⊒ (𝛹′ℎ)

𝑘−1 (𝑢), and we prove that

(𝛹′𝑢)𝑘+1 (𝑢) =𝛹′𝑢 ((𝛹′𝑢)𝑘 (𝑢)) (by definition of (𝛹′𝑢)𝑘+1 (𝑢))
⊒𝛹′𝑢 ((𝛹′𝑢)𝑘−1 (𝑢)) (by monotonicity of𝛹′𝑢 and assumption)

= (𝛹′𝑢)𝑘 (𝑢) (by definition of (𝛹′𝑢)𝑘 (𝑢))

Thus the value sequence is an ascending chain. □

Proposition 3.8. For any element 𝑢 ∈ 𝐸, both of these two dual 𝑘-induction operators𝛹′𝑢 and Ψ′

have the following properties:

𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊒ 𝑢 ⇐⇒ 𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊒ (𝛹′𝑢)𝑘 (𝑢)
𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ 𝑢 ⇐⇒ 𝛷 ((Ψ′)𝑘 (𝑢)) ⊒ (Ψ′)𝑘 (𝑢)

Proof. For the case of the dual 𝑘-induction operator𝛹′𝑢 :
The if-direction is trivial as (𝛹′𝑢)𝑘 (𝑢) ⊒ 𝑢 (by Lemma A.2(2)). For the only-if direction:

(𝛹′𝑢)𝑘 (𝑢) ⊑ (𝛹′𝑢)𝑘+1 (𝑢) (by Lemma A.2(2)))

=𝛹′𝑢 ((𝛹′𝑢)𝑘 (𝑢)) (by the definition of (𝛹′𝑢)𝑘+1 (𝑢))
= 𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊔ 𝑢 (by the definition of𝛹′𝑢)

=𝛹 ((𝛹′𝑢)𝑘 (𝑢)) (by the premise)

For the case of the dual 𝑘-induction operator Ψ′:
The if-direction is trivial as (Ψ′)𝑘 (𝑢) ⊒ 𝑢 (by Lemma A.2(2)). For the only-if direction:

(Ψ′)𝑘 (𝑢) ⊑ (Ψ′)𝑘+1 (𝑢) (by Lemma A.2(2)))

= Ψ′ ((Ψ′)𝑘 (𝑢)) (by the definition of (Ψ′)𝑘+1 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘 (𝑢) (by the definition of Ψ′)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ Ψ′ ((Ψ′)𝑘−1 (𝑢)) (by the definition of (Ψ′)𝑘 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 ((Ψ′)𝑘−1 (𝑢)) ⊔ (Ψ′)𝑘−1 (𝑢) (by the definition of Ψ′)

= (𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 ((Ψ′)𝑘−1 (𝑢))) ⊔ (Ψ′)𝑘−1 (𝑢) (by associate law)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.2(2)))
...

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ Ψ′ (𝑢) (by unfolding (Ψ′)𝑘 (𝑢) until 𝑘 = 1)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 (𝑢) ⊔ 𝑢 (by definition of Ψ′)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ 𝑢 (by monotonicity of𝛷 and Lemma A.2(2)))

= 𝛷 ((Ψ′)𝑘 (𝑢)) (by the premise)

□

Theorem 3.9. [Equivalence between𝛹′𝑢 and Ψ′] For any element 𝑢 ∈ 𝐸, we have that the sequence
{(𝛹′𝑢)𝑘 (𝑢)}𝑘≥0 of elements in 𝐸 coincides with the sequence {(Ψ′)𝑘 (𝑢)}𝑘≥0. In other words, for
any natural number 𝑘 ≥ 0, we have that (𝛹′𝑢)𝑘 (𝑢) = (Ψ′)𝑘 (𝑢).

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 31

Proof. Analogously, we proof it by mathematical induction. 𝑋𝑘 = (𝛹′𝑢)𝑘 (𝑢) and 𝑌𝑘 = (Ψ′)𝑘 (𝑢).
when 𝑘 = 0, 𝑋0 = 𝑢 = 𝑌0. When 𝑘 = 1, 𝑋1 = 𝛷 (𝑢) ⊔ 𝑢 = 𝑌1, by definition of two dual operators,
respectively.

Now we suppose that 𝑋𝑘 = 𝑌𝑘 , i.e., (𝛹′𝑢)𝑘 (𝑢) = (Ψ′)𝑘 (𝑢), and we aim to prove that (𝛹′𝑢)𝑘+1 (𝑢) =
(Ψ′)𝑘+1 (𝑢).

𝑋𝑘+1 =𝛹
′
𝑢 ((𝛹′𝑢)𝑘 (𝑢)) (by definition of (𝛹′𝑢)𝑘+1 (𝑢))

= 𝛷 ((𝛹′𝑢)𝑘 (𝑢)) ⊔ 𝑢 (by definition of𝛹′𝑢)

𝑌𝑘+1 = Ψ′ ((Ψ′)𝑘 (𝑢)) (by definition of (Ψ′)𝑘+1 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘 (𝑢) (by definition of Ψ′)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ Ψ′ ((Ψ′)𝑘−1 (𝑢)) (by definition of (Ψ′)𝑘 (𝑢))
= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (𝛷 ((Ψ′)𝑘−1 (𝑢)) ⊔ Ψ′𝑘−1 (𝑢)) (by definition of Ψ′)

= (𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 ((Ψ′)𝑘−1 (𝑢))) ⊔ Ψ′𝑘−1 (𝑢)) (by associative law)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ (Ψ′)𝑘−1 (𝑢) (by monotonicity of𝛷 and Lemma A.2(2)))
...

= (𝛷 ((Ψ′)𝑘 (𝑢)) ⊔𝛷 (𝑢)) ⊔ 𝑢 (by unfolding (Ψ′)𝑘 until 𝑘 = 1)

= 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ 𝑢 (by monotonicity of𝛷 and Lemma A.2(2))

Since we suppose that (𝛹′𝑢)𝑘 (𝑢) = (Ψ′)𝑘 (𝑢), we obtain that 𝛷 ((𝛹′𝑢)𝑘 (𝑢) ⊔ 𝑢 = 𝛷 ((Ψ′)𝑘 (𝑢)) ⊔ 𝑢,
thus we have (𝛹′𝑢)𝑘+1 (𝑢) = (Ψ′)𝑘+1 (𝑢), i.e., 𝑋𝑘+1 = 𝑌𝑘+1. □

B SUPPLEMENTARY MATERIAL FOR SECTION 4

B.1 Classical OST
Optional Stopping Theorem (OST) is a classical theorem in martingale theory that characterizes

the relationship between the expected values initially and at a stopping time in a supermartingale.
Below we present the classical form of OST.

Theorem B.1 (Optional Stopping Theorem (OST) [67, Chapter 10]). Let {𝑋𝑛}∞𝑛=0 be a martin-
gale (resp. supermartingale) adapted to a filtration F = {F𝑛}∞𝑛=0 and 𝜏 be a stopping time w.r.t the
filtration F . If we have that:
• E(𝜏) < ∞;
• exists an𝑀 ∈ [0,∞) such that |𝑋𝑛+1 − 𝑋𝑛 | ≤ 𝑀 holds almost surely for every 𝑛 ≤ 0,

then it follows that (|𝑋𝜏 |) < ∞ and E(𝑋𝜏) = E(𝑋0)(resp. E(𝑋𝜏) ≤ E(𝑋0)).

B.2 Proof of Extended OST (Theorem 4.6)
In this section, we attach the proof for this variant of Optional Stopping Theorem in Wang et al.
[64] here.
Theorem 4.6 [Extended OST in Wang et al. [64]] Let {𝑋𝑛}∞𝑛=0 be a supermartingale adapted to a
filtration F = {F𝑛}∞𝑛=0 and 𝜏 be a stopping time w.r.t the filtration F . Suppose there exist positive
real numbers 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑐3 such that 𝑐2 > 𝑐3 and

(a) Concentration property. For all sufficiently large natural numbers 𝑛, it holds that P(𝜏 > 𝑛) ≤
𝑐1 · exp(−𝑐2 · 𝑛).

, Vol. 1, No. 1, Article . Publication date: March 2024.

32 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

(b) Exponential bound. For every natural number 𝑛 ≥ 0, it holds almost-surely that |𝑋𝑛+1 − 𝑋𝑛 | ≤
𝑏1 · 𝑛𝑏2 · 𝑒𝑐3 ·𝑛 .

Then we have that E(|𝑋𝜏 |) < ∞ and E(𝑋𝜏) ≤ E(𝑋0).

Proof. For every 𝑛 ∈ N0,

|𝑋𝜏∧𝑛 | =

�����𝑋0 +
𝜏∧𝑛−1∑︁
𝑘=0
(𝑋𝑘+1 − 𝑋𝑘)

�����
=

�����𝑋0 +
∞∑︁
𝑘=0
(𝑋𝑘+1 − 𝑋𝑘) · 1𝜏>𝑘∧𝑛>𝑘

�����
≤ |𝑋0 | +

∞∑︁
𝑘=0
| (𝑋𝑘+1 − 𝑋𝑘) · 1𝜏>𝑘∧𝑛>𝑘 |

≤ |𝑋0 | +
∞∑︁
𝑘=0
| (𝑋𝑘+1 − 𝑋𝑘) · 1𝜏>𝑘 | .

Then

E

(
|𝑋0 | +

∞∑︁
𝑘=0
| (𝑋𝑘+1 − 𝑋𝑘) · 1𝜏>𝑘 |

)
= E (|𝑋0 |) +

∞∑︁
𝑘=0
E (| (𝑋𝑘+1 − 𝑋𝑘) · 1𝜏>𝑘 |) (By Monotone Convergence Theorem)

= E (|𝑋0 |) +
∞∑︁
𝑘=0
E (|𝑋𝑘+1 − 𝑋𝑘 | · 1𝜏>𝑘)

≤ E (|𝑋0 |) +
∞∑︁
𝑘=0
E

(
𝑏1 · 𝑘𝑏2 · 𝑒𝑐3 ·𝑘 · 1𝜏>𝑘

)
(by condition (b))

= E (|𝑋0 |) +
∞∑︁
𝑘=0

𝑏1 · 𝑘𝑏2 · 𝑒𝑐3 ·𝑘 · P (𝜏 > 𝑘)

≤ E (|𝑋0 |) +
∞∑︁
𝑘=0

𝑏1 · 𝑘𝑏2 · 𝑒𝑐3 ·𝑘 · 𝑐1 · 𝑒−𝑐2 ·𝑘 (by condition (a))

= E (|𝑋0 |) + 𝑏1 · 𝑐1 ·
∞∑︁
𝑘=0

𝑘𝑏2 · 𝑒−(𝑐2−𝑐3) ·𝑘

< ∞ . (by premise)

Therefore, by Dominated Convergence Theorem and the fact that 𝑋𝜏 = lim
𝑛→∞

𝑋𝜏∧𝑛 a.s.,

E (𝑋𝜏) = E
(
lim
𝑛→∞

𝑋𝜏∧𝑛
)
= lim

𝑛→∞
E (𝑋𝜏∧𝑛) .

Finally, the result follows from properties for the stopped process {𝑋𝜏∧𝑛}𝑛∈N0 that

E (𝑋𝜏) ≤ E (𝑋0) .

□

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 33

B.3 Proof of Theorem 4.7
Theorem 4.7. [Soundness of Potential Functions] Let 𝑘 be a positive integer. Suppose that there
exist real numbers 𝑐1 > 0 and 𝑐2 > 𝑐3 > 0 such that (i) The maximum amplifier 𝑐 satisfies
𝑐 ≤ 𝑒𝑐3 and (ii) the termination time random variable 𝜏 of 𝑃 has the concentration property, i.e.,
P(𝜏 > 𝑛) ≤ 𝑐1 · 𝑒−𝑐2 ·𝑛 . Then the following hold:

• For any 𝑘-upper potential function ℎ, E𝑠∗ (𝑋𝑓) ≤ 𝛹
𝑘−1
ℎ (ℎ) (𝑠∗) ≤ ℎ(𝑠∗).

• For any 𝑘-lower potential function ℎ, E𝑠∗ (𝑋𝑓) ≥ (𝛹
′
ℎ)𝑘−1 (ℎ) (𝑠∗) ≥ ℎ(𝑠∗).

Proof. We first proof the soundness of upper potential functions. Let 𝑠𝑛 be the random vector
(random variable) of the program state at the 𝑛-th iteration of the probabilistic while loop 𝑃 , where
𝑠0 = 𝑠∗ and let 𝐻 = 𝛹

𝑘

ℎ (ℎ). By Definition 4.5 and Theorem 3.2, we obtain that ∀𝑠 ∈ Reach(𝑠∗),
𝛷 (𝐻) (𝑠) ≤ 𝐻 (𝑠). We define the stochastic process {𝑋𝑛}∞𝑛=0 by

𝑋𝑛 := [𝑠𝑛 |= 𝜑] · 𝐻 (𝑠𝑛) + [𝑠𝑛 ̸ |= 𝜑] · 𝑓 (𝑠𝑛).

We first prove that the stochastic process {𝑋𝑛} is a supermartingale. We discuss this in the following
two scenarios:
• if 𝑠𝑛 ̸ |= 𝜑 , by the semantics of probabilistic while loop (see Section 2.2), 𝑠𝑛+1 = 𝑠𝑛 , and thus
𝑋𝑛+1 = 𝑋𝑛 , which satisfies the conditions of supermartingale;
• if 𝑠𝑛 |= 𝜑 , we have

E𝑠∗ [𝑋𝑛+1 |F𝑛] = E𝑠∗ [[𝑠𝑛+1 |= 𝜑] · 𝐻 (𝑠𝑛+1) + [𝑠𝑛+1 ̸ |= 𝜑] · 𝑓 (𝑠𝑛+1)]
= [𝑠𝑛+1 |= 𝜑] · E𝑠∗ [𝐻 (𝑠𝑛+1)] + [𝑠𝑛+1 ̸ |= 𝜑] · E𝑠∗ [𝑓 (𝑠𝑛+1)]

(by definition of mathematic expectation)
= [𝑠𝑛+1 |= 𝜑] · 𝑝𝑟𝑒𝐶 (𝐻) (𝑠𝑛) + [𝑠𝑛+1 ̸ |= 𝜑] · E𝑠∗ [𝑓 (𝑠𝑛+1)]

(by definition of pre-expectation)

= 𝛷 (𝐻) (𝑠𝑛)
≤ 𝐻 (𝑠𝑛) (by property of 𝐻)
= 𝑋𝑛

Combining the condition (i), (ii) and 𝐻 is piecewise linear, we can derive that E𝑠∗ [𝑋𝑛] < ∞
holds. Thus {𝑋𝑛} is a supermartingale.

The condition(a) depends on the assumption that (ii) 𝑃 has the concentration property.
Then we prove the condition (b). We discuss this in the following three scenarios:
• if 𝑠𝑛 ̸ |= 𝜑 , by the semantics of probabilistic while loop (see Section 2.2), 𝑠𝑛+1 = 𝑠𝑛 , and thus
|𝑋𝑛+1 − 𝑋𝑛 | = 0;
• if 𝑠𝑛 |= 𝜑 and if 𝑠𝑛+1 |= 𝜑 , since the condition (ii), we have that each program variable
𝑥𝑖 (𝑖 ∈ Z+) and the constant term 𝑥0 at state 𝑠𝑛 (∀𝑛) can be bounded by 𝐾𝑖 · 𝑐𝑛𝑖 for some
𝐾𝑖 , 𝑐𝑖 (𝑖 ∈ N). In addition that 𝐻 is piecewise linear, we have that 𝐻 (𝑠𝑛) ≤ 𝑀𝑛 · 𝑐𝑛 for𝑀𝑛 > 0.

|𝑋𝑛+1 − 𝑋𝑛 | = |𝐻 (𝑠𝑛+1) − 𝐻 (𝑠𝑛) |
≤ |𝐻 (𝑠𝑛+1) | + |𝐻 (𝑠𝑛) |
≤ 𝑀𝑛 · |𝑐 |𝑛 +𝑀𝑛+1 · |𝑐 |𝑛+1

≤ (𝑀𝑛 + |𝑐 | ·𝑀𝑛+1) · |𝑐 |𝑛

≤ 𝑏1 · 𝑒𝑐3𝑛

, Vol. 1, No. 1, Article . Publication date: March 2024.

34 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

• if 𝑠𝑛 |= 𝜑 and if 𝑠𝑛+1 ̸ |= 𝜑 , this case is similar with the case of 𝑠𝑛 |= 𝜑 & 𝑠𝑛+1 |= 𝜑 . We have that
|𝑋𝑛+1 − 𝑋𝑛 | = |𝑓 (𝑠𝑛+1) − 𝐻 (𝑠𝑛) |

≤ |𝑓 (𝑠𝑛+1) | + |𝐻 (𝑠𝑛) |
≤ 𝑀𝑛 · |𝑐 |𝑛 +𝑀𝑛+1

= 𝑀𝑛 · |𝑐 |𝑛 +𝑀𝑛+1 · 𝑒0·𝑛

≤ 𝑏1 · 𝑒𝑐3𝑛

By applying Theorem 4.6, we have that E𝑠∗ (𝑋𝜏) ≤ E𝑠∗ (𝑋0). Since 𝜏 is the stopping time, there
will be 𝑠𝜏 ̸ |= 𝜑 , thus 𝑋𝜏 = 𝑓 (𝑠𝜏) = 𝑋𝑓 . We have E𝑠∗ (𝑋𝑓) ≤ E𝑠∗ (𝑋0) = 𝐻 (𝑠∗). The second inequality
can be derived directly from the property that𝛹

𝑘

ℎ (ℎ) ⪯ ℎ holds (see Appendix A.1 and Batz et al.
[12]). □
The case of lower potential functions is completely dual to that of upper potential functions

since we can consider the stochastic process {−𝑋𝑛}, that is, define the stochastic process by
𝑌𝑛 := [𝑠𝑛 |= 𝜑] · (−𝐻 (𝑠𝑛)) + [𝑠𝑛 ̸ |= 𝜑] · (−𝑓 (𝑠𝑛)).

The remaining proof is essentially the same.
□

C SUPPLEMENTARY MATERIAL FOR SECTION 5

C.1 Proof of Proposition 5.3
We give a proof for Proposition 5.3 in this section.
Proposition 5.3 The upper (resp. lower)𝑘-induction condition𝛷 𝑓 (𝛹

𝑘−1
ℎ (ℎ)) ⪯ ℎ (resp.𝛷 𝑓 (𝛹

′
ℎ)𝑘−1 (ℎ)) ⪰

ℎ) is equivalent with min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ (resp. max{ℎ1, ℎ2, . . . , ℎ𝑚} ⪰ ℎ), where each ℎ𝑖
uniquely corresponds to one 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} and is equal to 𝑝𝑟𝑒𝐶𝑑

(ℎ).

Proof. We only proof the case of upper 𝑘-induction condition, as the lower case is completely
dual. Obviously we only need to concentrate on the left side of the constraint:𝛷 𝑓 (𝛹

𝑘−1
ℎ (ℎ)) ⪯ ℎ.

We first proof the case of 𝑘 = 2, i.e., 𝛷 𝑓 (𝛹
1
ℎ (ℎ)) ⪯ ℎ. Since our syntax of the probabilistic

programs is defined in a compositional style (see Fig. 1 in Section 2.2 for more details), we proof
by induction on the structure of programs. For simplicity, we denote 𝑝𝑟𝑒𝐶 ([𝛷]) by [𝛷 (𝐶)], which
represent the evaluation of [𝛷] after the execution of 𝐶 .
• Case 𝐶 ≡ skip.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] ·𝛹ℎ (ℎ)
= [¬𝜑] · 𝑓 + [𝜑] ·min{𝛷 𝑓 (ℎ), ℎ}
= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑] · 𝑓 + [𝜑] · ℎ,ℎ}
= [¬𝜑] · 𝑓 +min{[𝜑] · ℎ, [𝜑] · ℎ}
= [¬𝜑] · 𝑓 + [𝜑] · ℎ
= 𝛷 𝑓 (ℎ)

It corresponds to pre-expectation of the loop-free program unfolded with twice (only one
program).

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 35

• Case 𝐶 ≡ 𝑥 := 𝑒 .

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] ·𝛹ℎ (ℎ) ([𝑥/𝑒])
= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑] · 𝑓 + [𝜑] · ℎ([𝑥/𝑒]), ℎ}([𝑥/𝑒])
= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑 ([𝑥/𝑒])] · 𝑓 ([𝑥/𝑒]) +
[𝜑 ([𝑥/𝑒])] · ℎ([𝑥/𝑒]) ([𝑥/𝑒]), ℎ([𝑥/𝑒])}

= min{[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 ([𝑥/𝑒])] · 𝑓 ([𝑥/𝑒]) +
[𝜑 ∧ 𝜑 ([𝑥/𝑒])] · ℎ([𝑥/𝑒]) ([𝑥/𝑒]), [¬𝜑] · 𝑓 + [𝜑] · ℎ([𝑥/𝑒])}

= min{[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 ([𝑥/𝑒])] · 𝑓 ([𝑥/𝑒]) +
[𝜑 ∧ 𝜑 ([𝑥/𝑒])] · 𝑝𝑟𝑒𝐶 ;𝐶 (ℎ), [¬𝜑] · 𝑓 + [𝜑] · ℎ([𝑥/𝑒])}

the expressions in the minimize operator correspond to pre-expectation of the two loop-free
programs unfolded within twice (one for once, and another for twice).
• Case 𝐶 ≡ 𝐶1;𝐶2.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑]𝑝𝑟𝑒𝐶1 (𝑝𝑟𝑒𝐶2 (min{[¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶1 (𝑝𝑟𝑒𝐶2 (ℎ)), ℎ}))
= [¬𝜑] · 𝑓 + [𝜑] ·min{[¬𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2 (𝑓) +
[𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ), 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)}

= min{[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2 (𝑓) +
[𝜑 ∧ ¬𝜑 (𝐶1;𝐶2)] · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ),
[¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)}

the expressions in the minimize operator correspond to pre-expectation of the two loop-free
programs unfolded within twice (one for once, and another for twice)
• case 𝐶 ≡ {𝐶1}[𝑝]{𝐶2}.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝 · 𝑝𝑟𝑒𝐶1 (𝛹ℎ (ℎ)) + [𝜑] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (𝛹ℎ (ℎ))

wherein

𝑝𝑟𝑒𝐶1 (𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶1 (min{[¬𝜑] · 𝑓 + [𝜑] · (𝑝 · 𝑝𝑟𝑒𝐶1 (ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (ℎ)), ℎ}
= min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1 (𝑓) + [𝜑 (𝐶1)] ·
(𝑝 · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶1 (ℎ)}

and

𝑝𝑟𝑒𝐶2 (𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶2 (min{[¬𝜑] · 𝑓 + [𝜑] · (𝑝 · 𝑝𝑟𝑒𝐶1 (ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (ℎ)), ℎ}
= min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2 (𝑓) + [𝜑 (𝐶2)] ·
(𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶2 (ℎ)}

, Vol. 1, No. 1, Article . Publication date: March 2024.

36 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Thus we have

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝 ·min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1 (𝑓)
+[𝜑 (𝐶1)] · (𝑝 · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶1 (ℎ)} +
[𝜑] · (1 − 𝑝) ·min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2 (𝑓)
+[𝜑 (𝐶2)] · (𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + (1 − 𝑝) · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶2 (ℎ)}

= min{[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 (𝐶1)] · 𝑝 · 𝑝𝑟𝑒𝐶1 (𝑓) + [𝜑 ∧ ¬𝜑 (𝐶2)] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (𝑓)
+[𝜑 ∧ 𝜑 (𝐶1)] · (𝑝2 · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + 𝑝 (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ))
+[𝜑 ∧ 𝜑 (𝐶2)] · ((1 − 𝑝)𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + (1 − 𝑝)2 · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)),
[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 (𝐶1)] · 𝑝 · 𝑝𝑟𝑒𝐶1 (𝑓) +
[𝜑 ∧ 𝜑 (𝐶1)] · (𝑝2 · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + 𝑝 (1 − 𝑝) · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)) +
[𝜑] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (ℎ),
[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜑 (𝐶2)] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (𝑓) +
[𝜑 ∧ 𝜑 (𝐶2)] · ((1 − 𝑝)𝑝 · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + (1 − 𝑝)2 · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)) +
[𝜑] · 𝑝 · 𝑝𝑟𝑒𝐶1 (ℎ),
[¬𝜑] · 𝑓 + [𝜑] · 𝑝 · 𝑝𝑟𝑒𝐶1 (ℎ) + [𝜑] · (1 − 𝑝) · 𝑝𝑟𝑒𝐶2 (ℎ)

The first expression corresponds to the case that we unfold for twice at each state we reach
(after the execution of 𝐶1 and 𝐶2), and the second (resp. third) expression corresponds to the
case that we unfold for twice at the state that we reach after the execution of 𝐶1 (resp. 𝐶2)
and unfold for once at the state that we reach after the execution of 𝐶2 (resp. 𝐶1). The fourth
expression corresponds to the case that we unfold for once at both states, i.e., 1-induction
principle.
• case 𝐶 ≡ if (𝜙) {𝐶1} else {𝐶2}.

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙] · 𝑝𝑟𝑒𝐶1 (𝛹ℎ (ℎ)) + [𝜑 ∧ ¬𝜙] · 𝑝𝑟𝑒𝐶2 (𝛹ℎ (ℎ))

wherein

𝑝𝑟𝑒𝐶1 (𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶1 (min{[¬𝜑] · 𝑓 + [𝜑] · ([𝜙] · 𝑝𝑟𝑒𝐶1 (ℎ) + [¬𝜙] · 𝑝𝑟𝑒𝐶2 (ℎ)), ℎ}
= min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1 (𝑓) + [𝜑 (𝐶1)] ·
([𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + [¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶1 (ℎ)}

and

𝑝𝑟𝑒𝐶2 (𝛹ℎ (ℎ)) = 𝑝𝑟𝑒𝐶2 (min{[¬𝜑] · 𝑓 + [𝜑] · ([𝜙] · 𝑝𝑟𝑒𝐶1 (ℎ) + [¬𝜙] · 𝑝𝑟𝑒𝐶2 (ℎ)), ℎ}
= min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2 (𝑓) + [𝜑 (𝐶2)] ·
([𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + [¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶2 (ℎ)}

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 37

Thus we have

𝛷 𝑓 (𝛹ℎ (ℎ))
= [¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙] ·min{[¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1 (𝑓)
+[𝜑 (𝐶1)] · ([𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + [¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶1 (ℎ)} +
[𝜑 ∧ ¬𝜙] ·min{[¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2 (𝑓)
+[𝜑 (𝐶2)] · ([𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + [¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)), 𝑝𝑟𝑒𝐶2 (ℎ)}

= min{[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙 ∧ ¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1 (𝑓) +
[𝜑 ∧ ¬𝜙 ∧ ¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2 (𝑓) +
[𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ 𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + [𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ ¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)) +
[𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ 𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + [𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ ¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)),
[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙 ∧ ¬𝜑 (𝐶1)] · 𝑝𝑟𝑒𝐶1 (𝑓) +
[𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ 𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶1 (ℎ) + [𝜑 ∧ 𝜙 ∧ 𝜑 (𝐶1) ∧ ¬𝜙 (𝐶1)] · 𝑝𝑟𝑒𝐶1;𝐶2 (ℎ)) +
[𝜑 ∧ ¬𝜙] · 𝑝𝑟𝑒𝐶2 (ℎ),
[¬𝜑] · 𝑓 + [𝜑 ∧ ¬𝜙 ∧ ¬𝜑 (𝐶2)] · 𝑝𝑟𝑒𝐶2 (𝑓) +
[𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ 𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶1 (ℎ) + [𝜑 ∧ ¬𝜙 ∧ 𝜑 (𝐶2) ∧ ¬𝜙 (𝐶2)] · 𝑝𝑟𝑒𝐶2;𝐶2 (ℎ)) +
[𝜑 ∧ 𝜙] · 𝑝𝑟𝑒𝐶1 (ℎ),
[¬𝜑] · 𝑓 + [𝜑 ∧ 𝜙] · 𝑝𝑟𝑒𝐶1 (ℎ) + [𝜑 ∧ ¬𝜙] · 𝑝𝑟𝑒𝐶2 (ℎ)

The one-to-one relation is the same as that in the former case (probabilistic choice case).
Then we proof the case of 𝑘 > 2 by mathematical induction. Suppose that the proposition

holds when 𝑘 = 𝑛, i.e., the upper 𝑛-induction condition 𝛷 𝑓 (𝛹
𝑛−1
ℎ (ℎ)) ⪯ ℎ is equivalent with

min{ℎ1, ℎ2, . . . , ℎ𝑚} ⪯ ℎ , where each ℎ𝑖 uniquely corresponds to one 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑚} and is
equal to 𝑝𝑟𝑒𝐶𝑑

(ℎ), where {𝐶1, . . . ,𝐶𝑚} are all the loop-free programs generated by following the
decision process in Step 2. Section 5.2 within𝑚 unfolding.

Then we proof the case of 𝑛 + 1.

𝛷 𝑓 (𝛹
𝑛

ℎ (ℎ)) = 𝛷 𝑓 (𝛹ℎ (𝛹
𝑛−1
ℎ (ℎ)))

= 𝛷 𝑓 (min{𝛷 𝑓 (𝛹
𝑛−1
ℎ (ℎ)), ℎ})

= 𝛷 𝑓 (min{min{ℎ1, ℎ2, . . . , ℎ𝑚}, ℎ})
= 𝛷 𝑓 (min{ℎ1, ℎ2, . . . , ℎ𝑚, ℎ})
= [¬𝜑] · 𝑓 + [𝜑] · 𝑝𝑟𝑒𝐶 (min{ℎ1, ℎ2, . . . , ℎ𝑚, ℎ})

Through the same inference on the structure𝐶 as above, we show it is equivalent tomin{𝑔1, 𝑔2, . . . , 𝑔𝑀 },
where 𝑀 ≥ 𝑚 + 1 and each 𝑔𝑖 uniquely corresponds to one 𝐶𝑑 ∈ {𝐶1, . . . ,𝐶𝑀 } and is equal to
𝑝𝑟𝑒𝐶𝑑

(ℎ), where {𝐶1, . . . ,𝐶𝑀 } are all the loop-free programs generated by following the decision
process in Step 2. Section 5.2 within 𝑛 + 1 unfolding. Thus the proposition holds when 𝑘 = 𝑛 + 1.
Notice that the operators𝛷 𝑓 and pointwise min are noncommutative.
By mathematical induction, the proposition holds for 𝑘 ≥ 2. □

C.2 Supplementary Material for the Pedagogical Explanation in Step 2
We supplement the case of the upper 𝑘-induction condition in Example 5.4. We show all potential
cases derived from upper 3-induction condition with a simplified dendrogram in the figure 3. Notice

, Vol. 1, No. 1, Article . Publication date: March 2024.

38 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

unfold or not?unfold or not?

unfold or not? unfold or not?unfold or not? unfold or not?

Fig. 3. 3-induction condition example 5.4

that in figure 3, the state 𝑠𝑖 represents for all the potential states at the 𝑖-th iteration of the while
loop.
Remarks: If there is only a probabilistic choice structure (or conditional structure) in the loop body,
that is,𝐶 = {𝐶1}[𝑝]{𝐶2}, the total count of the items in the minimize operator satisfies the iteration
relation the 𝐶𝑘+1 = (𝐶𝑘 + 1)2 (𝑘 ∈ Z+). For general loop body, the total count of the items satisfies
𝐶𝑘+1 = (𝐶𝑘 + 1)𝑏 (𝑘 ∈ Z+), where 𝑏 represents for the count of branches when executing the loop
body 𝐶 once from one state.

C.3 Supplementary Material for Step 4 in Section 5.2
Motzkin’s Transposition Theorem is a classical theorem that provides a dual characterization for
the satisfiability of a system of strict and non-strict inequalities. Below we present the original
Motzkin’s Transposition Theorem.

Theorem C.1 (Motzkin’s Transposition Theorem [50]). Given the set of linear, and strict linear,
inequalities over real-valued variables 𝑥1, 𝑥2, ..., 𝑥𝑛 ,

𝑆 =



𝑛∑︁
𝑖=1

𝛼 (1,𝑖) · 𝑥𝑖 + 𝛽1 ≤ 0

...

𝑛∑︁
𝑖=1

𝛼 (𝑚,𝑖) · 𝑥𝑖 + 𝛽𝑚 ≤ 0


𝑎𝑛𝑑 𝑇 =



𝑛∑︁
𝑖=1

𝛼 (𝑚+1,𝑖) · 𝑥𝑖 + 𝛽𝑚+1 < 0

...

𝑛∑︁
𝑖=1

𝛼 (𝑚+𝑘,𝑖) · 𝑥𝑖 + 𝛽𝑚+𝑘 < 0


, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 39

in which 𝛼 (1,1) , ..., 𝛼 (𝑚+𝑘,𝑛) and 𝛽1, ..., 𝛽𝑚+𝑘 are real-valued, we have that 𝑆 and 𝑇 simultaneously
are not satisfiable (i.e., they have no solution in 𝑥) if and only if there exist non-negative real numbers
𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 such that either the condition (𝐴1):

0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,𝑛) , 1 = (
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛽𝑖) − 𝜆0,
or condition (𝐴2): at least one coefficient 𝜆𝑖 for 𝑖 in the range {𝑚 + 1, ...,𝑚 + 𝑘} is non-zero and

0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,𝑛) , 0 = (
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛽𝑖) − 𝜆0.

In our work, we consider the variant form of Motzkin’s Transposition Theorem(see Theorem 5.7)
and below we proof it.
Theorem 5.7. [Corollary of Motzkin’s Transposition Theorem] Let 𝑆 and 𝑇 be the same systems
of linear inequalities as that in Theorem C.1. If 𝑆 is satisfiable, then 𝑆 ∧𝑇 is unsatisfiable iff there
exist non-negative reals 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 and at least one coefficient 𝜆𝑖 for 𝑖 ∈ {𝑚 + 1, ...,𝑚 + 𝑘} is
non-zero, such that:

0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛼 (𝑖,𝑛) , 0 = (
∑𝑚+𝑘

𝑖=1 𝜆𝑖𝛽𝑖) − 𝜆0.
i.e., the condition (𝐴2) in Theorem C.1.
Before we proof the theorem, we introduce the desired theorem: Farkas’s Lemma:

Lemma C.2 (Farkas’s lemma [28]). Consider the following system of linear inequalities over
real-valued variables 𝑥1, 𝑥2, ..., 𝑥𝑛 ,

𝑆 =


𝛼 (1,1)𝑥1 + · · · + 𝛼 (1,𝑛)𝑥𝑛 +𝛽1 ≤ 0
...

...
...

...

𝛼 (𝑚,1)𝑥1 + · · · + 𝛼 (𝑚,𝑛)𝑥𝑛 +𝛽𝑚 ≤ 0


When 𝑆 is satisfiable, it entails a given linear inequality

𝜙 : 𝑐1𝑥1 + ... + 𝑐𝑛𝑥𝑛 + 𝑑 ≤ 0

if and only if there exist non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚 , such that

𝑐1 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) , ..., 𝑐𝑛 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) , 𝑑 = (
𝑚∑︁
𝑖=1

𝜆𝑖𝛽𝑖) − 𝜆0

Furthermore, 𝑆 is unsatisfiable if and only if the inequality 1 ≤ 0 can be derived as shown above.

Now we proof the corollary (Theorem 5.7).

Proof. Proof by contradiction. According to Motzkin’s Transposition Theorem, 𝑆 and𝑇 have no
solution in 𝑥 if and only if there exists non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 such that either
condition (𝐴1) or (𝐴2) is satisfied. We first proof (𝜆𝑚+1 ≠ 0) ∨ (𝜆𝑚+2 ≠ 0) ∨ ... ∨ (𝜆𝑚+𝑘 ≠ 0).
If it is not satisfied, we assume that 𝜆𝑚+1 = ... = 𝜆𝑚+𝑘 = 0. Then we know the condition (𝐴1)

must be satisfied and we have (By applying the assumption 𝜆𝑚+1 = ... = 𝜆𝑚+𝑘 = 0):

0 =
𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) ,
𝑚∑︁
𝑖=1

𝜆𝑖𝛽𝑖 = 𝜆0 + 1 ≥ 1,

By applying Farkas’s Lemma, we have:

𝑐1 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) = 0, ..., 𝑐𝑛 =

𝑚∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) = 0, 𝑑 = (
𝑚∑︁
𝑖=1

𝜆𝑖𝛽𝑖) − 𝜆0 = 𝜆0 + 1 − 𝜆0 = 1,

, Vol. 1, No. 1, Article . Publication date: March 2024.

40 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Thus we have:
𝜙 = 𝑐1𝑥1 + ... + 𝑐𝑛𝑥𝑛 + 𝑑 = 𝑑 = 1 ≤ 0

if and only if 𝑆 is not satisfiable, which contradicts the assumption, so the assumption does not
hold. We have proved (𝜆𝑚+1 ≠ 0) ∨ (𝜆𝑚+2 ≠ 0) ∨ ... ∨ (𝜆𝑚+𝑘 ≠ 0).
If condition (𝐴1) is satisfied, then exists non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 and (𝜆𝑚+1 ≠

0) ∨ (𝜆𝑚+2 ≠ 0) ∨ ... ∨ (𝜆𝑚+𝑘 ≠ 0)(what we just prove) such that

0 =
𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,1) , ..., 0 =
𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛼 (𝑖,𝑛) , 1 = (
𝑚+𝑘∑︁
𝑖=1

𝜆𝑖𝛽𝑖) − 𝜆0,

let 𝜆′0 = 𝜆0 + 1 ≥ 0 and we can find that it also satisfies the condition (𝐴2), that is 𝐴1 =⇒ 𝐴2.
Thus, Motzkin’s Transposition Theorem can be simplified as: If 𝑆 is satisfiable, then 𝑆 and 𝑇 have
no solution in 𝑥 if and only if there exists non-negative real numbers 𝜆0, 𝜆1, ..., 𝜆𝑚+𝑘 , such that:

((𝐴1 ∨𝐴2) ∧ (𝐴1 =⇒ 𝐴2)) ⇐⇒ 𝐴2

Thus we prove Theorem 5.7. □

D SUPPLEMENTARY MATERIAL FOR SECTION 6
D.1 Supplementary Experimental Results
In this section, as shown in Benchmarks in Section 6.1, we supplement the benchmarks that are
either repetitive patterns or cannot be handled by 𝑘-induction with small 𝑘 = 2, 3 or can be directly
handled by 1-induction. These benchmarks are not concluded in Tables 1 and 3 in the main text,
and we show the experimental results of these benchmarks in Tables 5 and 6. These supplementary
benchmarks mainly come from Bao et al. [5], Batz et al. [11]. Below we show the details.
Upper bounds. The results of upper bounds are shown in Table 5. For brp, grid-small, which are
taken from Batz et al. [11], we add a suitable linear return function 𝑓 and find that they can be
directly handled by 1-induction. For bounded-random-walk-multi-step, zero-conf, they cannot
be handled by 𝑘-induction with small 𝑘 = 2, 3. For the benchmarks in Bao et al. [5], we select
the representative benchmarks and do not list the experimental results of the benchmarks that
have repetitive patterns, such as, the Geo series (similar with Geo, Bin0, Sum0 (similar with Bin
series). For Gambler, Bin1, Duelling, we find that they can be directly handled by 1-induction.
For GeoAr, Bin2, we find that they cannot be handled by 𝑘-induction with small 𝑘 = 2, 3.
Lower Bounds.We consider the same benchmarks as that in the case of upper bounds. On all but two
benchmarks (GeoAr, Bin2), we find that they can be handled by 1-induction. For the benchmarks
GeoAr, Bin2, we find that they cannot be handled by 𝑘-induction with small 𝑘 = 2, 3.

D.2 Application of Putinar’s Positivstellensatz [53]
We recall Putinar’s Positivstellensatz below.

Theorem D.1 (Putinar’s Positivstellensatz [53]). Let 𝑉 be a finite set of real-valued variables
and 𝑔,𝑔1, . . . , 𝑔𝑚 ∈ R[𝑉] be polynomials over 𝑉 with real coefficients. Consider the set S := {x ∈
R𝑉 | 𝑔𝑖 (x) ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑚} which is the set of all real vectors at which every 𝑔𝑖 is non-negative.
If (i) there exists some 𝑔𝑘 such that the set {x ∈ R𝑉 | 𝑔𝑘 (x) ≥ 0} is compact and (ii) 𝑔(x) > 0 for all
x ∈ S, then we have that

𝑔 = 𝑓0 +
∑𝑚

𝑖=1 𝑓𝑖 · 𝑔𝑖 (12)

for some polynomials 𝑓0, 𝑓1 . . . , 𝑓𝑚 ∈ R[𝑉] such that each polynomial 𝑓𝑖 is the a sum of squares (of
polynomials in R[𝑉]), i.e. 𝑓𝑖 =

∑𝑘
𝑗=0 𝑞

2
𝑖, 𝑗 for polynomials 𝑞𝑖, 𝑗 ’s in R[𝑉].

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 41

Table 5. Other Experiment Results: Upper Case

Benchmark 𝑓 Inv
1-induction 2-induction

Piecewise Upper Bound
Time (s) Solution Time (s) Solution

brp-
variant totalFail

[0 ≤ sent ≤ (toSend + 1)
∧0 ≤ totalFail] 0.12 − 1

9𝑠𝑒𝑛𝑡 +
1
9𝑡𝑜𝑆𝑒𝑛𝑑

+𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙 + 1
9

0.73 − 1
9𝑠𝑒𝑛𝑡 +

1
9𝑡𝑜𝑆𝑒𝑛𝑑

+𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙 + 1
9

[𝑠𝑒𝑛𝑡 ≥ 𝑡𝑜𝑆𝑒𝑛𝑑] · 𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙+
[𝑠𝑒𝑛𝑡 < 𝑡𝑜𝑆𝑒𝑛𝑑] · (− 1

9𝑠𝑒𝑛𝑡 +
1
9𝑡𝑜𝑆𝑒𝑛𝑑

+𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙 + 1
9)

bounded-rw-
multi-step 𝑥

[0 ≤ 𝑥∧
1 ≤ 𝑠 ≤ 5] 0.46 - 149.80 - -

grid-small 𝑎 + 𝑏 [0 ≤ 𝑎 ≤ 11 ∧ 0 ≤ 𝑏 ≤ 11] 0.12 22 1.43 22 [𝑎 < 0 ∨ 𝑎 > 10 ∨ 𝑏 < 0 ∨ 𝑏 > 10] · (𝑎 + 𝑏)
[0 ≤ 𝑎 ≤ 10 ∧ 0 ≤ 𝑏 ≤ 10] · 22

Zero-conf cur
[0 ≤ start ≤ 1∧
0 ≤ est ≤ 1] 0.3 - 6.11 - -

Gambler 𝑖 [0 ≤ 𝑥 ≤ 𝑦] 0.17 5𝑦 − 5𝑥 + 𝑖 1.79 5𝑦 − 5𝑥 + 𝑖 [0 < 𝑥 < 𝑦] · (5𝑦 − 5𝑥 + 𝑖)+
[𝑥 ≤ 0 ∨ 𝑥 ≥ 𝑦] · 𝑖

GeoAr 𝑥 [0 ≤ 𝑧] 0.17 - 0.59 - -

Bin1 𝑦 [𝑥 ≤ 10] 0.13 𝑦 − 0.5𝑥 + 5.0 0.75 𝑦 − 0.5𝑥 + 5.0 [𝑥 ≥ 10] · 𝑦 + [𝑥 < 10] · (𝑦 − 0.5𝑥 + 5.0)

Bin2 𝑥 [0 ≤ 𝑖] 0.15 - 0.82 - -

Duelling 𝑡 [0 ≤ 𝑡 ≤ 1 ∧ 0 ≤ 𝑐 ≤ 1] 0.22 1 5.7 0.1𝑡 + 0.9
[𝑐 < 1] · 𝑡+

[𝑐 ≥ 1 ∧ 𝑡 == 1] · (0.45𝑡 + 0.5)
[𝑐 ≥ 1 ∧ 𝑡 == 0] · (0.725𝑡 + 0.25)

Table 6. Other Experiment Results: Lower Case

Benchmark 𝑓 Inv
1-induction 2-induction

Piecewise Lower Bound
Time (s) Solution Time (s) Solution

brp-
variant totalFail

[0 ≤ sent ≤ (toSend + 1)
∧0 ≤ totalFail] 0.12 − 1

9𝑠𝑒𝑛𝑡 +
1
9𝑡𝑜𝑆𝑒𝑛𝑑

+𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙 0.69 − 1
9𝑠𝑒𝑛𝑡 +

1
9𝑡𝑜𝑆𝑒𝑛𝑑

+𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙

[𝑠𝑒𝑛𝑡 ≥ 𝑡𝑜𝑆𝑒𝑛𝑑] · 𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙+
[𝑠𝑒𝑛𝑡 < 𝑡𝑜𝑆𝑒𝑛𝑑] · (− 1

9𝑠𝑒𝑛𝑡 +
1
9𝑡𝑜𝑆𝑒𝑛𝑑

+𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙)

bounded-rw-
multi-step 𝑥

[0 ≤ 𝑥∧
1 ≤ 𝑠 ≤ 5] 0.46 𝑥 149.89 𝑥

[𝑥 ≤ 0 ∨ 𝑠 < 1 ∨ 𝑠 > 5] · 𝑥
[0 < 𝑥 <= 1 ∧ 1 ≤ 𝑠 ≤ 5] · (𝑥 + 1)
[1 < 𝑥 ∧ 1 ≤ 𝑠 ≤ 5] · (𝑥 + 𝑠)

grid-small 𝑎 + 𝑏 [0 ≤ 𝑎 ≤ 11 ∧ 0 ≤ 𝑏 ≤ 11] 0.12 10 1.60 10 [𝑎 < 0 ∨ 𝑎 > 10 ∨ 𝑏 < 0 ∨ 𝑏 > 10] · (𝑎 + 𝑏)
[0 ≤ 𝑎 ≤ 10 ∧ 0 ≤ 𝑏 ≤ 10] · 10

Zero-conf cur
[0 ≤ start ≤ 1∧

0 ≤ established ≤ 1∧
0 ≤ 𝑐𝑢𝑟 ≤ 100000001

0.29 cur 6.08 cur

[𝑐𝑢𝑟 < 0 ∨ 𝑐𝑢𝑟 >= 100000000 ∨ 𝑒𝑠𝑡 > 0] · 𝑐𝑢𝑟
[0 ≤ 𝑐𝑢𝑟 ≤ 100000000 ∧ 𝑒𝑠𝑡 ≤ 0 ∧ 𝑠𝑡𝑎𝑟𝑡 == 1] · 𝑐𝑢𝑟
[0 ≤ 𝑐𝑢𝑟 ≤ 100000000 ∧ 𝑒𝑠𝑡 ≤ 0 ∧ 𝑠𝑡𝑎𝑟𝑡 == 0]

·(0.999999999𝑐𝑢𝑟 + 0.999999999)
Gambler 𝑖 [0 ≤ 𝑥 ≤ 𝑦] 0.16 𝑖 1.61 𝑖

[0 < 𝑥 < 𝑦] · (𝑖 + 1)+
[𝑥 ≤ 0 ∨ 𝑥 ≥ 𝑦] · 𝑖

GeoAr 𝑥 [0 ≤ 𝑧] 0.13 - 0.49 - -

Bin1 𝑦 [𝑥 ≤ 10] 0.12 𝑦 − 0.5𝑥 + 5.0 0.78 𝑦 − 0.5𝑥 + 5.0 [𝑥 ≥ 10] · 𝑦 + [𝑥 < 10] · (𝑦 − 0.5𝑥 + 5.0)

Bin2 𝑥 [0 ≤ 𝑖] 0.17 - 0.87 - -

Duelling 𝑡 [0 ≤ 𝑡 ≤ 1 ∧ 0 ≤ 𝑐 ≤ 1] 0.23 0.084𝑡 − 0.083𝑐 5.77 𝑡 − 3
7𝑐

[𝑐 < 1] · 𝑡+
[𝑐 ≥ 1 ∧ 𝑡 == 1] · 27

[𝑐 ≥ 1 ∧ 𝑡 == 0] · (0.5𝑡 + 1
7)

In our comparison, we utilize the sound form in (12) for witnessing a polynomial 𝑔 to be non-
negative over a semi-algebraic set 𝑃 for each inductive constraint ∀𝑥 ∈ 𝑃,𝑔(𝑥) ≥ 0. In our
comparison, the constraints come from the inductive principle.

E BENCHMARK PROGRAMS
This section contains the benchmark programs evaluated in our work.

E.1 Programs in Tables 1 and 3
This section contains the benchmark programs in the main text.

, Vol. 1, No. 1, Article . Publication date: March 2024.

42 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Example E.1 (Geo).

𝐶Geo : while (0 ≤ 𝑐) {
{𝑐 B 1} [0.5] {𝑥 B 𝑥 + 1}
}

Example E.2 (k-geo).

𝐶k-geo : while (𝑘 ≤ 𝑁) {
{𝑘 B 𝑘 + 1;𝑦 B 𝑦 + 𝑥 ;𝑥 B 0} [0.5] {𝑥 B 𝑥 + 1}
}

Example E.3 (Binomial-random).

𝐶Bin-ran : while (𝑖 ≤ 10) {
{𝑥 B 𝑥 + 1} [0.5] {𝑥 B 0}
{𝑦 B 𝑦 + 𝑥 ; 𝑖 B 𝑖 + 1} [0.9] {𝑦 B 𝑦 + 1; 𝑖 B 0}
}

Example E.4 (Coin).

𝐶Coin : while (𝑥 = 𝑦) {
{𝑥 B 0} [3/4] {𝑥 B 1}
{𝑦 B 0} [3/4] {𝑦 B 1}
𝑖 B 𝑖 + 1;
}

Example E.5 (Martingale).

𝐶Mart : while (0 < 𝑥) {
{𝑦 B 𝑦 + 𝑥 ;𝑥 B 0} [0.5] {𝑦 B 𝑦 − 𝑥 ;𝑥 B 2 ∗ 𝑥}
𝑖 B 𝑖 + 1;
}

Example E.6 (Growing Walk).

𝐶Growing Walk : while (0 ≤ 𝑥) {
{𝑥 B 𝑥 + 1;𝑦 B 𝑦 + 𝑥} [0.5] {𝑥 B −1}
}

Example E.7 (Growing Walk variant1).

𝐶Growing Walk1 : while (0 ≤ 𝑥) {
{𝑥 B 𝑥 − 1;𝑦 B 𝑦 + 𝑥} [0.5] {𝑥 B 1}
}

Example E.8 (Expected Time).

𝐶Expected Time : while (0 ≤ 𝑥) {
{𝑥 B 𝑥 − 1; 𝑡 B 𝑡 + 1} [0.9] {𝑥 B 10; 𝑡 B 𝑡 + 1}
}

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 43

Example E.9 (Bernoulli’s St. Petersburg Paradox variant).

𝐶St. Petersburg1 : while (𝑥 ≤ 0) {
{𝑥 B 1} [0.75] {𝑦 B 2 ∗ 𝑦}
}

Example E.10 (Zero Conference variant).

𝐶Zero-Conf-Var : while (established ≤ 0 ∧ start ≤ 1) {
if (start ≥ 1) {
{start B 0} [0.3] {start B 0; established B 1 } }

else { {curprobe B curprobe + 1} [0.99] {start B 1; curprobe B curprobe − 1} }
}

Example E.11 (Equal Probability Grid Family).

𝐶Equal-Prob-Grid-Family : while (𝑎 ≤ 10 ∧ 𝑏 ≤ 10 ∧ goal = 0) {
if (𝑏 ≥ 10) {
{goal B 1} [0.5] {goal B 2} }

else {
if (𝑎 ≥ 10) {
𝑎 B 𝑎 − 1 }

else {
{𝑎 B 𝑎 + 1} [0.5] {𝑏 B 𝑏 + 1} }

}

Example E.12 (RevBin).

𝐶RevBin : while (1 ≤ 𝑥) {
{𝑥 B 𝑥 − 1; 𝑧 B 𝑧 + 1} [0.5] {𝑧 B 𝑧 + 1}
}

Example E.13 (Fair Coin).

𝐶Fair Coin : while (𝑥 ≤ 0 ∧ 𝑦 ≤ 0) {
{𝑥 B 0} [0.5] {𝑥 B 1; 𝑖 B 𝑖 + 1}
{𝑦 B 0} [0.5] {𝑦 B 1; 𝑖 B 𝑖 + 1}
}

E.2 Programs in Tables 5 and 6
This section contains the benchmarks in the appendix.

Example E.14 (brp-variant).

𝐶brp-variant : while (𝑠𝑒𝑛𝑑 ≤ 𝑡𝑜𝑆𝑒𝑛𝑑) {
{𝑠𝑒𝑛𝑡 B 𝑠𝑒𝑛𝑡 + 1} [0.9] {𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙 B 𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙 + 1}
}

, Vol. 1, No. 1, Article . Publication date: March 2024.

44 Tengshun Yang, Hongfei Fu, Jingyu Ke, Naijun Zhan, and Shiyang Wu

Example E.15 (grid-small).

𝐶grid-small : while (𝑎 < 10 ∧ 𝑏 < 10) {
{𝑎 B 𝑎 + 1} [0.5] {𝑏 B 𝑏 + 1}
}

Example E.16 (Zero Conference).

𝐶Zero-Conf : while (curprobe < 100000000 ∧ established ≤ 0 ∧ start ≤ 1) {
if (start ≥ 1) {
{start B 0} [0.5] {start B 0; established B 1 } }

else { {curprobe B curprobe + 1} [0.999999999] {start B 1; curprobe B 0} }
}

Example E.17 (bounded RW multi step).

𝐶bounded-rw-multi-step : while (0 < 𝑥 ∧ 1 ≤ 𝑠 ∧ 𝑠 ≤ 5) {
{x B 𝑥 − 1}
[0.5]
{if (𝑥 ≤ 1) {
𝑠 := 1 : 1/5 + 2 : 1/5 + 3 : 1/5 + 4 : 1/5 + 5 : 1/5;
}else{𝑠𝑘𝑖𝑝}
x B 𝑥 + 𝑠;
}

Example E.18 (Duel Boy).

𝐶Duel : while (𝑐 ≥ 1) {
if (𝑡 > 0) {
{c B 0} [0.5] {t B 1 − 𝑡}
}else{{c B 0} [0.75] {t B 1 − 𝑡}}
}

Example E.19 (Gambler).

𝐶Gambler : while (0 < 𝑥 ∧ 𝑥 < 𝑦) {
{𝑥 B 𝑥 + 1; 𝑖 B 𝑖 + 1} [0.6] {𝑥 B 𝑥 − 1; 𝑖 B 𝑖 + 1}
}

Example E.20 (GeoAr).

𝐶GeoAr : while (0 < 𝑧) {
𝑦 B 𝑦 + 1;
{𝑥 B 𝑥 + 𝑦} [0.9] {𝑧 B 0}
}

, Vol. 1, No. 1, Article . Publication date: March 2024.

Piecewise Linear Expectation Analysis via 𝑘-Induction for Probabilistic Programs 45

Example E.21 (Bin1).
𝐶Bin1 : while (𝑥 < 10) {

{𝑦 B 𝑦 + 1;𝑥 B 𝑥 + 1} [0.5] {𝑥 B 𝑥 + 1}
}

Example E.22 (Bin2).
𝐶Gambler : while (𝑖 > 0) {

{𝑥 B 𝑥 + 1; 𝑖 B 𝑖 − 1} [0.25] {𝑥 B 𝑥 + 𝑦; 𝑖 B 𝑖 − 1}
}

, Vol. 1, No. 1, Article . Publication date: March 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Probability Theory and Martingales
	2.2 Affine Probabilistic Loops

	3 Latticed k-Induction Operators
	3.1 k-Induction Operators in DBLP:conf/cav/BatzCKKMS20,DBLP:conf/apsec/LuX22
	3.2 Dual k-Induction Operators

	4 Piecewise Bounds via Latticed k-Induction
	4.1 Expectation Functions
	4.2 Potential Functions

	5 Synthesizing Bounds
	5.1 A Nutshell of Our Algorithm
	5.2 Zooming of Our Algorithm

	6 Experimental Results
	6.1 Piecewise Upper Bound Synthesis
	6.2 Piecewise Lower Bound Synthesis

	7 Related Works
	8 Conclusion and Future Work
	References
	A Supplementary Material for Section 3
	A.1 Properties of the Upper k-Induction Operator in DBLP:conf/apsec/LuX22
	A.2 Equivalence between u and
	A.3 Supplementary Properties for the Dual k-Induction Operators 'u and

	B Supplementary Material for Section 4
	B.1 Classical OST
	B.2 Proof of Extended OST (thm:ost-variant)
	B.3 Proof of thm:soundness

	C Supplementary Material for Section 5
	C.1 Proof of prop:relation
	C.2 Supplementary Material for the Pedagogical Explanation in Step 2
	C.3 Supplementary Material for Step 4 in sec:alg

	D Supplementary Material for Section 6
	D.1 Supplementary Experimental Results
	D.2 Application of Putinar's Positivstellensatz putinar

	E Benchmark Programs
	E.1 Programs in table:1,table:2
	E.2 Programs in table:Others1,table:Others2

