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Abstract—In this work, we propose to utilize Gaussian mixture
models (GMMs) to design pilots for downlink (DL) channel
estimation in frequency division duplex (FDD) systems. The GMM
captures prior information during training that is leveraged to
design a codebook of pilot matrices in an initial offline phase.
Once shared with the mobile terminal (MT), the GMM is utilized
to determine a feedback index at the MT in the online phase. This
index selects a pilot matrix from a codebook, eliminating the need
for online pilot optimization. The GMM is further used for DL
channel estimation at the MT via observation-dependent linear
minimum mean square error (LMMSE) filters, parametrized
by the GMM. The analytic representation of the GMM allows
adaptation to any signal-to-noise ratio (SNR) level and pilot
configuration without re-training. With extensive simulations, we
demonstrate the superior performance of the proposed GMM-
based pilot scheme compared to state-of-the-art approaches.

Index Terms—Gaussian mixture models, machine learning, pilot
design, FDD-MIMO systems.

I. INTRODUCTION

In multiple-input multiple-output (MIMO) communication
systems, obtaining channel state information (CSI) at the base
station (BS) needs to occur in regular time intervals. In FDD
systems, both the BS and the MT transmit at the same time but
on different frequencies, which breaks the reciprocity between
the instantaneous uplink (UL) CSI and DL CSI. Consequently,
acquiring accurate DL CSI in FDD systems is challenging [1]
and thus relies on feedback of the estimated channel from the
MT. Therefore, the quality of DL channel estimation is of
crucial importance.

In massive MIMO systems, where the BS is typically
equipped with a high number of antennas, as many pilots
as transmit antennas are required to be sent from the BS to the
MT to fully illuminate the channel, i.e., avoiding a systematic
error when relying on least squares (LS) DL CSI estimation at
the MT. However, the associated pilot overhead for complete
channel illumination can be prohibitive [2]. In scenarios with
spatial correlation at the BS and the MT, the DL training
overhead can be significantly reduced by leveraging statistical
knowledge of the channel and the noise [3]–[8], e.g., by using
Bayesian estimation approaches.
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Hence, for DL channel estimation, given a budget of np

pilots, a common approach to use for channel illumination
is transmitting np pilots equivalent to the np dominant
eigenvectors of the transmit-side spatial correlation matrix.
However, the aforementioned works rely on either perfect or
estimated statistical knowledge at the BS and/or at the MT
side, which may be difficult to acquire.

Contributions: In this work, we propose to utilize GMMs
for pilot design. The proposed scheme neither requires a
priori knowledge of the channel’s statistics at the BS nor
the MT. The statistical prior information captured with the
GMM in the offline phase is exploited to determine a feedback
index at the MT in the online phase utilizing the GMM,
which is shared between the BS and the MT. This feedback
index is sufficient to establish common knowledge of the
pilot matrix, which is selected from a codebook of pilot
matrices. Thus, no online pilot optimization is required. The
inference of the feedback information involves computing the
responsibilities via the GMM and conducting a maximum a
posteriori (MAP) estimation, which selects the index of the
GMM component with the largest responsibility as the feedback
index. The responsibilities determine how well each component
of the GMM describes the underlying channel, measured
in terms of posterior probabilities. The responsibilities are
additionally used to obtain an estimated channel at the MT
by performing a convex combination of observation-dependent
LMMSE filters, which are parametrized by the GMM and
applied to the observation. Moreover, the analytic representation
of the GMM generally allows the adaption to any SNR level
and pilot configuration without re-training. Based on extensive
simulations, we highlight the superior performance of the
proposed GMM-based pilot scheme compared to state-of-the-
art approaches.

II. SYSTEM AND CHANNEL MODEL

We consider a BS equipped with Ntx antennas and a MT
equipped with Nrx antennas. We assume a block-fading model,
cf., e.g., [9], where the DL signal for block t received at the
MT is expressed as

Yt = HtP
T
t +Nt ∈ CNrx×np (1)

where t = 0, . . . , T , with the MIMO channel Ht ∈ CNrx×Ntx ,
the pilot matrix Pt ∈ Cnp×Ntx , and the additive white Gaussian
noise (AWGN) Nt = [n′

t,1, . . . ,n
′
t,np

] ∈ CNrx×np with
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n′
t,p ∼ NC(0, σ

2
nINrx

) for p ∈ {1, 2, . . . , np} and np is the
number of pilots. We consider systems with reduced pilot
overhead, i.e., np < Ntx. For the subsequent analysis, it is
advantageous to vectorize (1):

yt = (Pt ⊗ INrx
)ht + nt (2)

where ht = vec(Ht), yt = vec(Yt), nt = vec(Nt), and
nt ∼ NC(0,Σ) with Σ = σ2

nINrxnp
.

We adopt the 3rd Generation Partnership Project (3GPP)
spatial channel model (see [9], [10]) where channels are
modeled conditionally Gaussian, i.e., ht|δ ∼ NC(0,Cδ). The
covariance matrix Cδ is assumed to remain constant over T +1
blocks. The random vector δ comprises the main angles of
arrival/departure of the multi-path propagation cluster between
the BS and the MT. The main angles of arrival/departure
are drawn independently and are uniformly distributed over
[−π

2 , π
2 ]. The BS as well as the MT employ a uniform linear

array (ULA) such that the transmit- and receive-side spatial
channel covariance matrices are given by

C
{rx,tx}
δ =

∫ π

−π

g{rx,tx}(θ; δ)a{rx,tx}(θ)a{rx,tx}(θ)Hdθ, (3)

where a{rx,tx}(θ) = [1, ejπ sin(θ), . . . , ejπ(N{rx,tx}−1) sin(θ)]T

is the array steering vector for an angle of arrival/departure
θ and g{rx,tx} is a Laplacian power density whose standard
deviation describes the angular spread σ

{rx,tx}
AS of the prop-

agation cluster at the BS (σtx
AS = 2◦) and MT (σrx

AS = 35◦)
side [10]. The overall channel covariance matrix is constructed
as Cδ = Ctx

δ ⊗ Crx
δ due to the assumption of independent

scattering in the vicinity of transmitter and receiver, see, e.g.,
[11]. In the case of a MT equipped with a single antenna, Cδ

degenerates to the transmit-side covariance matrix Ctx
δ .

With
H = {hℓ}Lℓ=1, (4)

we denote the training data set consisting of L channel samples.
For every channel sample hℓ, we generate random angles,
collected in δℓ, and then draw the sample as hℓ ∼ NC(0,Cδℓ).
These channels represent a communications environment with
unknown probability density function (PDF) fh.

III. PILOT OPTIMIZATION WITH PERFECT STATISTICAL
KNOWLEDGE

Given the knowledge of δ, the observation yt is jointly
Gaussian with the channel ht [see (2)], and we can compute
a genie LMMSE channel estimate with [9]

ĥt,gLMMSE = E[ht | yt, δ] (5)

= Cδ(Pt ⊗ INrx
)H((Pt ⊗ INrx

)Cδ(Pt ⊗ INrx
)H +Σ)−1yt.

(6)

The goal of pilot optimization is to design the pilot matrix
Pt such that the mean squared error (MSE) between ĥt,gLMMSE
and the actual channel ht is minimized [3], [6], [7]:

P ⋆
t = argmin

Pt

E[∥ĥt,gLMMSE − ht∥22] (7)

where the pilot matrix Pt typically satisfies either a total power
constraint as in [6], [7] or an equal power per pilot vector
constraint as in [3]. In this work, we will consider the latter
case. For a given δ, the optimal pilot matrix P ⋆

t for every
block is the same, i.e., P ⋆

t = Pgenie for all t = 0, . . . , T . In
particular, Pgenie is a sub-unitary matrix [3]

Pgenie =
√
ρUH

δ [: np, :], (8)

which is composed of the np dominant eigenvectors of the
transmit-side covariance matrix Ctx

δ = UδΛδU
H
δ correspond-

ing to the np largest eigenvalues, where ρ denotes the transmit
power per pilot vector. Note that power loading across pilot
vectors generally achieves better performance but requires
additional processing. Additionally, with a sub-unitary pilot
design, our proposed scheme yields a codebook consisting
of pilot matrices that do not depend on the SNR, resolving
the burden of saving SNR level-specific pilot codebooks, see
Subsection IV-D.

IV. GMM-BASED PILOT DESIGN AND DOWNLINK
CHANNEL ESTIMATION

Any channel ht of a MT located anywhere within the
BS’s coverage area can be interpreted as a realization of a
random variable with PDF fh for which however, no analytical
expression is available. Therefore, we utilize a GMM to
approximate the PDF fh, similar to [12], [13]. This learned
model is then shared between the BS and the MT to establish
common awareness of the channel characteristics. The GMM
is then utilized to infer feedback information for pilot matrix
design and for DL channel estimation at the MT in the online
phase. Thereby, the feedback information of the MT of a
preceding fading block t− 1 is leveraged at the BS to select
the pilot matrix for the subsequent fading block t > 0.

A. Modeling the Channel Characteristics at the BS – Offline

The channel characteristics are captured offline using a GMM
comprised of K = 2B components,

f
(K)
h (ht) =

∑K

k=1
πkNC(ht;µk,Ck) (9)

where each component of the GMM is defined by the mixing
coefficient πk, the mean µk, and the covariance matrix Ck.

Motivated by the observation that the channel exhibits an
unconditioned zero mean and similar to [14], we enforce
the means of the GMM-components to zero, i.e., µk = 0
for all k ∈ {1, . . . ,K}. This also reduces the number of
learnable parameters and, thus, prevents overfitting. Note that
the parameters of the GMM, i.e., {πk,Ck}Kk=1, remain constant
across all blocks. To obtain maximum likelihood estimates of
the GMM parameters, we utilize the training dataset H [see
(4)] and employ an expectation maximization (EM) algorithm,
as described in [15, Subsec. 9.2.2], where we enforce the means
to zero in every M-step of the EM algorithm.

For MIMO channels, we further impose a Kronecker factor-
ization on the covariances of the GMM, i.e., Ck = Ctx

k ⊗Crx
k .

Thus, instead of fitting an unconstrained GMM with N ×N -
dimensional covariances (where N = NtxNrx), we fit separate



GMMs for the transmit and receive sides. These transmit-side
and receive-side GMMs possess Ntx × Ntx and Nrx × Nrx-
dimensional covariances, respectively, with Ktx and Krx

components. Then, by computing the Kronecker products of
the corresponding transmit-side and receive-side covariance
matrices, we obtain a GMM with K = KtxKrx components
and N ×N -dimensional covariances. Imposing this constraint
on the GMM covariances not only significantly decreases the
duration of offline training, facilitates parallelization of the
fitting process, and demands fewer training samples due to the
reduced number of parameters to be learned, cf. [12], [13], but
also ensures access to a transmit-side covariance during pilot
design in the online phase, as discussed in Subsection IV-D.

Using a GMM, we can calculate the posterior probability that
the channel ht originates from component k as [15, Sec. 9.2],

p(k | ht) =
πkNC(ht;0,Ck)∑K
i=1 πiNC(ht;0,Ci)

. (10)

These posterior probabilities are commonly referred to as
responsibilities.

B. Sharing the Model with the MTs – Offline

For a MT to infer the feedback information, it must have
access to the parameters of the GMM. Conceptually, this
involves sharing the model parameters, i.e., {πk,Ck}Kk=1,
with the MTs upon entering the coverage area of the BS.
This transfer is required only once since the GMM remains
unchanged for a specific BS environment.

Incorporating model-based insights to restrict the GMM
covariances, as discussed in Subsection IV-A, additionally
significantly reduces the model transfer overhead. Due to
specific antenna array geometries, the GMM covariances can
be further constrained to a Toeplitz or block-Toeplitz matrix
with Toeplitz blocks, in case of a ULA or uniform rectangular
array (URA), respectively, cf. [16], with even fewer parameters.
In [16], it is also further discussed how GMMs with variable
bit lengths can be obtained. These further structural constraints,
as well as the analysis with variable bit lengths, are out of the
scope of this work.

C. Inferring the Feedback Information and Estimating the
Channel at the MTs – Online

In the online phase, the MT infers feedback information
given the observation yt utilizing the GMM. The joint Gaussian
nature of each GMM component [see (9)] combined with the
AWGN, allows for simple computation of the GMM of the
observations with the GMM from (9) as

f (K)
y (yt) =

∑K

k=1
πkNC(yt;0, (Pt⊗INrx)Ck(Pt⊗INrx)

H+Σ).

(11)
Thus, the MT can compute the responsibilities based on the

observations yt as

p(k | yt) =
πkNC(yt;0, (Pt ⊗ INrx)Ck(Pt ⊗ INrx)

H +Σ)∑K
i=1 πiNC(yt;0, (Pt ⊗ INrx)Ci(Pt ⊗ INrx)

H +Σ)
.

(12)

The feedback information k⋆t is then determined through a
MAP estimation as

k⋆t = argmax
k

p(k | yt) (13)

where the index of the component with the highest respon-
sibility for the observation yt serves as the corresponding
feedback information. The responsibilities measure how well
each component of the GMM explains the underlying channel
ht of the observed pilot signal yt. Hence, the feedback
information is simply the index of the GMM component
that best explains the underlying channel. Subsequently, the
responsibilities are utilized to obtain a channel estimate via the
GMM by calculating a convex combination of per-component
LMMSE estimates, as discussed in [12], [13]. In particular,
the MT estimates the channel by computing

ĥt,GMM(y) =

K∑
k=1

p(k | yt)ĥt,LMMSE,k(yt), (14)

using the responsibilities p(k | yt) from (12) and

ĥt,LMMSE,k(yt)

= Ck(Pt ⊗ INrx
)H((Pt ⊗ INrx

)Ck(Pt ⊗ INrx
)H +Σ)−1yt.

(15)

D. Designing the Pilots at the BS – Online

Consider the eigenvalue decomposition of each of the
GMM’s transmit-side covariances, i.e., Ctx

k = UkΛkU
H
k . For

t > 0, given the feedback information k⋆t−1 of the MT from
the preceding block t − 1, we propose employing the pilot
matrix Pt at the BS for the subsequent block t as [cf. (8)]

Pt =
√
ρUH

k⋆
t−1

[: np, :], (16)

i.e., the np dominant eigenvectors of the k⋆t−1-th transmit-side
covariance matrix Ctx

k⋆
t−1

are selected as the pilot matrix. Since
the GMM-covariances remain fixed, we can store a set of
pilot matrices P = {UH

k [: np, :]}Kk=1, and the online pilot
design utilizing the proposed GMM-based scheme simplifies
to a simple selection task based on the feedback information
k⋆t−1 from the previous block. For the initial block t = 0, we
employ a discrete Fourier transform (DFT)-based pilot matrix.

E. Complexity Analysis

The online computational complexity of the proposed GMM-
based scheme can be divided into three parts: the inference of
the feedback information, the channel estimation, and the pilot
design.

Matrix-vector multiplications dominate the computational
complexity for inferring the feedback information. This is
because the computation of the responsibilities in (12) entails
evaluating Gaussian densities, and the calculations involving
determinants and inverses can be pre-computed for a specific
SNR level due to the fixed GMM parameters. Thus, the
inference of the feedback information using (13) in the online
phase at the MT has a complexity of O(KN2

rxn
2
p).
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Fig. 1: The NMSE over the SNR for a MIMO system (Ntx = 16, Nrx = 4) with
B = 7 feedback bits and np = 4 pilots.

The additional processing to calculate an estimated channel
with the GMM via (14) further involves the application of
the per-component LMMSE filters [see (15)] which exhibits a
computational complexity of O(KN2

rxNtxnp), since also the
LMMSE filters for a given SNR level can be pre-computed.
For the feedback inference and application of the LMMSE
filters, parallelization concerning the number of components
K is possible.

The computational complexity of the online pilot design is
O(K), as it only involves traversing the pre-computed set of
pilot matrices P . Thus, in the online phase, our scheme avoids
computing an eigenvalue decomposition, which is required for
solving the optimization problem from (8).

V. BASELINE CHANNEL ESTIMATORS AND PILOT SCHEMES

In addition to the utopian genie LMMSE approach (5), where
we assume perfect knowledge of δ (at the BS to design the
optimal pilots and at the MT to apply the genie LMMSE
estimator), we consider following channel estimators and pilot
matrices.

Firstly, we consider the LMMSE estimator ĥLMMSE, where
the sample covariance matrix is formed using the set H [see
(4)], as discussed in, e.g., [12], [13].

As another baseline, we consider a compressive sensing
estimation method ĥOMP employing the orthogonal matching
pursuit (OMP) algorithm, cf. [13], [17].

Additionally, we compare to an end-to-end deep neural
network (DNN) approach for DL channel estimation with a
jointly learned pilot matrix PDNN, similar to [18]. To determine
the hyperparameters of the DNN, we utilize random search [19],
with the MSE serving as the loss function. The DNN architec-
ture comprises DCM convolutional modules, each consisting of
a convolutional layer, batch normalization, and an activation
function, where DCM is randomly selected within [3, 9]. Each
convolutional layer contains DK kernels, where DK is randomly
selected within [32, 64]. The activation function in each
convolutional module is the same and is randomly selected from

0 2 4 6 8 10
10−3

10−2

10−1

100

Block, t

N
M

SE

GMM, PGMM, SNR = 0dB gLMMSE, Pgenie, SNR = 0dB

GMM, PGMM, SNR = 10 dB gLMMSE, Pgenie, SNR = 10 dB

GMM, PGMM, SNR = 20 dB gLMMSE, Pgenie, SNR = 20 dB

Fig. 2: The NMSE over the block index t for a MIMO system (Ntx = 16, Nrx = 4)
with B = 7 feedback bits, np = 4 pilots, and SNR ∈ {0 dB, 10 dB, 20 dB}.

{ReLu, sigmoid, PReLU, Leaky ReLU, tanh, swish}. Follow-
ing a subsequent two-dimensional max-pooling, the features
are flattened, and a fully connected layer is employed with an
output dimension of 2NtxNrx (concatenated real and imaginary
parts of the estimated channel). We train a distinct DNN for
each pilot configuration and SNR level, running 50 random
searches per pilot configuration and SNR level and selecting
the best-performing DNN for each setup.

Lastly, as further baseline pilot matrices, we utilize a DFT
sub-matrix PDFT as the pilot matrix, see, e.g., [20], and
alternatively, we consider random pilot matrices denoted by
PRND, see, e.g., [7].

VI. SIMULATION RESULTS

We use the set H [see (4)] with L = 105 samples for
fitting the GMM and all other data-based baselines. We use
a different dataset of J = 104 channel samples per block
t for evaluation purposes, where we set T = 10. The data
samples are normalized to satisfy E[∥h∥2] = N = NtxNrx.
Additionally, we fix ρ = 1, enabling the definition of the
SNR as 1

σ2
n

. We employ the normalized mean squared error
(NMSE) as the performance measure. Specifically, for every
block t, we compute a corresponding channel estimate ĥj for
each test channel in the set {hj}Jj=1, and calculate NMSE =
1

NJ

∑J
j=1 ∥hj−ĥj∥2. If not mentioned otherwise, we consider

the block with index t = 5 in the subsequent simulations.
In Fig. 1, we simulate a system with Ntx = 16 BS antennas,

Nrx = 4 MT antennas, and np = 4 pilots. Since we have a
MIMO setup, we fit a Kronecker structured GMM with in
total K = 27 = 128 components (B = 7 feedback bits), where
Ktx = 32 and Krx = 4. The proposed GMM-based pilot design
scheme denoted by “GMM, PGMM” outperforms all baselines
“{GMM, OMP, LMMSE}, {PDFT, PRND}” by a large margin,
where the GMM estimator, the OMP-based estimator, or the
LMMSE estimator, are used in combination with either DFT-
based pilot matrices or random pilot matrices. The proposed
scheme also outperforms the DNN based approach denoted by
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Fig. 3: The NMSE over the SNR for a MISO system (Ntx = 64, Nrx = 1) with
B = 6 feedback bits and np ∈ {16, 32, 48} pilots.

“DNN, PDNN,” which jointly learns the estimator and a global
pilot matrix for the whole scenario; thus, it cannot provide
an MT adaptive pilot matrix. This highlights the advantage
of the proposed model-based technique over the end-to-end
learning technique, which is even trained for each SNR level
and pilot configuration. Furthermore, we can observe that the
GMM-based pilot design scheme performs only slightly worse
than the baseline with perfect statistical information at the
BS and MT [see (5) and (8)], denoted by “gLMMSE, Pgenie”,
being a utopian estimation approach. We can observe a larger
gap in the low SNR regime, where the feedback information
obtained through the responsibilities given an observation (see
(13)) is less accurate due to high noise.

In Fig. 2, we analyze the performance of the GMM-based
pilot design scheme depending on the number of blocks t
for the same setup as before at three different SNR levels,
i.e., SNR ∈ {0 dB, 10 dB, 20 dB}. As discussed in Subsection
IV-D, at t = 0, we utilize DFT-based pilots. After only one
block, we can see a significant gain in performance of the
proposed GMM-based pilot design scheme due to the feedback
of the index. The results further reveal that with an increasing
SNR, fewer blocks are required to achieve a performance close
to the utopian baseline “gLMMSE, Pgenie” which requires
perfect statistical knowledge at the BS and the MT.

In the remainder, we consider a multiple-input single-output
(MISO) system with Ntx = 64 BS antennas and Nrx = 1
antenna at the MT. In Fig. 3 we utilize a GMM with K =
26 = 64 components (B = 6 feedback bits) and consider setups
with np ∈ {16, 32, 48} pilots. In this case, the proposed scheme
“GMM, PGMM, np = 16”, performs only slightly worse than
the genie-aided approach “gLMMSE, Pgenie”. Moreover, the
GMM-based pilot design scheme outperforms the baselines
“GMM, {PDFT, PRND}, np ∈ {16, 32, 48}”. In particular, the
proposed scheme with only np = 16 pilots outperforms random
pilot matrices with twice as much pilots (np = 32) or in case
of DFT-based pilots even thrice as much pilots (np = 48).

Lastly, in Fig. 4, we analyze the effect of varying the

1 8 16 32 64 128
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100

Number of GMM components, K

N
M

SE

GMM, PGMM, SNR = 0dB gLMMSE, Pgenie, SNR = 0dB

GMM, PGMM, SNR = 10 dB gLMMSE, Pgenie, SNR = 10 dB

GMM, PGMM, SNR = 20 dB gLMMSE, Pgenie, SNR = 20 dB

Fig. 4: The NMSE over the number of components K = 2B for a MISO system
(Ntx = 64, Nrx = 1) with np = 16 pilots, and SNR ∈ {0 dB, 10 dB, 20 dB}.

number of GMM-components K, on the scheme’s performance,
where we set np = 16 and consider three different SNR
levels, i.e., SNR ∈ {0 dB, 10 dB, 20 dB}. We can observe that
the estimation error decreases with an increasing number of
components K. Moreover, with an increasing SNR, the gap to
the genie-aided approach “gLMMSE, Pgenie” decreases. Above
K = 32 components, a saturation can be observed. Overall,
these results suggest that by varying the number of GMM
components K, a performance-to-complexity trade-off can
be realized without sacrificing too much in performance for
K ≥ 16 components.

VII. CONCLUSION

In this work, we proposed to utilize GMMs for pilot design in
FDD-MIMO systems. A significant advantage of the proposed
scheme is that it does not require a priori knowledge of the
channel’s statistics at the BS and the MT. Instead, it relies
on a feedback mechanism, establishing common knowledge
of the pilot matrix. The same GMM can be utilized for DL
channel estimation and can be generally adapted to any desired
SNR level and pilot configuration without requiring re-training.
Simulation results show that the performance gains achieved
with the proposed scheme allow the deployment of system
setups with reduced pilot overhead while maintaining a similar
estimation performance. In our future work, we will investigate
the extension of the proposed GMM-based pilot scheme to
multi-user systems, see, e.g., [7], [8], [21], [22].
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