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Critical Behavior of Non-Hermitian Kondo effect in Pseudogap System

Jiasong Chen
National Laboratory of Solid State Microstructures and Department of Physics

Nanjing University, Nanjing 210093, China

(Dated: March 27, 2024)

The combination of non-Hermitian physics and strong correlation can yield numerous novel and
intriguing effects. A previous study on the non-Hermitian Kondo model in ultra-cold atoms reports
the reversion of the renormalization group flow. In this work, We investigate the non-Hermitian
Kondo effect in system with special form of density of sates ρ(ω) ∼ |ω|r(r > 0), which is called
pseudogap system. We find that when r < 1/2, our conclusion from perturbative renormalization
group theory aligns well with previous studies on the traditional pseudogap Kondo problem. In the
case of r being equal to 1/2, a fixed point with reverse property appears in the renormalization
group flow. When r is lager than 1/2, an unstable fixed point appears on the complex plane of the
parameter space. Additionally, we validate the conclusions around renormalization group for the
r < 1/2 interval using the large N expansion method.

I. INTRODUCTION

The Hermitian nature of the Hamiltonian is one of
the key assumptions in quantum mechanics. It en-
sures both probability conservation in isolated quantum
systems and the real-valuedness of the energy expecta-
tion value of a quantum system. However, in practi-
cal quantum systems, there are often exchanges of en-
ergy, particles, and information with the environment.
Consequently, open quantum systems can often be de-
scribed using non-Hermitian Hamiltonians [1–3]. Stud-
ies have shown that non-Hermitian physics can lead to
many novel conclusions, such as the non-Hermitian skin
effect[4–6], spontaneous PT symmetry breaking resulting
in imaginary parts in particle spectra[7], and some novel
topological states[8]. Subsequently, researchers also in-
vestigated some non-Hermitian strongly correlated elec-
tron models[9–13]. In cold atom experiments, the long-
lived metastable excited states of alkaline earth atoms
can act as local magnetic moments, while their ground
states play the role of conduction electrons[14–17]. In
Ref[9], the authors consider the two-body losses/gains
induced by inelastic scattering between the ground and
excited states, leading to the non-Hermitian Kondo ef-
fect.Through an analysis based on perturbative renor-
malization group theory, they found that due to the in-
troduction of non-Hermitian terms, the renormalization
group flow forms a fixed point with a reverse property at
the origin of coordinates. That is, the renormalization
group flow of the system originates from the origin and
returns to it.
At low temperature, magnetic impurities strongly af-

fect the properties of any electron liquid. The “Kondo
effect”[18, 19] is characterized by a temperature scale TK :
When the temperature (T ) is larger than TK , the elec-
trons of the host materials are only weakly scattered by
the impurity; for T < TK the (antiferromagnetic) cou-
pling grows nonperturbatively and leads to the formation
of a many-body singlet with the electron liquid, which
completely screens the impurity magnetic moment.
Furthermore, materials exhibiting pseudogap density

of states(DOS) near the Fermi surface have attracted sig-
nificant attention, such as Dirac and Weyl semimetals,
whose the DOS typically scales proportionally to the rth
power of energy. In these materials, the conduction and
valence bands touch at specific points in the Brillouin
zone, known as Dirac points and Weyl points, respec-
tively. Excitations of electrons near these points behave
similarly to massless Dirac fermions. Additionally, in d-
wave superconductors, due to the particular form of the
energy gap function, the superconducting gap vanishes at
certain nodes, where excitations with Dirac cone-like dis-
persion also occur. These materials often exhibit numer-
ous novel properties due to their unique band structures.
Furthermore, their response to localized magnetic mo-
ments has also garnered attention[20–32]. In Ref.[21], the
author initially investigated the coupling effects between
the pseudogap system and localized magnetic moments
based on poor man’s scaling and mean-field theory. The
results revealed that there exists an critical parameter
controlling the phase transition between decoupled and
strong coupled phase under zero tempurature. Later, in
Ref.[27], the authors studied the phase diagram of the
pseudogap Kondo problem using numerical renormaliza-
tion group theory. They found that for systems satisfy-
ing particle-hole symmetry, an unstable fixed point ap-
peared on the renormalization group flow when r < 1

2
, de-

noted as Jc. They termed it the symmetric critical(SCR)
point, which separates the local moment(LM) phase from
the symmetric strong coupling(SSC) phase. When the
Kondo coupling coefficient J < Jc, the renormalization
group flow moves towards the LM phase, whereas when
J > Jc, it flows towards the SSC phase.This conclusion
aligns well with the results obtained from mean-field the-
ory.When r > 1

2
, the SCR point merges with the SSC

phase. In this case, regardless of the strength of the cou-
pling coefficient, the system does not exhibit a strong
coupling phase.

In this paper, we investigate critical behavior of the
non-Hermitian Kondo effect in pseudogap systems to
study the response of pseudogap materials to localized
magnetic moments in open systems. Through pertur-
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bative renormalization group studies, we find that for
systems possessing particle-hole symmetry, the phase di-
agram of the system closely resembles the Hermitian
case when r < 1/2. In the case with r = 1/2, the
strongly coupled fixed point exhibits a kind of reverse
property. However, when r > 1/2, a new unstable fixed
point appears in the complex plane. This new criti-
cal behavior is entirely different from the behavior in
the Hermitian case, demonstrating that non-Hermiticity
can lead to more novel properties in strongly correlated
models.Subsequently, we applied the large N expansion
method and defined the residual function of the mean-
field self-consistent equation. We find nontrivial solu-
tions of the self-consistent equation on the real axis for
J > Jc, thereby verifying the conclusion of the perturba-
tive renormalization group for r < 1/2.

II. MODEL

In this work, we start with Hamiltonian of Non-
Hermitian Kondo impurity coupled with the conduction
electrons with pseudogap DOS. this will be combined by
two parts:

H = Hc +HK . (1)

In the above expression, the first term represents the
conduction electron component, and its specific form is
as follows.

Hc =
∑

k,σ

ǫkc
†
kσckσ, (2)

where ckσ is the annihilation operator of conduction elec-
trons. And the DOS of these electrons has such special
form:

ρ(ω) =

{

C|ω|r if |ω| ≤ D

0 else ,
(3)

where ω and D respectively represent the energy and
bandwidth of the conduction electrons and C is propor-
tional coefficient which we will be set to one for the con-
venience of future discussions.
The second term describes the non-Hermitian Kondo

interaction between impurity spin and conduction elec-
trons spin

HK = J ~Simp · ~s(0), (4)

whereJ = Jr + iJi is a complex number, ~S is impurity

spin and ~s(0) = c†
kσσσσ′ckσ′ is the spin of conduction

electrons at the point of local electrons.

III. RENORMALIZATION GROUP

We calculate the beta function using perturbation
renormalization group theory to third order. We obtain
the following RG equation:

dj

d lnD
= rj − j2 +

j3

2
, (5)

where j = ρ(D)J is the dimensionless coupling constant.
By analysis , we find that there exits three different con-
struction of the diagram of RG flow, as shown in 1
In the interval 0 < r < 1

2
, as illustrated in the

Figure.1(a), we can see that there are two stable fixed
points on the real axis, located at the origin and (1.5, 0)
respectively. These correspond to the LM phase and the
SSC phase. In between, at the point (0.5, 0), there is
an unstable fixed point corresponding to the SCR phase,
which governs the phase transition between the LM phase
and SSC phase. This result aligns with the traditional
pseudogap Kondo effect conclusions. The specific form
of the critical point jc is as follows:

jc = 1−
√
1− 2r ≈ r +O(r2). (6)

When r = 1

2
, as is shown in Figure.1(b), the critical

point of the SCR phase and the SSC phase merge. This
results in the appearance of a fixed point with reverse
property, as mentioned in Ref[9], at the current fixed
point of the strongly coupled phase. In other words, the
renormalization group flow starts from the point (1.0, 0)
and returns to the same point.
If r is greater than 1

2
, the renormalization group flow

is depicted in Figure1(c). For the Hermitian case in this
interval, there should be no presence of the SSC phase in
the system, let alone a quantum phase transition between
SSC and LM phases. However, surprisingly, from the
graph, we observe the emergence of a new unstable fixed
point on the complex plane. The renormalization group
flow of the system moves from this point to the origin,
indicating the onset of a new critical phenomenon within
this range.

IV. LARGE N EXPANSION

As a preparation for employing the large N expansion
technique, we first extend the Kondo model Hamiltonian
to a model with SU(N) symmetry, commonly referred to
as the Coqblin-Schrieffer model[33]:

HCS = Hc −
J

N

∑

k,α

∑

k′,β

c†
kαfαf

†
βck′β , (7)

where α, β = 1, 2, . . . , N is the extended spin quantum
number of electrons and J is the complex Kondo coupling
parameter.
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FIG. 1. RG flow diagrams of the non-Hermitian pseudogap Kondo model in different values of r:(a)r=0.375, (b)r=0.5,(c)r=0.625

Subsequently, in the language of path integrals, it is
required to introduce a Lagrange multiplier λ to enforce
the single occupancy condition of local electrons nf =
∑

α f †
αfα = 1.

The next step involves using the Hubbard-Stratonovich
transformation to rewrite the four-operator interaction
terms in Eq.7 into the following form:

− J

N

∑

k,α

∑

k′,β

c†
kαfαf

†
βck′β →

∑

k,α

(V̄ c†
kαfα+h.c.)+N

|V |2
J

,

(8)

where V̄ = V̄k = − J
N

∑

α

〈

c†
kαfα

〉

is the static boson

field describing the coupling between the local electrons
and conduction electrons.

Finally, taking the limit N → ∞, the results of the
path integral are entirely determined by the saddle points
of the integrand. In summary, we ultimately obtain the
following approximation for the free energy F in large N
limit:

F =− N

π

∫ D

−D

dω

eβω + 1
tan−1

[

π|ω|r|V |2
−ω + λ− |V |2P(ω)

]

+N
|V |2
J

− λ,

(9)

where P(ω) = P
∫

dǫ|ǫ|r

ω−ǫ
= π|ω|r tan(πr

2
)sgn(ω) rep-

resenting the principal value integral.In the saddle-point
approximation, the parameter of free energy should sat-
isfy the following self-consistent relation:

∂F

∂V̄
= 0,

∂F

∂λ
= 0.

(10)

At the zero-temperature limit, the specific form of
these two equations are as follows:

∫

0

−D

dω
V |ω|r(−ω + λ)

(−ω + λ− |V |2P(ω))2 + π|ω|r|V |2 − V

J
= 0,

(11)

∫ 0

−D

dω
|V |2|ω|r

(−ω + λ− |V |2P(ω))2 + π|ω|r|V |2 − 1

N
= 0.

(12)

Since J is a complex number, Lagrange multiplier must
be a complex number to make the above equations valid,
i.e. λ = λr + iλi.Observing this equation system com-
posed of two equations, we can immediately deduce that
V = 0 is a solution to the system in the large N limit.
Since all interactions are regulated by the bosonic field V ,
if this trivial solution is stable, it implies the decoupling
of impurities from conduction electrons, corresponding to
the LM phase. Therefore, the existence of a non-trivial
solution to the equations signifies the presence of a phase
transition from weak to strong coupling.

To discuss the non-trivial solution of the equations,
we eliminate V from Eq.11. Assuming the existence of a
non-trivial solution with small |V |2 and λ near the critical
point, we set |V |2, λr and λi to be equal to 0, after
eliminating. And this yields the expression for the critical
Kondo coupling coefficient Jc on real axis:

Jc =
r

Dr
. (13)

This result aligns with Eq.6 obtained from the renormal-
ization group theory in the interval where r < 1

2
.

To analyze the properties of the system of equations,
we define the residual function

Re(Jr, Ji, |V |2, λr, λi, D,N) =
√

|f1 − 1|2 + |f2 − 1|2,
(14)

where
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FIG. 2. The surface of the function Remin with respect to the
variations of parameters Jr and Ji for r = 0.4, D = 104, and
N = 104.

f1 = J

∫

0

−D

dω
|ω|r(−ω + λ)

(−ω + λ− |V |2P(ω))2 + π|ω|r|V |2 ,

f2 = N

∫

0

−D

dω
|V |2|ω|r

(−ω + λ− |V |2P(ω))2 + π|ω|r|V |2 .
(15)

By adjusting parameters |V |2, λr and λi, we can find
the minimum value Remin of Re for each Kondo coupling
coefficient parameter, thereby obtaining the surface of
the function Remin(Jr, Ji) as it varies across the entire
parameter space in the complex plane. Figure.2 illus-
trates the variation of Remin for r = 0.4, D = 104, and
N = 104. For points where the function Remin = 0, non-
trivial solutions to our equations exist; conversely, for
points where Remin 6= 0, non-trivial solutions do not ex-
ist. The result reveals that within the interval 0 < r < 1,
the function Remin has zeros on the real axis for J > Jc.
This indicates the existence of non-trivial solutions to the
self-consistent equations within this region.
Furthermore, by employing the function Remin, we

can also discern the critical behavior of the system on
the complex plane.Through calculations, we obtained the
functional relationship of Remin with respect to the cen-
tral angle θ on semicircles of different radii centered at
the point Jc, as shown in Figure 3. Their variation is
depicted in Figure 3(b). It can be observed that there
exists a critical angle θc: when the central angle θ < θc,
the variation function is almost a horizontal line, imply-

ing that the system is in the same universal class with
LM phase; however, when the central angle θ > θc, the
decreasing trend of the function begins to increase, reach-
ing zero at θ = π, indicating the system being in a strong
coupling phase within this range. The critical points cor-
responding to the critical angles at different radii are in-
dicated by dots in Figure 3(a). It can be seen that near

0.5 1.0 1.5
Jr/Jc

0.0

0.5

J i/
J c

θ

0.0 0.2 0.4 0.6
Remin

(a)

0 π
4

π
2

3π
4

π
θ

0.0

0.2

0.4

0.6

Re
m
in

θc

R=1/2
R=1/4
R=1/8

(b)

FIG. 3. Illustrating the variation of Remin with the central
angle θ at different radii R = 1/2(blue curve), R = 1/4(orange
curve), R = 1/8(green curve). It can be observed that in
(b) there exists a critical angle θc for each radius. When
θ > θc, the rate of decrease of Remin increases. And In (a),
the positions of the critical angles of different radii in the
distribution of Remin are indicated by dots

the point Jc, the critical points are located just above
Jc, and as the radius increases gradually, the position of
the critical points approaches the imaginary axis. This
suggests inaccuracies in the results of mean-field theory
away from the vicinity of Jc.
In summary, we first obtained the phase diagram of

the non-Hermitian Kondo effect in pseudogap system
through perturbative renormalization group theory. The
result reveals that when r < 1/2, there exists unsta-
ble fixed point (SCR) on the real axis, controlling the
phase transition between LM phase and SSC phase ;
when r = 1/2, the SCR fixed point merges with the SSC
phase, forming a fixed point with reverse property; when
r > 1/2, an unstable fixed point appears on the complex
plane. Subsequently, we further validated the conclusion
of the perturbative renormalization group in the r < 1/2
interval through the large N expansion method, and ob-
tained critical property of the system on the complex
plane through analysis. However, for r > 1/2, the ap-
pearance of unstable fixed points on the complex plane
raises the question of their physical significance, which
requires further investigation and exploration. Due to
the rapid advancement in non-Hermitian physics in re-
cent years, it is foreseeable that the combination of non-
Hermitian and strongly correlated physics will inevitably
give rise to more novel physical phenomena.
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[2] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber,

S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch,
and U. Schneider, Signatures of many-body localization
in a controlled open quantum system, Physical Review X



5

7, 011034 (2017).
[3] I. Rotter, A non-hermitian hamilton operator and the

physics of open quantum systems, Journal of Physics A:
Mathematical and Theoretical 42, 153001 (2009).

[4] S. Yao and Z. Wang, Edge states and topological invari-
ants of non-hermitian systems, Physical review letters
121, 086803 (2018).

[5] X. Zhang, T. Zhang, M.-H. Lu, and Y.-F. Chen, A review
on non-hermitian skin effect, Advances in Physics: X 7,
2109431 (2022).

[6] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato,
Topological origin of non-hermitian skin effects, Physi-
cal review letters 124, 086801 (2020).

[7] W. Heiss, The physics of exceptional points, Journal of
Physics A: Mathematical and Theoretical 45, 444016
(2012).

[8] S. Yao, F. Song, and Z. Wang, Non-hermitian chern
bands, Physical review letters 121, 136802 (2018).

[9] M. Nakagawa, N. Kawakami, and M. Ueda, Non-
hermitian kondo effect in ultracold alkaline-earth atoms,
Physical review letters 121, 203001 (2018).

[10] J. A. Lourenço, R. L. Eneias, and R. G. Pereira, Kondo
effect in a pt-symmetric non-hermitian hamiltonian,
Physical Review B 98, 085126 (2018).

[11] S. Han, D. J. Schultz, and Y. B. Kim, Complex fixed
points of the non-hermitian kondo model in a luttinger
liquid, Physical Review B 107, 235153 (2023).

[12] V. M. Kulkarni, A. Gupta, and N. Vidhyadhiraja, Kondo
effect in a non-hermitian pt-symmetric anderson model
with rashba spin-orbit coupling, Physical Review B 106,
075113 (2022).

[13] T. Yoshida, R. Peters, and N. Kawakami, Non-hermitian
perspective of the band structure in heavy-fermion sys-
tems, Physical Review B 98, 035141 (2018).

[14] L. Riegger, N. D. Oppong, M. Höfer, D. R. Fernandes,
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