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Abstract

We study the two-spinless mass-critical Fermi systems with attractive interac-
tions and trapping potentials. We prove that ground states of the system exist,
if and only if the strength a of attractive interactions satisfies 0 < a < a∗

2
, where

0 < a∗
2
< +∞ is the best constant of a dual finite-rank Lieb-Thirring inequality. By

the blow-up analysis of many-fermion systems, we show that ground states of the
system concentrate at the flattest minimum points of the trapping potential V (x)
as a ր a∗

2
.
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1 Introduction

Over the past few decades, experimental achievements of trapped atomic gases have
revealed (cf. [2, 3, 7, 13]) the beautiful and subtle physics of the quantum world for ul-
tracold atoms. These experiments were usually carried out in the presence of optical
laser traps that confine the particles in a limited region of the space, see [2, 20]. In
particular, spinless fermions in harmonic traps have played a crucial role of recent de-
velopments (cf. [4, 13, 28]), given that trapping potentials in many experiments can be
safely approximated with the harmonic form. Moreover, when spinless Fermi gases are
confined in inhomogeneous traps [22], the nonuniform density leads to the spatially vary-
ing energy and length scales. We also refer the reader to [21] for creating homogeneous
Fermi gases of ultracold atoms in a uniform potential. These experiments have gener-
ated some interesting theoretical questions. Numerical simulations and mathematical
theories of trapped fermions have therefore been a focus of research interests in physics
and mathematics since the last decades (cf. [4, 9, 10,13,18,26]).

Following the arguments of [11, 14, 18], ground states of two-spinless mass-critical
Fermi systems with attractive interactions and trapping potentials can be described by
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the minimizers of the following constraint variational problem:

Ea(2) : = inf
{
Ea(Ψ) : ‖Ψ‖22 = 1, Ψ ∈ ∧2L2(R3,C) ∩H1(R6,C),

2∑

i=1

∫

R6

V (xi)|Ψ|2dx1dx2 < ∞
}
, a > 0,

(1.1)

where the energy functional Ea(Ψ) satisfies

Ea(Ψ) :=
2∑

i=1

∫

R6

(
|∇xi

Ψ|2 + V (xi)|Ψ|2
)
dx1dx2 − a

∫

R3

ρ
5
3
Ψ(x)dx.

Here ∧2L2(R3,C) is the subspace of L2(R6,C) consisting of all antisymmetric wave func-
tions, V (x) ≥ 0 denotes the trapping potential, a > 0 represents the attractive strength
of the quantum particles, and the one-particle density ρΨ associated with Ψ is defined
by

ρΨ(x) := 2

∫

R3

|Ψ(x, x2)|2dx2.

Applying the approach of [5, Appendix A and Lemma 2.3], the problem (1.1) can be
reduced equivalently to the following form

Ea(2) = inf
{
Ea(γ) : γ =

2∑

i=1

|ui〉〈ui|, ui ∈ H,

(ui, uj) = δij , i, j = 1, 2
}
, a > 0,

(1.2)

where the energy functional Ea(γ) satisfies

Ea(γ) := Tr
(
−∆+ V (x)

)
γ − a

∫

R3

ρ
5
3
γ (x)dx, (1.3)

and the Hilbert space H is defined by

H :=
{
u ∈ H1(R3,R) :

∫

R3

V (x)|u(x)|2dx < ∞
}
.

Here the non-negative self-adjoint operator γ =
∑2

i=1 |ui〉〈ui| on L2(R3,R) satisfies

γϕ(x) =
2∑

i=1

ui(x)(ϕ, ui)L2(R3,R), ∀ϕ ∈ L2(R3,R),

the kinetic energy of γ is denoted by

Tr(−∆γ) :=

3∑

j=1

Tr(PjγPj) =

3∑

j=1

2∑

i=1

‖Pjui‖2L2 =

2∑

i=1

∫

R3

|∇ui(x)|2dx, (1.4)

where Pj := −i∂xj
, and the corresponding density of γ is defined as

ργ(x) :=
2∑

i=1

|ui(x)|2. (1.5)
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If the trapping potential V (x) in (1.3) is ignored, the existence of minimizers for
Ea(2) in the L2-subcritical case was analyzed in [14]. Motivated by [14], the authors
in [5] studied the existence and concentration behavior of minimizers for Ea(2) in the L2-
subcritical case, where V (x) < 0 is the Coulomb potential. Further, the L2-critical case
of Ea(2) with the Coulomb potential was recently considered in [6]. On the other hand,
the physical experiments of Fermi gases were also performed in other types of trapping
potentials over the past few years, such as harmonic potentials, double-well potentials,
and so on (cf. [4, 13, 26, 28]). Moreover, once the problem Ea(2) is analyzed with other
types of traps, instead of the Coulomb form, some extra difficulties appear especially in
the analysis of the Lagrange multipliers for Ea(2). Inspired by above facts, the purpose
of the present paper is to study the problem Ea(2) with the trap 0 ≤ V (x) ∈ L∞

loc(R
3)

satisfying lim|x|→∞ V (x) = ∞.
The existing investigations (cf. [6]) show that the problem Ea(2) is related to the

following minimization problem

0 < a∗2 := inf
{‖γ‖ 2

3Tr(−∆γ)
∫
R3 ρ

5
3
γ (x)dx

: 0 ≤ γ = γ∗, Rank(γ) ≤ 2
}
. (1.6)

Here γ is of the form γ =
∑2

i=1 ni|ui〉〈ui|, where ni ≥ 0 and ui ∈ H1(R3) satisfies
(ui, uj) = δij for i, j = 1, 2, ργ(x) is defined as ργ(x) =

∑2
i=1 niu

2
i (x), and ‖γ‖ is the

operator norm. Note from [11, Theorem 6] that the problem a∗2 defined in (1.6) admits
at least one minimizer. Moreover, any minimizer γ(2) of the problem a∗2 has rank 2, and
can be written in the form

γ(2) = ‖γ(2)‖
2∑

i=1

|Qi〉〈Qi|, Qi ∈ H1(R3), (Qi, Qj) = δij , i, j = 1, 2,

where the orthonormal system (Q1, Q2) satisfies the following nonlinear Schrödinger
system

[
−∆− 5a∗2

3

( 2∑

j=1

Q2
j

) 2
3
]
Qi = µ̂iQi in R

3, i = 1, 2, (1.7)

and µ̂1 < µ̂2 < 0 are the 2-first negative eigenvalues of the operator −∆− 5a∗2
3

( 2∑
j=1

Q2
j

) 2
3

in R
3.
Associated to the problem Ea(2), we now define ground states of a fermionic nonlinear

Schrödinger system, in the following sense that

Definition 1.1. (Ground states). Suppose 0 ≤ V (x) ∈ L∞
loc(R

3) satisfies lim|x|→∞ V (x) =

∞. A system (u1, u2) ∈
(
H1(R3)

)2
, where (ui, uj) = δij holds for i, j = 1, 2, is called a

ground state of

HV ui :=
[
−∆+ V (x)− 5a

3

( 2∑

j=1

u2j

) 2
3
]
ui = µiui in R

3, i = 1, 2, a > 0, (1.8)

if it satisfies the system (1.8), where µ1 < µ2 are the 2-first eigenvalues of the operator
HV in R

3.
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The first result of the present paper is concerned with the following existence of
minimizers for Ea(2) defined in (1.2).

Theorem 1.1. Let a∗2 > 0 be defined by (1.6), and assume the potential 0 ≤ V (x) ∈
L∞
loc(R

3) satisfies lim|x|→∞ V (x) = ∞. Then we have

1. If 0 < a < a∗2, then there exists at least one minimizer γ =
∑2

i=1 |ui〉〈ui| of Ea(2),
where (u1, u2) is a ground state of (1.8).

2. If a ≥ a∗2, then there is no minimizer of Ea(2).

When the Coulomb potential V (x) < 0 is considered, the non-existence of minimizers
for Ea(2) is proved in [6], which gives that Ea(2) = −∞ for a ≥ a∗2, by applying the
properties of the Coulomb potential and the monotonicity of the energy Ea(2) with
respect to the parameter a > 0. Different from [6], we shall however derive that Ea∗2

(2) =
0 and Ea(2) = −∞ for a > a∗2 by constructing suitable orthogonal test functions. The
non-existence result of Ea∗2

(2) is further proved by applying the properties of minimizers
for the problem a∗2 defined in (1.6).

On the other hand, the existence of Theorem 1.1 is derived by analyzing the com-
pactness of the minimizing sequences, which can actually be extended to the problem
Ea(N) with any N ∈ N

+. Moreover, we shall prove, in a simplifier way than those
of [5, 6, 14], that the minimizers of Ea(2) are essentially ground states of (1.8). Further,
assume γa =

∑2
i=1 |uai 〉〈uai | is a minimizer of Ea(2) for 0 < a < a∗2, then the proof of

Theorem 1.1 yields that
∫
R3 V (x)ργa(x)dx → infx∈R3 V (x) as a ր a∗2, which implies

roughly that the mass of the minimizers γa concentrates at the global minimum points
of V (x) as a ր a∗2. The main purpose of the present paper is to further analyze the mass
concentration behavior of the minimizers γa as a ր a∗2.

Towards the above main purpose, we now assume that there exist positive constants
p1, · · · , pl and C such that

V (x) = g(x)
l∏

m=1

|x− xm|pm and C < g(x) <
1

C
in R

3, (1.9)

where xm 6= xn for m 6= n, g(x) ∈ Cκ
loc(R

3) for some κ ∈ (0, 1), and the limits lim
x→xm

g(x)

exist for all 1 ≤ m ≤ l. Denote

p = max{p1, · · · , pl} > 0, Λ := {x ∈ R
3 : V (x) = 0} = {x1, · · · , xl}, (1.10)

and
Z := {xm ∈ Λ : αm = α}, (1.11)

where

α := min
1≤m≤l

{
αm

}
> 0, and αm = lim

x→xm

V (x)

|x− xm|p ∈ (0,+∞]. (1.12)

Note from (1.11) that the set Z denotes the locations of the flattest global minimum
points for V (x). We remark that (1.9) covers both the harmonic trap and double-well
trap, which were achieved experimentally in [4, 13,26,28].

Using above notations, the main result of the present paper can be stated as the
following theorem:
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Theorem 1.2. Suppose V (x) satisfies (1.9), and let γa =
∑2

i=1 |uai 〉〈uai | be a minimizer
of Ea(2) for 0 < a < a∗2, where uai satisfies (1.8) for i = 1, 2. Then for any given
sequence {an} with an ր a∗2 as n → ∞, there exists a subsequence, still denoted by {an},
of {an} such that for i = 1, 2,

wan
i (x) : = (a∗2 − an)

3
2(p+2)uani

(
(a∗2 − an)

1
p+2x+ xan

)

→ wi(x) strongly in H1(R3) ∩ L∞(R3) as n → ∞,
(1.13)

where p > 0 is as in (1.10), γ :=
∑2

i=1 |wi〉〈wi| is a minimizer of a∗2, and the global
maximum point xan of the density ργan (x) =

∑2
i=1 |uani |2 satisfies

lim
n→∞

xan − xk

(a∗2 − an)
1

p+2

= x̄ (1.14)

for some points xk ∈ Z and x̄ ∈ R
3.

Remark 1.1. (1). It follows from Theorem 1.2 that the minimizers of Ean(2) concentrate
at the flattest minimum points of V (x) as an ր a∗2.

(2). Under the assumption (1.9), Theorem 1.2 yields that the minimizer γan =∑2
i=1 |uani 〉〈uani |, where uani satisfies (1.8) for i = 1, 2, of Ean(2) behaves like

γan(x, y) ≈ (a∗2 − an)
− 3

p+2γ
( x− xan

(a∗2 − an)
1

p+2

,
y − xan

(a∗2 − an)
1

p+2

)
as an ր a∗2,

where γ(x, y) =
∑2

i=1 wi(x)wi(y) is the integral kernel of γ, and the energy Ean(2)
satisfies

lim
anրa∗2

Ean(2)

(a∗2 − an)
p

p+2

=

∫

R3

ρ
5
3
γ (x)dx + α

∫

R3

|x+ x̄|pργ(x)dx,

where α > 0 is defined by (1.12).

There are several further comments on Theorem 1.2 which is proved by the blow-
up analysis of many-body fermions. Firstly, comparing with the existing results of [6],
Theorem 1.2 can provide additionally the refined information on the maximum point of
the density ργan (x) as an ր a∗2. Secondly, the argument of [5, 6] is improved to obtain
the H1-convergence (1.13) of Theorem 1.2. Thirdly, the proof of Theorem 1.2 needs the
following estimates:

µan
1 < µan

2 < 0 as an ր a∗2, (1.15)

where µan
1 and µan

2 are the 2-first eigenvalues of the operator −∆ + V (x) − 5an
3 ρ

2/3
γan in

R
3. We shall derive (1.15) in Section 4 by the refined analysis of the energy Ean(2).
This paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.1

on the existence and non-existence of minimizers for Ea(2). We analyze in Section 3
some refined estimates of minimizers for Ea(2), based on which the proof of Theorem
1.2 is given in Section 4. The exponential decay of minimizers for a∗2 is finally addressed
in Appendix A.
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2 Existence and Non-existence of Minimizers

In this section, we shall establish Theorem 1.1 on the existence and non-existence of
minimizers for Ea(2) defined by (1.2). Towards this purpose, we first recall the following
compactness result (see e.g. [24, Theorem XIII.67] or [1]):

Lemma 2.1. Suppose 0 ≤ V (x) ∈ L∞
loc(R

3) satisfies lim|x|→∞ V (x) = ∞. Then for any
2 ≤ q < 6, the embedding H →֒ Lq(R3) is compact.

Employing Lemma 2.1, we next complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we assume additionally that the
potential V (x) ≥ 0 satisfies infx∈R3 V (x) = 0.

1. We first prove the existence of minimizers for Ea(2), where 0 < a < a∗2. Let
γ =

∑2
i=1 |ui〉〈ui| be an operator satisfying ui ∈ H and (ui, uj) = δij for i, j = 1, 2. Since

V (x) ≥ 0, we obtain from (1.6) that for any 0 < a < a∗2,

Ea(γ) = Tr
(
−∆+ V (x)

)
γ − a

∫

R3

ρ
5
3
γ (x)dx

≥
(
1− a

a∗2

)
Tr(−∆γ) +

∫

R3

V (x)ργ(x)dx

≥
(
1− a

a∗2

)
Tr(−∆γ) ≥ 0,

(2.1)

due to the fact that ‖γ‖ = 1. This gives that Ea(2) is bounded from below for 0 < a < a∗2.
Let {γn} be a minimizing sequence of Ea(2) satisfying γn =

∑2
i=1 |uni 〉〈uni |, uni ∈ H,

(uni , u
n
j ) = δij for i, j = 1, 2, and limn→∞ Ea(γn) = Ea(2). We derive from (2.1) that

{uni } is bounded uniformly in H for i = 1, 2. Following Lemma 2.1, we obtain that there
exists a function ui(x) ∈ H such that for i = 1, 2,

uni ⇀ ui weakly in H and uni → ui strongly in Lq(R3) as n → ∞, 2 ≤ q < 6.

Therefore, we have
(ui, uj) = δij, i, j = 1, 2,

and

ργn =

2∑

i=1

|uni |2 → ργ =

2∑

i=1

|ui|2 strongly in Lr(R3) as n → ∞, 1 ≤ r < 3, (2.2)

where γ :=
2∑

i=1
|ui〉〈ui|. Since ui ∈ H satisfies (ui, uj) = δij for i, j = 1, 2, we have

Ea(2) ≤ Ea(γ).

Moreover, by the weak lower semi-continuity, we obtain from (2.2) that

Ea(2) = lim
n→∞

Ea(γn) ≥ Ea(γ),

which implies that γ is a minimizer of Ea(2) for 0 < a < a∗2. We then conclude that for
any 0 < a < a∗2, there exists at least one minimizer of Ea(2).
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For any 0 < a < a∗2, assume γ is a minimizer of Ea(2). Similar to the argument
of [27, Appendix A], γ can be written in the form γ =

∑2
i=1 |uki〉〈uki |, where uki is an

eigenfunction of the operator

HV = −∆+ V (x)− 5a

3
ρ

2
3
γ (x) in R

3,

and corresponds to the ki-th eigenvalue µki . This gives that uki satisfies

−∆uki + V (x)uki −
5a

3
ρ

2
3
γ uki = µkiuki , i = 1, 2, (2.3)

where ργ(x) =
∑2

j=1 |ukj |2. In the following, we prove that (uk1 , uk2) is a ground state
of (1.8). Noting from [17, Theorem 11.8] that µ1 < µ2, it suffices to show that µk1 and
µk2 are the 2-first eigenvalues of the operator HV , i.e., µki = µi holds for i = 1, 2.

We first prove that µk1 = µ1. On the contrary, suppose µk1 6= µ1, which then yields
that µ1 < µk1 ≤ µk2 . Hence, there is an eigenfunction u1 ∈ H of HV in R

3, which
corresponds to the first eigenvalue µ1 and satisfies (u1, uk2) = δ1k2 . Define the operator

γ′ := γ − |uk1〉〈uk1 |+ |u1〉〈u1| = |u1〉〈u1|+ |uk2〉〈uk2 |.

We then calculate from (2.3) that

Tr(−∆γ′) =Tr(−∆γ)−
∫

R3

|∇uk1 |2dx+

∫

R3

|∇u1|2dx

=Tr(−∆γ) +

∫

R3

V (x)
(
|uk1 |2 − |u1|2

)
dx+

5a

3

∫

R3

ρ
2
3
γ

(
|u1|2 − |uk1 |2

)
dx

+ µ1 − µk1 ,

and

Tr(V (x)γ′) = Tr(V (x)γ) +

∫

R3

V (x)
(
|u1|2 − |uk1 |2

)
dx.

Moreover, by the convexity of t 7→ t
5
3 we get that

∫

R3

(ρ′γ)
5
3 dx =

∫

R3

(
ργ + |u1|2 − |uk1 |2

) 5
3 dx ≥

∫

R3

ρ
5
3
γ dx+

5

3

∫

R3

ρ
2
3
γ

(
|u1|2 − |uk1 |2

)
dx.

Since µ1 < µk1 , we now conclude from above that

Ea(2) ≤ Ea(γ′) ≤ Ea(γ) + µ1 − µk1 < Ea(γ) = Ea(2),

a contradiction. We hence obtain that µk1 = µ1.
We next prove that µk2 = µ2. On the contrary, suppose µk2 6= µ2. We then deduce

from above that µk1 = µ1 < µ2 < µk2 . Hence, there exists an eigenfunction u2 ∈ H of
HV in R

3, which corresponds to the second eigenvalue µ2 and satisfies (uk1 , u2) = δk12.
By considering the following operator

γ′ := γ − |uk2〉〈uk2 |+ |u2〉〈u2| = |uk1〉〈uk1 |+ |u2〉〈u2|,

the similar argument as above then yields again a contradiction. This proves that µk2 =
µ2. We therefore conclude that µki = µi holds for i = 1, 2, which implies that (uk1 , uk2)
is a ground state of (1.8).
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2. We next prove the non-existence of minimizers for Ea(2) in the case a ≥ a∗2. Let
γ(2) =

∑2
i=1 |Qi〉〈Qi| be a minimizer of a∗2, where Qi ∈ H1(R3) satisfies (Qi, Qj) = δij

for i, j = 1, 2. Take a non-negative function ϕ(x) ∈ C∞
0 (R3, [0, 1]), such that ϕ(x) ≡ 1

for |x| ≤ 1 and ϕ(x) ≡ 0 for |x| ≥ 2. For any x0 ∈ R
3 and τ > 0, define

Qτ
i (x) := Aτ

i τ
3
2ϕ(x− x0)Qi

(
τ(x− x0)

)
, i = 1, 2, and γ(2)τ :=

2∑

i=1

|Qτ
i 〉〈Qτ

i |, (2.4)

where Aτ
i > 0 is chosen such that

∫
R3 |Qτ

i |2dx = 1 for i = 1, 2. By the exponential decay
of |Qi| in Lemma A.1, we then derive that

1

(Aτ
i )

2
= τ3

∫

R3

ϕ2(x− x0)Q
2
i

(
τ(x− x0)

)
dx = 1 +O(τ−∞) as τ → ∞, i = 1, 2.

Here and below we denote f(t) = O(t−∞), if the function f(t) satisfies limt→∞ |f(t)|ts =
0 for all s > 0. We therefore obtain that

Aτ
i = 1 +O(τ−∞), i = 1, 2, and aτ := (Qτ

1 , Q
τ
2) = O(τ−∞) as τ → ∞, (2.5)

where we have also used the fact (Qi, Qj) = δij for i, j = 1, 2. It follows from (2.5) that
the Gram matrix

Gτ :=

(
Qτ

1

Qτ
2

)(
Qτ

1 Qτ
2

)
=

(
1 (Qτ

1 , Q
τ
2)

(Qτ
2 , Q

τ
1) 1

)
=

(
1 aτ
aτ 1

)
(2.6)

is positive definite for τ > 0 large enough.
For τ > 0 large enough, defining

(
Q̃τ

1 Q̃τ
2

)
:=

(
Qτ

1 Qτ
2

)
G

− 1
2

τ , (2.7)

it then follows from (2.6) that
(
Q̃τ

i , Q̃
τ
j

)
= δij , i, j = 1, 2.

Moreover, using Taylor’s expansion, one can obtain from (2.6) that

G
− 1

2
τ = I2 −

1

2
aτ

(
0 1
1 0

)
+O(a2τ ) as τ → ∞,

where I2 denotes the 2-order identity matrix. We hence deduce from (2.7) that

(
Q̃τ

1 Q̃τ
2

)
=

(
Qτ

1 Qτ
2

)
− 1

2
aτ

(
Qτ

2 Qτ
1

)
+O(a2τ ) as τ → ∞. (2.8)

Following Lemma A.1, one can derive from (2.4), (2.5) and (2.8) that for τ > 0 large
enough, ∫

R3

V (x)|Q̃τ
i |2dx =

∫

R3

V (x)
[
Qτ

i −
1

2
aτQ

τ
j +O(a2τ )

]2
dx

=

∫

R3

V
(x
τ
+ x0

)
ϕ2

(x
τ

)
Q2

i (x)dx+O(τ−∞)

≤
∫

|x|≤2τ
V
(x
τ
+ x0

)
Q2

i (x)dx+O(τ−∞)

≤ C

∫

R3

Q2
i (x)dx+O(τ−∞) < ∞, i = 1, 2,
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and similarly,
∫

R3

|∇Q̃τ
i |2dx = τ2

∫

R3

|∇Qi|2dx+O(τ−∞) < ∞, i = 1, 2,

due to the fact that Qi ∈ H1(R3) holds for i = 1, 2. This implies that for τ > 0 large
enough, Q̃τ

i ∈ H holds for i = 1, 2.
For τ > 0 large enough, denoting

γ̃(2)τ :=

2∑

i=1

|Q̃τ
i 〉〈Q̃τ

i |, (2.9)

where Q̃τ
1 and Q̃τ

2 are as in (2.7), we next estimate each term of Ea(γ̃(2)τ ). It follows from
Lemma A.1, (2.4), (2.5) and (2.8) that

Tr(−∆γ̃(2)τ )− a

∫

R3

ρ
5
3

γ̃
(2)
τ

dx

=
2∑

i=1

∫

R3

|∇Q̃τ
i |2dx− a

∫

R3

( 2∑

j=1

|Q̃τ
j |2

) 5
3
dx

=τ2
[
Tr(−∆γ(2))− a

∫

R3

ρ
5
3

γ(2)dx
]
+O(τ−∞)

=(a∗2 − a)τ2
∫

R3

ρ
5
3

γ(2)dx+O(τ−∞) as τ → ∞,

(2.10)

due to the fact that γ(2) is a minimizer of a∗2 with ‖γ(2)‖ = 1. On the other hand, since
the function x 7→ V (x)ϕ2(x− x0) is bounded and has compact support, we deduce from
Lemma A.1, (2.4), (2.5) and (2.8) that

lim
τ→∞

Tr
(
V (x)γ̃(2)τ

)
= lim

τ→∞

2∑

i=1

∫

R3

V (x)|Q̃τ
i |2dx

= lim
τ→∞

2∑

i=1

∫

R3

V
(x
τ
+ x0

)
ϕ2

(x
τ

)
Q2

i (x)dx

= V (x0)

∫

R3

ργ(2)(x)dx = 2V (x0).

(2.11)

Combining (2.10) with (2.11) yields that for a > a∗2,

Ea(2) ≤ lim
τ→∞

Ea(γ̃(2)τ )

= lim
τ→∞

{
Tr(−∆+ V (x))γ̃(2)τ − a

∫

R3

ρ
5
3

γ̃
(2)
τ

dx
}
= −∞,

and hence there is no minimizer of Ea(2) for a > a∗2.
As for the case a = a∗2, taking the infimum over x0 ∈ R

3, it then follows from (2.1),
(2.10) and (2.11) that Ea∗2

(2) = 0. We next prove the non-existence of minimizers for

Ea∗2
(2). On the contrary, assume that γ =

∑2
i=1 |ui〉〈ui|, where ui ∈ H and (ui, uj) = δij

for i, j = 1, 2, is a minimizer of Ea∗2
(2). We then obtain from (1.6) that for V (x) ≥ 0,

∫

R3

V (x)ργ(x)dx = 0, (2.12)

9



and

Tr(−∆γ) = a∗2

∫

R3

ρ
5
3
γ (x)dx. (2.13)

Since lim|x|→∞ V (x) = ∞, we derive from (2.12) that ργ(x) has compact support. Fol-
lowing (2.13), one can obtain that γ is a minimizer of a∗2, which implies from [11, Theorem

6] that u1(x) and u2(x) are the 2-first eigenfunctions of the operator −∆ − 5
3a

∗
2ρ

2/3
γ (x)

in R
3. Hence ργ(x) = u21(x) + u22(x) > 0 in R

3, in view of the fact (cf. [17, Theorem
11.8]) that the first eigenfunction u1(x) satisfies u21(x) > 0 in R

3. This is however a
contradiction, and therefore there is no minimizer for Ea∗2

(2). This completes the proof
of Theorem 1.1.

Note from the proof of Theorem 1.1 that limaրa∗2
Ea(2) = Ea∗2

(2) = infx∈R3 V (x) = 0.
Indeed, by taking a ր a∗2 and setting τ → ∞, we derive from (2.10) and (2.11) that
lim sup
aրa∗2

Ea(2) ≤ 2V (x0). The above result can be then obtained by taking the infimum

over x0 ∈ R
3.

3 Estimates of Minimizers as a ր a
∗
2

Assume V (x) satisfies (1.9), it follows from Theorem 1.1 that Ea(2) admits minimizers,
if and only if 0 < a < a∗2. In this section, we shall establish some refined estimates of
minimizers for Ea(2) as a ր a∗2. We first address the following energy estimates of Ea(2)
as a ր a∗2.

Lemma 3.1. Assume V (x) satisfies (1.9). Then there exist two positive constants m

and M , independent of 0 < a < a∗2, such that

0 < m(a∗2 − a)
p

p+2 ≤ Ea(2) ≤ M(a∗2 − a)
p

p+2 as a ր a∗2, (3.1)

where p > 0 is as in (1.10).

Proof. For any 0 < a < a∗2, β > 0, and γ =
∑2

i=1 |ui〉〈ui|, where ui ∈ H and (ui, uj) =
δij for i, j = 1, 2, we obtain from Young’s inequality and (1.6) that

Ea(γ) ≥
∫

R3

V (x)ργ(x)dx+ (a∗2 − a)

∫

R3

ρ
5
3
γ (x)dx

=2β +

∫

R3

(V (x)− β) ργ(x)dx+ (a∗2 − a)

∫

R3

ρ
5
3
γ (x)dx

≥2β −
∫

R3

[
β − V (x)

]
+
ργ(x)dx+ (a∗2 − a)

∫

R3

ρ
5
3
γ (x)dx

≥2β − 2

5

(
3

5

) 3
2 1

(a∗2 − a)
3
2

∫

R3

[
β − V (x)

] 5
2
+
dx,

(3.2)

where [·]+ = max{0, ·} denotes the positive part.
For β > 0 small enough, since V (x) satisfies (1.9), the set {x ∈ R

3 : V (x) ≤ β} is
contained in the union of l disjoint balls, each of which has the center at the minimum

point xm (m = 1, · · · , l), together with the radius no more than Kβ
1
p for some suitable

10



constant K > 0. Moreover, V (x) ≥
( |x−xm|

K

)p
holds in these disjoint balls. We therefore

derive that
∫

R3

[
β − V (x)

] 5
2
+
dx ≤ l

∫

|x|≤Kβ
1
p

[
β −

( |x|
K

)p] 5
2
dx

= lK3β
5p+6
2p

∫

|x|≤1
(1− |x|p) 5

2 dx ≤ 4πlK3

3
β

5p+6
2p .

(3.3)

Applying (3.2) and (3.3), there exists a constant m > 0 such that

Ea(γ) ≥ 2β − C0
β

5p+6
2p

(a∗2 − a)
3
2

≥ m(a∗2 − a)
p

p+2 > 0,

where C0 := 8πlK3

15 (35)
3
2 > 0, and the second inequality is derived by taking β = (a∗2 −

a)
p

p+2

[
4p

(5p+6)C0

] 2p
3p+6

> 0. This gives the lower bound of (3.1) as a ր a∗2.

In order to derive the upper bound of (3.1), we take the test function γ̃
(2)
τ of the form

(2.9), where the point x0 in (2.4) is chosen such that x0 ∈ Z defined in (1.11). Choose
sufficiently small R > 0 so that

V (x) ≤ C1|x− x0|p for |x− x0| ≤ R.

We therefore obtain from Lemma A.1, (2.4), (2.5) and (2.8) that

Tr(V γ̃(2)τ ) =
2∑

i=1

∫

R3

V (x)|Q̃τ
i (x)|2dx

=

2∑

i=1

∫

R3

V
(x
τ
+ x0

)
ϕ2

(x
τ

)
Q2

i (x)dx+O(τ−∞)

≤ C1τ
−p

∫

R3

|x|pργ(2)(x)dx+O(τ−∞) as τ → ∞,

which then yields from (2.10) that

Ea(2) ≤ Ea(γ̃(2)τ ) ≤ (a∗2 − a)τ2
∫

R3

ρ
5
3

γ(2)(x)dx

+ C1τ
−p

∫

R3

|x|pργ(2)(x)dx+O(τ−∞) as τ → ∞.

Setting τ = (a∗2 − a)−
1

p+2 > 0 into the above estimate thus gives the upper bound of
(3.1) as a ր a∗2. This therefore completes the proof of Lemma 3.1.

Applying the energy estimates of Lemma 3.1, we next address the following estimates
of ργa(x) as a ր a∗2, where γa is a minimizer of Ea(2).

Lemma 3.2. Assume V (x) satisfies (1.9), and suppose γa =
∑2

i=1 |uai 〉〈uai | is a mini-
mizer of Ea(2), where uai ∈ H satisfies (uai , u

a
j ) = δij for i, j = 1, 2. Then there exists a

constant L > 0, independent of 0 < a < a∗2, such that

0 < L(a∗2 − a)−
2

p+2 ≤
∫

R3

ρ
5
3
γa(x)dx ≤ 1

L
(a∗2 − a)−

2
p+2 as a ր a∗2, (3.4)

where p > 0 is as in (1.10), and ργa(x) =
∑2

i=1 |uai (x)|2.
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Proof. By Lemma 3.1, it follows from (1.6) and (1.9) that

M(a∗2 − a)
p

p+2 ≥ Ea(2) ≥ (a∗2 − a)

∫

R3

ρ
5
3
γa(x)dx as a ր a∗2,

which yields the upper bound of (3.4).
We next prove the lower bound of (3.4). For any 0 < b < a < a∗2, we derive that

Eb(2) ≤ Eb(γa) = Ea(2) + (a− b)

∫

R3

ρ
5
3
γa(x)dx.

Following Lemma 3.1, we have

∫

R3

ρ
5
3
γa(x)dx ≥ Eb(2)− Ea(2)

a− b
≥ m(a∗2 − b)

p

p+2 −M(a∗2 − a)
p

p+2

a− b

= (a∗2 − a)−
2

p+2
m(1 + δ)

p
p+2 −M

δ
as a ր a∗2,

by taking b = a−δ(a∗2−a) ∈ (0, a). When a > 0 is sufficiently close to a∗2, one can choose
sufficiently large δ > 0, so that the last fraction of the above estimate is positive. This
gives the lower bound of (3.4), and the proof of Lemma 3.2 is therefore complete.

Under the assumption (1.9), we now define

εa := (a∗2 − a)
1

p+2 > 0, 0 < a < a∗2, (3.5)

where p > 0 is as in (1.10). The following lemma is then concerned with the analysis
properties of minimizers for Ea(2) in terms of εa > 0.

Lemma 3.3. Assume V (x) satisfies (1.9), and suppose γa =
∑2

i=1 |uai 〉〈uai | is a mini-
mizer of Ea(2), where uai ∈ H satisfies (1.8) and (uai , u

a
j ) = δij for i, j = 1, 2. Then we

have

1. There exist a sequence {yεa} ⊂ R
3, positive constants R0 and η such that the

sequence

w̄a
i (x) := ε

3
2
a u

a
i (εax+ εayεa), i = 1, 2, γ̄a :=

2∑

i=1

|w̄a
i 〉〈w̄a

i |, (3.6)

satisfies

lim inf
aրa∗2

∫

BR0
(0)

ργ̄a(x)dx ≥ η > 0, (3.7)

where ργ̄a(x) :=
∑2

i=1 |w̄a
i (x)|2, and εa > 0 is defined by (3.5).

2. The point x̄a := εayεa satisfies

lim
aրa∗2

dist(x̄a,Λ) = 0, (3.8)

where the set Λ is defined by (1.10). Moreover, for any sequence {an} satisfying
an ր a∗2 as n → ∞, there exist a subsequence, still denoted by {an}, of {an} and
a point xk ∈ Λ such that

x̄an
n−→ xk and w̄an

i (x) := ε
3
2
anu

an
i (εanx+ x̄an)

n−→ w̄i(x) (3.9)

strongly in H1(R3), where γ̄ :=
∑2

i=1 |w̄i〉〈w̄i| is a minimizer of a∗2 defined by (1.6).
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Proof. 1. Assume γa =
∑2

i=1 |uai 〉〈uai | is a minimizer of Ea(2), where uai ∈ H satisfies
(uai , u

a
j ) = δij for i, j = 1, 2. Applying Lemma 3.1, it then follows from (1.6) and (1.9)

that

0 ≤ Tr(−∆γa)− a

∫

R3

ρ
5
3
γa(x)dx ≤ Ea(2) → 0 as a ր a∗2.

Note from Lemma 3.2 that lim
aրa∗2

∫
R3 ρ

5
3
γa(x)dx → ∞, and hence

0 ≤ Tr(−∆γa)
∫
R3 ρ

5
3
γa(x)dx

− a ≤ Ea(2)
∫
R3 ρ

5
3
γa(x)dx

→ 0 as a ր a∗2,

which gives that
Tr(−∆γa)

∫
R3 ρ

5
3
γa(x)dx

→ a∗2 as a ր a∗2.

Taking m1 = max{3a∗2
2 , 2

a∗2
}, it yields that

0 <
1

m1

∫

R3

ρ
5
3
γa(x)dx ≤ Tr

(
−∆γa

)
≤ m1

∫

R3

ρ
5
3
γa(x)dx as a ր a∗2.

We then deduce from Lemma 3.2 that there exists C2 :=
m1
L > 0 such that

0 <
1

C2
(a∗2 − a)−

2
p+2 ≤ Tr(−∆γa) ≤ C2(a

∗
2 − a)−

2
p+2 as a ր a∗2. (3.10)

Denote

w̃a
i (x) := ε

3
2
a u

a
i (εax), i = 1, 2, γ̃a :=

2∑

i=1

|w̃a
i 〉〈w̃a

i |,

where εa > 0 is as in (3.5). It then follows from Lemma 3.2 and (3.10) that

0 <
1

C2
≤ Tr(−∆γ̃a) ≤ C2 and 0 < L ≤

∫

R3

ρ
5
3

γ̃a
(x)dx ≤ 1

L
as a ր a∗2. (3.11)

On the other hand, the Hoffmann-Ostenhof inequality [16] gives that

Tr(−∆γ̃a) ≥
∫

R3

|∇√
ργ̃a |2dx. (3.12)

We therefore deduce from (3.11) and (3.12) that the sequence {√ργ̃a} is bounded uni-
formly in H1(R3) as a ր a∗2.

We next claim that there exist a sequence {yεa} ⊂ R
3, R0 > 0 and η > 0 such that

lim inf
aրa∗2

∫

BR0
(yεa )

ργ̃a(x)dx ≥ η > 0. (3.13)

Indeed, if (3.13) is not true, then for any R > 0, there exists a sequence {an}, where
an ր a∗2 as n → ∞, such that

lim
n→∞

sup
y∈R3

∫

BR(y)
ργ̃an (x)dx = 0.
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Since the sequence {√ργ̃an} is bounded uniformly in H1(R3) as n → ∞, we derive

from [29, Theorem 1.21] that ργ̃an (x) → 0 strongly in Lq(R3) as n → ∞ for 1 < q < 3.
This is however a contradiction in view of (3.11). We therefore obtain that the claim
(3.13) holds true, which further yields that (3.7) holds true.

2. We first prove that (3.8) holds true. On the contrary, assume that (3.8) is not
true. Then there exist a sequence {an}, where an ր a∗2 as n → ∞, and a constant δ > 0
such that

dist(x̄an ,Λ) ≥ δ > 0 as n → ∞,

which yields that there exists a constant C(δ) > 0 such that

V (x̄an) ≥ C(δ) > 0 as n → ∞.

By Fatou’s lemma, we therefore derive from (3.7) that

lim inf
n→∞

∫

R3

V (εanx+ x̄an)ργ̄an (x)dx ≥
∫

BR0
(0)

lim inf
n→∞

V (εanx+ x̄an)ργ̄an (x)dx

≥ C(δ)

2
η > 0.

(3.14)

On the other hand, one can deduce from (1.6) and Lemma 3.1 that

0 ≤
∫

R3

V (εanx+x̄an)ργ̄an (x)dx =

∫

R3

V (x)ργan (x)dx ≤ Ean(2) → 0 as n → ∞, (3.15)

which however contradicts with (3.14), and hence (3.8) holds true.
We now focus on the proof of (3.9). Towards this purpose, we first claim that

Tr(−∆γ̄a) = a∗2

∫

R3

ρ
5
3
γ̄a(x)dx+ o(1) as a ր a∗2, (3.16)

where γ̄a is defined by (3.6). Indeed, note that γa =
∑2

i=1 |uai 〉〈uai | is a minimizer of
Ea(2), where (ua1, u

a
2) satisfies the following system

−∆uai + V (x)uai −
5a

3
ρ

2
3
γau

a
i = µa

i u
a
i in R

3, i = 1, 2. (3.17)

Here ργa(x) =
∑2

i=1 |uai (x)|2, and µa
1 < µa

2 are the 2-first eigenvalues of the operator

−∆+ V (x)− 5a
3 ρ

2
3
γa in R

3. We hence deduce from Lemma 3.1 and (3.17) that

2∑

i=1

µa
i ε

2
a = ε2aEa(2)−

2a

3
ε2a

∫

R3

ρ
5
3
γadx = −2a

3

∫

R3

ρ
5
3
γ̄a(x)dx+ o(1) as a ր a∗2. (3.18)

On the other hand, we obtain from (3.6) and (3.17) that

−∆w̄a
i + ε2aV (εax+ x̄a)w̄

a
i −

5a

3
ρ

2
3
γ̄aw̄

a
i = µa

i ε
2
aw̄

a
i in R

3, i = 1, 2, (3.19)

which implies that

Tr(−∆γ̄a) + ε2a

∫

R3

V (εax+ x̄a)ργ̄a(x)dx− 5a

3

∫

R3

ρ
5
3
γ̄a(x)dx =

2∑

i=1

µa
i ε

2
a. (3.20)
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It follows from (3.15) that

ε2a

∫

R3

V (εax+ x̄a)ργ̄a(x)dx → 0 as a ր a∗2,

which and (3.20) give that

Tr(−∆γ̄a)−
5a

3

∫

R3

ρ
5
3
γ̄a(x)dx =

2∑

i=1

µa
i ε

2
a + o(1) as a ր a∗2. (3.21)

Combining (3.18) with (3.21) yields that

Tr(−∆γ̄a) = a∗2

∫

R3

ρ
5
3
γ̄a(x)dx+ o(1) as a ր a∗2,

and hence the claim (3.16) holds true.
Let {an} be any sequence satisfying an ր a∗2 as n → ∞. It follows from (3.8) that

there exist a subsequence, still denoted by {an}, of {an} and a point xk ∈ Λ such that

x̄an → xk as n → ∞. (3.22)

Similar to (3.11), we obtain that {w̄an
i } is bounded uniformly in H1(R3) as n → ∞ for

i = 1, 2. Hence, up to a subsequence if necessary, there exists a function w̄i ∈ H1(R3)
such that

w̄an
i ⇀ w̄i weakly in H1(R3) as n → ∞, i = 1, 2, (3.23)

and
w̄an
i → w̄i strongly in L

q
loc(R

3) as n → ∞, 2 ≤ q < 6, i = 1, 2.

This gives that
w̄an
i → w̄i a.e. in R

3 as n → ∞, i = 1, 2,

and
ργ̄n → ργ̄ := w̄2

1 + w̄2
2 strongly in Lr

loc(R
3) as n → ∞, 1 ≤ r < 3,

where we denote γ̄n := γ̄an and γ̄ :=
∑2

i=1 |w̄i〉〈w̄i|.
By an adaptation of the classical dichotomy result (cf. [19, Section 3.3]), one can

deduce from (3.7) that up to a subsequence of {an} if necessary, there exists a sequence
{Rn} with Rn → ∞ as n → ∞ such that

0 < lim
n→∞

∫

|x|≤Rn

ργ̄ndx =

∫

R3

ργ̄dx and lim
n→∞

∫

Rn≤|x|≤2Rn

ργ̄ndx = 0. (3.24)

Let χ(x) ∈ C∞
0 (R3, [0, 1]) be a cut-off function satisfying χ(x) ≡ 1 for |x| ≤ 1 and

χ(x) ≡ 0 for |x| ≥ 2. Taking χn(x) := χ( x
Rn

) and ηn(x) =
√

1− χ2
n(x), we then obtain

from (3.24) that

χ2
nργ̄n → ργ̄ strongly in Lr(R3) as n → ∞, 1 ≤ r < 3. (3.25)

Following the IMS formula [8, Theorem 3.2] and Fatou’s lemma [25, Theorem 2.7], we
derive that

Tr(−∆γ̄n) = Tr(−∆χnγ̄nχn) + Tr(−∆ηnγ̄nηn)−
∫

R3

(|∇χn|2 + |∇ηn|2)ργ̄ndx

≥ Tr(−∆χnγ̄nχn) + Tr(−∆ηnγ̄nηn)− 2CR−2
n

= Tr(−∆χnγ̄nχn) + Tr(−∆ηnγ̄nηn) + o(1)

≥ Tr(−∆γ̄) + Tr(−∆ηnγ̄nηn) + o(1) as n → ∞.

(3.26)
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Moreover, we deduce from (3.25) that
∫

R3

ρ
5
3
γ̄ndx =

∫

R3

χ2
nρ

5
3
γ̄ndx+

∫

R3

(η2nργ̄n)
5
3 dx+

∫

R3

(η2n − η
10
3
n )ρ

5
3
γ̄ndx

=

∫

R3

ρ
5
3
γ̄ dx+

∫

R3

(η2nργ̄n)
5
3dx+ o(1) as n → ∞.

(3.27)

Since ‖γ̄‖ ≤ lim infn→∞ ‖γ̄n‖ = 1 and ‖ηnγ̄nηn‖ ≤ ‖γ̄n‖ = 1, we obtain from (1.6),
(3.16), (3.26) and (3.27) that

0 = lim
n→∞

{
Tr(−∆γ̄n)− a∗2

∫

R3

ρ
5
3
γ̄ndx

}

≥Tr(−∆γ̄)− a∗2

∫

R3

ρ
5
3
γ̄ dx+ lim

n→∞

{
Tr(−∆ηnγ̄nηn)− a∗2

∫

R3

(η2nργ̄n)
5
3 dx

}

≥‖γ̄‖ 2
3Tr(−∆γ̄)− a∗2

∫

R3

ρ
5
3
γ̄ dx

+ lim
n→∞

{
‖ηnγ̄nηn‖

2
3Tr(−∆ηnγ̄nηn)− a∗2

∫

R3

(η2nργ̄n)
5
3dx

}

≥‖γ̄‖ 2
3Tr(−∆γ̄)− a∗2

∫

R3

ρ
5
3
γ̄ dx ≥ 0,

(3.28)

which implies that γ̄ is a minimizer of a∗2 and ‖γ̄‖ = 1. It also follows from [11, Theorem
6] that any minimizer γ(2) of a∗2 is of the form

γ(2) = ‖γ(2)‖
2∑

i=1

|Qi〉〈Qi|, (Qi, Qj) = δij , i, j = 1, 2.

We therefore obtain that γ̄ = ‖γ̄‖
2∑

i=1
|Qi〉〈Qi| =

2∑
i=1

|Qi〉〈Qi|, and hence

2 = lim
n→∞

∫

R3

ργ̄ndx =

∫

R3

ργ̄dx. (3.29)

Moreover, one can also derive from (3.28) and (3.29) that

lim
n→∞

Tr(−∆γ̄n) = Tr(−∆γ̄) and lim
n→∞

∫

R3

ρ
5
3
γ̄ndx =

∫

R3

ρ
5
3
γ̄ dx. (3.30)

We then derive from (3.29) and (3.30) that up to a subsequence if necessary,

w̄an
i (x) := ε

3
2
anu

an
i (εanx+ x̄an) → w̄i(x) strongly in H1(R3) as n → ∞, (3.31)

where γ̄ =
∑2

i=1 |w̄i〉〈w̄i| is a minimizer of a∗2. We therefore conclude from (3.22) and
(3.31) that (3.9) holds true. This completes the proof of Lemma 3.3.

4 Mass Concentration of Minimizers as a ր a
∗
2

Applying the refined estimates of the previous section, in this section we shall complete
the proof of Theorem 1.2 on the concentration behavior of minimizers γa =

∑2
i=1 |uai 〉〈uai |

for Ea(2) as a ր a∗2, where uai ∈ H satisfies (1.8) and (uai , u
a
j ) = δij for i, j = 1, 2. We

start with the exponential decay of w̄a
i (x) defined in (3.6) for i = 1, 2.
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Lemma 4.1. Under the assumption (1.9), suppose {w̄an
i (x)} is the convergent subse-

quence obtained in Lemma 3.3 (2), where γan =
∑2

i=1 |uani 〉〈uani | is a minimizer of Ean(2)
satisfying an ր a∗2 as n → ∞. Then there exists a constant C > 0, independent of an,
such that for i = 1, 2,

|w̄an
i (x)| ≤ Ce−

√
|λi|

2
|x| and ργ̄an (x) ≤ Ce−

√
|λ2||x| uniformly in R

3 (4.1)

as n → ∞, where λi < 0 is the i-th eigenvalue of the operator Hγ̄ := −∆− 5a∗2
3 ρ

2
3
γ̄ in R

3,

and γ̄ =
∑2

i=1 |w̄i〉〈w̄i| is as in Lemma 3.3 (2).

Proof. Since γan =
∑2

i=1 |uani 〉〈uani | is a minimizer of Ean(2), where uani ∈ H satisfies
(1.8) and (uani , uanj ) = δij for i, j = 1, 2, we first claim that

µan
1 < µan

2 < 0 as n → ∞, (4.2)

where µan
1 < µan

2 are the 2-first eigenvalues of the operator −∆+ V (x)− 5an
3 ρ

2
3
γan in R

3,

and ργan =
∑2

i=1 |uani |2. To prove the above claim, we define

Ea(1) = inf
{
Tr

(
−∆+ V (x)

)
γ − a

∫

R3

ρ
5
3
γ dx : γ = |u〉〈u|, ‖u‖2L2 = 1, u ∈ H

}
, a > 0.

Denote

a∗1 = inf
{‖γ‖ 2

3Tr(−∆γ)
∫
R3 ρ

5
3
γ dx

: 0 ≤ γ = γ∗, Rank(γ) ≤ 1
}
,

where ργ = β1|u|2, and γ = β1|u〉〈u| holds for β1 ≥ 0 and u ∈ H1(R3). It follows
from [11, Theorem 6] that 0 < a∗2 < a∗1. The similar argument of (2.1) yields that
Ean(1) ≥ 0 holds for 0 < an < a∗2 < a∗1, and hence

0 ≤ Ean(1) ≤
∫

R3

(
|∇uan1 |2 + V (x)|uan1 |2

)
dx− an

∫

R3

|uan1 | 103 dx

= Tr(−∆γan) +

∫

R3

V (x)ργandx− an

∫

R3

ρ
5
3
γandx+ an

∫

R3

ρ
5
3
γandx

−
∫

R3

|∇uan2 |2dx−
∫

R3

V (x)|uan2 |2dx− an

∫

R3

(
ργan − |uan2 |2

) 5
3 dx

= Ean(2) − µan
2 + an

∫

R3

ρ
5
3
γandx

− 5an
3

∫

R3

ρ
2
3
γan |uan2 |2dx− an

∫

R3

(
ργan − |uan2 |2

) 5
3 dx

in view of (3.17). Applying Lemmas 3.1 and 3.3, we then deduce that

µan
2 ε2an ≤ ε2anEan(2) + an

∫

R3

ρ
5
3
γ̄an

dx

− 5an
3

∫

R3

ρ
2
3
γ̄an

|w̄an
2 |2dx− an

∫

R3

(ργ̄an − |w̄an
2 |2) 5

3 dx

= a∗2

∫

R3

ρ
5
3
γ̄ dx− 5a∗2

3

∫

R3

ρ
2
3
γ̄ |w̄2|2dx− a∗2

∫

R3

(
ργ̄ − |w̄2|2

) 5
3 dx+ o(1)

< 0 as n → ∞,
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where the strict convexity of t 7→ t
5
3 is used in the last inequality. We therefore obtain

that the claim (4.2) holds true.
Following Lemma 3.2, we obtain from (3.18) that there exist constants C3 > 0 and

C4 > 0 such that

−C3 ≤
2∑

i=1

µan
i ε2an ≤ −C4 as n → ∞. (4.3)

Since µan
1 < µan

2 < 0 as n → ∞, we derive from (4.3) that {µan
i ε2an} is bounded uniformly

as n → ∞ for i = 1, 2. We thus assume that up to a subsequence if necessary,

lim
n→∞

µan
i ε2an = λi ≤ 0, i = 1, 2. (4.4)

Taking the weak limit of (3.19), we then deduce from Lemma 3.3 (2) that

−∆w̄i −
5a∗2
3

ρ
2
3
γ̄ w̄i = λiw̄i in R

3, i = 1, 2,

where w̄i is as in (3.9) and ργ̄ =
∑2

j=1 |w̄j |2. Since γ̄ =
∑2

i=1 |w̄i〉〈w̄i| is a minimizer of

a∗2, where w̄i ∈ H1(R3) satisfies (w̄i, w̄j) = δij for i, j = 1, 2, one can obtain from (1.7)
(or [11, Theorem 6]) that λ1 and λ2 are the 2-first negative eigenvalues of the operator

Hγ̄ := −∆− 5a∗2
3 ρ

2
3
γ̄ in R

3, and hence λ1 < λ2 < 0.
To prove (4.1), we now establish the exponential decay of |w̄an

i | as n → ∞ for i = 1, 2.
By Kato’s inequality [23, Theorem X.27], we derive from (3.19) that

−∆|w̄an
i |+

(
− 5an

3
ρ

2
3
γ̄an

− µan
i ε2an

)
|w̄an

i | ≤ 0 in R
3, i = 1, 2. (4.5)

Because {√ργ̄an} is bounded uniformly in H1(R3) as n → ∞, by Sobolev embedding
theorem, it yields that {ργ̄an} is bounded uniformly in Lq(R3) as n → ∞, where 1 ≤ q ≤
3. We therefore obtain that

{
ρ

2
3
γ̄an

}
is bounded uniformly in Lr(R3) as n → ∞, where

3
2 ≤ r ≤ 9

2 . Applying De Giorgi-Nash-Moser theory (cf. [15, Theorem 4.1]), we then
deduce from (4.4) and (4.5) that for any y ∈ R

3,

sup
B1(y)

|w̄an
i | ≤ C‖w̄an

i ‖L2(B2(y)) as n → ∞, i = 1, 2,

which thus yields that for i = 1, 2,

|w̄an
i | ≤ C and lim

|x|→∞
|w̄an

i | = 0 uniformly as n → ∞

in view of (3.9). This also gives that

ργ̄an ≤ C and lim
|x|→∞

ργ̄an = 0 uniformly as n → ∞. (4.6)

Using the comparison principle, we then derive from (4.5) that

|w̄an
i | ≤ Ce−

√
|λi|

2
|x| uniformly in R

3 as n → ∞, i = 1, 2,

where λ1 < λ2 < 0 are the 2-first eigenvalues of the operator Hγ̄ := −∆− 5a∗2
3 ρ

2
3
γ̄ in R

3.
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To obtain the exponential decay of ργ̄an as n → ∞, we note from (3.19) that for
i = 1, 2,

−1

2
∆|w̄an

i |2+ |∇w̄an
i |2+ε2anV (εanx+ x̄an)|w̄an

i |2− 5an
3

ρ
2
3
γ̄an

|w̄an
i |2 = µan

i ε2an |w̄
an
i |2 in R

3,

which implies that

−1

2
∆ργ̄an +

(
− µan

2 ε2an − 5an
3

ρ
2
3
γ̄an

)
ργ̄an ≤ 0 in R

3 as n → ∞. (4.7)

Applying the comparison principle to (4.7), we thus obtain from (4.4) and (4.6) that

ργ̄an (x) ≤ Ce−
√

|λ2||x| uniformly in R
3 as n → ∞,

where λ2 < 0 is the second eigenvalue of the operator Hγ̄ in R
3. This completes the

proof of Lemma 4.1.
In order to prove Theorem 1.2, we next address the existence of global maximum

points for ργa(x), where γa =
∑2

i=1 |uai 〉〈uai | is a minimizer of Ea(2), and uai ∈ H satisfies
(1.8) and (uai , u

a
j ) = δij for i, j = 1, 2. Note from (3.17) that uai satisfies

−1

2
∆|uai |2 + |∇uai |2 + V (x)|uai |2 −

5a

3
ρ

2
3
γa |uai |2 = µa

i |uai |2 in R
3, i = 1, 2.

We therefore obtain that

−1

2
∆ργa +

(
− 5a

3
ρ

2
3
γa − µa

2

)
ργa ≤ 0 in R

3, (4.8)

due to the fact that µa
1 < µa

2. Since uai ∈ H1(R3) for i = 1, 2, it yields from (3.12) that√
ργa ∈ H1(R3). By Sobolev’s embedding theorem, it then gives that ργa ∈ Lq(R3) for

1 ≤ q ≤ 3, and hence ρ
2
3
γa ∈ Lr(R3) for 3

2 ≤ r ≤ 9
2 . Following De Giorgi-Nash-Moser

theory (cf. [15, Theorem 4.1]), we then obtain from (4.8) that for any y ∈ R
3,

sup
B1(y)

ργa(x) ≤ C‖ργa‖L1(B2(y)),

which yields that lim|x|→∞ ργa(x) = 0. Because
∫
R3 ργa(x)dx = 2, this further gives that

global maximum points of ργa(x) exist in a bounded ball BR(0), where R > 0 is large
enough.

Applying the above existence of global maximum points for ργa(x), we next analyze
the following convergence.

Lemma 4.2. Under the assumption (1.9), assume the constant p > 0 and the set Λ are
defined by (1.10). Suppose {w̄an

i (x)} is the convergent subsequence obtained in Lemma
3.3 (2), where γan =

∑2
i=1 |uani 〉〈uani | is a minimizer of Ean(2) satisfying an ր a∗2 as

n → ∞. Then up to a subsequence if necessary,

wan
i (x) := ε

3
2
anu

an
i (εanx+ xan)

n−→ wi(x), εan := (a∗2 − an)
1

p+2 > 0 (4.9)

strongly in H1(R3) ∩ L∞(R3) for i = 1, 2, where γ :=
∑2

i=1 |wi〉〈wi| is a minimizer of
a∗2 defined by (1.6), and there exists a point xk ∈ Λ such that the global maximum point
xan ∈ R

3 of ργan (x) =
∑2

i=1 |uani |2 satisfies

xan −→ xk as n → ∞. (4.10)

19



Proof. Define for i = 1, 2,

wan
i (x) := ε

3
2
anu

an
i (εanx+xan) = w̄an

i

(
x+

xan − x̄an
εan

)
, εan := (a∗2 − an)

1
p+2 > 0, (4.11)

and

γ̂an :=

2∑

i=1

|wan
i 〉〈wan

i |, (4.12)

where w̄an
i (x) and x̄an ∈ R

3 are as in (3.9), and xan ∈ R
3 is a global maximum point of

ργan (x) =
∑2

i=1 |uani |2. It then follows from (3.17) and (4.11) that wan
i (x) satisfies the

following system

−∆wan
i + ε2anV (εanx+ xan)w

an
i − 5an

3
ρ

2
3
γ̂an

wan
i = µan

i ε2anw
an
i in R

3, i = 1, 2, (4.13)

where ργ̂an =
∑2

j=1 |wan
j |2, and µan

1 < µan
2 are the 2-first eigenvalues of the operator

−∆+ V (x)− 5an
3 ρ

2
3
γan in R

3.
We first claim that there exists a constant C > 0, independent of an > 0, such that

|xan − x̄an |
εan

≤ C uniformly as n → ∞. (4.14)

In fact, if (4.14) is false, then there exists a subsequence, still denoted by {an}, of {an}
such that |xan−x̄an |

εan
→ ∞ as n → ∞. It thus follows from (4.1) that

ργan (xan) = ε−3
an ργ̄an

(xan − x̄an
εan

)
≤ Cε−3

an e
−
√

|λ2||xan−x̄an |

εan = o(ε−3
an ) as n → ∞, (4.15)

where γ̄an is as in (3.6). On the other hand, it follows from (4.8) that ργan (x) =∑2
i=1 |uani |2 satisfies

−1

2
∆ργan (x)−

5an
3

ρ
5
3
γan (x) ≤ µan

2 ργan (x) in R
3.

Since xan ∈ R
3 is a maximum point of ργan (x), we have −1

2∆ργan (xan) ≥ 0, and hence

ργan (xan) ≥
(−3µan

2

5an

) 3
2 ≥ Cε−3

an as n → ∞,

due to the fact that limn→∞ µan
2 ε2an = λ2 < 0. This however contradicts with (4.15). We

therefore derive that the claim (4.14) holds true.
Applying (4.14), then there exists a constant R1 > 0, independent of an, such that

|xan−x̄an |
εan

< R1
2 as n → ∞. Moreover, it then yields from (3.9) that there exists a point

xk ∈ Λ such that the maximum point xan of ργan (x) satisfies

lim
n→∞

xan = lim
n→∞

x̄an = xk ∈ Λ, (4.16)

which thus proves (4.10). Following (4.11), we have

ργ̂an (x) = ργ̄an

(
x+

xan − x̄an
εan

)
,
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where ργ̂an (x) =
∑2

i=1 |wan
i |2 and ργ̄an (x) =

∑2
i=1 |w̄an

i |2. It then follows from (3.7) that

lim
n→∞

∫

BR0+R1
(0)

ργ̂an (x)dx = lim
n→∞

∫

BR0+R1
(
xan−x̄an

εan
)
ργ̄an (x)dx

≥ lim
n→∞

∫

BR0
(0)

ργ̄an (x)dx ≥ η > 0.

The similar argument of proving (3.9) thus yields that there exist a subsequence, still
denoted by {an}, of {an} and wi ∈ H1(R3) such that for i = 1, 2,

wan
i (x) := ε

3
2
anu

an
i (εanx+ xan) → wi(x) strongly in H1(R3) as n → ∞, (4.17)

where γ :=
∑2

i=1 |wi〉〈wi| is a minimizer of a∗2 defined by (1.6).
We next prove (4.9) on the L∞-uniform convergence of wan

i (x) as n → ∞. Similar
to Lemmas A.1 and 4.1, one can derive that

|wi(x)|, |wan
i (x)| ≤ Ce−

√
|µi|

2
|x| uniformly in R

3 as n → ∞, i = 1, 2, (4.18)

where µ1 < µ2 < 0 are the 2-first eigenvalues of the operator Hγ := −∆ − 5a∗2
3 ρ

2
3
γ in R

3.
On the other hand, define

Gan
i (x) := −ε2anV (εanx+ xan)w

an
i (x) +

5an
3

ρ
2
3
γ̂an

wan
i (x) + µan

i ε2anw
an
i (x), i = 1, 2,

so that the system (4.13) can be rewritten as

−∆wan
i (x) = Gan

i (x) in R
3, i = 1, 2. (4.19)

Since it follows from (4.18) that {wan
i } and {ργ̂an} are bounded uniformly in L∞(R3)

as n → ∞, we deduce from (1.9), (4.4) and (4.16) that {Gan
i } is bounded uniformly

in L
p
loc(R

3) for p > 2 as n → ∞. Applying the Lp theory to (4.19), it further yields

that {wan
i } is bounded uniformly in W

2,p
loc (R

3) as n → ∞. We therefore obtain from [12,
Theorem 7.26] that there exist a subsequence, still denoted by {wan

i }, of {wan
i } and ŵi(x)

such that

wan
i (x) → ŵi(x) uniformly in L∞

loc(R
3) as n → ∞, i = 1, 2.

Note from (4.17) that ŵi(x) = wi(x), and hence

wan
i (x) := ε

3
2
anu

an
i (εanx+ xan) → wi(x) uniformly in L∞

loc(R
3) as n → ∞, i = 1, 2.

(4.20)
We thus conclude from (4.16)–(4.18) and (4.20) that the L∞-uniform convergence (4.9)
holds true, which therefore completes the proof of Lemma 4.2.

Applying Lemma 4.2, we are now ready to establish Theorem 1.2.

Proof of Theorem 1.2. In view of Lemma 4.2, to complete the proof of Theorem 1.2,
it suffices to prove that the point xk of (4.10) satisfies

xk ∈ Z and lim
n→∞

xan − xk

εan
= x̄, εan = (a∗2 − an)

1
p+2 > 0, (4.21)
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where the set Z is defined by (1.11), x̄ is some point in R
3, and xan ∈ R

3 is a maximum
point of ργan (x) =

∑2
i=1 |uani |2. By direct calculations, we deduce from (1.6) and (4.9)

that

Ean(2) = Tr
(
−∆+ V (x)

)
γan − an

∫

R3

ρ
5
3
γandx

= ε−2
an

(
Tr(−∆γ̂an)− a∗2

∫

R3

ρ
5
3
γ̂an

dx
)

+

∫

R3

V (εanx+ xan)ργ̂andx+ εpan

∫

R3

ρ
5
3
γ̂an

dx

≥
∫

R3

V (εanx+ xan)ργ̂andx+ εpan

∫

R3

ρ
5
3
γ̂an

dx,

(4.22)

where ργ̂an =
∑2

i=1 |wan
i |2, and γ̂an =

∑2
i=1 |wan

i 〉〈wan
i | is defined by (4.12).

We now claim that
{ |xan − xk|

εan

}
is bounded uniformly as n → ∞. (4.23)

On the contrary, assume that (4.23) is false. We then obtain that there exists a subse-
quence, still denoted by {an}, of {an} such that

lim
n→∞

|xan − xk|
εan

= ∞.

It thus follows from Fatou’s lemma that for any sufficiently large M ′ > 0,

lim inf
n→∞

ε−pk
an

∫

R3

V (εanx+ xan)ργ̂andx

= lim inf
n→∞

∫

R3

V (εanx+ xan)

|εanx+ xan − xk|pk
∣∣∣x+

xan − xk

εan

∣∣∣
pk
ργ̂andx

≥
∫

R3

lim inf
n→∞

V (εanx+ xan)

|εanx+ xan − xk|pk
∣∣∣x+

xan − xk

εan

∣∣∣
pk
ργ̂andx ≥ M ′,

(4.24)

where pk > 0 is as in (1.9). We further derive from (3.5), (4.22) and (4.24) that

Ean(2) ≥
M ′

2
εpkan =

M ′

2
(a∗2 − an)

pk
p+2 as n → ∞ (4.25)

holds for above any constant M ′ > 0, which however contradicts with Lemma 3.1. We
therefore conclude that the claim (4.23) holds true. The same argument of (4.24) and
(4.25) also yields that pk = p.

It follows from the claim (4.23) that there exist a subsequence, still denoted by {an},
of {an} and a point x̄ ∈ R

3 such that

lim
n→∞

xan − xk

εan
= x̄. (4.26)

We then obtain from Lemma 4.2 and (1.12) that

lim inf
n→∞

ε−p
an

∫

R3

V (εanx+ xan)ργ̂andx

= lim inf
n→∞

∫

R3

V (εanx+ xan)

|εanx+ xan − xk|p
∣∣∣x+

xan − xk

εan

∣∣∣
p
ργ̂andx

≥αk

∫

R3

|x+ x̄|pργdx ≥ α

∫

R3

|x+ x̄|pργdx,

(4.27)
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where γ =
∑2

i=1 |wi〉〈wi| is as in Lemma 4.2, and all above identities hold, if and only if
αk = α is as in (1.12). We thus deduce from (4.22) and (4.27) that

lim inf
n→∞

Ean(2)

ε
p
an

≥
∫

R3

ρ
5
3
γ dx+ α

∫

R3

|x+ x̄|pργdx. (4.28)

On the other hand, defining

ui(x) = ε
− 3

2
an wi

(x− xm

εan
− x̄

)
, i = 1, 2,

where xm ∈ Z is as in (1.11), choose γ1 =
∑2

i=1 |ui〉〈ui| as a trail operator of Ean(2),
and assume γ =

∑2
i=1 |wi〉〈wi| defined in Lemma 4.2 is a minimizer of a∗2 and ‖γ‖ = 1.

We then deduce from (3.5) that

Ean(2) ≤ Tr
(
−∆+ V (x)

)
γ1 − an

∫

R3

ρ
5
3
γ1dx

= ε−2
an

(
Tr(−∆γ)− an

∫

R3

ρ
5
3
γ dx

)
+

∫

R3

V
(
εan(x+ x̄) + xm

)
ργdx

= εpan

{∫

R3

ρ
5
3
γ dx+

∫

R3

V
(
εan(x+ x̄) + xm

)

|εan(x+ x̄) + xm − xm|p |x+ x̄|pργdx
}
,

which yields that

lim sup
n→∞

Ean(2)

ε
p
an

≤
∫

R3

ρ
5
3
γ dx+ α

∫

R3

|x+ x̄|pργdx. (4.29)

We thus conclude from (4.28) and (4.29) that

lim
n→∞

Ean(2)

ε
p
an

=

∫

R3

ρ
5
3
γ dx+ α

∫

R3

|x+ x̄|pργdx.

Together with (4.27), this further implies that αk = α, and hence (4.21) holds true. This
completes the proof of Theorem 1.2.

A Appendix

For the reader’s convenience, the purpose of this appendix is to establish the following
exponential decay of minimizers for a∗2.

Lemma A.1. Assume

γ(2) = ‖γ(2)‖
2∑

i=1

|Qi〉〈Qi|, Qi ∈ H1(R3), (Qi, Qj) = δij , i, j = 1, 2, (A.1)

is a minimizer of a∗2 defined by (1.6). Then we have

Qi ∈ C2(R3), |Qi| ≤ Ce−
√

|µ̂i|

2
|x| and |∇Qi| ≤ Ce−

√
|µ̂i|

4
|x| in R

3, i = 1, 2,

where µ̂1 < µ̂2 < 0 are the 2-first negative eigenvalues of the operator

Ĥγ := −∆− 5

3
a∗2ρ

2
3
γ in R

3, ργ =
2∑

j=1

|Qj|2 and γ :=
2∑

i=1

|Qi〉〈Qi|. (A.2)
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Proof. Since γ(2) is a minimizer of a∗2, Qi(x) satisfies the following system

−∆Qi(x)−
5

3
a∗2ρ

2
3
γQi(x) = µ̂iQi(x) in R

3, i = 1, 2, (A.3)

where µ̂1 < µ̂2 < 0 are the 2-first negative eigenvalues of the operator Ĥγ defined in
(A.2). We first claim that

Qi(x) ∈ C2(R3) and lim
|x|→∞

|Qi(x)| = 0, i = 1, 2. (A.4)

In fact, by Kato’s inequality (cf. [23, Theorem X.27]), we derive from (A.3) that

−∆|Qi|+
(
− 5

3
a∗2ρ

2
3
γ − µ̂i

)
|Qi| ≤ 0 in R

3, i = 1, 2. (A.5)

Since Qi(x) ∈ H1(R3) for i = 1, 2, we have ργ(x) ∈ Lq(R3) for 1 ≤ q ≤ 3, and hence

ρ
2
3
γ (x) ∈ Lr(R3) for 3

2 ≤ r ≤ 9
2 . Applying De Giorgi-Nash-Moser theory (cf. [15, Theorem

4.1]), it then yields from (A.5) that for any y ∈ R
3,

sup
B1(y)

|Qi| ≤ C‖Qi‖L2(B2(y)), i = 1, 2,

which implies that Qi(x) ∈ L∞(R3) and lim
|x|→∞

|Qi| = 0 for i = 1, 2. This also gives that

ργ(x) ∈ L∞(R3) and lim
|x|→∞

ργ(x) = 0.

We next prove the continuity of Qi(x) for i = 1, 2. Denoting

Gi(x) :=
(5
3
a∗2ρ

2
3
γ + µ̂i

)
Qi(x),

we obtain from (A.3) that

−∆Qi(x) = Gi(x) in R
3, i = 1, 2. (A.6)

Since Qi(x) ∈ L∞(R3), we derive that Gi(x) ∈ L
q
loc(R

3) holds for q > 2. Applying the

Lp theory (cf. [12, Theorem 9.11]), we then deduce from (A.6) that Qi(x) ∈ W
2,q
loc (R

3)
for i = 1, 2. The standard Sobolev embedding theorem thus gives that Qi(x) ∈ Cθ

loc(R
3)

holds for some θ ∈ (0, 1). By the Schauder estimate (cf. [12, Theorem 6.2]), we further

obtain that Qi ∈ C
2,θ
loc (R

3), and hence Qi(x) ∈ C2(R3) for i = 1, 2. This gives the proof
of (A.4).

We finally prove the exponential decay of |Qi| for i = 1, 2. Since lim|x|→∞ ργ(x) = 0,
applying the comparison principle, it gives from (A.5) that there exists a constant C > 0
such that

|Qi| ≤ Ce−
√

|µ̂i|

2
|x| in R

3, i = 1, 2. (A.7)

By gradient estimates of (3.15) in [12], we further derive from (A.3) and (A.7) that

|∇Qi| ≤ Ce−
√

|µ̂i|

4
|x| in R

3, i = 1, 2,

which therefore completes the proof of Lemma A.1.
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