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Lithium niobate (LNO) and lithium tantalate (LTO) see widespread use in fundamental research
and commercial technologies reaching from electronics over classical optics to integrated quantum
communication. In recent years, the mixed crystal system lithium niobate tantalate (LNT) allows
for the dedicate engineering of material properties by combining the advantages of the two parental
materials LNO and LTO. Vibrational spectroscopies such as Raman spectroscopy or (Fourier trans-
form) infrared spectroscopy are vital techniques to provide detailed insight into the material prop-
erties, which is central to the analysis and optimization of devices. In this work, we present a
joint experimental-theoretical approach allowing to unambiguously assign the spectral features in
the LNT material family through both Raman and IR spectroscopy, as well as to provide an in-
depth explanation for the observed scattering efficiencies based on first-principles calculations. The
phononic contribution to the static dielectric tensor is calculated from the experimental and theo-
retical data using the generalized Lyddane-Sachs-Teller relation and compared with the results of
the first-principles calculations. The joint methodology can be readily expanded to other materials
and serves, e.g., as the basis for studying the role of point defects or doping.

I. INTRODUCTION

Lithium niobate (LiNbO3, LNO) and lithium tantalate
(LiTaO3, LTO) are two isomorphous ferroelectrics (space
group R3c) and are among the most widely used ma-
terials in electro-optic applications [1–3]. Both materi-
als feature a ferroelectric to paraelectric structural phase
transition, which, according to the actual knowledge, is a
phase transition of second order [4, 5]. Correspondingly,
the spontaneous polarization PS steadily increases with
decreasing temperature from 0 at the Curie temperature
to a value of 71(62)µC/cm2 and 60(55)µC/cm2 for con-
gruent (nearly stoichiometric) LNO [6] and LTO [7] at
low temperatures, respectively. LNO is characterized by
unusually large pyroelectric, piezoelectric, electro-optic,
and photo-elastic coefficients [1]. The magnitude of these
coefficients is less pronounced in LTO, which features,
however, higher thermal stability due to, for example,
lower thermally activated conductivity, which is favor-
able for high temperature sensing applications [8]. In
contrast, however, LTO has a much lower Curie tempera-
ture compared to LNO 874-958K for LTO [6, 9] vs. 1413-
1475K for LNO [7, 10]), limiting its applications to lower
temperature regions. Lithium niobate and lithium tan-
talate are birefringent, have useful acoustic wave proper-
ties [11] and a rather large acousto-optic figure-of-merit.
The wealth of physical effects and, more important, their
magnitude, render LNO and LTO ideal candidates for
acoustic and optical applications, exploiting both their

bulk and surface properties [12]. Recently, lithium-
niobate-tantalate solid solutions (LiNb1−xTaxO3, LNT)
have gained attention, as they conjugate the favorable
properties of LNO with the thermal stability of LTO
[8, 13–15]. Futhermore, LNT solid solutions allow for
the tailoring of many material properties by adjusting
the niobium-tantalum ratio and/or the Li concentration
[13–17].
For a complete characterization regarding the nio-

bium/tantalum ratio of the LNT solid solution, the
knowledge of the dynamical properties of the crystal lat-
tice of the end compounds LNO and LTO is crucial. In-
deed, it bears information concerning, e.g., crystal sym-
metry, phase transition dynamics, and many other as-
pects. In this context, Raman spectroscopy, as well as the
complementary infrared spectroscopy (IR) both provide
access to study the dynamical properties of the lattice
and, in turn, to characterize many fundamental material
parameters [16, 18].
As an example, the presence of one or more optical

phonon modes that become soft close to the Curie tem-
perature, is a typical signature of displacive type transi-
tions. No soft modes exist in order-disorder type tran-
sitions, instead. Therefore, many different studies did
focus on the investigation of the phonon modes of LNO
and LTO [19–25]. These investigations lead to the as-
signment of the experimentally detected spectral signa-
tures associated to atomic displacement patterns. How-
ever, the data from the literature present a not fully
consistent picture. In particular, in the case of LNO,
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there have been many ambiguities in the assignment of
spectral features [18, 19, 26, 27]. Some of the inves-
tigations, including Rayleigh scattering, Raman spec-
troscopy, and infrared reflectivity, demonstrated the ex-
istence of A1-TO optical phonons becoming soft at high
temperatures, suggesting a displacive nature of the tran-
sition [28–30]. Yet, no mode softening could be observed
in other studies, including neutron and Raman scatter-
ing experiments, suggesting the order-disorder nature of
the ferroelectric to paraelectric phase transition [31–33].
Moreover, the knowledge of the dynamical properties of
the solid solutions is rather limited, despite decades of
research [16, 18, 34].

Here, we investigate the dynamical properties of
LiNb1−xTaxO3 solid solutions and their end compounds
both theoretically and experimentally. Longitudinal-
optical (LO) and transverse-optical (TO) phonon fre-
quencies, IR spectra - more precisely the complex dielec-
tric function - and Raman spectra are calculated from
first-principles within density functional theory and com-
pared to experimental data obtained by both Fourier-
transform infrared spectroscopy (FTIR) and µ-Raman
spectroscopy. Raman and FTIR spectroscopy are com-
plementary techniques that, relying on different physi-
cal processes, give access to phonon modes of different
symmetry in some materials, or in the case of LNO and
LTO enable a much improved assignment of phonons,
as some have a very low scattering efficiency in either
Raman or IR. Calculated and experimentally observed
phonon modes are compared to each other and, where
existing, with available literature data. This allows for
the assignment and determination of all optical phonon
modes, including some that are difficult to measure solely
by Raman or (FT)IR spectroscopies. The similarities and
differences of the dynamical properties of LNO, LTO, and
LNT are briefly discussed. Finally, the measured phonon
frequencies are employed to estimate the phononic contri-
bution to the dielectric tensor with the Lyddane-Sachs-
Teller (LST) relation [35, 36].

II. EXPERIMENT

A. Samples

In this work, we have investigated three types of sin-
gle crystals: 1) LNO, 2) LTO, and 3) LNT mixed crys-
tals with a tantalum concentration of x = 0.70 ± 0.03.
All crystals are grown at the congruent point, i.e. all
crystals feature the typical lithium deficiency of approx-
imately 1.5 mol%, which is a result of the crystal growth
technique [3]. The crystals are otherwise undoped. The
LNO and LTO crystals are commercially obtained (Im-
pex HighTech GmbH, Münster, Germany), while the
LNT crystals were grown by the Czochralski method at
the Leibniz Institute for Crystal Growth, IKZ, Berlin.
The growth of the LNT crystals is described elsewhere
[13]. The crystal orientation has been determined via X-

ray diffraction and samples hasve been prepared as x-cut,
y-cut, or z-cut, which allows to study all optically active
phonon branches, as well as transverse- and longitudinal-
polarized phonon modes. All crystal surfaces, which have
been studied in Raman or FTIR spectroscopy, have been
polished to optical quality.

B. Raman spectroscopy

Raman spectroscopy was carried out on a LabRAM
HR Evolution Raman spectroscope by Horiba
Seisakusho. Excitation light is provided by a lin-
early polarized 17mW HeNe-laser at 632.8 nm. The
laser light is focused via an objective lens with a low
numerical aperture of 0.3. The low numerical aperture
allows one to average the signal over a larger sample
volume, and it reduces the influence of focusing-related
depolarization [37, 38]. The scattered light is collected
in back-reflection geometry via the same objective
lens. The elastically scattered light is blocked via an
appropriate edge filter and spectral analysis is performed
in an attached spectrometer with a 600 grooves/mm
grating and detected with a charge-coupled device. The
setup reaches a spectral resolution better than 2 cm−1.
The light polarization in excitation and detection paths
is set by automatized half-wave plates and linear polar-
izers, respectively. Calibration was done by measuring
(100)-cut single crystalline silicon, which shows one
prominent and sharp peak at 521 cm−1. More details on
the setup can be found elsewhere [39, 40].
For each sample and available crystal orientation, po-

larized Raman spectra are recorded by placing the fo-
cus more than 10 µm below the surface to limit spectro-
scopic signatures from the surface [41]. Due to the high
Raman scattering efficiency in the LNT crystal family,
high signal-to-noise ratio Raman spectra, which require
no further smoothing, can be obtained with integration
times of a few seconds at most. The obtained spectra are
normalized to their respective maximum after the dark
counts have been subtracted. No further data process-
ing was performed for joint plotting with the calculated
spectra. To accurately extract the peak frequencies, the
spectra were fitted with Lorentzian functions.

C. FTIR spectroscopy

Reflectance FTIR spectroscopy is performed on a
Bruker VERTEX 80v FTIR spectrometer in the range
from 50 to about 1000 cm−1, covering the known
phononic frequencies of LNO and LTO [19]. The light is
focused and collected via two ellipsoidal mirrors, which
are aligned to a common focus. The spectrometer yields
a spectral resolution of about 4 cm−1. Reference re-
flectance spectra are taken on a gold reference mirror.
The light polarization of the glowbar source is set linear
with a Tydex thin-film wire-grid polarizer.
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FIG. 1. Exemplary FTIR-reflectance spectrum of the z-cut
LNO sample in ordinary light polarization (E ∥ x). Due to
limitations in the experimental setup, the spectra are mea-
sured with two different beam splitter/detector combinations,
one operating in the far-infrared (FIR) region displayed in
blue and one operating in the mid-infrared range (MIR) dis-
played in green. The spectra show a good overlap in the
400-450 cm−1 range, which is used to merge the two datasets.
To extract the full dielectric function in the phononic range,
the spectrum is fitted with an oscillator model as shown in
Eq. 1. The best fit for the given spectrum is shown in red.

Figure 1 shows an exemplary raw data set taken on z-
cut LNO, where the light is polarized along the extraor-
dinary axis of the crystal (E ∥ x). Due to the limited
spectral range of the available beam splitters, two differ-
ent experimental settings for the mid-infrared (MIR; 400-
1000 cm−1, Ge/KBr beam splitter, MIR-BLATGS detec-
tor), and far-infrared (FIR, 50-600 cm−1, Myloo beam
splitter, FIR-DTGS detector) were used to measure the
full range of phonon frequencies in the LNT crystal fam-
ily. This can be readily seen in the raw data in Fig. 1,
where the FIR data is displayed in blue and the MIR
data in green. The two ranges show a good overlap in
the 400-450 cm−1 range, as displayed in the inset, which
is used to merge the datasets.

To obtain the dielectric function ε(ω) in the phononic
frequency range, the obtained reflectance spectrum is fit-
ted with a four parameter oscillator model of the form

ε(ω) = ε∞

n∏
j=1

ω2
LOj − ω2 + iωγLOj

ω2
TOj − ω2 + iωγTOj

. (1)

In this equation the 4n+1 independent (fitting) param-
eters are ωLOj and ωTOj , which refer to the frequencies of
the j-th longitudinal optical (LO) and transverse-optical
(TO) phonon modes, respectively, and γLOj and γTOj ,
which refer to their respective damping constants, as well
as the high frequency permittivity ε∞, which describes
the dielectric contribution of the electronic background,
which becomes dominant at higher frequencies (towards
optical frequencies).

Compared to a more traditional three-parameter
Drude-Lorentz oscillator model, which features only one
damping constant and was used in the past for LNO or
LTO [42], fitting the four parameter model was chosen,
because it describes the dielectric functions of materials
with a strong LO-TO splitting commonly seen in polar
crystals, like ferroelectrics, more accurately [43, 44]. Fur-
thermore, in the limit of ω → 0 equation (1) is identical
to the Lyddane-Sachs-Teller relation (LST) relation in
Eq. (11).
The fitting procedure is performed via the software

RefFIT [45], yielding the real ε′ and imaginary ε′′ con-
tributions of the dielectric function. A fitting result is
displayed in Fig. 1 which shows good agreement with
the raw data. Subsequently in this work, only the ex-
tracted real ε′ and imaginary ε′′ dielectric function are
shown. Prior to fitting of each datasets, the number of
expected phonons is set. Approximate starting frequen-
cies are based on literature or Raman data. Specifically,
in datasets containing A1-symmetry phonons, we did set
four phonons of A1 type. However, for E-type symmetry
phonons we only used eight instead of nine independent
phonons, because from previous work it is known that
the E-TO6 has a very weak IR oscillator strength and
is spectrally very close (10 cm−1) to the more intense E-
TO5 [18, 27, 34]. This is reversed in Raman spectroscopy,
where the E-TO5 is quasi-Raman silent and dominated
by the E-TO6, as also confirmed by theoretical calcula-
tions (Sec. VB).

D. Phonon modes and Selection rules

LNO and LTO are isostructural with two formula units
per unit cell. This results in 27 optical phonon modes.
Based on group theory, the optical phonon modes at the
Brillouin zone center Γ are further subdivided in four
modes of A1-type, five modes of A2-type and nine dou-
bly degenerate modes of E-type symmetry. Only the
A1 and E-symmetry phonons are Raman and IR-active,
while the A2 phonons are optically silent. Furthermore,
each phonon may be associated with a transverse opti-
cal (TO) frequency and a longitudional optical (LO) fre-
quency, as discussed for Eq. (1), which define the Rest-
strahlenband in the reflectance spectra. Therefore, to
characterize the full optical response either by Raman or
IR spectroscopy, four A1-TO and four A1-LO frequen-
cies, as well as nine E-TO and nine E-LO frequencies
need to be known. In the LNO crystal system it is com-
mon to label the phonons in ascending order, e.g. E-LO6

refers to the sixth highest frequency E-type symmetry
LO phonon.
As discussed below (Sec. III A), the mixed crystals

cannot be described by the same unit cell due to the
larger supercell necessary to take into account the ar-
bitrary Nb-Ta content of the mixed crystals. Assuming
the natural randomness in the Nb-Ta distribution, a large
number of phonons will be present at the Brillouin-zone
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TABLE I. Observable phonon modes and Raman tensor ele-
ments recorded in back-scattering configuration for LNO and
LTO single crystals. The tensor elements are defined as in
Ref. [18].

Scattering Symmetry Tensor element
configuration species TO LO

x(y,y)x A1-TO, E-TO a2 + c2

x(y,z)x E-TO d2

x(z,y)x E-TO d2

x(z,z)x A1-TO b2

y(x,x)y A1-TO, E-LO a2 c2

y(x,z)y E-TO d2

y(z,x)y E-TO d2

y(z,z)y A1-TO b2

z(x,x)z A1-LO, E-TO c2 a2

z(x,y)z E-TO c2

z(y,x)z E-TO c2

z(y,y)z A1-LO, E-TO c2 a2

center leading to a natural broadening of peaks and a
lifting of the selection rules. Therefore, strictly speak-
ing the selection rules true for the end compounds LNO
and LTO are not necessarily valid for the mixed crystals.
Nevertheless, we chose to label the features in the mixed
crystals only to a single mode in accordance with its clos-
est phononic analogue in the end compound. These quasi
A1 and E-modes are labeled with a prime, e.g. A′

1-TO1

denoting the peak that is similar to the A1-TO1 mode in
either the LNO or LTO end compounds.

The selection rules in Raman spectroscopy can be cal-
culated based on the known Raman tensors, which sum-
marizes, both, the propagation direction of the phonons
to distinguish LO and TO phonons, and assign which
phonons for a given set of excitation and detection light
polarization can be detected. The tensors can be found
elsewhere [16, 18, 27, 46]. The scattering geometry in
Raman spectroscopy is described with Porto’s notation:
ki(ei, es)ks. The vectors ki and ks mark the direction
of the incident and scattered light in crystal coordinates,
respectively, while ei and es label its electric field ori-
entation, i.e. the polarization, also in crystal coordi-
nates. Table I summarizes the twelve possible scattering
geometries in back-scattering Raman spectroscopy, i.e.
ki = −ks = ki.

The selection rules in (FT)IR spectroscopy are more
straightforward. Here, A1-type symmetry phonons are
excited, when the incident and scattered light is polarized
parallel to the extraordinary axis (z-axis) of the crystal,
i.e. E ∥ z. In contrast, the E-type phonon contributions
to the dielectric response are observed when the incident
light is polarized parallel to the ordinary crystal axis (xy-
plane), i.e. E ∥ x or E ∥ y. These selection rules are
summarized in Tab. II. Note, that the dielectric tensor
ε of the LNT crystal family has only two independent
components.

TABLE II. Observable phonon modes recorded for light po-
larization (electric field) with respect to the crystal axes of
LNO or LTO.

Light polarization (E-field) Symmetry species
E ∥ z A1

E ∥ y E
E ∥ x E

III. DENSITY FUNCTIONAL PERTURBATION
THEORY

A. Computational details

Phonon eigenmodes, eigenfrequencies and effective
charges are calculated within density functional pertur-
bation theory (DFPT) as implemented in VASP [47–49],
and post processed by Phonopy [50, 51], an open source
python package created for performing basic phonon cal-
culations at the harmonic level. The dielectric function
is calculated within the independent particle approxima-
tion (IPA) using the same software. Projector augmented
wave (PAW) potentials [52, 53] with exchange-correlation
functional in the formulation of Perdew-Burke Ernzerhof
revised for solids (PBEsol) [54, 55] and electronic con-
figurations 1s22s1, 4s24p64d35s2, 5p65d36s2, and 2s22p4

for Li, Nb, Ta, and O, respectively, are used. Rhom-
bohedral, primitive unit cells with R3c symmetry model
the ferroelectric phase of LNO and LTO, respectively.
The used equilibrium lattice parameters are aLT=5.474 Å
and αLT=56.171◦ for LTO, as well as aLN=5.494 Å and
αLN=55.867◦ for LNO. These values are in close agree-
ment with the measured lattice parameters [18, 46, 56].
The ionic positions are optimized, such that all forces
acting on the ions are lower than 0.005 eV/Å. A 8×8×8
Monkhorst-Pack K-point mesh [57], as well as an energy
cutoff at 500 eV are needed to converge electronic ener-
gies to 10meV. A Gaussian smearing with width 0.05 eV
is applied to the Fermi occupancies. 46 conduction bands
are considered to obtain a dielectric function converged
up to 10 eV.
LNT solid solutions are modeled with special quasi-

random structures (SQS) created as described in [58–
60]. In particular, 1×1×2 repetitions of the orthorhom-
bic unit cell are employed as supercells to model solid
solutions containing a 70.8% Ta-concentration. 4×4×1
Monkhorst-Pack K-point meshes are used, leading to a
similar K-point density as for the unit cells. The cell
parameters are determined by optimizing the lattice for
different volumes and fitting the resulting energies to the
Murnaghan equation of state [61]. The number of con-
duction bands used for the calculation of the electronic
contribution to the dielectric function is chosen to ob-
tain the same conduction/valence ratio as for the prim-
itive cells when modeling the end compounds LNO and
LTO. Three different SQS are employed for the calcula-
tions presented in this work. The de facto equivalence of
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these SQS is verified by comparing their calculated Ra-
man signals. As seen in Fig. 2, the calculated spectra
only differ marginally. This confirms, that the SQS well
describe the same material, even though their atomistic
distribution is different. Therefore, only one SQS is used
as a reference throughout this work. For the mixed crys-
tals, the additional effect of phonons folding back onto
the Γ-point has to be taken into account: Because a su-
percell is needed to describe the random alloy, there will
be many more phonon modes present in their calcula-
tions. This will lead, in general, to more peaks in the
spectra. Here, however, some of these folded modes lie
so close to each other in their frequencies, that the ap-
plied Gaussian smearing will result in fewer, but broader
peaks in the spectrum [see Fig. 2 (b)]. The arguments
regarding group theory, mentioned in Sec. II D, for the
end compounds, strictly speaking, do not apply for the
mixed crystals. Therefore, we denote the maxima in-
stead with primed labels. For example, the frequency
A′

1-TO1 represents all modes that contribute to a sin-
gle peak, which behaves comparable to the A1-TO1 in
the end compounds. Even though these frequencies do
not hold any information regarding a displacement pat-
tern (except for their symmetry), their frequencies open
up an interpretation regarding the Ta content of a given
sample. Shifts in frequency depending on the Ta content
have been explained in Ref. [18]: For most modes, LNO
features higher mode frequencies, which can be explained
by the mass difference of niobium (92.906 a.u.) as com-
pared to tantalum (180.948 a.u). Exceptions to this rule
are modes involving mostly a movement of the oxygen
cage (e.g. A1-TO3 and high frequency E-modes): Here,
the shorter Ta-O bond length compared to Nb-O suggest
a stronger bond, which results in higher frequencies in
LTO for these modes.

B. IR spectra

In Raman or FTIR spectroscopy not only phonon fre-
quencies, but also the scattering efficiencies or oscillator
strength, respectively, are probed. For an accurate com-
parison of theoretical and experimental data, therefore,
not only the exact frequencies but equally the relative in-
tensities need to be calculated, which proved extremely
valuable in the past in assignment of phonon features
[19, 26, 62–64].

(FT)IR spectroscopy directly probes the real and imag-
inary parts of the dielectric function ε of a material in the
respective phonon frequency range, i.e. the direct contri-
bution of the vibrating lattice to the dielectric response.
The dipole moment p⃗ of a crystal is defined as:

p⃗ =
∑
b

∑
i,a

Ziabr⃗iêa

 êb, (2)

where r⃗i denotes the position of ion i, and Ziab is its ef-
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FIG. 2. (a): Calculated Raman spectra in x(yz)x polariza-
tion for three different SQS (labeled by the numbers 1-3)
of LiNb29.2Ta70.8O3. (Red) corresponds to the configuration
which is used for all subsequent comparisons. (b): Imaginary
part of the dielectric function of LNT calculated for light po-
larized along the extraordinary crystal axis (z-axis). The blue
bars denote the contribution of single phonon modes to the
complete spectrum in arbitrary units

fective charge tensor (i.e. the Born charge). The vectors
êa,b label the cartesian unit vectors and the indices a, b
the cartesian coordinates.

The change of p⃗ with respect to a phonon with eigen-
mode Q can be approximated by a symmetric difference
quotient:

∂p⃗

∂Q
∼

∑
b

∑
i,a

ZiabQ⃗iêa

 êb, (3)

where Q⃗i denotes the movement of ion i within the dis-
placement pattern Q. The imaginary part of the ionic
contribution to the dielectric function can then be calcu-
lated as in Ref. [65]:
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ℑ
(
εionab (ωm)

)
∼

(
∂pa
∂Q

)(
∂pb
∂Q

)∗

=

∑
i,a′

Zia′aQ⃗iêa′

∑
i,a′

Zia′bQ⃗iêa′

∗

,

(4)

with ωm the TO frequency of mode m with displacement
pattern Q. The contribution of all phonon modes to the
IR spectra is obtained by calculating the sum over all
modes m. In the harmonic approximation, these con-
tributions will only yield delta peaks at the TO phonon
frequencies ωm. The real part of the ionic contribution
to the dielectric function can be obtained as shown in
Ref. [65] as follows:

ℜ
(
εionab (ω)

)
=

4π

V0

∑
m

ℑ
(
εionab (ω)

)
ω2
m − ω2

. (5)

C. Raman spectra

In contrast to FTIR, Raman spectroscopy is an inelas-
tic scattering technique, where a photon at much higher
energies, typically in the visible range, exchanges energy
with a phonon. Subsequently, a photon at a shifted fre-
quency is emitted. This second-order effect is mediated
via the electronic contribution of the dielectric response.
The Raman tensor α is defined as the change of the po-
larizability with respect to a phononic eigenmode Q:

αm,ab(ω) =
∂εelab(ω)

∂Q
∼ εel

R⃗+,ab
(ω)− εel

R⃗−,ab
(ω), (6)

with εel(ω) being the electronic contribution to the di-
electric function and ω the frequency of the incident laser
light. Here, we calculate the derivative evaluating εel at

two opposite, symmetric ionic displacements R⃗±. The
electronic contribution to the dielectric function is cal-
culated within the independent particle approximation
[66]:

ℑ[εelab(ω)] ∼ lim
q→0

1

q2

∑
c,v,⃗k

2δ(Eck⃗ − Evk⃗ − ω)× ⟨uck⃗+e⃗aq
|uvk⃗⟩ ⟨uck⃗+e⃗bq

|uvk⃗⟩
∗
, (7)

where Eck⃗ and Evk⃗ denote electronic energies at the con-

duction and valence band at k-vector k⃗ respectively and
|u⟩ denotes the corresponding Bloch function. Using
Kramers-Kronig relations, we can obtain the real part
of the electronic contribution to the dielectric function:

ℜ[εelab(ω)] = 1 +
2

π

∫ ∞

0

Ωℑ[εelab(Ω)]
Ω2 − ω2 + iη

dΩ, (8)

with η being a small number to preserve the convergence
of the integral. The intensity of the Raman signal can be
finally calculated as:

Im(ω)[s(ab)i] ∼ |êsαm,ab(ω)êi|2
(ω − ωm)4

ωm
(n+ 1), (9)

where êi and ês denote the polarization of the inci-
dent and scattered light, respectively, and n is the Bose-
Einstein distribution.

In contrast to the theoretical data, the experimental
spectra are subject to finite line width, due to thermal
broadening, resolution limits, or crystal defects. This
is not captured in our calculations. Therefore, artificial
Gaussian smearings of 5 cm−1 width are applied to the
calculated spectral intensities (both IR and Raman), to
obtain spectra readily comparable to the measured data.

D. LO-TO splitting

In order to calculate LO-TO splitting of phonon fre-
quencies at the Γ-point, a dipole-dipole interaction term
is added to the dynamical matrix, which reads as [65, 67]:

1
√
mjmj′

4π

V0

(
∑

c Zjcaq̂c) (
∑

c Zjcbq̂c)∑
cc′ q̂cε∞,cc′ q̂c′

, (10)

where q̂ denotes a normalized reciprocal vector, mj is the
mass of ion j, and Z denotes the effective charge tensor of
ion j. The letters a, b, c, and c′ denote cartesian indices.
ε∞ is the electronic contribution of the static dielectric
function. Since all these variables were already calculated
in order to obtain IR- and Raman spectra, this comes at
almost no additional computational cost.

E. Phenomenological model

The generalized Lyddane-Sachs-Teller (LST) relation
[35, 36] can be employed to estimate the phononic con-
tribution to the material’s optical response in an approx-
imate manner. The generalized LST connects the high
frequency permittivity ε∞ to the static permittivity ε0
through
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ε0 = ε∞

n∏
j=1

ω2
LOj

ω2
TOj

. (11)

This is very valuable, because the high-frequency dielec-
tric function can be readily calculated from the electronic
structure within density functional theory, but the calcu-
lation of the vibrational contributions in the limit of low
frequencies - and therefore the static permittivity - is
more challenging.

IV. RESULTS

A. Experimental results

To unambiguously identify and assign all phonon
modes in the LNT material family the measured exper-
imental data, for both, Raman and FTIR spectroscopy
were systematically analyzed and compared, while con-
sidering the selection rules listed in Tables I and II. To
illustrate both, the process of comparing different Raman
spectra, and the comparison of Raman and FTIR data,
Figure 3 shows several datasets obtained on the LNO
samples. All spectra shown contain signatures of E-type
phonons, including both LO and TO modes. In detail,
subfigure a) displays a Raman spectrum in y(x,x)y con-
figuration, which according to the selection rules shows
E-LO and A1-TO modes, while b) shows a Raman spec-
trum in the crossed configuration y(z,x)y, which only ad-
dresses E-TO phonons. These Raman spectra are com-
pared with c), the real part ε′ and d), the imaginary part
ε′′ of the ordinary-polarized dielectric function extracted
from FTIR spectroscopy using the fitting process shown
in Fig. 1.

For the dielectric function, not just the fitting as dis-
cussed above (Sec. IIC) yields the phonon frequencies,
but the phonon frequencies can also be visually assigned
to specific features in the real and imaginary parts of the
dielectric function, which can also be visually compared
to the Raman results. Specifically, in the real part ε′

the TO-frequencies are indicated by the zero-crossing of
the dielectric function at the central wavelength of each
oscillator (zero-crossing at a downward slope), while the
zero-crossing on the rising flanks of the dielectric function
indicate the associated LO phonon frequency. These two
boundaries define the Reststrahlen band in the reflectiv-
ity spectrum for each phonon mode visible in the raw
spectrum in Fig. 1. The positions of the falling (rising)
flank zero crossings can be readily compared with the
TO- (LO-) phonon peaks in the Raman spectra. Please
note, the zero-crossing (up or down) of each oscillator
highlighted in the graph does not necessarily indicate a
zero-crossing of the total dielectric function.

In contrast to the real part, the imaginary part of
the dielectric function resembles in its structure an

emission-type spectrum with peaks centered at the TO-
frequencies. This structure looks very similar to the Ra-
man spectrum of TO-phonons, which therefore allows a
direct visual comparison. Please note, that while the
spectra have a similar shape, the spectra originate from
different physical processes, i.e. a phonon with a strong
absorption in the dielectric function does not necessarily
mean a high scattering efficiency in Raman scattering.

In the cross-polarized Raman spectrum in Fig. 3 b)
eight peaks can be identified. Out of these, seven belong
to E-TO phonons, while the peak at 633 cm−1 belongs
to the A1-TO4 that is not fully suppressed by the ana-
lyzer. In detail, the visible peaks belong to the E-TO1, -
TO2, -TO3, -TO4, -TO5/6, -TO7, and -TO8 modes. Sim-
ilarly, the imaginary dielectric function shows six rela-
tively strong peaks (E-TO1, -TO2, -TO3, -TO4, -TO5, -
TO8) and two very weak, but identifiable peaks (E-TO7,
-TO9). Here, it can be seen that the E-TO9 at 660 cm−1

has a very weak intensity in both Raman and FTIR,
which was previously observed as well [18, 19, 27] and
is also found in the DFPT calculations (Fig. S1 in the
supplement). Its behavior is different from its behavior
in LTO, where the E-TO9 has a much stronger scattering
efficiency in Raman spectroscopy, but is still very weak
in FTIR spectroscopy (see Fig. S4 in the supplement).
Due to its low scattering efficiency, the E-TO9 mode was
often assigned ambiguously in the past [18, 19, 26, 27].
Further, it can be noticed that the E-TO5 and E-TO6 fre-
quencies are very close (360 cm−1 vs. 367 cm−1). While
the TO6 is dominating in Raman scattering, the TO5 is
the dominating feature for the FTIR spectrum. Previous
work has indicated that the scattering efficiency and their
behavior in both phonons are similar for both, LTO and
mixed crystals. As a result, the Raman and FTIR spec-
tra were only fitted with one peak representing the TO5

or TO6 mode, respectively. Only low temperature mea-
surements of stoichiometric crystals allow to unambigu-
ously differentiate these modes in Raman spectroscopy
[27]. The origin in the different scattering efficiencies for
both phonons and in both methods are also backed up
by the DFPT calculations discussed below. Overall, the
E-TO phonon frequencies determined from different Ra-
man spectra, as well as by comparing FTIR and Raman
spectra, match within ± 5 cm−1, which is in agreement
with the combined resolution limits of both methods.

The spectrum in Fig. 3 a) shows a Raman spectrum in
y(x,x)y configuration, which shows both E-LO and A1-
TO phonons. The A1-TO phonons are dominating in
intensity. Here, they have a strong scattering efficiency
leading to strong overlaps in the 200 to 400 cm−1 region.
The A1-TO phonon peaks can be readily excluded by
comparison with spectra in x(z,z)x [Fig. S2 (a)] or x(y,y)x
configurations [e.g. Fig. S1 (a)]. The remaining peaks,
therefore, are exclusively E-LO phonons. E-LO phonons
are only accessible in this single scattering configuration
for back scattering, which in the past lead to the most
ambiguity in assignment for this phonon branch [26, 27].
Therefore, the comparison to the real part of the dielec-
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FIG. 3. Top: a) Raman spectra of LNO for polarization y(xx)y (left) and b) y(zx)y (right); Bottom: c) Real and d) imaginary
part of the dielectric function for light polarized along the crystallographic x direction, extracted from FTIR spectra. All
spectra are normalized with respect to their highest peak. In the Raman spectra, the A1-TO and E-LO modes (a), as well as
the E-TO modes (b) can be assigned by applying the symmetry considerations from Table I. The E-LO modes can be extracted
as zero crossings in ε′. Additionally, the E-TO modes can be extracted from peak positions in ε′′ (d). The redundancies in
these four graphics serve as an appraisal for the measurements and calculations.

tric function (and to the calculations) is particular helpful
for a correct assignment. Again, by comparison, a good
agreement is found and all nine E-LO phonons can be
identified and a frequency can be determined.

Similar to the discussion above, the Raman and FTIR
data for all samples, LNO, LTO, and LNT, was eval-
uated for different cuts. Additional plots and tabular
summaries of all phonon frequencies are available in the
supplemental file. These tables denote the mean phonon
frequencies, determined by analysing all our Raman and
FTIR spectra for all available crystal cuts. In the next
step, the experimental data will be compared exemplarily
with the calculations from DFPT.

B. Comparison between theory and experiment

The calculated and measured TO phonon frequencies
of LNO and LTO are given in Tables S1, and S2 (in the
supplement), respectively. As the A2 modes are Raman
and IR silent for ideal crystals, we just report the cal-
culated frequencies, although - as seen below - we may

see indications of those phonons activated in the mea-
sured spectra due to defects or stoichiometry. A detailed
discussion of the difference in frequencies for the same
modes in LNO and LTO is given in previous work [18]
and will not be repeated here. Here, we will specifically
focus on the calculated spectra for both, the dielectric
function and Raman signal. Because we only calculated
Raman and FTIR spectra for TO frequencies, we limit
our comparison of Raman spectra to the x(··)x configu-
ration.

Overall, the calculated and measured TO phonon fre-
quencies are all in good agreement with each other and
lay mostly within the accuracy of both experimental se-
tups, as well as with available previous computational
and experimental results [19, 26, 27]. The largest devia-
tion for LNO occurs for the E-TO2 mode with a discrep-
ancy of around 6% (14 cm−1) [see e.g. Fig. 4 (a) or Tab.
S1]. The overall small deviations in frequency between
experiment and theory is mostly caused by using fixed
lattice constants in the simulations, which are in good
agreement to experimental values.

The dielectric functions show the same number of
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FIG. 4. Top: a) Raman spectra of LNO for polarization x(yy)x (left) and b) x(zy)x (right); Bottom: c) Real and d) imaginary
part of the dielectric function for light polarized along the crystallographic z direction, extracted from FTIR spectra. All spectra
are normalized with respect to their highest peak. In the Raman spectra, the A1-TO and E-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The A1-LO modes can be extracted as zero crossings in ε′.
The redundancies in these four graphics serve as an appraisal for the measurements and calculations.

peaks/features and similar intensities in the real and
imaginary part for both investigated polarization direc-
tions for LNO, LTO and LNT. We note, that the sim-
ulated ε′ does not allow for an assignment of the LO
modes, as no information from the simulation leading to
a LO-TO splitting is provided at this point. The peaks
and shape of ε′ and ε′′ do, however, coincide to the exper-
imental data in all cases. Please note, the peak width in
the calculated data is arbitrarily introduced and knowl-
edge of the damping constants from theory is not avail-
able.

The splitting as well as the different Raman and IR
activity of the E-TO5 and E-TO6 modes can be easily
verified by our calculations [e.g. Fig. S1 for LNO, and
Fig. S4 for LTO]: Here the E-TO5 and E-TO6 mode
(352 cm−1 vs 364 cm−1 for LNO) can be clearly separated
in the spectra. As observed in the experiment, the E-TO6

is almost IR inactive (invisible in the spectra), but has
a higher Raman activity than E-TO5, while the inverse
statement is true for the E-TO6.

The measured dielectric function for E ∥ z shows far
broader peaks than for E ∥ x in LNO (comparing Fig. 4
and Fig. 3). The phonon linewidth associated with this

broadening is typically dependent on the stoichiometry
of the sample, its homogeneity and the presence of de-
fects, and the (natural) lifetime of the phonon itself. The
determination of phonon lifetimes from first principles re-
quires the calculation of phonon-phonon interations, be-
yond the harmonic approximation considered here. Such
calculations by Fu et al. suggest no significant longer
lifetimes for these modes, compared to the E-modes [68].
We therefore conclude, that our samples are more homo-
geneous in the x-direction, but include inhomogeneities
in z-direction, which agrees well with the nature of many
polar defects and the nature of the ferroelectric domains
that align all parallel to the z-axis. For better compar-
ison, we increase the Gaussian smearing applied to the
calculated spectra to 25 cm−1 for this direction, which
will lead to broader peaks in e.g. Fig. S2 compared to
e.g. Fig. S1 in the supplement. It is well known that
the stoichiometry, in particular the lithium deficiency, of
LNO and LTO crystals has a significant impact on their
optical properties [69, 70]. Nevertheless, we cannot deter-
mine a significant difference between the calculated and
measured spectra for E ∥ z in neither the peaks position,
nor their intensity. The broadening of the spectra is not
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FIG. 5. Top: a) Raman spectra of LTO for polarization x(yy)x (left) and b) x(zy)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic z direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A1-TO and E-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The A1-LO modes can be extracted as zero crossings or poles
in ϵ′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations.

as pronounced for our LTO crystals, hence, we suspect
these samples to be relatively homogeneous, i.e. mostly
defect free with few domains and domain walls and a
homogeneous Li-vacancy distribution. Note, that more
narrow spectra in LTO were observed as well in the past
[18].

The previously discussed effect of phonon folding
makes an interpretation regarding the stoichiometry of
the LNT crystal more challenging than for the end com-
pounds (Note, that in an alloy, the distribution of Ta
and Nb atoms is expected to be random). Therefore,
each lattice site which breaks periodicity could be in-
terpreted as an inhomogeneity. This means, we expect
an overall broadening of the peaks (broader than in the
end compounds), regardless of other defects, e.g. Li-
inhomogenities. The A′

1-TO4-like mode at 587 cm−1 has
by far the highest IR activity. However, the peak result-
ing from the overlap of multiple modes at 210-215 cm−1

results in an overall higher signal. Only a single mode
at 354 cm−1 contributes to the shoulder at the same fre-
quency. Therefore, in general, in the mixed crystals we
cannot assign a peak in either the FTIR or Raman sig-
nal to a true single phonon eigenmode, but instead assign

such a sum feature with a single frequency to its closest
analogue in the end compounds and label it with a prime.

Curiously, apart from the expected A1 and E-type-like
phonon modes, we note a significant peak in the calcu-
lated and measured Raman spectra for x(yy)x polariza-
tion (Fig. 6) at 855 cm−1: In the calculations, this peak
belongs to the A′

2-TO5 mode, which is due to numerical
limitations (i.e. in the dielectric function and the slightly
imperfect eigenvector) not completely suppressed. How-
ever, this peak is also visible in the measured spectrum
for LNT, and even for LNO and LTO in the same Ra-
man configuration, but it is much less pronounced for the
end compounds. Here, this peak could also correspond
to a not completely suppressed E-LO9 or A1-LO4 mode.
However, its clear presence in the calculated spectra of
the solid solution might also indicate that defects in the
end compounds or the random Nb-Ta distribution in the
mixed crystals can relax the selection rules, which enables
the A2-TO5 mode to become Raman active.

For our simulations, the LO-mode frequencies cannot
be directly extracted from the dielectric function. In-
stead, we apply Eq. (10) for different q-directions and
track how the added dipole-dipole interaction affects the
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FIG. 6. Top: a) Raman spectra of LNT for polarization x(yy)x (left) and b) x(zy)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic z direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A′

1-TO and E′-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The A′

1-LO modes can be extracted as zero crossings or poles
in ε′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations.

mode frequencies at Γ. Our results can be found in Ta-
bles S3, S4 and S5 in the supplement. Note, that we do
not show A2 modes in these tables, as they do not show
any LO-TO splitting. Overall, the calculated and mea-
sured frequencies agree within an error of 9%, where the
measured frequencies are for almost all modes slightly
larger. This discrepancy can be easily explained by tak-
ing a closer look at Eq. (10): Because of the underestima-
tion of the electronic band gap in the DFT calculations
(e.g. measured for LNO 3.7 eV [71] vs. our DFT calcu-
lation with 3.41 eV), a red-shift of the imaginary part of
the dielectric function is introduced. This in turn gives
rise to a larger value for ε∞, as Kramers-Kronig relations
are used to calculate the real part. Thus, the added
dipole-dipole interaction term is likely underestimated,
which in conclusion leads to smaller LO-frequencies. Es-
pecially large LO-TO splits can be observed for the high
frequency A1- and E modes (A1-TO4 - A1-LO4 and E-
TO9 - E-LO9): Both of these modes involve a stretching
of the oxygen cage, as well as slight movement of the
niobium/tantalum within it (see Fig. 7). Because this
central ion carries a large effective charge, these move-
ments introduce a strong dipole-dipole interaction, which

A1-TO4 E-TO9

FIG. 7. Left: A1-TO4 eigenmode. Right: E-TO9 eigenmode.
The niobium/tantalum, lithium and oxygen ions are colored
gold, green and red, respectively. The displacements are de-
noted by blue arrows.

in turn leads to a large LO-TO splitting.
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TABLE III. With Eq. (11) calculated values for ε0, using ei-
ther the calculated frequencies (DFPT) or the measured ones
(DFPT+Exp.). Only polarizations E ∥ x (z-cut) and E ∥ z
(x-cut) are considered. Available data [18, 27, 42, 72] (Ref.)
are reported for comparison.

ε∞ ε0
crystal cut DFPT Ref. DPFT DFPT+Exp. Ref.

LNO
z 5.51 5.00 40.0 48.9 39.2-42.5
x 5.35 4.60 26.0 30.3 23.6-26

LTO
z 5.16 4.50 36.7 44.9 34.7-42
x 5.27 4.53 40.0 42.9 35.8-40

LNT
z 5.23 4.44 40.1 40.9 36.4
x 5.32 4.39 36.7 37.0 32.1

C. Calculation of ε0

Finally, we use the LST relation to estimate ε0: From
the DFPT calculation, we can extract ε∞ as the value of
ε′ at excitation frequency zero. The extracted values for
LNO are εx∞ = 5.51 and εz∞ = 5.35. Inserting the cal-
culated values for ε∞ and phonon frequencies for LNO
into Eq. (11), we find εx0 = 40.0 and εz0 = 26.0. Both val-
ues are in good agreement to literature [18, 27, 42, 72].
Using the measured phonon frequencies, we instead ob-
tain εx0 = 48.9 and εz0 = 30.3, which is slightly larger,
however also within the range typically reported in liter-
ature [18, 27, 42, 72]. Repeating the calculations for LTO
and LNT, we obtain ε0 as a function of Ta content (see
Fig. 8). All extracted values, including LTO and LNT,
can be found in Table III. Note, that the overestimation
of ε∞ leads to slightly higher values of ε0, compared to
the literature. In total, we thus suspect our results to be
slightly overestimating ε0. The uncertainty of ±4 cm−1

in the measured frequencies results in an error of around
7% for our obtained values for ε0.

V. SUMMARY

In this work we have studied the vibrational proper-
ties of the lattice in the lithium niobate tantalate material
family by studying the end compounds LTO and LNO, as
well as an example of a mixed crystal LNT. To achieve
a high redundancy in the analysis, we have systemati-
cally compared measured Raman spectra and FTIR re-
flectance spectra, which allows us to extract the real and
imaginary parts of the dielectric function, with calcu-
lated Raman spectra and dielectric functions obtained
from first principles. When applying group symmetry
considerations and comparing all resulting spectra (ex-
periment and theory), we can unambiguously assign all
transverse optical and longitudinal optical phonon modes
at the Brillouin zone center (Γ-point). In particular, by
combining both, theory and experiment, the similarities
and differences in the spectra, as well as their changes
within mixed crystals, can be readily explained and in-
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FIG. 8. ε∞ (top) and ε0 (bottom) as a function of tantalum
content of the LNT crystal family. The values for ε0 are
obtained using the LST relation [Eq. (11)], whereas ε∞ is
obtained by DFPT calculations. Only polarizations E ∥ x and
E ∥ z are considered. For calculating ε0, either the measured
phonon frequencies (Exp., red and orange), or the calculated
ones (DFPT, black and gray) are used.

terpreted. An example is the different intensity of quasi-
silent modes in Raman or FTIR spectra, or even the
appearance of symmetry forbidden modes like the A2-
TO5 in Raman spectra. Here, the experiments and the
theoretical calculations are in excellent agreement for all
studied samples, demonstrating the high redundancy of
this combined approach. Both, the theory and experi-
mental data additionally allow us to obtain the phononic
contribution to the dielectric function in the full LNT
material family by applying the LST. Again, the calcu-
lated data are in excellent agreement to previous studies
[18, 27, 42, 72]. In principle, this methodology is not lim-
ited to the LNO-LTO crystal system, but this tested ap-
proach can be readily expanded to other crystals, doped
or strained systems or domain wall spectra [73–75], where
it is essential to understand and interpret the underly-
ing physical effects and crystal structure by providing a
quantitative interpretation of Raman or FTIR spectra.
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[66] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and
F. Bechstedt, Linear optical properties in the projector-
augmented wave methodology, Physical Review B 73,
045112 (2006).

[67] X. Gonze, J.-C. Charlier, D. Allan, and M. Teter, Inter-
atomic force constants from first principles: The case of
α-quartz, Physical Review B 50, 13035 (1994).

[68] Y. Fu, H. Wei, L. Wei, H. Zhang, X. Wang, B. Liu,
Y. Zhang, X. Lv, J. Zhou, and H. Yu, Origin of the dif-
ference in thermal conductivity and anharmonic phonon
scattering between LiNbO3 and LiTaO3, CrystEngComm
23, 8572 (2021).
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M. Wöhlecke, Composition dependence of the ultravio-
let absorption edge in lithium niobate, Applied Physics
Letters 70, 2801 (1997).

[70] C. Debnath, S. Kar, S. Verma, and K. Bartwal, Investi-
gations on crystalline structure and optical band gap of
nearly stoichiometric linbo3 nanoparticles, Optical Ma-
terials 37, 804 (2014).

[71] A. Dhar and A. Mansingh, Optical properties of re-
duced lithium niobate single crystals, Journal of Applied
Physics 68, 5804 (1990).

[72] T. Fujii, A. Ando, and Y. Sakabe, Characterization of di-
electric properties of oxide materials in frequency range
from GHz to THz, Journal of the European Ceramic So-
ciety 26, 1857 (2006).
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FIG. S1. Top: a) Raman spectra of LNO for polarization x(yy)x (left) and b) x(zy)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic x direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A1-TO and E-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The E-LO modes can be extracted as zero crossings or poles
in ε′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations.
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FIG. S2. Top: a) Raman spectra of LNO for polarization x(zz)x (left) and b) x(zy)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic z direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A1-TO and E-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The A1-LO modes can be extracted as zero crossings or poles
in ε′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations.

TABLE S1. Calculated (DFPT) and measured mean value (Exp.) TO phonon modes of LiNbO3 at the Brillouin zone center.
Available theoretical [19] (DFT) data are reported for comparison. All frequencies in cm−1

Symmetry DFPT DFT Exp.
A1-TO1 245 239 250
A1-TO2 269 289 275
A1-TO3 337 353 331
A1-TO4 612 610 632
A2-TO1 211
A2-TO2 293
A2-TO3 394
A2-TO4 438
A2-TO5 865
E-TO1 152 148 151
E-TO2 222 216 236
E-TO3 265 262 265
E-TO4 309 323 321
E-TO5 352 380 360
E-TO6 364 391 367
E-TO7 414 423 431
E-TO8 567 579 579
E-TO9 657 667 660
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FIG. S3. Top: a) Raman spectra of LTO for polarization x(zz)x (left) and b) x(yz)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic z direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A1-TO and E-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The A1-LO modes can be extracted as zero crossings or poles
in ε′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations.

TABLE S2. Calculated (DFPT) and measured mean value (Exp.) TO phonon modes of LiTaO3 at the Brillouin zone center.
Available theoretical [19] (DFT) data are reported for comparison. All frequencies in cm−1

Symmetry DFPT DFT Exp.
A1-TO1 203 209 204
A1-TO2 257 286 253
A1-TO3 367 376 357
A1-TO4 568 591 599
A2-TO1 175
A2-TO2 282
A2-TO3 384
A2-TO4 440
A2-TO5 887
E-TO1 140 144 142
E-TO2 197 199 208
E-TO3 251 253 254
E-TO4 311 319 315
E-TO5 377 409 373
E-TO6 391 420 382
E-TO7 446 459 462
E-TO8 568 590 591
E-TO9 649 669 660
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FIG. S4. Top: a) Raman spectra of LTO for polarization x(yy)x (left) and b) x(yz)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic z direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A1-TO and E-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The E-LO modes can be extracted as zero crossings or poles
in ε′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations. Note, that the
E2-TO-207 mode is not visible in the measured FTIR spectra, but pronounced in Raman. In the calculations this mode can
be observed for both, FTIR and Raman.

TABLE S3. Calculated (DFPT) and measured mean value (Exp.) LO phonon modes of LiNbO3 at the Brillouin zone center.
Available experimental [27] (Ref.) data are reported for comparison. All frequencies in cm−1

Symmetry DFPT Exp. Ref.
A1-LO1 274 275 276
A1-LO2 334 333 334
A1-LO3 402 428 421
A1-LO4 815 873 870
E-LO1 186 194 199
E-LO2 221 238 241
E-LO3 293 296 298
E-LO4 341 345
E-LO5 369 369 370
E-LO6 394 425 425
E-LO7 427 457 457
E-LO8 652 661
E-LO9 867 880 879
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FIG. S5. Top: a) Raman spectra of LNT for polarization x(zz)x (left) and b) x(zy)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic z direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A′

1-TO and E′-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The A′

1-LO modes can be extracted as zero crossings or poles
in ε′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations.

TABLE S4. Calculated (DFPT) and measured mean value (Exp.) LO phonon modes of LiTaO3 at the Brillouin zone center.
Available experimental [27] (Ref.) data are reported for comparison. All frequencies in cm−1

Symmetry DFPT Exp. Ref.
A1-LO1 258 254 259
A1-LO2 356 354 356
A1-LO3 393 405 408
A1-LO4 820 865 863
E-LO1 177 194 195
E-LO2 197 206 211
E-LO3 277 279 282
E-LO4 343 344
E-LO5 391 381 383
E-LO6 438 453 454
E-LO7 461 472 476
E-LO8 648 662 660
E-LO9 820 865 864
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FIG. S6. Top: a) Raman spectra of LNT for polarization x(yy)x (left) and b) x(zy)x (right); Bottom: c) Real and d) imaginary
dielectric functions for light polarized along the crystallographic x direction, extracted from FTIR spectra. All spectra are
normalized with respect to their highest peak. In the Raman spectra, the A′

1-TO and E′-TO modes can be unambiguously
assigned, by applying the symmetry considerations from Table I. The E′-LO modes can be extracted as zero crossings or poles
in ε′. The redundancies in these four graphics serve as an appraisal for the measurements and calculations.

TABLE S5. Calculated (DFPT) and measured mean value (Exp.) phonon modes of LiTa0.7Nb0.3O3 at the Brillouin zone center.
The with ∗ denoted frequencies are obtained by linearily interpolating the corresponding frequencies of the end compounds, as
has been shown in Ref. [18]. All frequencies in cm−1

Symmetry DFPT Exp.
TO LO TO LO

A′
1 211 263∗ 223 260

A′
1 260 348 261 346

A′
1 354 401 346 414

A′
1 586 841 609 869

E′
1 140 180∗ 144 193

E′
2 198 202 220 215

E′
3 245 284 256 287

E′
4 316 337 319 344

E′
5 371∗ 384∗ 377 366

E′
6 385∗ 439 379 445

E′
7 442 456 452 467

E′
8 569 649∗ 586 664

E′
9 661 841 657 875
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