
ON THE EXTERIOR PRODUCT OF HÖLDER DIFFERENTIAL FORMS

PHILIPPE BOUAFIA

Abstract. We introduce a complex of cochains, 𝛼-fractional charges (0 < 𝛼 ⩽ 1), whose
regularity is between that of De Pauw-Moonens-Pfeffer’s charges and that of Whitney’s
flat cochains. We show that 𝛼-Hölder differential forms and their exterior derivative can
be realized as 𝛼-fractional charges, and that it is possible to define the exterior product
between an 𝛼-fractional and a 𝛽-fractional charge, under the condition that 𝛼 + 𝛽 > 1.
This construction extends the Young integral in arbitrary dimension and codimension.
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1. Introduction

The Young integral has become a classical object: given two 𝛼- and 𝛽-Hölder continuous
functions 𝑓 and 𝑔 on the interval [0, 1], the convergence of the Riemann-Stieltjes integral∫ 1

0 𝑓 d𝑔 is assured when 𝛼 + 𝛽 > 1. R. Züst proposed a higher-dimensional extension in
[9, Section 3], introducing a Riemann-Stieltjes type integral to handle expressions like∫

[0,1]𝑑
𝑓 d𝑔1 ∧ · · · ∧ d𝑔𝑑 (1)

where 𝑓 , 𝑔1, . . . , 𝑔𝑑 are Hölder functions of exponents 𝛼0, 𝛼1, . . . , 𝛼𝑑 satisfying 𝛼0 + · · · +
𝛼𝑑 > 𝑑. This condition is proven to be sharp, as counterexamples are provided in the
critical case [9, 3.2]. Furthermore, in [1], an extension of the Züst integral is proposed,
allowing the integrator to be a Hölder charge. This generalization also enabled to define
pathwise integrals with respect to stochastic processes, such as the fractional Brownian
sheet with sufficient regularity [2].

This goal of this article is to define integrals of Hölder differential forms, such as those
depicted in (1), in any codimension, allowing the domain of integration to be a normal
current. In continuation of [1], we are led to consider the more general formalism of
charges in middle dimension, as introduced by Th. De Pauw, L. Moonens and W. Pfeffer
in [3], to represent the generalized differential forms Hölder forms must be. An 𝑚-charge
is a linear functional on the space of normal currents that satisfies a certain continuity
condition. Equivalently, the representation theorem of charges [3, Theorem 6.1] states that
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2 PH. BOUAFIA

𝑚-charges are the sums 𝜔 + d𝜂 of a continuous 𝑚-form and the weak exterior derivative of
an (𝑚 − 1)-form. The action on normal currents is given by the formula

(𝜔 + d𝜂) (𝑇) =
∫
R𝑑

⟨𝜔(𝑥), ®𝑇 (𝑥)⟩ d∥𝑇 ∥(𝑥) +
∫
R𝑑

⟨𝜂(𝑥),−→𝜕𝑇 (𝑥)⟩ d∥𝜕𝑇 ∥(𝑥).

Of course, there is no meaningful definition of the exterior product of two general charges.
This obstacle, which is essentially of distributional nature, prevents us from defining
integrals as in (1) in general.

The situation stands in stark contrast to the complex of locally flat cochains introduced
by H. Whitney, see [8, 5]. These cochains are the continuous linear functionals on the
space of flat 𝑚-chains. The main result of the theory is Wolfe’s representation theorem,
which asserts that locally flat 𝑚-cochains are in one-to-one correspondence with locally
flat 𝑚-forms: 𝐿∞loc differential 𝑚-forms with 𝐿∞loc weak exterior derivative. Consequently,
this allows for a pointwise definition of the exterior product of two locally flat cochains.

However, charges do not possess the sufficient regularity, and it is evident that the
Hölder forms appearing in (1) cannot be assigned a pointwise meaning. Besides, the
De Pauw-Moonens-Pfeffer representation theorem only allows to define a cup product
at the cohomology level, see [3, Lemma 8.2]. Thus, to develop a full exterior calculus
apparatus for charges, it is necessary to add some regularity assumptions. We propose the
following definition: an 𝑚-charge 𝜔 over R𝑑 is said to be 𝛼-fractional whenever, for every
compact 𝐾 ⊆ R𝑑 , one can find 𝐶𝐾 ⩾ 0 such that

|𝜔(𝑇) | ⩽ 𝐶𝐾N(𝑇)1−𝛼F(𝑇)𝛼

for every normal current 𝑇 supported in 𝐾 . This definition is designed so that 𝛼-Hölder
continuous differential forms and their exterior derivatives can be represented as fractional
charges. In the zero-codimensional case, it coincides with the Hölder charges described
in [2]. When 𝛼 = 1 we recover the definition of Whitney’s locally flat cochains.

The main accomplishment of this paper is the definition of the exterior product between
an 𝛼-fractional charge 𝜔 and a 𝛽-fractional charge 𝜂, under the Young type condition that
𝛼 + 𝛽 > 1. The resulting charge is also fractional, with the fractional exponent being
𝛼 + 𝛽− 1. Our methods are inspired by tools from harmonic analysis and bear resemblance
to the Fourier approach to integration developed by M. Gubinelli, P. Imkeller, and N.
Perkowski in [7]. Our principal tool is a Littlewood-Paley type decomposition result for
fractional charges, that constitutes a generalization (over R𝑑 only) of the decomposition of
Hölder functions described in [6, Appendix B, 2.6]. By introducing the Littlewood-Paley
decompositions of 𝜔 and 𝜂, it is then possible to split 𝜔∧𝜂 formally into two paraproducts,
the existence of which is easier to establish.

The paper is structured into six sections, each with self-explanatory titles. Section 3
provides a self-contained introduction to charges in middle dimension, focusing solely on
the results pertinent to this paper.

2. Preliminaries

2.1 (Notations). — Throughout the article, the ambient space will be R𝑑 , with 𝑑 ⩾ 1. It
is equipped with the Lebesgue outer measure, denoted ℒ

𝑑 . A measurable subset of R𝑑
always refers to a set that is Lebesgue-measurable.

For a function 𝑓 : 𝑋 → 𝐸 defined on a locally closed subset 𝑋 ⊆ R𝑑 with values in
a normed space (𝐸, ∥ · ∥), a subset 𝑌 ⊆ 𝑋 and 0 < 𝛼 ⩽ 1, we define the extended real
numbers

∥ 𝑓 ∥∞,𝑌 := sup {∥ 𝑓 (𝑦)∥ : 𝑦 ∈ 𝑌 }

Lip𝛼 ( 𝑓 ;𝑌 ) := sup
{
∥ 𝑓 (𝑦1) − 𝑓 (𝑦2)∥

|𝑦1 − 𝑦2 |𝛼
: 𝑦1, 𝑦2 ∈ 𝑌 and 𝑦1 ≠ 𝑦2

}
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In addition, we write ∥ 𝑓 ∥∞ = ∥ 𝑓 ∥∞,𝑋 and Lip𝛼 ( 𝑓 ) = Lip𝛼 ( 𝑓 ; 𝑋). When 𝛼 = 1, we may
of course write Lip instead of Lip𝛼.

The space of 𝛼-Hölder continuous maps is written Lip𝛼 (𝑋; 𝐸). A function 𝑓 : 𝑋 → 𝐸

is locally 𝛼-Hölder continuous whenever Lip𝛼 ( 𝑓 ;𝐾) < ∞ for all compact 𝐾 ⊆ 𝑋 , and the
space of such functions is denoted Lip𝛼loc (𝑋; 𝐸). When 𝐸 = R we abbreviate Lip𝛼 (𝑋) or
Lip𝛼loc (𝑋).

For a compact subset 𝐾 ⊆ R𝑑 and 𝜀 > 0, we define the tubular closed neighborhood
𝐾𝜀 = {𝑥 ∈ R𝑑 : dist(𝑥, 𝐾) ⩽ 𝜀}. The reader will encounter quite frequently the expression
𝐾1, which is a specific case of this notation.

We will work within the setting of Federer-Fleming’s currents. For an in-depth explo-
ration of this subject, we refer the reader to [4]. In this preliminary part, our focus will be
on defining common notations, highlighting those that deviate from [4], and revisiting a
few definitions.

The spaces of 𝑚-vectors and 𝑚-covectors are
∧
𝑚 R

𝑑 and
∧𝑚 R𝑑 , and they are respec-

tively given the mass and comass norm described in [4, 1.8.1]. The bracket notation ⟨·, ·⟩will
be reserved for the duality between𝑚-covectors and𝑚-vectors. The canonical basis ofR𝑑 is
𝒆1, . . . , 𝒆𝑑 . We write Λ(𝑑, 𝑚) the set of strictly increasing maps {1, . . . , 𝑑} → {1, . . . , 𝑚}.
We introduce the dual bases of

∧
𝑚 R

𝑑 and
∧𝑚 R𝑑

𝒆𝐼 = 𝒆𝑖1 ∧ · · · ∧ 𝒆𝑖𝑚
d𝑥𝐼 = d𝑥𝑖1 ∧ · · · ∧ d𝑥𝑖𝑚

for 𝐼 ∈ Λ(𝑑, 𝑚).
All our currents will be defined on R𝑑 and have typically dimension 𝑚, that is, they

will belong to 𝒟𝑚 (R𝑑), the topological dual of the space 𝒟𝑚 (R𝑑) of compactly supported
smooth 𝑚-forms, see [4, 4.1.7]. The boundary, the mass and the normal mass of 𝑇 ∈
𝒟𝑚 (R𝑑) are 𝜕𝑇 , M(𝑇) and N(𝑇). If 𝜔 is a smooth 𝑘-form and 𝑘 ⩽ 𝑚, the current 𝑇 𝜔 ∈
𝒟𝑚−𝑘 (R𝑑) is defined by 𝑇 𝜔(𝜂) = 𝑇 (𝜔 ∧ 𝜂) for 𝜂 ∈ 𝒟

𝑚−𝑘 (R𝑑). If 𝜉 : R𝑑 → ∧
𝑚 R

𝑑

is a locally integrable 𝑚-vectorfield, ℒ𝑑 ∧ 𝜉 is the 𝑚-current that sends 𝜔 ∈ 𝒟
𝑚 (R𝑑)

to
∫
R𝑑

⟨𝜔, 𝜉⟩. Whenever 𝐸 ⊆ R𝑑 is measurable, we denote ⟦𝐸⟧ ∈ 𝒟𝑑 (R𝑑) the zero-
codimensional current defined by ⟦𝐸⟧(𝜔) =

∫
𝐸
⟨𝒆1 ∧ · · · ∧ 𝒆𝑑 , 𝜔⟩. If 𝑥 ∈ R𝑑 , the 0-current

⟦𝑥⟧ ∈ 𝒟0 (R𝑑) is defined by ⟦𝑥⟧(𝜔) = 𝜔(𝑥).
We recall that normal currents and flat chains, as defined in [4] have compact supports.

As such, we may at times evaluate such currents against smooth forms that are not compactly
supported, with no warning.

The spaces of normal 𝑚-currents and flat 𝑚-chains are denoted N𝑚 (R𝑑) and F𝑚 (R𝑑),
following customary notation. For any subset 𝑋 ⊆ R𝑑 , we write

N𝑚 (𝑋) = {𝑇 ∈ N𝑚 (R𝑑) : spt𝑇 ⊆ 𝑋}
F𝑚 (𝑋) = {𝑇 ∈ F𝑚 (R𝑑) : spt𝑇 ⊆ 𝑋}

We define the flat norm of a normal current 𝑇 ∈ N𝑚 (R𝑑) in a way which departs from
Federer’s exposure:

F(𝑇) = sup
{
𝑇 (𝜔) : 𝜔 ∈ 𝒟

𝑚 (R𝑑) and max {∥𝜔∥∞, ∥ d𝜔∥∞} ⩽ 1
}

= inf
{
M(𝑆) + M(𝑇 − 𝜕𝑆) : 𝑆 ∈ N𝑚+1 (R𝑑)

}
.

The proof of the above equality is similar to [4, 4.1.12]. From the first equality, it is clear
that N and M are lower semicontinuous with respect to F. Note that, if 𝑇 is supported in a
compact set 𝐾 , the flat norm we just defined may differ from

F𝐾 (𝑇) = sup
{
𝑇 (𝜔) : 𝜔 ∈ 𝒟

𝑚 (R𝑑) and max
{
∥𝜔∥∞,𝐾 , ∥ d𝜔∥∞,𝐾

}
⩽ 1

}
= inf {M(𝑆) + M(𝑇 − 𝜕𝑆) : 𝑆 ∈ N𝑚+1 (𝐾)} .
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However, if 𝐾 is a 1-Lipschitz retract of R𝑑 , it is clear that F(𝑇) = F𝐾 (𝑇). Moreover, this
assumption implies that F𝑚 (𝐾) is the F-closure of N𝑚 (𝐾) within 𝒟𝑚 (R𝑑).

Finally, the letter 𝐶 will refer generally to a constant, that may vary from line to line.

The construction of charges ultimately relies on the Federer-Fleming’s compactness
theorem of normal currents in flat norm. The following version uses the flat norm F
(rather than F𝐾 as in [4, 4.2.17(1)]). It can be easily deduced from the original version.
Alternatively, it is possible to reproduce the arguments in the proof of Federer-Fleming, as
was done in [3, Theorem 4.2].

2.2. Theorem (Compactness). — Let 𝐾 ⊆ R𝑑 be compact. For all 𝑐 ⩾ 0, the ball
{𝑇 ∈ N𝑚 (𝐾) : N(𝑇) ⩽ 𝑐} is F-compact.

2.3 (Convolution of currents). — In this article, convolutions will play an important role in
regularizing charges. First, we need to recall how convolution works at the level of currents.
The convolution of a current 𝑇 ∈ 𝒟𝑚 (R𝑑) with a function 𝜙 ∈ 𝐶∞

𝑐 (R𝑑) is defined by

(𝑇 ∗ 𝜙) (𝜔) = 𝑇 (𝜙 ∗ 𝜔) for all 𝜔 ∈ 𝒟
𝑚 (R𝑑)

where 𝜙(𝑥) = 𝜙(−𝑥) for all 𝑥 ∈ R𝑑 . It is clear that 𝑇 ∗ 𝜙 ∈ 𝒟𝑚 (R𝑑).
Throughout the article, we fix a 𝐶∞ function Φ : R𝑑 → R with compact support in the

closed unit ball ofR𝑑 , that is nonnegative and such that
∫
R𝑑

Φ = 1. For the sake of simplicity,
we additionally assume that Φ is even. For all 𝜀 > 0, we define Φ𝜀 (𝑥) = 𝜀−𝑑Φ(𝜀−1𝑥).
Below we compile several useful facts concerning 𝑇 ∗Φ𝜀 , when 𝑇 ∈ N𝑚 (R𝑑).
2.4. Proposition. — There is 𝐶 ⩾ 0 such that, for all 𝑇 ∈ N𝑚 (R𝑑) and 𝜀 > 0,

(A) spt(𝑇 ∗Φ𝜀) ⊆ (spt𝑇)𝜀;
(B) M(𝑇 ∗Φ𝜀) ⩽ M(𝑇);
(C) 𝜕𝑇 ∗Φ𝜀 = 𝜕 (𝑇 ∗Φ𝜀), N(𝑇 ∗Φ𝜀) ⩽ N(𝑇) and F(𝑇 ∗Φ𝜀) ⩽ F(𝑇);
(D) M(𝑇 ∗Φ𝜀) ⩽ 𝐶𝜀−1F(𝑇) and N(𝑇 ∗Φ𝜀) ⩽ 𝐶𝜀−1F(𝑇) if 𝜀 ⩽ 1;
(E) F(𝑇 − 𝑇 ∗Φ𝜀) ⩽ 𝜀N(𝑇).

Proof. (A) is immediate.
(B). This is because ∥𝜔 ∗Φ𝜀 ∥∞ ⩽ ∥𝜔∥∞ for all 𝜔 ∈ 𝒟

𝑚 (R𝑑).
(C). The first part comes from the identity d(𝜔 ∗ Φ𝜀) = d𝜔 ∗ Φ𝜀 , valid for any 𝜔 ∈

𝒟
𝑚 (R𝑑). Hence M(𝜕 (𝑇 ∗ Φ𝜀)) = M(𝜕𝑇 ∗ Φ𝜀) ⩽ M(𝜕𝑇). This easily implies that

N(𝑇 ∗Φ𝜀) ⩽ N(𝑇) and F(𝑇 ∗Φ𝜀) ⩽ F(𝑇).
(D). Let 𝑆 ∈ N𝑚+1 (R𝑑). We apply the identity

𝜕𝑆 = −
𝑑∑︁
𝑘=1

𝜕𝑆

𝜕𝑥𝑘
d𝑥𝑘

to the current 𝑆 ∗Φ𝜀 , which yields

𝜕 (𝑆 ∗Φ𝜀) = −
𝑑∑︁
𝑘=1

(
𝑆 ∗ 𝜕Φ𝜀

𝜕𝑥𝑘

)
d𝑥𝑘

From this, we obtain M(𝜕𝑆 ∗Φ𝜀) ⩽ 𝐶𝜀−1M(𝑇).
Thereafter, we decompose 𝑇 = (𝑇 − 𝜕𝑆) + 𝜕𝑆. Applying (B) and the inequality from

the preceding paragraph,

M(𝑇 ∗Φ𝜀) ⩽ M ((𝑇 − 𝜕𝑆) ∗Φ𝜀) + M(𝜕𝑆 ∗Φ𝜀) ⩽
𝐶

𝜀
(M(𝑇 − 𝜕𝑆) + M(𝑆)) .

Taking the infimum on the right-hand side, as 𝑆 ranges over N𝑚+1 (R𝑑), we obtain the first
result. Then,

N(𝑇 ∗Φ𝜀) = M(𝑇 ∗Φ𝜀) + M(𝜕𝑇 ∗Φ𝜀) ⩽
𝐶

𝜀
F(𝑇).
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(E). For any 𝑧 ∈ R𝑑 , let 𝜏𝑧 : R𝑑 → R𝑑 be the translation by 𝑧, and 𝜏𝑧#𝑇 the pushforward
current [4, 4.1.7]. Let 𝜔 ∈ 𝒟

𝑚 (R𝑑). By [4, 4.1.18],

(𝑇 − 𝑇 ∗Φ𝜀) (𝜔) = 𝑇 (𝜔) −
∫
R𝑑

Φ𝜀 (𝑧) (𝜏𝑧#𝑇) (𝜔) d𝑧

=

∫
R𝑑

Φ𝜀 (𝑧) (𝑇 − 𝜏𝑧#𝑇) (𝜔) d𝑧

⩽

∫
R𝑑

Φ𝜀 (𝑧)F(𝑇 − 𝜏𝑧#𝑇) max{∥𝜔∥∞, ∥ d𝜔∥∞} d𝑧

⩽

∫
R𝑑

Φ𝜀 (𝑧) |𝑧 |N(𝑇) max{∥𝜔∥∞, ∥ d𝜔∥∞} d𝑧

⩽ 𝜀N(𝑇) max{∥𝜔∥∞, ∥ d𝜔∥∞}. □

3. Charges in middle dimension

3.1 (Charges in middle dimension). — In this section, we provide a self-contained intro-
duction to charges in middle dimension and establish their fundamental properties. This
notion was pioneered by De Pauw, Moonens and Pfeffer in [3].

An 𝑚-charge over a compact set 𝐾 ⊆ R𝑑 is a linear map 𝜔 : N𝑚 (𝐾) → R that satisfies
one of the following equivalent continuity properties:

(A) 𝜔(𝑇𝑛) → 0 for any bounded sequence (𝑇𝑛) in N𝑚 (𝐾) that converges in flat norm
to 0;

(B) the restriction of 𝜔 to the unit ball of N𝑚 (𝐾) is F-continuous;
(C) for all 𝜀 > 0, there is some 𝜃 ⩾ 0 such that

|𝜔(𝑇) | ⩽ 𝜀N(𝑇) + 𝜃F(𝑇)
holds for any normal current 𝑇 ∈ N𝑚 (𝐾).

One clearly has (A) ⇐⇒ (B) and (C) =⇒ (A). The only non trivial implication (A) =⇒
(C) can be derived as a short consequence of the compactness theorem. Indeed, suppose
by contradiction that (A) holds and (C) is false. In this case, there is 𝜀 > 0 and a sequence
(𝑇𝑛) of normal currents supported in 𝐾 , with normal masses N(𝑇𝑛) = 1 such that

|𝜔(𝑇𝑛) | > 𝑛F(𝑇𝑛) + 𝜀 (2)

for all 𝑛. Some subsequence (𝑇𝑛𝑘 ) converges to a normal current 𝑇 ∈ N𝑚 (𝐾) in flat norm.
Property (A) then implies that 𝜔(𝑇𝑛𝑘 ) → 𝜔(𝑇). Consequently, F(𝑇𝑛𝑘 ) ⩽ 𝑛−1

𝑘
|𝜔(𝑇𝑛𝑘 ) |

tends to 0 as 𝑘 → ∞, which implies that 𝑇 = 0 and 𝜔(𝑇𝑛𝑘 ) → 0. This is in contradiction
with (2).

3.2. — The space of 𝑚-charges over 𝐾 is denoted CH𝑚 (𝐾). As F ⩽ N, the continuity
property (C) above implies that charges are N-continuous, i.e CH𝑚 (𝐾) is a subspace of the
dual N𝑚 (𝐾)∗. We set

∥𝜔∥CH𝑚 (𝐾 ) := sup {𝜔(𝑇) : 𝑇 ∈ N𝑚 (𝐾) and N(𝑇) ⩽ 1} .
In fact, CH𝑚 (𝐾) is a closed subspace of N𝑚 (𝐾)∗, for if (𝜔𝑛) is a sequence in CH𝑚 (𝐾)
converging towards 𝜔 ∈ N𝑚 (𝐾)∗, then 𝜔𝑛 → 𝜔 uniformly on the unit ball of N𝑚 (𝐾). We
conclude by (B) that 𝜔 is a charge.

In addition, there is also a notion of weak convergence of charges: we say that𝜔𝑛 → 𝜔

weakly whenever 𝜔𝑛 (𝑇) → 𝜔(𝑇) for all 𝑇 ∈ N𝑚 (𝐾).
3.3 (Exterior derivative). — Operations on normal currents, such as pushforwards by
Lipschitz maps, taking the boundary, have a counterpart in term of charges, defined by
duality. Here we focus only on defining the exterior derivative d𝜔 ∈ CH𝑚+1 (𝐾), by
setting

d𝜔(𝑇) := 𝜔(𝜕𝑇)
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for all 𝑇 ∈ N𝑚 (𝐾). That d𝜔 is continuous, in the sense of charges, is a consequence of the
identities

N(𝜕𝑇) ⩽ N(𝑇), F(𝜕𝑇) ⩽ F(𝑇) (3)
that furthermore implies that d: CH𝑚 (𝐾) → CH𝑚+1 (𝐾) is bounded. As 𝜕 ◦ 𝜕 = 0, we
have d ◦ d = 0. In other words, (CH• (𝐾), d) is a cochain complex. In fact, the De
Pauw-Moonens-Pfeffer representation theorem expresses that this is the smallest cochain
complex spanned by continuous differential forms.

Before we state this result properly, we will first identify 0-charges with continuous
functions. To each 0-charge 𝜔, we associate the function Γ(𝜔) ∈ 𝐶 (𝐾) defined by
Γ(𝜔) (𝑥) = 𝜔(⟦𝑥⟧). The continuity of Γ(𝜔) is a consequence of that of 𝜔.

3.4. Theorem. — Γ : CH0 (𝐾) → 𝐶 (𝐾) is a Banach space isomorphism.

Proof. First we check that Γ is a continuous. For all 𝑥 ∈ 𝐾 , we have

|Γ(𝜔) (𝑥) | ⩽ ∥𝜔∥CH0 (𝐾 )M(⟦𝑥⟧) = ∥𝜔∥CH0 (𝐾 ) .

Thus ∥Γ(𝜔)∥∞ ⩽ ∥𝜔∥CH0 (𝐾 ) .
Next we claim that Γ is injective. Let us call P0 (𝐾) the space of polyhedral 0-currents

supported in 𝐾 , i.e the linear subspace of 𝒟0 (R𝑑) spanned by the ⟦𝑥⟧, 𝑥 ∈ 𝐾 . By an
easy corollary of the deformation theorem [4, 4.2.9], every 𝑇 ∈ N0 (𝐾) is the F-limit of a
sequence (𝑇𝑛) in P0 (𝐾) such that M(𝑇𝑛) ↑ M(𝑇).

Let 𝜔 ∈ ker Γ, so that 𝜔 vanishes on P0 (𝐾). By the preceding result and the continuity
property of charges, 𝜔 = 0. This proves that Γ is injective.

Next we prove the surjectivity of Γ. Let 𝑔 ∈ 𝐶 (𝐾). We define the function 𝜔, on
polyhedral 0-chains, by

𝜔

(
𝑛∑︁
𝑘=1

𝑎𝑘⟦𝑥𝑘⟧
)
=

𝑛∑︁
𝑘=1

𝑎𝑘𝑔(𝑥𝑘).

Let 𝜀 > 0. There is a Lipschitz function 𝑓 ∈ Lip(𝐾) such that ∥ 𝑓 − 𝑔∥∞ ⩽ 𝜀. Setting
𝜃 = max{∥ 𝑓 ∥∞,Lip 𝑓 }, we have

|𝜔(𝑇) | ⩽
����� 𝑛∑︁
𝑘=1

𝑎𝑘 𝑓 (𝑥𝑘)
����� +

����� 𝑛∑︁
𝑘=1

𝑎𝑘 ( 𝑓 − 𝑔) (𝑥𝑘)
�����

⩽ 𝜃F(𝑇) + 𝜀M(𝑇) (4)

for every 0-polyhedral chain 𝑇 . We extend 𝜔 to M0 (𝐾) with

𝜔(𝑇) = lim
𝑛→∞

𝜔(𝑇𝑛)

where 𝑇 ∈ M0 (𝐾) and (𝑇𝑛) is any sequence of polyhedral 0-chains that F-converges to
𝑇 , with M(𝑇𝑛) ↑ M(𝑇). By (4), the quantity 𝜔(𝑇), thus defined, does not depend on the
approximating sequence. It is also straightforward that 𝜔 is linear and (4) holds now for
any 𝑇 ∈ M0 (𝐾). Hence 𝜔 ∈ CH0 (𝐾) and Γ(𝜔) = 𝑔. This proves that Γ is onto.

Finally, Γ−1 is continuous by the open mapping theorem. □

3.5 (Continuous differential forms). — A continuous 𝑚-form 𝜔 ∈ 𝐶 (𝐾,∧𝑚 R𝑑) act on a
normal current 𝑇 ∈ N𝑚 (𝐾) by means of

𝜔(𝑇) :=
∫

spt𝑇
⟨𝜔(𝑥), ®𝑇 (𝑥)⟩ d∥𝑇 ∥(𝑥)

We argue that this formula makes 𝜔 into an 𝑚-charge (we are committing a slight abuse of
notation by using the same symbol 𝜔 for both the continuous form and the corresponding
charge, even though the obvious mapping𝐶 (𝐾,∧𝑚 R𝑑) → CH𝑚 (𝐾) may be not injective).
Linearity is clear. As for continuity, let us fix 𝜀 > 0 and choose a compactly supported
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smooth form 𝜙 : R𝑑 → ∧𝑚 R𝑑 such that |𝜔(𝑥) − 𝜙(𝑥) | ⩽ 𝜀 for all 𝑥 ∈ 𝐾 . Then, for all
𝑇 ∈ N𝑚 (𝐾),

|𝜔(𝑇) | ⩽
����∫

spt𝑇
⟨𝜔(𝑥) − 𝜙(𝑥), ®𝑇 (𝑥)⟩ d∥𝑇 ∥(𝑥)

���� + |𝑇 (𝜙) |

⩽ 𝜀M(𝑇) + max{∥𝜙∥∞, ∥ d𝜙∥∞}F(𝑇)
⩽ 𝜀N(𝑇) + 𝜃F(𝑇)

for 𝜃 = max{∥𝜙∥∞, ∥ d𝜙∥∞}.
We now state a criterion for relative compactness in CH𝑚 (𝐾). It will prove useful in

the next section for establishing the basic properties of the space of fractional charges.

3.6. Theorem. — Let Ω ⊆ CH𝑚 (𝐾). The following are equivalent:
(A) Ω is relatively compact;
(B) the continuity inequality

|𝜔(𝑇) | ⩽ 𝜀N(𝑇) + 𝜃F(𝑇)
holds for all 𝜔 ∈ Ω and 𝑇 ∈ N𝑚 (𝐾), with a 𝜃 = 𝜃 (𝜀) ⩾ 0 that can chosen
independently of 𝜔.

Proof. (A) =⇒ (B). We prove this implication by contradiction. Suppose there are 𝜀 > 0
and two sequences (𝜔𝑛) in Ω and (𝑇𝑛) in N𝑚 (𝐾) such that

|𝜔𝑛 (𝑇𝑛) | > 𝜀N(𝑇𝑛) + 𝑛F(𝑇𝑛)
for all integers 𝑛. We can also suppose N(𝑇𝑛) = 1 for all 𝑛. As Ω is relatively compact, it
is bounded, consequently

𝑛F(𝑇𝑛) < sup
𝜔∈Ω

∥𝜔∥CH𝑚 (𝐾 ) < ∞

which implies that (𝑇𝑛) converges to 0 in flat norm. On the other side, there is a subsequence
(𝜔𝑛𝑘 ) that converges to 𝜔 ∈ CH𝑚 (𝐾). Hence

|𝜔𝑛𝑘 (𝑇𝑛𝑘 ) | ⩽ |𝜔(𝑇𝑛𝑘 ) | + ∥𝜔 − 𝜔𝑛𝑘 ∥CH𝑚 (𝐾 ) → 0

which contradicts that |𝜔𝑛𝑘 (𝑇𝑛𝑘 ) | > 𝜀.
(B) =⇒ (A). Denote by 𝐵N𝑚 (𝐾 ) the unit ball of N𝑚 (𝐾), metrized by F, and let

𝜄 : CH𝑚 (𝐾) → 𝐶 (𝐵N𝑚 (𝐾 ) ) be the linear map that sends a charge to its restriction to 𝐵N𝑚 (𝐾 ) .
Here, 𝐶 (𝐵N𝑚 (𝐾 ) ) is given the supremum norm, so that 𝜄 is an isometric embedding.

Since CH𝑚 (𝐾) is a Banach space, 𝜄(CH𝑚 (𝐾)) is closed. We only need to show that
𝜄(Ω) is relatively compact in 𝐶 (𝐵N𝑚 (𝐾 ) ).

First, the inequality in (B) (for 𝜀 = 1) entails that 𝜄(Ω) is pointwise bounded. Now, for
an arbitrary 𝜀 > 0 there is 𝜃 ⩾ 0 as in (B). If 𝑇, 𝑆 ∈ 𝐵N𝑚 (𝐾 ) satisfy F(𝑇 − 𝑆) ⩽ 𝜀/𝜃, then
for any 𝜔 ∈ Ω, one has

|𝜄(𝜔) (𝑇) − 𝜄(𝜔) (𝑆) | ⩽ 𝜃F(𝑇 − 𝑆) + 𝜀N(𝑇 − 𝑆) ⩽ 3𝜀.

This proves that 𝜄(Ω) is equicontinuous, thus relatively compact by the Arzelà-Ascoli
theorem. The proof is then finished. □

3.7 (Charges over R𝑑). — It is possible, as was done in [3], to extend the notion of
𝑚-charge over arbitrary subsets of R𝑑 . In this article, we will not attempt to be as general
as possible, but rather concentrate on charges defined over R𝑑 , a domain particularly suited
for performing convolutions or introducing the so-called Littlewood-Paley decomposition
of Section 5.

We call 𝑚-charge over R𝑑 a linear functional 𝜔 : N𝑚 (R𝑑) → R whose restriction to
N𝑚 (𝐾) is an element of CH𝑚 (𝐾), for all compact subsets 𝐾 ⊆ R𝑑 . The space of 𝑚-
charges is denoted CH𝑚 (R𝑑), and we equip it with the Fréchet topology induced by the
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family of seminorms

∥𝜔∥CH𝑚 (𝐾 ) = sup {𝜔(𝑇) : 𝑇 ∈ N𝑚 (𝐾) and N(𝑇) ⩽ 1}

where 𝐾 ranges over all compact subsets of R𝑑 .
The results proven in this section carry over to R𝑑 . Specifically,
(A) the definition of weak convergence, that of the exterior derivative in CH𝑚 (R𝑑) is

unchanged.
(B) The map Γ that sends 𝜔 ∈ CH𝑚 (R𝑑) to the continuous function 𝑥 ↦→ 𝜔(⟦𝑥⟧)

is a Fréchet space isomorphism. Here, the topology 𝐶 (R𝑑) is induced by the
seminorms ∥ · ∥∞,𝐾 , where 𝐾 ⊆ R𝑑 is compact.

(C) Any continuous form 𝜔 ∈ 𝐶 (R𝑑;
∧𝑚 R𝑑) can be regarded as a charge.

(D) A subset Ω ⊆ CH𝑚 (R𝑑) is relatively compact if and only if, for every compact set
𝐾 ⊆ R𝑑 and every 𝜀 > 0, there is 𝜃 = 𝜃 (𝐾, 𝜀) such that for all 𝑇 ∈ N𝑚 (𝐾), we
have |𝜔(𝑇) | ⩽ 𝜀N(𝑇) + 𝜃F(𝑇).

3.8 (Regularization by convolution). — Let 𝜙 ∈ 𝐶∞
𝑐 (R𝑑). We define the convolution of a

charge 𝜔 ∈ CH𝑚 (R𝑑) with 𝜙 by

(𝜔 ∗ 𝜙) (𝑇) = 𝜔(𝑇 ∗ 𝜙) for all 𝑇 ∈ N𝑚 (R𝑑).

The next proposition shows that this construction yields a smooth form.

3.9. Proposition. — Let𝜔 ∈ CH𝑚 (R𝑑) and 𝜙 ∈ 𝐶∞
𝑐 (R𝑑). Then𝜔∗𝜙 ∈ 𝐶∞ (R𝑑;

∧𝑚 R𝑑).
Explicitly,

(𝜔 ∗ 𝜙) (𝑧) =
∑︁

𝐼∈Λ(𝑑,𝑚)
𝜔

(
ℒ
𝑑 ∧ 𝜙(𝑧 − ·)𝒆𝐼

)
d𝑥𝐼 for all 𝑧 ∈ R𝑑 .

Proof. Call �̃�(𝑧) the right-hand side. First we check that �̃� is a smooth 𝑚-form. This is
done by ensuring that, for all 1 ⩽ 𝑖 ⩽ 𝑑 and for any sequence (ℎ𝑛) of nonzero real numbers
tending to 0,

ℒ
𝑑 ∧ 𝜙(𝑧 + ℎ𝑛𝒆𝑖 − ·)𝒆𝐼 −ℒ

𝑑 ∧ 𝜙(𝑧 − ·)𝒆𝐼
ℎ𝑛

→ ℒ
𝑑 ∧ 𝜕𝜙

𝜕𝑥𝑖
(𝑧 − ·)𝒆𝐼

in flat norm with uniformly bounded normal masses.
Next, in order to prove that the charges 𝜔 ∗ 𝜙 and �̃� coincide, we need only do so on

currents of the form ℒ
𝑑 ∧ 𝜉, where 𝜉 =

∑
𝐼∈Λ(𝑑,𝑚) 𝜉𝐼 𝒆𝐼 is a compactly supported smooth

𝑚-vectorfield. This is because, for all 𝑇 ∈ N𝑚 (R𝑑),

(𝜔 ∗ 𝜙 − �̃�) (𝑇) = lim
𝜀→0

(𝜔 ∗ 𝜙 − �̃�) (𝑇 ∗Φ𝜀)

by Proposition 2.4(C) and (E), and 𝑇 ∗Φ𝜀 has the form ℒ
𝑑 ∧ 𝜉 by [4, 4.1.2].

We begin by evaluating

(ℒ𝑑 ∧ 𝜉) (�̃�) =
∑︁

𝐼∈Λ(𝑑,𝑚)

∫
R𝑑
𝜔(ℒ𝑑 ∧ 𝜙(𝑧 − ·)𝒆𝐼 )𝜉𝐼 (𝑧) d𝑧.

On the other hand, one has

𝜔(𝑇 ∗ 𝜙) =
∑︁

𝐼∈Λ(𝑑,𝑚)
𝜔

(
ℒ
𝑑 ∧ 𝜉𝐼 ∗ 𝜙𝒆𝐼

)
.

Following [4, 4.1.2], we introduce, for every 𝑛 ⩾ 1, a partition 𝐴𝑛,1, . . . , 𝐴𝑛,𝑝𝑛 of spt 𝜉 into
Borel sets of diameter less than 𝑛−1 and choose points 𝑧𝑛,𝑘 ∈ 𝐴𝑛,𝑘 for 1 ⩽ 𝑘 ⩽ 𝑝𝑛. Then

𝑝𝑛∑︁
𝑘=1

𝜉𝐼 (𝑧𝑛,𝑘)
(
ℒ
𝑑 ∧ 𝜙(𝑧𝑛,𝑘 − ·)𝒆𝐼

)
ℒ
𝑑 (𝐴𝑛,𝑘) → ℒ

𝑑 ∧ 𝜉𝐼 ∗ 𝜙𝒆𝐼
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in flat norm with uniformly bounded normal masses. Thus,

𝜔(𝑇 ∗ 𝜙) = lim
𝑛→∞

∑︁
𝐼∈Λ(𝑑,𝑚)

𝑝𝑛∑︁
𝑘=1

𝜉𝐼 (𝑧𝑛,𝑘)𝜔(ℒ𝑑 ∧ 𝜙(𝑧𝑛,𝑘 − ·)𝒆𝑰 )ℒ𝑑 (𝐴𝑛,𝑘)

=
∑︁

𝐼∈Λ(𝑑,𝑚)

∫
R𝑑
𝜉𝐼 (𝑧)𝜔(ℒ𝑑 ∧ 𝜙(𝑧 − ·)𝒆𝑰 ) d𝑧

= (ℒ𝑑 ∧ 𝜉) (�̃�). □

4. 𝛼-Fractionality

4.1. — Let 𝛼 ∈ (0, 1]. An 𝛼-fractional 𝑚-charge over a compact set 𝐾 ⊆ R𝑑 is a linear
functional 𝜔 : N𝑚 (𝐾) → R for which there is a constant 𝐶 ⩾ 0 such that

|𝜔(𝑇) | ⩽ 𝐶N(𝑇)1−𝛼F(𝑇)𝛼 for all 𝑇 ∈ N𝑚 (𝐾).

It is clear that the above requirement is a stronger condition than the charge continuity
property stated in Paragraph 3.1.

We adopt the notation CH𝑚,𝛼 (𝐾) to represent the space of 𝛼-fractional 𝑚-charges,
normed by

∥𝜔∥CH𝑚,𝛼 (𝐾 ) = inf
{
𝐶 ⩾ 0 : |𝜔(𝑇) | ⩽ 𝐶N(𝑇)1−𝛼F(𝑇)𝛼 for all 𝑇 ∈ N𝑚 (𝐾)

}
. (5)

We also define ∥𝜔∥CH𝑚,𝛼 (𝐾 ) = ∞ if 𝜔 ∈ CH𝑚 (𝐾) \ CH𝑚,𝛼 (𝐾).
The parameter 𝛼 represents regularity. Equivalently, an 𝑚-charge 𝜔 is 𝛼-fractional

whenever its restriction to the unit ball of N𝑚 (𝐾), endowed with the distance inherited
from F, is 𝛼-Hölder continuous. One clearly has inclusions

CH𝑚,𝛽 (𝐾) ⊆ CH𝑚,𝛼 (𝐾) ⊆ CH𝑚 (𝐾)

(that are continuous) whenever 𝛽 ⩾ 𝛼. In addition, the reader may use the continuity of
the second embedding and the lower semicontinuity of ∥ · ∥CH𝑚,𝛼 (𝐾 ) with respect to weak
convergence to check that CH𝑚,𝛼 (𝐾) is a Banach space.

When 𝛼 = 1 and 𝐾 is a Lipschitz neighborhood retract, we encounter a well-known
object. Indeed, in this case, a 1-fractional charge 𝜔 is F-continuous and N𝑚 (𝐾) is F-dense
in F𝑚 (𝐾). As such, 𝜔 can be uniquely extended so as to become an element of F𝑚 (𝐾)∗,
the space of flat 𝑚-cochains over 𝐾 , introduced by H. Whitney.

More generally, we can think of 𝛼-fractionality as a regularity that is intermediate
between that of mere charges and that of flat cochains. We observe that, as a consequence
of (3), the exterior derivative of an 𝛼-fractional𝑚-charge is again 𝛼-fractional (and the map
d: CH𝑚,𝛼 (𝐾) → CH𝑚+1,𝛼 (𝐾) is continuous).

We can of course define 𝛼-fractional 𝑚-charges over the whole space R𝑑 . They are by
definition the charges 𝜔 ∈ CH𝑚 (R𝑑) whose restrictions to N𝑚 (𝐾) belong to CH𝑚,𝛼 (𝐾),
for each compact subset 𝐾 of R𝑑 . The space they form is denoted CH𝑚,𝛼 (R𝑑), and we
give it the locally convex topology induced by the seminorms ∥ · ∥CH𝑚,𝛼 (𝐾 ) defined as
in (5), where 𝐾 ranges over all compact sets. The elements of CH𝑚,1 (R𝑑) correspond to
the locally flat 𝑚-cochains over R𝑑 described in [5, Section 4].

It may seem strange that the coefficient quantifying the regularity of a fractional charge
is not diminished by 1 when the exterior derivative is applied. This is why we introduced
the term 𝛼-fractionality. It is already the case that the exterior derivative of a flat cochain
remains a flat cochain. The distinction between working with generalized differential forms
𝜔 and, say, Sobolev functions, whose high-order distributional derivatives are increasingly
poorly controlled, is that d𝑘𝜔 = 0 for 𝑘 ⩾ 2.

In the next paragraphs we will exhibit two important examples of fractional charges,
which served as motivations for the definition.
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4.2 (Relationship with Hölder charges). — Here we look at the zero-codimensional case
𝑚 = 𝑑 and 𝐾 = [0, 1]𝑑 . We say that a measurable set 𝐸 ⊆ [0, 1]𝑑 has finite perimeter
whenever ⟦𝐸⟧ ∈ N𝑑 (𝐾) and we denote by BV(𝐾) the algebra of such sets. To each 𝛼-
fractional 𝑑-charge 𝜔, we associate the map Υ(𝜔) : BV(𝐾) → R that sends 𝐸 to 𝜔(⟦𝐸⟧).
We set

𝛾 :=
𝑑 − 1
𝑑

+ 𝛼
𝑑
∈

(
𝑑 − 1
𝑑

, 1
]
.

The map 𝜇 = Υ(𝜔) satisfies the following properties
(A) Finite additivity: for disjoint sets with finite perimeters 𝐸, 𝐹 ∈ BV(𝐾), we have

𝜇(𝐸 ∪ 𝐹) = 𝜇(𝐸) + 𝜇(𝐹);
(B) Continuity: if (𝐸𝑛) is a sequence in BV(𝐾) with uniformly bounded perimeters

sup𝑛 M(𝜕⟦𝐸𝑛⟧) < ∞ and such that ℒ𝑑 (𝐸𝑛) → 0, we have 𝜇(𝐸𝑛) → 0;
(C) Hölder control over dyadic cubes: there is a constant 𝐶 ⩾ 0 such that |𝜇(𝑄) | ⩽

𝐶ℒ𝑑 (𝑄)𝛾 for all dyadic cubes 𝑄 ⊆ 𝐾 .
The last property comes from

|𝜔(⟦𝑄⟧)| ⩽ ∥𝜔∥CH𝑑,𝛼 (𝐾 )N(⟦𝑄⟧)1−𝛼F(⟦𝑄⟧)𝛼

⩽ (1 + 2𝑑)1−𝛼∥𝜔∥CH𝑑,𝛼 (𝐾 )ℒ
𝑑 (𝑄) (1−𝛼) 𝑑−1

𝑑 ℒ
𝑑 (𝑄)𝛼 .

The maps 𝜇 : BV(𝐾) → R that satisfy (A), (B) and (C) appeared in [2, 1] under the name
𝛾-Hölder charges. The article [2] exhibits some examples of Hölder charges derived
from stochastic processes, whereas [1] used Hölder charges as integrators for Young-type
multidimensional integrals. The space of 𝛾-Hölder charges is designated sch𝛾 (𝐾). We
claim that

Υ : CH𝑑,𝛼 (𝐾) → sch𝛾 (𝐾)
is a one-to-one correspondence. Note that this paragraph violates our promise of a self-
contained article, since it relies on material from [1]. However, the result we demonstrate
here, and even more so, the notion of (top-dimensional) Hölder charge, will not be utilized
further in the article.

First we prove that Υ is injective. We recall that each normal current in N𝑑 (𝐾) has
the form ⟦𝐾⟧ 𝑓 , where 𝑓 is a function with bounded variation supported in 𝐾 . We can
show the existence of a sequence of functions ( 𝑓𝑛) supported in 𝐾 , each 𝑓𝑛 being constant
on dyadic cubes of side length 2−𝑛, such that sup𝑛 N(⟦𝐾⟧ 𝑓𝑛) < ∞ and F(⟦𝐾⟧ 𝑓 −
⟦𝐾⟧ 𝑓𝑛) → 0, see for example [2, Lemma 4.8]. If 𝜔 is an 𝛼-fractional 𝑚-charge in
the kernel of Υ, then 𝜔(⟦𝐾⟧ 𝑓𝑛) = 0 for each 𝑛. By letting 𝑛 → ∞, we obtain that 𝜔
vanishes on a general normal current ⟦𝐾⟧ 𝑓 .

Conversely, for each 𝜇 ∈ sch𝛾 (𝐾) and each nonnegative function 𝑓 with bounded
variation supported in 𝐾 , we set

Υ−1 (𝜇) (⟦𝐾⟧ 𝑓 ) =
∫ ∞

0
𝜇({ 𝑓 > 𝑡}) d𝑡.

For a general 𝑓 , we define

Υ−1 (𝜇) (⟦𝐾⟧ 𝑓 ) = Υ−1 (𝜇) (⟦𝐾⟧ 𝑓 +) − Υ−1 (𝜇) (⟦𝐾⟧ 𝑓 −)

where 𝑓 + and 𝑓 − are the positive and negative parts of 𝑓 . We claim that Υ−1 (𝜇) is an
𝛼-fractional𝑚-charge. This results essentially comes from [1, Theorem 3.10], where it was
proven that

𝜇(𝐸) ⩽ 𝐶M(𝜕⟦𝐸⟧)1−𝛼
ℒ
𝑑 (𝐸)𝛼

for some constant 𝐶 = 𝐶 (𝜇) and for any 𝐸 ∈ BV(𝐾). Applying Young’s inequality, we
obtain

𝜇(𝐸) ⩽ 𝐶
(
(1 − 𝛼)𝜆M(𝜕⟦𝐸⟧) + 𝛼

𝜆
1
𝛼
−1

ℒ
𝑑 (𝐸)

)
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for all 𝜆 > 0. Let 𝑓 be a nonnegative function with bounded variation supported in 𝐾 . By
the coarea formula,

|Υ−1 (𝜇) (⟦𝐾⟧ 𝑓 ) | ⩽ 𝐶 (1 − 𝛼)𝜆
∫ ∞

0
M(𝜕 (⟦𝐾⟧ { 𝑓 > 𝑡})) d𝑡

+ 𝐶𝛼

𝜆
1
𝛼
−1

∫ ∞

0
ℒ
𝑑 ({ 𝑓 > 𝑡}) d𝑡

⩽ 𝐶 (1 − 𝛼)𝜆N(⟦𝐾⟧ 𝑓 ) + 𝐶𝛼

𝜆
1
𝛼
−1

F(⟦𝐾⟧ 𝑓 )

Choosing

𝜆 =

(
F(⟦𝐾⟧ 𝑓 )
N(⟦𝐾⟧ 𝑓 )

)𝛼
.

we obtain
|Υ−1 (𝜇) (⟦𝐾⟧ 𝑓 ) | ⩽ 𝐶N(⟦𝐾⟧ 𝑓 )1−𝛼F(⟦𝐾⟧ 𝑓 )𝛼 .

An inequality of the type above is easily obtained as well when we remove the restriction
on the sign of 𝑓 . This ends the proof that Υ−1 (𝜇) ∈ CH𝑑,𝛼 (𝐾). We let the reader check
that Υ and Υ−1 are reciprocal maps.

4.3 (Hölder differential form). — We let Lip𝛼loc (R𝑑 ,
∧𝑚 R𝑑) the space of locally 𝛼-Hölder

continuous 𝑚-forms. It is a Fréchet space, when given the family of seminorms

∥𝜔∥Lip𝛼 (𝐾,∧𝑚 R𝑑 ) := max
{
∥𝜔∥∞,𝐾 ,Lip𝛼 (𝜔;𝐾)

}
indexed over all compact subsets 𝐾 of R𝑑 .

We claim that, for 𝜔 ∈ Lip𝛼loc (R𝑑 ,
∧𝑚 R𝑑), the corresponding charge is 𝛼-fractional.

We recall that Φ : R𝑑 → R be a smooth nonnegative even function, supported in the closed
unit ball, with

∫
R𝑑

Φ = 1. For all 𝜀 ∈ (0, 1], we set Φ𝜀 (𝑥) = 1
𝜀𝑑

Φ
(
𝑥
𝜀

)
and

𝜔𝜀 (𝑥) = 𝜔 ∗Φ𝜀 (𝑥) =
∫
R𝑑
𝜔(𝑦)Φ𝜀 (𝑥 − 𝑦) d𝑦.

For each 𝑥 in a compact set 𝐾 , we have

∥𝜔 − 𝜔𝜀 ∥∞,𝐾 ⩽ Lip𝛼 (𝜔;𝐾1)𝜀𝛼

where 𝐾1 := {𝑥 ∈ R𝑑 : dist(𝑥, 𝐾) ⩽ 1}. Moreover,𝜔𝜀 is smooth, and for all 𝑖 ∈ {1, . . . , 𝑑},
we have

𝜕𝑖𝜔𝜀 (𝑥) =
1
𝜀𝑑+1

∫
R𝑑
𝜔(𝑦)𝜕𝑖Φ

( 𝑥 − 𝑦
𝜀

)
d𝑦

=
1
𝜀𝑑+1

∫
R𝑑

(𝜔(𝑦) − 𝜔(𝑥))𝜕𝑖Φ
( 𝑥 − 𝑦
𝜀

)
d𝑦

from which we infer that

|𝜕𝑖𝜔𝜀 (𝑥) | ⩽ Lip𝛼 (𝜔;𝐾1)
(∫
R𝑑

|𝜕𝑖Φ|
)

1
𝜀1−𝛼 .

and thus,

∥ d𝜔𝜀 ∥∞,𝐾 ⩽ 𝐶 Lip𝛼 (𝜔, 𝐾1)
1

𝜀1−𝛼

for some constant depending on 𝑑. Next, for 𝑇 ∈ N𝑚 (𝐾), we estimate

𝜔(𝑇) =
∫
𝐾

⟨𝜔(𝑥) − 𝜔𝜀 (𝑥), ®𝑇 (𝑥)⟩ d∥𝑇 ∥ + 𝑇 (𝜔𝜀)

From the above inequalities, we can control the first term����∫
𝐾

⟨𝜔(𝑥) − 𝜔𝜀 (𝑥), ®𝑇 (𝑥)⟩ d∥𝑇 ∥
���� ⩽ Lip𝛼 (𝜔;𝐾1)𝜀𝛼N(𝑇)
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whereas, if we suppose furthermore that 𝐾 is a 1-Lipschitz retract, the second term is
controlled by

|𝑇 (𝜔𝜀) | ⩽ max{∥𝜔𝜀 ∥∞,𝐾 , ∥ d𝜔𝜀 ∥∞,𝐾 }F(𝑇)

⩽
1

𝜀1−𝛼 max{∥𝜔∥∞,𝐾1 , 𝐶 Lip𝛼 (𝜔;𝐾1)}F(𝑇)

By choosing 𝜀 = F(𝑇)𝛼/N(𝑇)𝛼 (which is indeed less than 1) and combining the preceding
inequalities, we obtain

|𝜔(𝑇) | ⩽ 𝐶𝐾N(𝑇)1−𝛼F(𝑇)𝛼,
with 𝐶𝐾 := Lip𝛼 (𝜔;𝐾1) + max{∥𝜔∥∞,𝐾1 , 𝐶 Lip𝛼 (𝜔;𝐾1)}.

Next we will identify 𝛼-fractional 0-charges with (locally) Hölder continuous functions.

4.4. Proposition. — The map Γ restricts to a Banach space isomorphism between
CH0,𝛼 (𝐾) and Lip𝛼 (𝐾).

Proof. If 𝜔 is 𝛼-fractional, then
|Γ(𝜔) (𝑥) − Γ(𝜔) (𝑦) | ⩽ ∥𝜔∥CH0,𝛼 (𝐾 )F(⟦𝑥⟧ − ⟦𝑦⟧)𝛼M(⟦𝑥⟧ − ⟦𝑦⟧)1−𝛼

⩽ 21−𝛼∥𝜔∥CH0,𝛼 (𝐾 ) |𝑥 − 𝑦 |
𝛼

for all 𝑥, 𝑦 ∈ 𝐾 . Furthermore, ∥Γ(𝜔)∥∞ ⩽ ∥𝜔∥CH0 (𝐾 ) ⩽ ∥𝜔∥CH0,𝛼 (𝐾 ) . This also shows
that Γ : CH0,𝛼 (𝐾) → Lip𝛼 (𝐾) is continuous.

Conversely, let 𝑓 ∈ Lip𝛼 (𝐾) and 𝜔 = Γ−1 ( 𝑓 ) the associated 0-charge. Let 𝜀 > 0. The
function

𝑓𝜀 : 𝑥 ∈ 𝐾 ↦→ min
{
𝑓 (𝑦) + Lip𝛼 𝑓

𝜀1−𝛼 𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐾
}

belongs to Lip(𝐾), and Lip 𝑓𝜀 ⩽ (Lip𝛼 𝑓 )𝜀𝛼−1. It is also clear that 𝑓𝜀 (𝑥) ⩽ 𝑓 (𝑥) for all
𝑥 ∈ 𝐾 . If 𝑑 (𝑥, 𝑦) ⩾ 𝜀, then

𝑓 (𝑦) + Lip𝛼 𝑓
𝜀1−𝛼 𝑑 (𝑥, 𝑦) ⩾ 𝑓 (𝑦) + (Lip𝛼 𝑓 )𝑑 (𝑥, 𝑦)𝛼 ⩾ 𝑓 (𝑥)

which implies that the minimum in the definition of 𝑓𝜀 (𝑥) is attained at a point 𝑦 ∈ 𝐾 such
that 𝑑 (𝑥, 𝑦) ⩽ 𝜀, and

𝑓𝜀 (𝑥) = 𝑓 (𝑦) + Lip𝛼 𝑓
𝜀1−𝛼 𝑑 (𝑥, 𝑦) ⩾ 𝑓 (𝑦) ⩾ 𝑓 (𝑥) − (Lip𝛼 𝑓 )𝜀𝛼 .

This shows that ∥ 𝑓𝜀 − 𝑓 ∥∞ ⩽ Lip𝛼 ( 𝑓 )𝜀𝛼.
Let 𝑇 =

∑𝑛
𝑘=1 𝑎𝑘⟦𝑥𝑘⟧ be a 0-polyhedral chain. Then

𝜔(𝑇) =
𝑛∑︁
𝑘=1

𝑎𝑘 𝑓𝜀 (𝑥𝑘) +
𝑛∑︁
𝑘=1

𝑎𝑘 ( 𝑓 (𝑥𝑘) − 𝑓𝜀 (𝑥𝑘)).

Approximating 𝑓𝜀 with a smooth function, we prove that����� 𝑛∑︁
𝑘=1

𝑎𝑘 𝑓𝜀 (𝑥𝑘)
����� ⩽ max{Lip 𝑓𝜀 , ∥ 𝑓𝜀 ∥∞}F(𝑇).

Henceforth, if 𝜀 ⩽ 1,
|𝜔(𝑇) | ⩽ max {Lip 𝑓𝜀 , ∥ 𝑓𝜀 ∥∞} F(𝑇) + ∥ 𝑓 − 𝑓𝜀 ∥∞M(𝑇)

⩽ (∥ 𝑓 ∥∞ + Lip𝛼 ( 𝑓 ))
(

1
𝜀1−𝛼F(𝑇) + 𝜀𝛼M(𝑇)

)
.

By choosing 𝜀 = F(𝑇)/M(𝑇) (which is less than or equal to 1), we obtain
|𝜔(𝑇) | ⩽ 2 (∥ 𝑓 ∥∞ + Lip𝛼 ( 𝑓 )) F(𝑇)𝛼M(𝑇)1−𝛼 .

The preceding identity also holds for any chain𝑇 ∈ M0 (𝐾), as it is the F-limit of a sequence
(𝑇𝑛) of polyhedral 0-chains such that M(𝑇𝑛) ↑ M(𝑇), and therefore, 𝜔 ∈ CH0,𝛼 (𝐾).
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Finally, by the open mapping theorem, Γ is a Banach space isomorphism between CH0,𝛼 (𝐾)
and Lip𝛼 (𝐾). □

4.5. Corollary. — The map Γ (from 3.7(B)) restricts to a Fréchet space isomorphism
between CH0,𝛼 (R𝑑) and Lip𝛼loc (R𝑑).
4.6 (An open problem). — Proposition 4.4 and Corollary 4.5 completely describe 𝛼-
fractional charges in the case 𝑚 = 0. In the zero-codimensional case 𝑚 = 𝑑, there is a
representation theorem for 𝛼-fractional charges over [0, 1]𝑑 in [1, Theorem 7.2], which
characterizes them as the exterior derivatives of 𝛼-Hölder (𝑑 − 1)-forms over 𝐾 (a similar
representation theorem for 𝑑-charges over R𝑑 can be obtained by using partitions of unity).

Given those results as well as the De Pauw-Moonens-Pfeffer representation theorem,
one can conjecture that, in the middle cases 1 ⩽ 𝑚 ⩽ 𝑑−1, an arbitrary 𝛼-fractional charge
𝜔 ∈ CH𝑚,𝛼 (R𝑑) can be (non uniquely) decomposed as a sum

𝜔 = 𝜂1 + d𝜂2, where 𝜂1 ∈ Lip𝛼loc

(
R𝑑;

𝑚∧
R𝑑

)
and 𝜂2 ∈ Lip𝛼loc

(
R𝑑;

𝑚−1∧
R𝑑

)
.

4.7. Proposition (Compactness). — Any bounded sequence in CH𝑚,𝛼 (𝐾) has a subse-
quence that converges in CH𝑚 (𝐾) to an 𝛼-fractional charge.

Proof. First observe that ∥ · ∥CH𝑚,𝛼 (𝐾 ) (defined on CH𝑚 (𝐾) with values in [0,∞]) is lower
semi-continuous with respect to weak convergence. Therefore, we only need to check that
a sequence (𝜔𝑛) that satisfies

𝑀 := sup
𝑛

∥𝜔𝑛∥CH𝑚,𝛼 (𝐾 ) < ∞

has a convergent subsequence in CH𝑚 (𝐾). This is an easy consequence of the compactness
criterion (Theorem 3.6), as for any 𝑇 ∈ N𝑚 (𝐾), any integer 𝑛 and 𝜀 > 0, one has, by Young
inequality,

|𝜔𝑛 (𝑇) | ⩽ 𝜀N(𝑇) + 𝑀1/𝛼

𝜀 (1−𝛼)/𝛼
F(𝑇). □

4.8. — We say that a sequence (𝜔𝑛) in CH𝑚,𝛼 (𝐾) converges weakly-* to 𝜔 ∈ CH𝑚,𝛼 (𝐾)
whenever

(A) (𝜔𝑛) is bounded in CH𝑚,𝛼 (𝐾);
(B) 𝜔𝑛 → 𝜔 in CH𝑚 (𝐾).

Using the preceding proposition, it is easy to prove that condition (B) can be substituted
with “𝜔𝑛 → 𝜔 weakly”.

There is a similar compactness result for charges over R𝑑 . Recall that the topology
of CH𝑚,𝛼 (R𝑑) is induced that the family of seminorms ∥ · ∥CH𝑚,𝛼 (𝐾 ) . A sequence (𝜔𝑛)
in CH𝑚,𝛼 (R𝑑) is bounded whenever sup𝑛 ∥𝜔𝑛∥CH𝑚,𝛼 (𝐾 ) < ∞ for every compact 𝐾 ⊆
R𝑑 . It is enough to consider a countable family of compact subsets 𝐾 (for example the
closed balls centered at the origin with an integer radius). By a diagonal argument, any
bounded sequence in CH𝑚,𝛼 (R𝑑) has a subsequence that converges in CH𝑚 (R𝑑) to some
𝛼-fractional charge. The notion of weak* convergence in CH𝑚,𝛼 (R𝑑) is easily adapted.
We will use the compactness theorem in the following form.

4.9. Proposition. — Let (𝜔𝑛) be a sequence in CH𝑚,𝛼 (R𝑑) that is bounded and such that
lim𝑛 𝜔𝑛 (𝑇) exists for all 𝑇 ∈ N𝑚 (R𝑑). Then (𝜔𝑛) converges weakly-* to an 𝛼-fractional
charge.

The smoothing of charges provides an example of weak* convergence. Precise estimates
are given in the next proposition.

4.10. Proposition. — Let 𝜔 ∈ CH𝑚,𝛼 (R𝑑), let 𝐾 ⊆ R𝑑 be compact and 𝜀 ∈ (0, 1]. We
have
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(A) ∥𝜔 ∗Φ𝜀 ∥CH𝑚,𝛼 (𝐾 ) ⩽ ∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 ) ;
(B) ∥𝜔 ∗Φ𝜀 ∥CH𝑚,1 (𝐾 ) ⩽ 𝐶𝜀

𝛼−1∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 ) ;
(C) ∥𝜔 − 𝜔 ∗Φ𝜀 ∥CH𝑚 (𝐾 ) ⩽ 𝐶𝜀

𝛼∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 ) .

Proof. Let 𝑇 ∈ N𝑚 (𝐾) be arbitrary. Regarding (A), we have

|𝜔 ∗Φ𝜀 (𝑇) | = |𝜔(𝑇 ∗Φ𝜀) | ⩽ ∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 )N(𝑇 ∗Φ𝜀)1−𝛼F(𝑇 ∗Φ𝜀)𝛼 (6)

because spt(𝑇 ∗Φ𝜀) ⊆ 𝐾𝜀 . By Proposition 2.4(C),

|𝜔 ∗Φ𝜀 (𝑇) | ⩽ ∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 )N(𝑇)1−𝛼F(𝑇)𝛼 .

Therefore ∥𝜔 ∗Φ𝜀 ∥CH𝑚,𝛼 (𝐾 ) ⩽ ∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 ) .
(B) is obtained by combining (6) with Proposition 2.4(D).
(C). This time,

| (𝜔 − 𝜔 ∗Φ𝜀) (𝑇) | = |𝜔(𝑇 − 𝑇 ∗Φ𝜀) |
⩽ ∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 )F(𝑇 − 𝑇 ∗Φ𝜀)𝛼N(𝑇 − 𝑇 ∗Φ𝜀)1−𝛼

⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 )𝜀
𝛼N(𝑇)𝛼 (N(𝑇) + N(𝑇 ∗Φ𝜀))1−𝛼 Prop. 2.4(E)

⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾𝜀 )N(𝑇) Prop. 2.4(C)

We conclude with the arbitrariness of 𝑇 . □

We end this section with a (technical) proposition that gives the 1-fractional norm of a
smooth form.

4.11. Proposition. — Suppose 𝜔 ∈ 𝐶∞ (R𝑑;
∧𝑚 R𝑑) and 𝐾 ⊆ R𝑑 is a compact set such

that
(A) Every nonempty open subset of 𝐾 has positive Lebesgue measure;
(B) 𝐾 is a 1-Lipschitz retract of R𝑑 .

Then ∥𝜔∥CH𝑚,1 (𝐾 ) = max{∥𝜔∥∞,𝐾 , ∥ d𝜔∥∞,𝐾 }.

Proof. Hypothesis (B) guarantees that F(𝑇) = F𝐾 (𝑇) for 𝑇 ∈ N𝑚 (𝐾). Therefore, we
consider 𝐴 ∈ N𝑚 (𝐾) and 𝐵 ∈ N𝑚+1 (𝐾) such that 𝑇 = 𝐴 + 𝜕𝐵 and compute

|𝜔(𝑇) | = |𝐴(𝜔) | + |𝐵(d𝜔) | ⩽ (M(𝐴) + M(𝐵)) max{∥𝜔∥∞,𝐾 , ∥ d𝜔∥∞,𝐾 }.

Taking the infimum over 𝐴, 𝐵, one obtains that |𝜔(𝑇) | ⩽ F(𝑇) max{∥𝜔∥∞,𝐾 , ∥ d𝜔∥∞,𝐾 }.
This means that ∥𝜔∥CH𝑚,1 (𝐾 ) ⩽ max{∥𝜔∥∞,𝐾 , ∥ d𝜔∥∞,𝐾 }.

Hypothesis (A) implies that the ∥ · ∥∞,𝐾 seminorms can be replaced with essential
suprema. One has then

∥𝜔∥∞,𝐾 = sup
𝜁

∫
⟨𝜔(𝑥), 𝜁 (𝑥)⟩ d𝑥 = sup

𝜁

𝜔(ℒ𝑑 ∧ 𝜁)

∥ d𝜔∥∞,𝐾 = sup
𝜉

∫
⟨(d𝜔) (𝑥), 𝜉 (𝑥)⟩ d𝑥 = sup

𝜉

𝜔

(
𝜕 (ℒ𝑑 ∧ 𝜉)

)
where 𝜁 (resp. 𝜉) ranges over the summable 𝑚-vectorfields (resp. (𝑚 + 1)-vectorfields)
supported in 𝐾 of 𝐿1-norm 1. As F(ℒ𝑑 ∧ 𝜁) ⩽ 1 and F

(
𝜕 (ℒ𝑑 ∧ 𝜉)

)
⩽ 1, one finally

proves the desired inequality. □

4.12. Corollary. — If 𝜔 ∈ 𝐶∞ (R𝑑 ,∧𝑚 R𝑑), 𝜂 ∈ 𝐶∞ (R𝑑 ,∧𝑚′
R𝑑) and 𝐾 is a compact

set that satisfies (A) and (B), then ∥𝜔 ∧ 𝜂∥CH𝑚+𝑚′ ,1 (𝐾 ) ⩽ 𝐶∥𝜔∥CH𝑚,1 (𝐾 ) ∥𝜂∥CH𝑚′ ,1 (𝐾 ) , for
some constant 𝐶.

Proof. It is a consequence of the identity d(𝜔 ∧ 𝜂) = d𝜔 ∧ 𝜂 + (−1)𝑚𝜔 ∧ d𝜂. The reader
interested in computing the constant may consult [4, 1.8.1]. □
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5. A Littlewood-Paley type decomposition of fractional charges

We wish to introduce a decomposition result for 𝛼-fractional charges into much more
regular components (that are at least 1-fractional). It will be analogous to the decomposition
of Hölder functions that is well described in [6, Appendix B, 2.6] that we briefly recall
here. Any 𝛼-Hölder continuous function 𝑓 : 𝑋 → R (for 0 < 𝛼 < 1) defined on a metric
space can be decomposed into Lipschitz parts 𝑓 =

∑∞
𝑛=0 𝑓𝑛, where, for all 𝑛 ⩾ 0,

(A) ∥ 𝑓𝑛∥∞ ⩽ 𝐶2−𝑛𝛼;
(B) Lip 𝑓𝑛 ⩽ 𝐶2𝑛(1−𝛼) ;
(C)

∑∞
𝑛=0 𝑓𝑛 (𝑥) converges for some 𝑥 ∈ 𝑋 .

Here 𝐶 is a constant independent of 𝑛. We can think of 𝑓𝑛 as being the part of 𝑓 whose
frequencies are localized around 2𝑛. The estimates (A) and (B) guarantee that 𝑓𝑛 is
in Lip𝛼 (𝑋), with Lip𝛼 𝑓𝑛 ⩽ 2𝐶. In our future decomposition of charges, the smooth
components will be flat cochains. We begin our study when the domain is a compact
subset 𝐾 of R𝑑 , with an elementary lemma, that estimates the 𝛼-fractional norm of such a
component.

5.1. Lemma. — Let 𝜔 ∈ CH𝑚,1 (𝐾), 𝐶 ⩾ 0 and 𝜀 > 0. Suppose that

∥𝜔∥CH𝑚,1 (𝐾 ) ⩽
𝐶

𝜀1−𝛼 and ∥𝜔∥CH𝑚 (𝐾 ) ⩽ 𝐶𝜀
𝛼 . (7)

Then ∥𝜔∥CH𝑚,𝛼 (𝐾 ) ⩽ 𝐶.

Proof. For any 𝑇 ∈ N𝑚 (𝐾),
|𝜔(𝑇) | ⩽ |𝜔(𝑇) |𝛼 |𝜔(𝑇) |1−𝛼

⩽

(
𝐶

𝜀1−𝛼

)𝛼
𝐶1−𝛼𝜀𝛼(1−𝛼)F(𝑇)𝛼N(𝑇)1−𝛼

⩽ 𝐶F(𝑇)𝛼N(𝑇)1−𝛼 . □

5.2. Proposition. — Suppose 0 < 𝛼 < 1. Let (𝜔𝑛) be a sequence in CH𝑚,1 (𝐾) such that

∥𝜔𝑛∥CH𝑚,1 (𝐾 ) ⩽ 𝐶2𝑛(1−𝛼) and ∥𝜔𝑛∥CH𝑚 (𝐾 ) ⩽
𝐶

2𝑛𝛼

for some 𝐶 ⩾ 0 and for all 𝑛. Then
∑∞
𝑛=0 𝜔𝑛 converges weakly-* to a charge in CH𝑚,𝛼 (𝐾)

and  ∞∑︁
𝑛=0

𝜔𝑛


CH𝑚,𝛼 (𝐾 )

⩽ 𝐶5.2𝐶

where 𝐶5.2 = 𝐶5.2 (𝛼) is a constant.

Note that the convergence of the series
∑∞
𝑛=0 𝜔𝑛 is not strong in CH𝑚,𝛼 (𝐾), but only

weak*, a fact that should evoke some sort of orthogonality of the components 𝜔𝑛.

Proof. Let 𝑇 ∈ N𝑚 (𝐾) be nonzero and 𝑝 ⩾ 1. We have�����𝑝−1∑︁
𝑛=0

𝜔𝑛 (𝑇)
����� ⩽ 𝐶F(𝑇)

𝑝−1∑︁
𝑛=0

2𝑛(1−𝛼) ⩽
𝐶2𝑝 (1−𝛼)

21−𝛼 − 1
F(𝑇).

On the other hand, ����� ∞∑︁
𝑛=𝑝

𝜔𝑛 (𝑇)
����� ⩽ 𝐶N(𝑇)

∞∑︁
𝑛=𝑝

2−𝑛𝛼 ⩽
𝐶2−𝑝𝛼

1 − 2−𝛼N(𝑇)

Now, choose 𝑝 ⩾ 1 such that

2𝑝−1 ⩽
N(𝑇)
F(𝑇) ⩽ 2𝑝 .
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This is possible because N(𝑇) ⩾ F(𝑇). Then����� ∞∑︁
𝑛=0

𝜔𝑛 (𝑇)
����� ⩽ (

21−𝛼

21−𝛼 − 1
+ 1

1 − 2−𝛼

)
𝐶F(𝑇)𝛼N(𝑇)1−𝛼

This shows that
∑∞
𝑛=0 𝜔𝑛 ∈ CH𝑚,𝛼 (𝐾). The preceding argument shows that the sequence

of partial sums
(∑𝑝

𝑛=0 𝜔𝑛

)
𝑝⩾0

is bounded in CH𝑚,𝛼 (𝐾), and from there, it is easy to see
that the convergence is weak-*. □

When adapted to charges over R𝑑 , the preceding proposition takes the following form.

5.3. Corollary. — Suppose 0 < 𝛼 < 1. Let (𝜔𝑛) be a sequence in CH𝑚,1 (R𝑑) such that,
for each compact 𝐾 ⊆ R𝑑 , there is 𝐶𝐾 ⩾ 0 such that

∥𝜔𝑛∥CH𝑚,1 (𝐾 ) ⩽ 𝐶𝐾2𝑛(1−𝛼) and ∥𝜔𝑛∥CH𝑚 (𝐾 ) ⩽
𝐶𝐾

2𝑛𝛼

for all 𝑛. Then
∑∞
𝑛=0 𝜔𝑛 converges weakly-* to a charge in CH𝑚,𝛼 (R𝑑).

5.4. — Of course, it is enough to check the hypothesis of Corollary 5.3 when 𝐾 ranges
over (non degenerate) closed balls. A Littlewood-Paley type decomposition of a fractional
charge 𝜔 ∈ CH𝑚,𝛼 (R𝑑) can be obtained by convolution

𝜔 = 𝜔 ∗Φ1 +
∞∑︁
𝑛=0

(
𝜔 ∗Φ2−(𝑛+1) − 𝜔 ∗Φ2−𝑛

)
.

We claim that the weak* convergence above is ensured by Corollary 5.3 and the estimates
of Proposition 4.10. This decomposition will play a pivotal role in the forthcoming proof
of Theorem 6.1.

6. Main result

6.1. Theorem. — Let 𝛼, 𝛽 be parameters such that 0 < 𝛼, 𝛽 ⩽ 1 and 𝛼 + 𝛽 > 1. There is
a unique map

∧ : CH𝑚,𝛼 (R𝑑) × CH𝑚′ ,𝛽 (R𝑑) → CH𝑚+𝑚′ ,𝛼+𝛽−1 (R𝑑)

such that
(A) ∧ extends the pointwise exterior product between smooth forms;
(B) Weak*-to-weak* continuity: if (𝜔𝑛) and (𝜂𝑛) are two sequences that converge

weakly-* to 𝜔 and 𝜂 in CH𝑚,𝛼 (R𝑑) and CH𝑚′ ,𝛽 (R𝑑) respectively, then 𝜔𝑛 ∧ 𝜂𝑛
converge weakly-* to 𝜔 ∧ 𝜂 in CH𝑚+𝑚′ ,𝛼+𝛽−1 (R𝑑).

Moreover, ∧ is continuous.

Proof. We proved in Proposition 4.10 that 𝜔 ∗ Φ𝜀 → 𝜔 weakly-* in CH𝑚,𝛼 (R𝑑), and
similarly, 𝜂 ∗ Φ𝜀 → 𝜂 weakly-* in CH𝑚′ ,𝛽 (R𝑑). Taking into account that 𝜔 ∗ Φ𝜀 and
𝜂 ∗Φ𝜀 are smooth, the uniqueness of the map ∧ follows.

We now address the issue of existence. First we treat the case (𝛼, 𝛽) ≠ (1, 1). Abbreviate
𝜔𝑛 = 𝜔 ∗Φ2−𝑛 and 𝜂𝑛 = 𝜂 ∗Φ2−𝑛 . We shall prove that the weak* limit of (𝜔𝑛∧𝜂𝑛) exists in
CH𝑚+𝑚′ ,𝛼+𝛽−1 (R𝑑). This will be achieved if we manage to prove that the following series
converges weakly-*

𝜔0 ∧ 𝜂0 +
∞∑︁
𝑛=0

(𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛) + (𝜔𝑛+1 − 𝜔𝑛) ∧ 𝜂𝑛) (8)

in CH𝑚+𝑚′ ,𝛼+𝛽−1 (R𝑑). Let us note in passing that both sums
∑∞
𝑛=0 𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛)

and
∑∞
𝑛=0 (𝜔𝑛+1 − 𝜔𝑛) ∧ 𝜂𝑛 can be interpreted as paraproducts. The weak* convergence
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will follow from an application of Corollary 5.3. To this end, we let 𝐾 be a closed (non
degenerate) ball and estimate

∥𝜂𝑛+1 − 𝜂𝑛∥CH𝑚′ (𝐾 ) ⩽ ∥𝜂𝑛+1 − 𝜂∥CH𝑚′ (𝐾 ) + ∥𝜂𝑛 − 𝜂∥CH𝑚′ (𝐾 ) ⩽ 𝐶2−𝑛𝛽 ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 )

by Proposition 4.10 and similarly

∥𝜔𝑛+1 − 𝜔𝑛∥CH𝑚 (𝐾 ) ⩽ 𝐶2−𝑛𝛼∥𝜔∥CH𝑚,𝛼 (𝐾1 ) .

Next we wish to control the CH𝑚+𝑚′ (𝐾) seminorm of the exterior product𝜔𝑛+1∧(𝜂𝑛+1−𝜂𝑛).
Let 𝑇 ∈ N𝑚+𝑚′ (𝐾). We recall that

𝜕 (𝑇 𝜔𝑛+1) = (−1)𝑚 (𝜕𝑇) 𝜔𝑛+1 + (−1)𝑚+1𝑇 d𝜔𝑛+1.

Hence

N(𝑇 𝜔𝑛+1) ⩽ 𝐶N(𝑇) max{∥𝜔𝑛+1∥𝐾,∞, ∥ d𝜔𝑛+1∥𝐾,∞}
⩽ 𝐶N(𝑇)∥𝜔𝑛+1∥CH𝑚,1 (𝐾 ) by Proposition 4.11

⩽ 𝐶N(𝑇)∥𝜔∥CH𝑚,𝛼 (𝐾1 )2
𝑛(1−𝛼) by Proposition 4.10(B)

We deduce that

|𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛) (𝑇) | = | (𝜂𝑛+1 − 𝜂𝑛) (𝑇 𝜔𝑛+1) |
⩽ ∥𝜂𝑛+1 − 𝜂𝑛∥CH𝑚′ (𝐾 )N(𝑇 𝜔𝑛+1)

⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾1 ) ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 )2
𝑛(1−𝛼−𝛽)N(𝑇).

As a result,

∥𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛)∥CH𝑚 (𝐾 ) ⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾1 ) ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 )2
𝑛(1−𝛼−𝛽) .

Next we estimate the CH𝑚,1 (𝐾) seminorm of 𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛). By Proposition 4.10(B),

∥𝜔𝑛+1∥CH𝑚,1 (𝐾 ) ⩽ 𝐶2𝑛(1−𝛼) ∥𝜔∥CH𝑚,𝛼 (𝐾1 )

∥𝜂𝑛+1 − 𝜂𝑛∥CH𝑚′ ,1 (𝐾 ) ⩽ ∥𝜂𝑛+1∥CH𝑚′ ,1 (𝐾1 ) + ∥𝜂𝑛∥CH𝑚′ ,1 (𝐾 ) ⩽ 𝐶2𝑛(1−𝛽) ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 )

By Corollary 4.12,

∥𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛)∥CH𝑚,1 (𝐾 ) ⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾1 ) ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 )2
𝑛(1−(𝛼+𝛽−1) ) .

Similarly, we have

∥(𝜔𝑛+1 − 𝜔𝑛) ∧ 𝜂𝑛∥CH𝑚+𝑚′ (𝐾 ) ⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾1 ) ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 )2
𝑛(1−𝛼−𝛽)

∥(𝜔𝑛+1 − 𝜔𝑛) ∧ 𝜂𝑛∥CH𝑚+𝑚′ ,1 (𝐾 ) ⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾1 ) ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 )2
𝑛(1−(𝛼+𝛽−1) )

Thus the series in (8) converges weakly-* and we naturally define 𝜔 ∧ 𝜂 to be the weak*
limit of (𝜔𝑛 ∧ 𝜂𝑛). By Proposition 5.2, we have

∥𝜔 ∧ 𝜂∥CH𝑚,𝛼+𝛽−1 (𝐾 ) ⩽ 𝐶∥𝜔∥CH𝑚,𝛼 (𝐾1 ) ∥𝜂∥CH𝑚′ ,𝛽 (𝐾1 ) . (9)

Thus, ∧ is continuous, as desired.
Now we need to prove that (A) and (B) hold. (A) is easy, for if 𝜔 and 𝜂 are already

smooth, then (𝜔𝑛 ∧ 𝜂𝑛) converges locally uniformly (and thus weakly) to the pointwise
exterior product of 𝜔 and 𝜂. Then the weak* and weak limits coincide, so we can conclude
that 𝜔 ∧ 𝜂 has its natural meaning.

Finally we prove (B). Let (𝜔 (𝑝) ) and (𝜂 (𝑝) ) two sequences, indexed by 𝑝 ⩾ 0, that
converge weakly-* towards 𝜔 ∈ CH𝑚,𝛼 (R𝑑) and 𝜂 ∈ CH𝑚′ ,𝛽 (R𝑑) as 𝑝 → ∞. As before,
we fix a closed ball 𝐾 and we set 𝜔 (𝑝)

𝑛 = 𝜔 (𝑝) ∗ Φ2−𝑛 and 𝜂 (𝑝)𝑛 = 𝜂 (𝑝) ∗ Φ2−𝑛 for all 𝑛, 𝑝.
Inequality (9), applied to 𝜔 (𝑝) and 𝜂 (𝑝) , show that the sequence (𝜔 (𝑝) ∧ 𝜂 (𝑝) ) is bounded
in CH𝑚+𝑚′ ,𝛼+𝛽−1 (R𝑑).
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Proposition 3.9 entails that, for all integer 𝑛, the smooth forms 𝜔 (𝑝)
𝑛 and 𝜂 (𝑝)𝑛 converge

locally uniformly to 𝜔𝑛 and 𝜂𝑛 as 𝑝 → ∞. Thus, for a fixed normal current 𝑇 with support
in a non degenerate closed ball, we have

𝑇 (𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛) + (𝜔𝑛+1 − 𝜔𝑛) ∧ 𝜂𝑛) =

lim
𝑝→∞

𝑇

(
𝜔

(𝑝)
𝑛+1 ∧ (𝜂 (𝑝)

𝑛+1 − 𝜂
(𝑝)
𝑛 ) + (𝜔 (𝑝)

𝑛+1 − 𝜔
(𝑝)
𝑛 ) ∧ 𝜂 (𝑝)𝑛

)
.

Likewise,
𝑇 (𝜔0 ∧ 𝜂0) = lim

𝑝→∞
𝑇 (𝜔 (𝑝)

0 ∧ 𝜂 (𝑝)0 ).

Arguing as before, one has���𝑇 (
𝜔

(𝑝)
𝑛+1 ∧ (𝜂 (𝑝)

𝑛+1 − 𝜂
(𝑝)
𝑛 ) + (𝜔 (𝑝)

𝑛+1 − 𝜔
(𝑝)
𝑛 ) ∧ 𝜂 (𝑝)𝑛

)���
⩽ 𝐶∥𝜔 (𝑝) ∥CH𝑚,𝛼 (𝐾1 ) ∥𝜂 (𝑝) ∥CH𝑚′ ,𝛽 (𝐾1 )2

𝑛(1−𝛼−𝛽)N(𝑇).

As the sequences (𝜔 (𝑝) ) and (𝜂 (𝑝) ) are bounded, the previous bound can be made uniform
in 𝑝, allowing us to apply Lebesgue’s dominated convergence theorem in

𝜔 (𝑝) ∧ 𝜂 (𝑝) (𝑇)

= lim
𝑝→∞

(
𝑇 (𝜔 (𝑝)

0 ∧ 𝜂 (𝑝)0 ) +
∞∑︁
𝑛=0

𝑇

(
𝜔

(𝑝)
𝑛+1 ∧ (𝜂 (𝑝)

𝑛+1 − 𝜂
(𝑝)
𝑛 ) + (𝜔 (𝑝)

𝑛+1 − 𝜔
(𝑝)
𝑛 ) ∧ 𝜂 (𝑝)𝑛

))
= 𝜔 ∧ 𝜂(𝑇)

The case 𝛼 = 𝛽 = 1, though simpler, requires special attention. The uniqueness of ∧ is
already established. As previously, we define 𝜔 ∧ 𝜂 to be the weak* limit lim𝑛 𝜔𝑛 ∧ 𝜂𝑛.
It exists because of the compactness theorem. Indeed, for a suitable 𝐾 , we have, by
Corollary 4.12 and Proposition 4.10(A) (or 4.10(B))

∥𝜔𝑛 ∧ 𝜂𝑛∥CH𝑚+𝑚′ ,1 (𝐾 ) ⩽ 𝐶∥𝜔𝑛∥CH𝑚,1 (𝐾 ) ∥𝜂𝑛∥CH𝑚′ ,1 (𝐾 )
⩽ 𝐶∥𝜔∥CH𝑚,1 (𝐾1 ) ∥𝜂∥CH𝑚′ ,1 (𝐾1 )

It remains to show that (𝜔𝑛∧𝜂𝑛) converges weakly. This is the case because, for𝑇 ∈ N𝑚 (𝐾),

𝑇 (𝜔𝑁 ∧ 𝜂𝑁 ) = 𝑇 (𝜔0 ∧ 𝜂0) +
𝑁−1∑︁
𝑛=0

𝑇 (𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛) + (𝜔𝑛+1 − 𝜔𝑛) ∧ 𝜂𝑛) (10)

As before, we establish

|𝑇 (𝜔𝑛+1 ∧ (𝜂𝑛+1 − 𝜂𝑛) + (𝜔𝑛+1 − 𝜔𝑛) ∧ 𝜂𝑛) | ⩽
𝐶∥𝜔∥CH𝑚,1 (𝐾1 ) ∥𝜂∥CH𝑚′ ,1 (𝐾1 )

2𝑛
which ensures the absolute convergence of the series in (10).

Now that the exterior product is well-defined as a map CH𝑚,1 (R𝑑) × CH𝑚′ ,1 (R𝑑) →
CH𝑚+𝑚′ ,1 (R𝑑), properties (A) and (B) are shown as before. □

6.2 (Properties of ∧). — Using the weak* density of smooth forms, it is easy to extend the
well-known formulae of exterior calculus to fractional charges. Among them, we have, for
𝜔 ∈ CH𝑚,𝛼 (R𝑑), 𝜂 ∈ CH𝑚′ ,𝛽 (R𝑑) and 𝛼 + 𝛽 > 1,

(A) ∧ is bilinear;
(B) 𝜔 ∧ 𝜂 = (−1)𝑚𝑚′

𝜂 ∧ 𝜔;
(C) d(𝜔 ∧ 𝜂) = d𝜔 ∧ 𝜂 + (−1)𝑚𝜔 ∧ d𝜂.

The last item uses the weak*-to-weak* continuity of the exterior derivative.
Regarding the product of many fractional charges, we notice that 𝜔1 ∧ · · · ∧ 𝜔𝑘 makes

sense (and the product is associative) as long as𝜔𝑖 is 𝛼𝑖-fractional and 𝛼1+· · ·+𝛼𝑘 > 𝑘−1.
In this case, the result is an (𝛼1 + · · · + 𝛼𝑘 − (𝑘 − 1))-fractional charge.
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