
INCORPORATING BLOGS IN POLLUX

TECHNICAL REPORT

Tobias Holtdirk∗

GESIS – Leibniz Institute for the Social Sciences
Unter Sachsenhausen 6-8

50667 Köln
tobias.holtdirk@rwth-aachen.de

Nina Smirnova
GESIS – Leibniz Institute for the Social Sciences

Unter Sachsenhausen 6-8
50667 Köln

nina.smirnova@gesis.org

March 27, 2024

ABSTRACT

This technical report describes the incorporation of political blogs into Pollux, the Specialised
Information Service (FID) for Political Science in Germany. Considering the widespread use of
political blogs in political science research, we decided to include them in the Pollux search system
to enhance the available information infrastructure. We describe the crawling and analyzing of the
blogs and the pipeline that integrates them into the Pollux system. To demonstrate the content of the
incorporated blogs, we also provide a visualization of the topics covered by the blog posts during the
first three months following integration.

Keywords political blogs · data crawling · political science · social media

1 Introduction

Political blogs are widely used in political science research (Akinnubi & Agarwal, 2023; Coleman & Wright, 2008;
Peng et al., 2023; Wallsten, 2007, 2008; Wright, 2009). Coleman and Wright (2008) claim that communication through
political blogs might enhance the responsibility and openness of governance overall. Peng et al. (2023) examined the
process of opinion formation and evolution by analyzing a larger social network of political blogs. Wallsten (2008)
investigated how political bloggers utilize their platforms, focusing on their predominant function: expressing opinions,
mobilizing, seeking feedback, or disseminating information. Pettersson and Sakki (2020) studied the usage of political
blogs by right-wing politicians for political communication and persuasion. Balakhonskaya et al. (2020) examined
strategies for discrediting opponents in the Russian political blogosphere.

Considering the broad usage of political blogs in political science research, we decided to include political blogs in the
search index of Pollux 2. Pollux is the Specialised Information Service (FID) for Political Science, which provides
literature and information infrastructure in the field of political science in Germany. The following technical report
explains the crawling procedure and analysis of political blogs we included in our collection. Section 2 explains
the generation of the list of RSS feeds used for incorporating blogs in Pollux. Section 3 describes findings from the
collected RSS feeds that motivated the decision of how to implement them into Pollux. Section 4 provides a detailed
description of the procedure that handles the integration of blogs in Pollux. Section 5 shows visualizations of the topics
included in the incorporated blog posts.

2 Sourcing of RSS Feeds

In this section, we describe the generation of the RSS feeds list used to incorporate blogs in Pollux. A graphical
overview of the process is provided in Figure 1.

∗Corresponding author
2https://www.pollux-fid.de/

ar
X

iv
:2

40
3.

17
61

8v
1 

 [
cs

.D
L

] 
 2

6 
M

ar
 2

02
4

https://www.pollux-fid.de/


Incorporating Blogs in Pollux TECHNICAL REPORT

Figure 1: Pipeline for initial blog list generation.

We use lists of URLs with relevant political science blogs provided by SUUB and GESIS. The lists are parsed, tested
for dead links, and then filtered to deduplicate and fix subdomain inconsistencies between the lists.

To get an RSS list from the URL list, we designed a Python script for identifying RSS feeds on web pages. It reads
a list of URLs from a CSV file, sends a GET request to each URL, and uses a regular expression to find any RSS
feed links in the HTML of the page. The regular expression is designed to match the href attribute of link elements
with rel="alternate" and type="application/rss+xml", which is a common way to specify an RSS feed on a
webpage. Finally, a dictionary containing the original URL, the response status code, the content type of the response,
and the list of RSS feed links is written to a JSON file, which is used for the analysis of the RSS feeds, as well as the
later integration into the Pollux database.

After the automatic RSS feed detection, the remaining feeds are checked manually. Like in the automatic checking, the
HTML of the URL is used. We look for broader patterns like an "rss" string appearing in a link on the page. After that,
we check the remaining URLs by visiting the website and searching for visual information like an RSS feed logo. The
additional RSS feeds identified this way are added to the automatically detected ones, providing a JSON file as seen in
Figure 2.

Figure 2: Two entries in JSON after retrieving RSS feeds from URLs.

2



Incorporating Blogs in Pollux TECHNICAL REPORT

To analyze the feeds later, we downloaded the RSS feeds each week for seven months, from July 2022 to February 2023.
We designed a Python script for this purpose that was executed once per week. The script downloads and saves RSS
feeds from the list generated earlier. The feed content and metadata, such as the timestamp, status code, and content
type, were saved. If an error occurs during a request, the request is retried multiple times.

3 Analysis of Initial Blog Data

After generating the initial feed data, we analyzed the resulting 290 feeds and 22,739 entries to identify which metadata
is available and assess the quality of the available metadata.

For an overview of the feed-level data we parsed from the RSS feed, see Table 1. At the feed level, only a little metadata
is transmitted. However, the available metadata is included in almost all feeds and can, therefore, be used as information
in Pollux. The fields mostly contained high-quality data, with only the subtitle field showing some inconsistencies, as
some feeds had considerably longer entries than others. Therefore, we were able to use all the shown field data in the
Pollux integration.

Table 1: Feed Structure. XML elements (fields) that were most often included in the RSS responses at the feed level.

Field Inclusion Example
title 100% PoliSciZurich
subtitle 99% A blog by political scientists in Zurich
blog url 100% https://poliscizurich.wordpress.com
rss url 100% https://poliscizurich.wordpress.com/feed/
last updated 92% Wed, 17 Aug 2016 03:54:00 +0000
language 89% en-US

For an overview of the entry-level data we parsed from the RSS feed, see Table 2. The entry level has more metadata
available, sometimes even including the whole blog post in the content field. However, the quality and availability of
data are worse. The title is always available and has mostly good quality, with some titles being overly long and some
not including the actual title but rather a "not available" statement. Important metadata like link and publication date
also had good quality. Other metadata was more spotty; content often includes HTML artifacts and had inconsistent
content, with some entries having their entire blog post in the field and others just the first sentence. On the other hand,
the summary field is available for all entries and has more consistent quality. Therefore, we use the summary rather than
the content as the displayed "abstract" in Pollux. The tags and comments fields provide interesting metadata. With tags,
the blog entries can be categorized into different subsets, and comments can be used to build some kind of popularity
metric. However, comments have a very low inclusion rate at 33% and are therefore not reliable enough for a metric.
The amount and kind of tags differ heavily for different entries, making them less valuable than an automatic topic
generation based on the summary.

Table 2: Entry Structure. XML elements (fields) that were most often included in the RSS responses at the entry level.

Field Inclusion Example
title 100% The 2022 Midterms: In the Senate elections, [...]
id 100% https://blogs.lse.ac.uk/usappblog/?p=47109
link 100% https://blogs.lse.ac.uk/usappblog/2022/11/ [...]
publication date 96% 2022-11-16 09:57:58
authors 84% Blog
summary 100% In this year\&\#8217;s midterm elections, [...]
content 65% a class="a2a_button_twitter" href="https: [...]
tags 65% 2022 Midterms’, ’Elections and party politi [...]
comments 33% https://blogs.lse.ac.uk/usappblog/2022/11/16[...]

Since we have high-quality data both at the feed and entry levels, we can use them for two distinct types of records in
Pollux. As Pollux is designed as a database for academic research, we can use the preexisting structure of paper and
journal records as a template for entry and feed records.

3



Incorporating Blogs in Pollux TECHNICAL REPORT

4 Incorporation into the Pollux Pipeline

This section provides a detailed description of the pipeline that handles the integration of blogs in Pollux.

4.1 Downloading RSS Feeds

The Python script, rss_downloader.py, is designed to download and store RSS feeds from a list of URLs. It does
this through a series of functions that each handle a specific part of the process.

The run function is the main function that gets called to initiate the process. It reads a list of RSS feed URLs, shuffles
the list to avoid querying the same domain consecutively, and then attempts to download each feed. If a feed is
successfully downloaded, its metadata is stored. If a feed cannot be downloaded, its URL is added to a list of error
URLs. The function then saves the metadata of all downloaded feeds to a JSON file and returns a Result object
containing metrics about the number of feeds downloaded and the number of errors, as well as the error URLs.

Multiple helper functions are used in the process. The extract_feed_urls function reads in a JSON file containing
blog information and extracts a list of unique RSS feed URLs. It expects the JSON file to contain a list of dictionaries,
each with a key rss_links that maps to a list of URLs. The function returns the list of unique URLs.

The load_rss function handles the HTTP request that attempts to download an RSS feed from a given URL and save it
to a specified directory. It first sends a GET request to the URL. If the response’s content type is not XML, the function
raises a ValueError. Otherwise, it saves the response’s content to a file in the specified directory and returns a dictionary
containing the URL, the timestamp of the download, the filename, the status code of the response, and the content type.

The get function handles the GET request used above. It sends a GET request to a given URL with specified headers
and URL parameters. If the request is successful and the status code of the response is OK, the function returns the
response. If the status code is a client error (400-499), the function raises a ValueError. If the status code is a server
error (500-599), the function waits for a certain amount of time and then tries to send the request again. If the request
fails three times, the function raises a ValueError.

4.2 Converting RSS Feeds

The Python script, rss_converter.py, is designed to parse and convert RSS feeds and their entries into the format
used by Pollux entries. It does this through a series of functions that each handle a specific part of the process.

The run function is the main function that gets called to initiate the process. It reads in a dump of RSS feeds, parses the
feeds and their entries, splits the feeds and entries into blog and comment data, converts the blog feeds and entries into
a specific format, and returns the converted data along with some metrics and logs.

The parse_rss_dump function parses the RSS feeds and their entries. It adds additional information from the metadata
to each feed and entry. The split_comments function separates the blog data from the comment data based on the
URL of the feed or entry.

The convert_feed and convert_entry functions convert a feed or an entry into the Pollux entry format. They call
several helper functions to get specific pieces of information from the feed or entry. Ten different helper functions in
the format get_<field> parse the blog information. For example, the get_languages function converts the BCP 47
language code found in the RSS to an ISO 639-3 language code. For detailed information on the functions, see the
accompanying source code.

5 Topics of incorporated Blog Posts

After the integration of the pipeline into Pollux (see Appendix A and Czolkoß-Hettwer and Pfeifenberger (2023) for the
website layout), we analyze the incorporated blogs. Integration started in July 2023, and we analyzed blog entries until
October 2023. We analyze the topics of the blog entries by fitting a topic model on the summary field of the entries.
Before fitting the model, we translated all summaries into English to make the topic model consistent, as we want to
focus on the areas the blogs cover instead of language differences. We additionally use the publication date field
to visualize topics over time.

BERTopic. BERTopic (Grootendorst, 2022) is a topic modeling technique that combines BERT (Bidirectional
Encoder Representations from Transformers) with classical topic modeling methods. It leverages the power of BERT
embeddings to represent documents and then applies topic modeling algorithms to discover latent topics within the

4



Incorporating Blogs in Pollux TECHNICAL REPORT

document collection. BERTopic provides several methods for visualizing the discovered topics and the documents
associated with them. We visualize document-level relationships and topics over time.

Document visualization. Using the fitted topic model, we visualize the documents in the context of the discovered
topics, see Figure 3. We plot the documents in a two-dimensional space, representing each as a point. The position
of the documents is determined by their topic distribution, such that documents with similar topic distributions will
be clustered together. This visualization helps understand the relationships between documents based on their topic
assignments. We can see that US-centric topics like the Supreme Court, monetary policy, and AI advances dominate
the visualization’s upper half. The middle includes topics such as the coronavirus and climate change, which matter
globally. The bottom half includes topics concerning the European Union, German newspapers, and the war in Ukraine,
which are more relevant in Europe.

Figure 3: BERTopic visualization of blog entries incorporated in Pollux. The scatterplot shows embeddings for each
blog entry reduced to a 2-dimensional space. The summaries of the entries were used to create the embeddings.
(Interactive plot at https://tobihol.github.io/pollux-rss-blogs/content_analysis/topic_viz_2d.html)

Over time visualization. We use the publication date of the blog entries to show the trend of topics over time; see
Figure 4. The dates are grouped into two-month intervals to make the plot more interpretable. The number of blogs
included for dates before the incorporation into Pollux differs from blog to blog, as the number of records per RSS
request is individual for each feed, and the frequency of new blogs per feed varies widely. For the visualization, we pick
topics that should vary in relevance over time. The blogs cover important political events like the coronavirus pandemic
or the war in Ukraine. We see the expected temporal development, where COVID is the dominating topic throughout
2020 and 2021, with events like the Russian invasion of Ukraine spiking at the start of 2022 and the AI-related blogs
increasing around the time of the release of ChatGPT in November 2022.

Acknowledgements

This work was funded by Deutsche Forschungsgemeinschaft (DFG) under grant number MA 3964/7-2, the POLLUX
project. We thank Marie-Saphira Flug for supporting and reviewing the process of integrating the blog pipeline into
Pollux. We thank Philipp Mayr for motivating and supporting the write-up of this technical report.

5

https://tobihol.github.io/pollux-rss-blogs/content_analysis/topic_viz_2d.html
https://orcid.org/0000-0002-6656-1658


Incorporating Blogs in Pollux TECHNICAL REPORT

Figure 4: BERTopic visualization of blog entry topics over time. The topics are based on the summaries of the entries.
(Interactive plot at https://tobihol.github.io/pollux-rss-blogs/content_analysis/topics_over_time.html)

References

Akinnubi, A., & Agarwal, N. (2023, April 5). Deliberative democracy, perspective from indo-pacific blogosphere: A
survey. https://doi.org/10.31219/osf.io/8nj7y

Balakhonskaya, L. V., Strelchenko, V. I., Balakhonsky, V. V., Sadretdinova, T. A., & Beresneva, I. V. (2020). Commu-
nicative strategy of discrediting opponents in the russian political blogosphere. 2020 IEEE Communication
Strategies in Digital Society Seminar (ComSDS), 27–33. https://doi.org/10.1109/ComSDS49898.2020.9101281

Coleman, S., & Wright, S. (2008). Political blogs and representative democracy. Information Polity, 13(1), 1–6.
https://doi.org/10.3233/IP-2008-0140

Czolkoß-Hettwer, M., & Pfeifenberger, R. (2023, July 25). Politikwissenschaftliche Blogs sichtbar machen. Deutsche
Vereinigung für Politikwissenschaft. Retrieved March 20, 2024, from https : / / www . dvpw . de / blog /
politikwissenschaftliche-blogs-sichtbar-machen-ein-beitrag-von-michael-czolkoss-hettwer-und-regina-
pfeifenberger

Grootendorst, M. (2022, March 11). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv:
2203.05794 [cs]. https://doi.org/10.48550/arXiv.2203.05794

Peng, Y., Zhao, Y., & Hu, J. (2023). On the role of community structure in evolution of opinion formation: A new
bounded confidence opinion dynamics. Information Sciences, 621, 672–690. https://doi.org/10.1016/j.ins.
2022.11.101

Pettersson, K., & Sakki, I. (2020). Analysing multimodal communication and persuasion in populist radical right
political blogs. In M. A. Demasi, S. Burke, & C. Tileagă (Eds.), Political communication (pp. 175–203).
Springer International Publishing. https://doi.org/10.1007/978-3-030-60223-9_7

Wallsten, K. (2007). Agenda setting and the blogosphere: An analysis of the relationship between mainstream media and
political blogs. Review of Policy Research, 24(6), 567–587. https://doi.org/10.1111/j.1541-1338.2007.00300.x

Wallsten, K. (2008). Political blogs: Transmission belts, soapboxes, mobilizers, or conversation starters? Journal of
Information Technology & Politics, 4(3), 19–40. https://doi.org/10.1080/19331680801915033

Wright, S. (2009). Political blogs, representation and the public sphere (B. Guner, Ed.). Aslib Proceedings, 61(2),
155–169. https://doi.org/10.1108/00012530910946901

A Representation of Blogs on the Pollux Website

6

https://tobihol.github.io/pollux-rss-blogs/content_analysis/topics_over_time.html
https://doi.org/10.31219/osf.io/8nj7y
https://doi.org/10.1109/ComSDS49898.2020.9101281
https://doi.org/10.3233/IP-2008-0140
https://www.dvpw.de/blog/politikwissenschaftliche-blogs-sichtbar-machen-ein-beitrag-von-michael-czolkoss-hettwer-und-regina-pfeifenberger
https://www.dvpw.de/blog/politikwissenschaftliche-blogs-sichtbar-machen-ein-beitrag-von-michael-czolkoss-hettwer-und-regina-pfeifenberger
https://www.dvpw.de/blog/politikwissenschaftliche-blogs-sichtbar-machen-ein-beitrag-von-michael-czolkoss-hettwer-und-regina-pfeifenberger
https://arxiv.org/abs/2203.05794
https://doi.org/10.48550/arXiv.2203.05794
https://doi.org/10.1016/j.ins.2022.11.101
https://doi.org/10.1016/j.ins.2022.11.101
https://doi.org/10.1007/978-3-030-60223-9_7
https://doi.org/10.1111/j.1541-1338.2007.00300.x
https://doi.org/10.1080/19331680801915033
https://doi.org/10.1108/00012530910946901


Incorporating Blogs in Pollux TECHNICAL REPORT

Figure 5: View of the search interface on Pollux when searching for "klimakrise".

7



Incorporating Blogs in Pollux TECHNICAL REPORT

Figure 6: View of a blog entry on Pollux.

8


	Introduction
	Sourcing of RSS Feeds
	Analysis of Initial Blog Data
	Incorporation into the Pollux Pipeline
	Downloading RSS Feeds
	Converting RSS Feeds

	Topics of incorporated Blog Posts
	Representation of Blogs on the Pollux Website

