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Abstract—Integrated sensing and communication (ISAC) has
recently attracted tremendous attention from both academia and
industry, being envisioned as a key part of the standards for
the sixth-generation (6G) cellular network. A key challenge of
6G-oriented ISAC lies in how to perform ubiquitous sensing
based on the communication signals and devices. Previous works
have made great progresses on studying the signal waveform
design that leads to optimal communication-sensing performance
tradeoff. In this article, we aim to focus on issues arising from
the exploitation of the communication devices for sensing in 6G
network. Particularly, we will discuss about how to leverage
various nodes available in the cellular network as anchors to
perform ubiquitous sensing. On one hand, the base stations
(BSs) will be the most important anchors in the future 6G
ISAC network, since they can generate/process radio signals with
high range/angle resolutions, and their positions are precisely
known. Correspondingly, we will first study the BS-based sensing
technique. On the other hand, the BSs alone may not enable
ubiquitous sensing, since they cannot cover all the places with
strong line-of-sight (LOS) links. This motivates us to investigate
the possibility of using other nodes that are with higher density
in the network to act as the anchors. Along this line, we are
interested in two types of new anchors - user equipments (UEs)
and reconfigurable intelligent surfaces (RISs). This paper will
shed light on the opportunities and challenges brought by UE-
assisted sensing and RIS-assisted sensing. Our goal is to devise
a novel 6G-oriented sensing architecture where BSs, UEs, and
RISs can work together to provide ubiquitous sensing services.

Index Terms—Integrated sensing and communication (ISAC),
the sixth-generation (6G) cellular network, localization, reconfig-
urable intelligent surface (RIS), anchors.

I. INTRODUCTION

RECENTLY, integrated sensing and communication

(ISAC) has attracted tremendous attention [1]. Particu-

larly, in “The ITU-R Framework for IMT-2030” [2], ITU-R

Study Group 5 identified ISAC as one of the six usage sce-

narios for the sixth-generation (6G) cellular network. Because

communication is a standard and mature function in cellular

network, one main challenge on the roadmap towards ISAC

lies in how to effectively achieve the sensing functionality

using the communication signals and devices available in the

future 6G systems. This is the main topic that we aim to

discuss about in this article.

There are several successful sensing systems in the world,

e.g., radar sensing systems, Wi-Fi sensing systems, etc. A
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nature question thus arises - besides the commercial consid-

eration, what are the technical advantages of the 6G-oriented

sensing technique over the existing sensing techniques? The

answer may lie in the choices of anchors. Anchors are imper-

ative to localization. Specifically, we can leverage the radio

signals to estimate the distances and angle-of-arrivals (AOAs)

from the unknown positions of the targets to the known

positions of the anchors. Then, based on the absolute state

information of the anchors and the relative state information

between the targets and the anchors, we can accurately localize

the targets. In conventional sensing systems, radars and Wi-Fi

access points act as the anchors, because they can actively emit

radio signals and process received signals, and their positions

are known. Based on the above philosophy, a straightforward

strategy is to utilize the base stations (BSs) as anchors for

sensing in 6G cellular network. Actually, most of the current

works on 6G-oriented ISAC do rely on the BSs for performing

communication and sensing functions. Inspired by the success

of the BSs in providing ubiquitous communication services,

people may expect the BSs to provide ubiquitous sensing

services as well. However, this is not the truth because in

practice, the density for deploying the BSs is not high enough

to cover the targets everywhere with strong line-of-sight (LOS)

channels.

To overcome the above limitation, we propose to leverage

a variety of nodes in the cellular network to expand the

sensing regions of the BSs, as shown in Fig. 1. Along this

line, two new types of anchors will be discussed in this

article - user equipments (UEs) and reconfigurable intelligent

surfaces (RISs). Our goal is to demonstrate the feasibility and

the superiority of employing not only the BSs, but also the

UEs and the RISs as anchors for high-performance sensing

in 6G network. Via properly utilizing all possible nodes in

the cellular network, we believe that the density of anchors

will become the fundamental advantage of 6G-oriented sensing

over the existing sensing techniques, which enables ubiquitous

sensing.

At last, we want to emphasize that there are plenty of

works focusing on how to utilize the 6G signals for achieving

the optimal communication-sensing performance tradeoff. Our

work is an early effort to discuss about how to leverage the

6G devices for better sensing performance.

II. TYPES OF ANCHORS IN 6G NETWORK FOR SENSING

In this article, we will discuss about three types of anchors

in the 6G cellular network - BSs, UEs, and RISs, as shown

in Fig. 1. First, the BSs are the most powerful anchors and

http://arxiv.org/abs/2403.17652v1
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Type I Anchor: BS

Type II Anchor: 

UE (with GPS)

Type III Anchor: RIS

Fig. 1. An illustration of 6G-oriented sensing architecture with a variety of anchors such as the BS, the UE, and the RIS. Because the BS has a LOS path
to the bike, it can act as an anchor to localize the bike alone. Because the BS and the two UEs all have LOS paths to the pedestrian, they can both serve as
anchors to perform joint localization. Because merely the RIS has a LOS path to the vehicle, it acts as a passive anchor to reflect the signals from the vehicle
to the BS, which can leverage these signals to localize the vehicle based on its relative position to the RIS.

will form the foundation to 6G-oriented sensing. However,

the key limitation for leveraging BSs as anchors lies in their

low deployment density. This motivates us to investigate the

possibility for employing the UEs and the RISs as anchors to

probe the regions that cannot be seen clearly by the BSs alone.

On one hand, UEs, such as mobile phones and tablets,

become more computationally powerful nowadays, and they

have played an important role in myriad applications other than

communications, including federated learning, mobile edge

computing, etc. It is thus feasible and promising to leverage

UEs with strong communication and computation capabilities

as anchors for performing sensing tasks. The benefit to use

UEs as anchors is quite straightforward - the density of the

UEs is much higher than that of the BSs in the cellular

network. In practice, after the BS emits the downlink radio

signals over the air, the widely deployed UEs can capture

different aspects of the radar cross section (RCS) of each target

from different directions [3]. A main message from [3] is that

thanks to the RCS diversity gain, it is beneficial to deploy the

antennas at distributed locations such that there are always

some antennas to receive strong echo signals from the targets.

In 6G networks, this indicates that while it is sometimes hard

to find BSs that can receive strong echo signals from a target,

it is much easier to find some adjacent UEs that can receive

strong echoes as anchors.

On the other hand, RISs can act as passive anchors to extend

the sensing region of the BSs. Specifically, when there lack

LOS paths between the BS and the targets in a particular

region, an RIS can be deployed at a known site with LOS paths

to these targets and help reflect the signals from the targets to

the BS, as shown in Fig. 2. In the above scenario, the RIS can

act as a passive anchor due to the following reasons. First,

the RIS can be an anchor because thanks to the LOS links

BS

active target �

(to be localized) 

no LOS path between BS and targets

RIS (known position)

� 

! 

Fig. 2. An illustration of RIS-assisted location: An RIS assists the BS to
localize the targets without LOS paths to it. Because the ranges and the AOAs
from the targets to the BS are not contained in the signals over the target-
RIS-BS paths, we have to localize the targets based on their ranges and AOAs
to the passive anchor, i.e., the RIS.

between the targets and the RIS, it is theoretically possible

to estimate each target’s distance and AOA to the RIS and

then localize the targets based on their relative states to the

RIS with known position. Second, the RIS is a passive anchor

because it cannot process its received signals from the targets

to directly estimate the above useful information. Instead, it

has to reflect the signals to the BS, which then indirectly

estimates the relative states between the RIS and the targets.

That is why an RIS with known position but without signal

processing capability can act as a passive anchor to assist the

BS to expand its sensing region.
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To summarize, a promising 6G architecture for ubiquitous

sensing is shown in Fig. 1 - the BSs will still play the

dominant role to probe the environment, while the widely

deployed UEs may help the BSs to improve the sensing

accuracy, and the RISs may assist the BSs to sense the

regions that cannot be covered by them. In the rest of this

article, we list some challenges for enabling BS-based sensing,

UE-assisted sensing, and RIS-assisted sensing, and provide

possible directions to tackle these challenges.

III. BS-BASED SENSING STRATEGY

BSs form the foundation to wireless communication in

cellular network. Therefore, it is not surprising that BSs will

also be the basis for sensing in 6G cellular network. There

are several desirable properties making BSs perfect anchors to

perform sensing. First, the BSs are static, and their positions

are precisely known. Second, the BSs can estimate the relative

states of the targets with high resolution. On one hand, the BSs

can emit the millimeter wave (mmWave) signals that are with

large bandwidth. For example, according to 3GPP Release

15, the maximum bandwidth of 5G mmWave signals is 400

MHz, and the corresponding range resolution for sensing is

0.375 meter. This is beneficial to range estimation. On the

other hand, the antenna array at the BS is large thanks for

the massive multiple-input multiple-output (MIMO) technique.

This is beneficial to angle estimation.

One may argue that because the BSs play a similar role

to radars in localization, the techniques for radar sensing and

BS-based sensing would be almost the same. While, this is

not the truth. In this section, we point out two unique issues

about BS-based sensing - range/angle/Doppler estimation, and

the possibility to perform networked sensing via large-scale

BS cooperation.

A. Range/Angle/Doppler Estimation via MIMO Orthogonal

Frequency Division Multiplexing (OFDM) Signals

Radar signals and cellular signals possess quite different

waveforms, because they are designed for different purposes.

Specifically, radar signals are designed to have ambiguity

functions with steep and narrow main lobes such that a

matched filter can accurately estimate the range and Doppler

information from the echo signals. However, the OFDM sig-

nals in the cellular network are modulated, coded, and random

signals for high-speed communication, and do not possess the

above property of radar signals. As reported in [4], if the

radar-based matched filter is adopted for sensing over OFDM

signals, the estimation performance can be very poor.

Similar to Wi-Fi sensing, we may enable 6G-oriented sens-

ing based on channel state information (CSI). CSI captures

how wireless signals travel through surrounding objects in

time, frequency, and spatial domains. Because the existence

of the targets can alter some properties of the propagation

channels in a certain manner, we can extract range, angle,

and Doppler information by analyzing CSI. In [5], [6], it was

shown that in the MIMO-OFDM systems, the range/angle

information can be estimated from the time-domain OFDM

signals. To summarize, the main message here is that we can

Fig. 3. An illustration of networked sensing: 5 BSs connected to the same
cloud via the backhaul network are deployed along the road to monitor the
traffic conditions. For example, the pedestrian can be jointly localized by three
BSs with very high accuracy.

still extract the range/angle/Doppler information accurately

from the MIMO-OFDM communication signals, but based on

new signal processing algorithms, instead of the conventional

one used for radar sensing.

B. Networked Sensing

In wireless communication, because each user’s signals

can be received by multiple BSs, cooperative communication

techniques, such as cloud radio access network, networked

MIMO, etc., have been a hot topic for quite a while, where

BSs collaboratively serve the users to mitigate the inter-cell

interference. In wireless sensing, each target’s signals can also

be heard by multiple BSs. Therefore, the BSs can perform

networked sensing [7] via sharing their local sensing infor-

mation for better estimations of the environment, as shown

in Fig. 3. Networked sensing is a unique advantage of 6G-

oriented sensing over radar sensing, because radars usually

work independently due to their sparse deployment and the

absence of a globally unified standard.

Note that networked sensing system is a multi-source multi-

target sensing system, and data association is a long-standing

issue under such a system [8]. Specifically, to localize a

particular target, we should utilize its echo signals received by

multiple BSs for performing networked sensing. However, the

echo signals from all the targets share the same signature, and

it is difficult for the BSs to match each of its received echoes

to the target that generates this echo signal. In the following,

we provide an example to show that the data association issue

may lead to detection of ghost targets that do not exist.

Example 1: Suppose there are three BSs with coordinates

(−35, 0), (50, 0), and (0,−45), and two targets with coor-

dinates (30, 30) and (−30,−30). If the range estimation is

perfect, then BSs 1, 2, and 3 respectively have a distance set

of {
√
5125,

√
925}, a distance set of {

√
1300,

√
7300}, and a

distance set of {
√
6525,

√
1125}, with the targets.

In the above example, if BSs 1, 2, and 3 respectively use

the distances
√
5125,

√
1300, and

√
6525 for localizing target

1, and
√
925,

√
7300, and

√
1125 for localizing target 2, the

coordinates of these two targets can be perfectly estimated as
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(30, 30) and (−30,−30) by applying the trilateration method.

However, if BSs 1, 2, and 3 respectively match
√
5125,

√
1300,

and
√
1125 for localizing target 1, and

√
925,

√
7300, and√

6525 for localizing target 2, the coordinates of these two

targets will be estimated as (30,−30) and (−30, 30). In this

case, we define the false targets at (30,−30) and (−30, 30)
as the ghost targets arising from the wrong data association

solution.

The above example indicates that the BSs may detect ghost

targets due to wrong data association. However, it is also worth

noting that ghost targets do not always exist, as shown in the

following example.

Example 2: Suppose the locations of the three BSs and

the second target remain the same as in Example 1, while

the location of the first target is changed to (30, 20). If the

range estimation is perfect, then BSs 1, 2, and 3 respectively

have a distance set of {
√
4625,

√
925}, a distance set of

{
√
800,

√
7300}, and a distance set of {

√
5125,

√
1125}, with

the targets.

In the above example, it can be shown that merely when BSs

1, 2, and 3 respectively use the distances
√
4625,

√
800, and√

5125 for localizing target 1, and
√
925,

√
7300, and

√
1125

for localizing target 2, the coordinates of these two targets

can be estimated as (30, 20) and (−30,−30) by applying the

trilateration method. When other data association solutions are

used, there is no solution under the trilateration method. In

other words, different from Example 1, there is no ghost target

issue if the BSs and the targets are distributed as in Example 2.

To summarize, the data association issue in networked sensing

may or may not result in the ghost target issue, depending on

the locations of the BSs and the targets.

The above data association issue has been investigated in

[6], which sends two messages. First, we do not need to worry

that the data association issue will fundamentally limit the

sensing accuracy, because when the targets are randomly dis-

tributed in the network, almost surely just one data association

solution can lead to a feasible target location solution under

the trilateration method. Second, although merely one data

association solution exists with probability one, how to find

this correct solution is far from being simple. Some attempts

for designing efficient data association algorithms have been

made in [6]. In the following, we provide one example to show

the effectiveness of the data association algorithm proposed in

[6].

Example 3: Consider a networked sensing system consisting

of 5 BSs and 2-7 targets. Fig. 4 shows the localization detec-

tion error probability of the data association and localization

algorithm proposed in [6], when the channel bandwidth ranges

from 100 MHz to 400 MHz. Here, an detection error event for

localizing the target is defined as the case that the estimated

location does not lie within a radius of 1 m from the true

target location. It is observed that when the channel bandwidth

is above 300 MHz, the localization error probability is below

1% when the number of targets ranges from 2 to 7.

Although the BSs are powerful anchors, they cannot cover

anywhere with strong LOS links. Therefore, in the following,

we introduce how to utilize the UEs and the RISs to expand

the BSs’ sensing regimes.
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Fig. 4. Performance of the data association algorithm proposed in [6].

IV. UE-ASSISTED SENSING STRATEGY

In this section, we demonstrate the possibility for using the

UEs as the anchors to assist the BS in sensing. Specifically,

under the UE-assisted sensing strategy, each BS can transmit

the downlink signals to probe the environment, while the

UEs receiving strong echo signals can opportunistically help

localize the targets, as shown in Fig. 1. This is the so-called

RCS diversity gain [3]. Note that instead of transmitting the

echo signals, each UE merely needs to transmit a small amount

of range, angle, and Doppler information over the feedback

channel to the cloud to perform UE-assisted localization.

Because of the high density of the UEs, it is quite likely

that each target can find some nearby UEs with strong RCSs.

However, there are several issues to implement UE-assist

sensing, and dedicated techniques should be proposed to tackle

these issues before we can reap the RCS diversity gain in

practice. In the following, we list the challenges and the

possible solutions for UE-assisted sensing.

A. Timing Offsets (TOs) Among Asynchronous Anchors

In practice, it is impossible to perfectly synchronize the

BS and the UEs under the UE-assisted sensing scheme. In

this case, the propagation delay from the BS to a target to

an UE estimated from the echo signal is actually the super-

position of the true propagation delay and the TO between

the asynchronous BS and UE. Therefore, we need to propose

efficient methods to mitigate the effect of TO on range-based

localization under UE-assisted sensing.

It is worth noting that mitigating the effect of TO on

communication is not hard, as long as the length of the

cyclic prefix (CP) in OFDM symbols is sufficiently large.

In this case, inter-symbol interference (ISI) still lies in the

CP of all users’ received signals in asynchronous systems,

and after removing the CP, TO just adds linear phases in

frequency-domain channels of each user, which can be simply

compensated for via channel estimation without knowing TOs

[9]. However, TO estimation is necessary for localization,

because range estimation is affected by TOs.
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There are several ways to mitigate the effect of TO on range

estimation. First, if the LOS path between the BS and an UE

is available, we can first calculate the true delay from the BS

directly to the UE based on their locations, and then utilize

the UE’s received signal over the LOS path to estimate the

effective propagation delay. The time difference between the

true delay and the effective delay will be the TO between the

BS and the UE [10]. Second, if the LOS path between the BS

and an UE is not available, we should jointly estimate the TO

and target locations, i.e., via solving the maximum-likelihood

(ML) problem.

B. Erroneous Position Information of Anchors

Anchors are conventionally defined as the nodes whose state

information is perfectly known. However, different from the

static radars and BSs, the UEs can move and their positions

have to be dynamically estimated by Global Positioning Sys-

tem (GPS). Such estimations are subject to unknown errors,

which can be quite large sometimes. If some UEs with quite

erroneous position information are selected as the anchors, the

sensing accuracy can be very low. Therefore, when multiple

UEs can receive strong echo signals from the targets, we have

to propose efficient methods to find the UEs with very accurate

position information for acting as the anchors.

In the literature, some works have been done for localization

with erroneous anchor position information [11]. In these

works, the distribution of the anchor position errors is assumed

to be known, based on which the ML problem for localization

is formulated. It turns out that such an ML problem is a

weighted sum-residue minimization problem, where higher

weights are assigned to the residues of the anchors with

smaller error power. In other words, the anchors with favorable

distribution of position errors will play more important roles in

estimating the locations of the targets. However, in practice,

the distribution of the anchor position errors is usually not

available. We should design UE selection algorithms that do

not rely on any prior information about UE position errors.

We may achieve the above goal via utilizing the outlier

detection technique [12]. Specifically, the sensing information

obtained by the UEs with quite erroneous position information

can be treated as the outlier. For example, in [10], an outlier-

based iterative UE selection algorithm is proposed, where one

UE with quite erroneous position information is found at each

iteration. The basic idea is as follows. At the beginning, we

use all the UEs as the anchors to localize the targets. The

corresponding estimation residue should be recorded. In the

first iteration of the UE selection algorithm, if the removal

of one UE can result in the maximal localization residue

reduction compared to the removal of any other UE, then this

UE will be treated as an UE with quite erroneous position

information and removed from the anchor set. We can perform

this iteration by iteration, until the removal of any UE will not

lead to notable localization residue reduction. Then, we can

claim that all the UEs in the anchor set are UEs with accurate

position information.

Example 4: Consider an UE-assisted localization example,

where one BS works with several UEs to localize one target.
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Fig. 5. An illustration of localization accuracy when position information of
the anchors is not always precise.

Among the UEs, we assume that 5 are with accurate position

information, while 1−6 UEs are with quite erroneous position

information. Fig. 5 shows the localization detection error

probability when the above UE selection algorithm from [10]

is applied to find the UEs with quite erroneous position

information and remove them from the anchor set. Moreover,

the strategy to use all the UEs as anchors is the benchmark

scheme. It is observed that selecting the UEs with accurate

position information as anchors is indeed a necessary step for

UE-assisted localization.

V. RIS-ASSISTED SENSING STRATEGY

Recently, the RIS has become a promising technology

for high-speed communication in the 6G network. The great

potential for using RISs to improve the network throughput has

been demonstrated by a large body of research works. In this

section, we aim to show that RISs are beneficial not only to

communication, but also to sensing. Note that BSs and UEs are

all active anchors, in the sense that they can transmit/receive

radio signals for the sensing purpose. However, as explained

in Section II, the RISs are passive anchors, because they can

merely reflect their received signals, instead of processing

them. Such a passive nature brings challenges to RIS-assisted

sensing.

A. Range and AOA Estimation with Passive Anchors

Conventional anchors, such as radars and BSs, are all active

anchors, which can exploit their received signals to localize

the targets if there exist LOS paths among them. However,

RISs are passive devices that can merely reflect the signals.

Thereby, as shown in Fig. 2, the main challenge for RIS-

assisted sensing lies in how to estimate each target’s range

and AOA to the RIS, if the RIS cannot process its received

signals. The only possible solution is to let the BS estimate

these useful information based on its received signals over the

target-RIS-BS links. This is theoretically feasible, because the

signals received by the BS over the target-RIS-BS links are
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Fig. 6. An illustration of the accuracy of AOA estimation under RIS-assisted
localization.

functions of the signals received by the RIS over the target-

RIS links, which are functions of the targets’ distances and

AOAs to the RIS.

Specifically, we can estimate the propagation delays from

the targets to the RIS as follows [13]. First, we can measure

the propagation delay from each target to the RIS to the BS

based on the signal received by the BS over the target-RIS-

BS path. Second, because the positions of the BS and the RIS

are known, we can calculate the propagation delay between

the RIS and the BS, based on the distance between them.

Last, the difference between the above two values will be the

propagation delay from a target to the RIS.

The next topic is how to estimate the AOAs from the targets

to the RIS based on the signals received by the BSs. Note

that if we apply the multiple signal classification (MUSIC)

algorithm directly on the spatial-domain signal vector received

across all the antennas of the BS, we can merely estimate the

AOA from the RIS to the BS, because the incident signals to

the BS is from the RIS. However, our interest is on the AOAs

from the targets to the RIS, which are useful to localize the

targets. Interestingly, our recent work [14] showed an amazing

result - if the MUSIC algorithm is applied on a properly

designed temporal-domain received signal vector of the BS, we

are still able to estimate the AOAs from the targets to the RIS,

instead of the AOA from the RIS to the BS. Here, the novelty

is to dynamically change the RIS reflection coefficients over

time so as to create the temporal-domain received signal vector

of the BS. More information about how to control the RIS and

how to construct the temporal-domain received signals can be

found in [14].

Example 5: Consider an RIS-assisted localization example,

where 4 targets are at sites with LOS paths to a 64-element

RIS. The AOAs from the 4 targets to the RIS are 12.6728◦,

27.8523◦, 53.8847◦, and 75.7906◦. Fig. 6 shows the normal-

ized spectrum when the MUSIC algorithm is applied to the

carefully designed temporal-domain signals of the BS. It is

observed that all the 4 AOAs are accurately estimated.

B. Sequentially Updating RIS Reflection Coefficients for Bet-

ter Localization Performance

The key to make the MUSIC algorithm work for estimating

the AOAs from the targets to the RIS lies in the construction

of the temporal-domain signals at the BS side, which critically

relies on the dynamic design of the RIS reflection coefficients

over time. This is because if a better RIS beamforming solution

can be obtained at a time slot, the signals emitted by the

active targets in the next time slot can be reflected to the BS

with more focused power for better localization performance.

Along this line, the active beamforming technique proposed

in [15] can be applied to sequentially optimize RIS reflection

strategies based on BS’s historical observations. One notable

challenge of this approach is that the dimension of historical

data changes over time. It is known that recurrent neural

network (RNN) is powerful to process sequential date. The

active beamforming technique proposed in [15] is based on

RNN and promising to solve the RIS reflection coefficient

design problem.

VI. CONCLUSIONS

In this article, we have discussed about the possibility to

leverage a variety of anchors, including BSs, UEs, and RISs,

for ubiquitous sensing in 6G cellular network. Specifically,

BSs will be the most important anchors, and the UEs and the

RISs can assist the BSs to expand their sensing regions. We

have listed and provided possible solutions to the challenges

for BS-based sensing (including range, angle, and Doppler

estimation methods as well as the data association issue for

networked sensing), UE-assisted sensing (including effect of

timing offset on range estimation as well as effect of erro-

neous anchor position information), and RIS-assisted sensing

(including range, angle, and Doppler estimation via passive

anchors as well as adaptive RIS reflection strategies). We

believe that via properly utilizing various nodes in cellular

network, it is promising to transform the world’s largest

wireless network into the world’s largest sensing network in

the future.
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