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Abstract
Graph Transformers (GTs) with powerful repre-
sentation learning ability make a huge success in
wide range of graph tasks. However, the costs be-
hind outstanding performances of GTs are higher
energy consumption and computational overhead.
The complex structure and quadratic complexity
during attention calculation in vanilla transformer
seriously hinder its scalability on the large-scale
graph data. Though existing methods have made
strides in simplifying combinations among blocks
or attention-learning paradigm to improve GTs’ ef-
ficiency, a series of energy-saving solutions orig-
inated from biologically plausible structures are
rarely taken into consideration when constructing
GT framework. To this end, we propose a new
spiking-based graph transformer (SGHormer). It
turns full-precision embeddings into sparse and
binarized spikes to reduce memory and compu-
tational costs. The spiking graph self-attention
and spiking rectify blocks in SGHormer explicitly
capture global structure information and recover
the expressive power of spiking embeddings, re-
spectively. In experiments, SGHormer achieves
comparable performances to other full-precision
GTs with extremely low computational energy con-
sumption. The results show that SGHomer makes a
remarkable progress in the field of low-energy GTs.
Code is available at https://github.com/Zhhuizhe/
SGHormer.

1 Introduction
Graph neural networks (GNNs) as a flourishing representa-
tion learning methods on graph data have been developed
and applied on diverse tasks [Ying et al., 2018] [Zhu et al.,
2023]. Most GNNs based on message passing paradigm can
effectively generate representations of nodes by exchange the
local structure information among nodes [Hamilton et al.,
2018]. Despite message passing neural networks (MPNNs)
have strong capabilities in capturing graph inductive biases,
there are still some of inherent drawbacks are uncovered and
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Figure 1: Visualization results of spiking attention matrices and the
full-precision vanilla self-attention matrix. We construct the exper-
iments on a selected graph from ZINC. For spiking attention matri-
ces cross multiple time steps (bottom), parts of spiking outputs have
similar attention patterns as the full-precision attention (top) calcu-
lated by a softmax function.

formalized such as over-squashing, long-range dependencies
and expressive power limitations [Dai et al., 2018] [Xu et
al., 2019]. Motivated by sequence data modeling and con-
textual understanding of Transformers, some studies strive
to construct Graph Transformers (GTs) to incorporate global
nodes’ semantic with local structural information. The self-
attention mechanism from the vanilla Transformer calculates
attention scores among tokens’ pair and outputs the fusion of
embeddings containing all attention information. This mech-
anism can be performed on the graph naturally, which tokens
are considered as nodes and attention scores are seen as the
importance of edges between two nodes. The process of ag-
gregating different embeddings with attention weights also
can be considered as a special case of applying the message-
passing rule on a fully-connected graph. Some emerging
GTs already achieve competitive or even surpassing perfor-
mances against MPNNs in many graph tasks [Ying et al.,
2021] [Kreuzer et al., 2021].

However, integrating Transformers and MPNNs to fully
unleash their representational power on the large-scale graph
data still faces some challenges. Firstly, the scheme is still
ambiguous that injecting explicit connectivity information
into Transformers to alleviate its deficiency in lack of strong
inductive biases [Ma et al., 2023]. Because the self-attention

ar
X

iv
:2

40
3.

17
65

6v
1 

 [
cs

.N
E

] 
 2

6 
M

ar
 2

02
4

https://github.com/Zhhuizhe/SGHormer
https://github.com/Zhhuizhe/SGHormer


tends to ignore the structural information or relations between
node pairs, it make Transformers hard to generate meaning-
ful attention scores from the view of the graph topology in-
formation. Besides, for addressing these issues, those GTs
with complex attention mechanism always lead to astonish-
ing computational energy consumption. As we mentioned
before, the vanilla self-attention mechanism is equivalent to
calculate weights of every nodes’ pair in a fully-connected
graph. The computation and memory costs behind similar
operations on the large-scale graph are unacceptable. Some
approaches which attempt to improve the efficiency of GTs
are still in early stages, and new effective solutions are yet to
be explored further.

With development of neuromorphic hardwares, spiking
neural networks (SNNs), as biologically plausible structures,
have potential to break through the energy consumption bot-
tleneck of Transformers. The brain-inspired architecture have
attracted widespread attention as a new-generation efficient
neural networks. Different from the neurons in artificial neu-
ral networks (ANNs), biological neurons interact with each
other with sparse spikes [Eshraghian et al., 2023]. Re-
cently, the huge advancements in training algorithms enable
SNNs composed by neurons to borrow sophisticated archi-
tectures from ANNs while further improve the energy effi-
ciency of models. Some of them are increasingly becom-
ing the cornerstone in different applications such as image
recognition, gesture recognization and robot control [Roy et
al., 2019] [Zhou et al., 2023]. Furthermore, it is also an ef-
fective way to utilize the sparse and binarized spikes output
from biological neurons design a more lightweight, energy-
efficient GNNs. Some pioneers already inject SNN into graph
models and verify advantages of the fusion architecture on
energy efficiency [Xu et al., 2021] [Zhu et al., 2022] [Li
et al., 2023]. The experimental results show promising po-
tentiality of generalizing biologically plausible networks on
the graph data, SNNs have been underappreciated and under-
investigated in GTs. Introducing biological neurons into cur-
rent Transformer frameworks may likely offer a sustainable,
low-energy solution for GTs.

Based on SNNs, the sparse operations designed for spiking
neurons bring huge reductions in memory and consumption
costs. Simultaneously, as shown in Figure 1, we observe that
replacing the softmax function with a spiking neuron, self-
attention blocks may capture similar attention patterns. Due
to the regularity of spikes, it is possible to learn attention pat-
terns using spiking attention matrices from few time steps.
These characteristics drive us to integrate the spiking neurons
with GTs. In this study, we construct a spiking driven graph
transformer (SGHormer). As far as we know, it is also the first
methods which inject the spiking neurons into GTs. Specifi-
cally, there are two main components in SGHormer, spiking
rectify block (SRB) and spiking graph self-attention (SGSA).
SRBs recover and generate the approximated input embed-
dings, which can effectively alleviate the information loss
during spiking. Based on observations, SGSA not only allevi-
ates the problem about dependencies of SNNs on time steps,
but also generates the spiking attention matrix in a power-
efficient way. The contributions of this paper are summarized
as follows:

The following instructions apply to submissions:

• We create an energy-saving graph transformer frame-
work using biologically inspired spiking neurons.

• For this new spiking-driven GTs, We design Spiking
Graph Attention Head (SGSA) and Spiking Rectify
Blocks (SRB), which effectively utilize the inherent filer
operation to simplify the self-attention calculation and
alleviate the strong dependencies of spiking neurons on
time steps.

• We compare our methods with 5 advanced GTs and 8
GNNs on PYG and OGB datasets. And we also com-
pare the theoretical energy consumption of our models
with that of other GTs. The results show that SGHormer
can achieve comparable performances against other full-
precision GTs with extremely low computational energy
consumption.

2 Related Work

Spiking Neural Networks. Spiking Neural Networks
(SNNs), characterized by low power consumption, event-
driven features and biological plausibility, are considered the
third generation of neural networks. Motivated by brain’s
neural circuitry, neurons in a SNN communicate with spikes
which can be seen as electrical impulses when membrane
potential reach the threshold. Early spiking neurons like
Hodgkin-Huxley Model follow a biophysical mechanism that
currents caused by action potentials will go through ion chan-
nels in the cell membrane [Gerstner et al., 2014]. Starting
from the Hodgkin-Huxley model, the derivation of simplified
neuron models such as IF and LIF are proposed for adapting
deep learning framework. Though output discrete, single-bit
spikes extremely improve the efficiency of neural networks,
binarized outputs also raise the non-differentiable problem
which makes challenging for directly training SNNs through
the backpropagation algorithm. ANN-to-SNN and surrogate
gradients are two common ways to relieve the above ques-
tions [Cao et al., 2015] [Zhou et al., 2022]. There are lots
of studies in the field of computer vision show that surrogate
gradients can achieve approximated performances compared
with the normal gradient decent.

Graph Transformers. As a transformative framework,
Transformer and its variants achieve tremendous success
and gradually become new benchmarks in various domains
[Vaswani et al., 2017] [Dosovitskiy et al., 2021]. Due to
self-attention mechanism can naturally be regarded as special
case for importance calculation for nodes’ pairs on the graph
data. Emerged GTs verify this assumption. Some works fo-
cus on integrate the original MPNN with new Transformer
framework [Rampášek et al., 2022] [Ma et al., 2023]. Other
methods choose to further modify the attention calculation
for reducing the quadratic complexity into linear complexity
[Wu et al., 2022] [Wei et al., 2023]. In this work, we aim
to build a spiking Graph Transformer architecture from the
view of neuroscience and explore future Transformer-based
neuromorphic chip design.



Positional/Structural encodings. Recent studies indicate
that manually constructing positional and structural encod-
ings (PE/SE) contributes to make standard MPNN more
expressive than 1-Weisfeiler-Leman test [Srinivasan and
Ribeiro, 2020]. There are two common encoding strategies,
positional and structural encodings. Positional encodings is
mainly used to generate embeddings that contain information
about the location of nodes in the graph. There are many
kinds of PE have been developed, for example, Laplacian PE
or Weisfeiler-Lehman-based PE [Li et al., 2020] [Dwivedi
and Bresson, 2021]. The examples of structural encodings
include degree of a node, random-walk SE and so on [Ying
et al., 2021] [Dwivedi et al., 2022]. A common way to inject
the supplementary information is adding or concatenating the
positional or structural representations of the graph to with
node features before the main Transformer model. In this
work, we directly incorporate Laplacian PE and random-walk
SE to generate auxiliary graph topological information.

3 Preliminaries
Spiking neural networks. Though the electrophysiologi-
cal measurements can be calculated accurately by those com-
plex conductance-based neurons, the complexity also limits
widespread deployment in deep neural networks. Currently,
most of SNNs consist of the simpler computational units, IF,
LIF and PLIF [Gerstner et al., 2014]. Specifically, a spik-
ing neuron receives the weighted sum of input current and
accumulates membrane potential. Subsequently, the neuron
compared its membrane potential with a threshold to deter-
mine whether to generate the spikes. The membrane potential
activity can be formulated as follows:

τ
dV t

dt
= −(V t) +RIt, (1)

where V t is the membrane potential, τ denotes a time con-
stant of membrane and R denotes as the membrane resistance.
For facilitating the deployment of biological neurons in deep
learning, the membrane potential reset and spiking should be
retained while relaxing the physically viable assumptions. To
this end, Eq. 1 can be converted into an iterative expression
as follows:

V t = V t−1 + β(WXt − (V t−1 − Vreset)), (2)

V t = V t(1− St) + VresetS
t, (3)

St =

{
1, V t ≥ Vth

0, otherwise
, (4)

where β can be considered as simplified a decay constant. We
utilize snn(·) to denote a LIF neuron hereafter. And we use
the surrogate gradient to approximate gradients of parameters
as follows:

∂L
∂S

∂S

∂V

∂V

∂I

∂I

∂W
≈ ∂L

∂S

∂S̃

∂V

∂V

∂I

∂I

∂W
, (5)

where S̃ is function substitution. In this work, we also em-
ploy spike gradients, which enables the model to reach the
convergence quickly even with low time steps.

Self-attention. One of the most prominent components of
Transformer is multi-head self-attention mechanism. For G =
(V, E), and X ∈ RN×d denotes the nodes’ features. let X ∈
RN×d be the input to a vanilla self-attention layer, where N is
the number of nodes in a graph and d is dimensions of hidden
embeddings. Query, key and value matrices are calculated by
corresponding learnable projection matrices respectively, as
defined below:

Q = XWq,K = XWk, V = XWv, (6)

where Wq,Wk,Wv ∈ Rd×d′
. For Q and K, the layer calcu-

lates dot products of a query with all keys. Results are divided
by

√
d′ and fed into a softmax function to calculate attention

scores of each value. At last, for multi-head self-attention, the
concatenation of output embeddings from M different heads
will be integrated and applied a linear transformation:

Hm = softmax(
QmKT

m√
d′

)Vm, (7)

H = Linear(H1 ∥ H2 ∥ ... ∥ HM ), (8)

where ∥ denotes concat operations.

4 Methodology
In this section, we detail a new spike-based transformer
framework to change attention calculation into a graph recon-
struction by spiking neurons. The framework of SGHormer
is shown in Figure 2. As depicted in figure, SGHormer
changes position encodings and corresponding attributes of
nodes from continuous and full-precision values into rate
coded spikes by rate-based encoder. Then spikes are send into
the spiking graph self-attention block. SGSA binarizes global
attention scores which turn the attention calculate task into a
graph reconstruction task dominated by spiking neurons. Si-
multaneously, SGSA create the local embeddings of nodes
using explicit connectivity information. At last, the sparse
spiking embeddings are fed into a output head to generate
the corresponding predictive results for downstream classifi-
cation or regression tasks.

4.1 Rate-coded nodes’ feature
As a rate-based SNN, we follow the same hypothesis that
the spiking rate is proportional to the importance of patterns
in nodes’ features [Zhu et al., 2022]. The higher intensity
of features is equal to a higher spike count or spiking rate
in the same time interval T . Let Xfeat and Xencode be in-
put node features and positional/structural encodings, respec-
tively. The concatenation of above embedding X are fed into
a rate encoder to generate rate-coded multi-temporal spikes
S = {S1, S2, ..., ST }. There are two common options to
turn inputs into rate coding spikes. For a probability-based
encoder, it consider the rate encoding as a Bernoulli trial. An-
other approach repeatedly pass the embeddings of nodes into
a shared spiking neuron T times. We choose the latter as rate-
based encoder in SGHormer. The process can be defined by
the following formulations:

St
i = snn(Xi) = snn(Linear(Xi,feat ∥ Xi,encode)), (9)
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Figure 2: The framework of SGHormer

where Xi is the integrated embedding of node i, St
i denotes

output spikes at the t-th time step. Calculating the spiking
rate along T time steps can yield approximate estimate of raw
embeddings before entering spiking neurons.

4.2 Spiking rectify block
As we mentioned before, all layers in SGHormer communi-
cate with each other only using sparse and binarized spikes.
It means that there are lots of operations involving the con-
version from full-precision values to binary spikes. While
some attempts demonstrate that constructing a deeper net-
works can also improve performances of SNNs [Fang et al.,
2021] [Zheng et al., 2021] [Hu et al., 2023], the negative im-
pact of information loss becomes prominent on a more com-
plex model and those advantages brought by deeper network
framework will evaporate. Hence, we design a extra spiking
rectify block (SRB) to recover input raw embeddings with
real values from output spikes. We assume a raw embedding
xi follow the normal distribution. Based on the output spiking
vector si, the mean µ̂ and variance σ̂ of spikes across multiple
time steps can be calculated. Subsequently, SRB utilizes the
approximate results and rectifies output spikes filling values.
The specific process can be formulated as follows:

µ̂i =
1

T

T∑
t=1

sti, σ̂i =
1

T

T∑
t=1

(sti − µ̂i)
2, (10)

X̂t = St −W ⊙ U t, U∼N(µ̂, 1− σ̂), (11)

Xt
rec = rec(St) = BN(Linear(X̂t), (12)

where W t is a learnable weight matrix, ⊙ is the Hadamard
product. As shown in Figure 2, SRB utilizes the correlation
between output spikes and input embeddings to reconstruct
nodes’ embedding rather than apply linear transformation and
normalization directly.

4.3 Spiking graph attention head
Different from the vanilla transformer, GTs not only need
capture the local connectivity information utilizing explicit

edges in the graph, but also calculate global attention scores
to infer relation between each nodes’ pair [Ying et al.,
2021] [Rampášek et al., 2022]. Benefit from sparse and bi-
narized spikes, spiking graph self-attention (SGSA) contain
MPNN and self-attention blocks to undertake above two ob-
jectives with low computation and memory overhead. Specif-
ically, we fed the query, key and value matrices into dif-
ferent spiking neurons. Output matrices after spiking neu-
rons is sparse and binary, which only contain 0/1 elements.
Therefore, the linear operation on these spiking matrices is
only addition. The matrix multiplication in attention com-
putation also can be transformed into a sparse form to fur-
ther reduce memory consumption. On the basis of above
sparse operations, SGSA generates node embeddings with lo-
cal and global structure information. Besides, consistent with
the original self-attention architecture, we construct a spik-
ing multilayer perceptron (SMLP) to project outputs into the
embedding space. The combination of above blocks can be
written as:

H l
local = MPNN(Sl, E), (13)

H l
global = ÃlV l = Θ(Ql

sp,K
l
sp)V

l
sp

= (g(Ql)⃝⋆ g(Kl))g(V l)
, (14)

Sl+1 = SMLP (H l
local +H l

global), (15)

where g(·) = snn(rec(·)), ⃝⋆ denotes the sparse matrix mul-
tiplication. It also can be replaced by XNOR and bitcount
operations [Rastegari et al., 2016]. Notably, we just use
a plain message passing layer to aggregate neighbors’ and
edges’ feature, which can be defined as:

hi = MPNN(xi, e) = xi +
∑

j∈N (i)

(wxj + eij), (16)

where N (·) denotes the immediate neighborsof node, eij is
the edge feature between nodes i and j. As shown in Eq. 14,
The global attention scores are calculated by query and key



Model ZINC MNIST CIFAR10 PATTERN CLUSTER
MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑

GCN 0.367±0.011 90.705±0.218 55.710±0.381 71.892±0.334 68.498±0.976
GIN 0.526±0.051 96.485±0.252 55.255±1.527 85.387±0.136 64.716±1.553
GAT 0.384±0.007 95.535±0.205 64.223±0.455 78.271±0.186 70.587±0.447
GatedGCN 0.282±0.015 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326
GatedGCN-LSPE 0.090±0.001 - - - -
PNA 0.188±0.004 97.940±0.12 70.350±0.630 - -
DGN 0.168±0.003 - 72.838±0.417 86.680±0.034 -
GSN 0.101±0.010 - - - -

SAN 0.139±0.006 - - 86.581±0.037 76.691±0.650
Graphormer 0.122±0.006 - - - -
K-Subgraph SAT 0.094±0.008 - - 86.848±0.037 77.856±0.104
EGT 0.108±0.009 98.051±0.126 68.702±0.409 86.821±0.020 79.232±0.348
GPS 0.070±0.004 98.173±0.087 72.298±0.356 86.685±0.059 78.016±0.180

ours 0.117±0.032 96.850±0.247 67.740±0.158 86.527±0.620 71.279±0.205

Table 1: Test performances on five Benchmarking-GNNs datasets. The best result are highlighted in red. Color blocks represent the difference
between SGHormer and other full-precision methods, with darker colors indicating larger performance gaps.

Model ogbg-molhiv ogbg-molpcba
AUC↑ AP↑

GCN+virtual node 75.90±1.1 24.24±0.3
GIN+virtual node 77.07±1.4 27.03±0.2
GatedGCN-LSPE - 26.70±0.2
PNA 79.05±1.3 28.38±0.3
DeeperGCN 78.58±1.1 27.81±0.3
DGN 79.70±0.9 28.85±0.3
GSN (directional) 80.39±0.9 -

SAN 77.85±0.2 27.65±0.4
GraphTrans (GCN-Virtual) - 27.61±0.2
K-Subtree SAT - -
GPS 78.80±1.0 29.07±0.2

SGHormer 77.47±0.4 27.43±0.1

Table 2: Test performances on two OGB datasets.

spiking matrices. From this perspective, the task about infer-
ring latent relations on a fully-connected graph can be con-
sidered as the graph reconstruction controlled by spiking neu-
rons. Because the nonnegativity of spikes, we further remove
the softmax function to simplify the computation of self-
attention. For any given self-attention layer, a simple way
to compute the global embedding H = {H1, H2, ...,HT }
for T time steps can be written as:

H1 = Ã1V 1, H2 = Ã2V 2, ...,HT = ÃTV T , (17)

However, we believe that such operations overlook the inher-
ent filter operations of SNNs. And the arrival times of spikes
can also reveal the intensity between different elements us-
ing the rate-coding method mentioned in the previous sec-
tion. The earlier a spike arrives, the greater its input value
compared to the membrane potential threshold of a spiking
neuron. Therefore, we consider an extreme scenario that the

most important latent relations emerges in Ã1,l after filtering
by spiking neuron. At this point, the process of generating
global embedding can be updated as:

H1 = Ã1V 1, H2 = Ã1V 2, ...,HT = Ã1V T , (18)

Ã1 = g(Q1)⃝⋆ g(K1)), (19)

This simplified operation significantly reduces the depen-
dence of SNNs on long time steps. Besides, it still ensuring
that the global connectivity information can be captured by
SGSA. We choose the latter one in our experiments.

5 Experiments
5.1 Graph classification
In this section, we compare SGHormer against various mes-
sage passing neural networks and graph transformers on
Benchmarking-GNNs [Dwivedi et al., 2023] and OGB [Hu
et al., 2021]. For comprehensively validating the effective-
ness of SGHormer, selected datasets covering various graph-
related tasks such as graph regression, graph classification
and node classification. All experiments are conducted on
the standard splits of the evaluated datasets. We perform our
model on each dataset 5 times with different random seeds
to report the mean and standard deviation. All above experi-
ments are conducted on a single NVIDIA RTX 3090 GPU if
not explicitly stated otherwise.

Datasets. We select five datasets including ZINC, MNIST,
CIFAR10, PATTERN and CLUSTER from Benchmarking-
GNNs to evaluate our method. For the open graph bench-
mark (OGB), we select two molecular property prediction
datasets with different scales, namely ogbg-molhiv and ogbg-
molpcba.

Baselines. As of now, the spiking-related graph transform-
ers or any GNNs used for graph-level tasks has not been lo-
cated. Therefore, all selected baselines are in full-precision



Model
ZINC MNIST PATTERN ogbg-molhiv

Param Mem Eng Param Mem Eng Param Mem Eng Param Mem Eng
(MB) (GB) (mJ) (MB) (GB) (mJ) (MB) (GB) (mJ) (MB) (GB) (mJ)

SAN 0.19 0.58 22.73 0.48 15.07 200.43 0.39 14.68 907.49 0.49 6.45 40.44
Graphormer 0.10 0.41 6.64 0.15 2.71 51.81 0.10 0.51 212.18 0.15 2.76 11.79
SAT 0.24 0.52 13.65 0.36 17.21 112.99 0.24 2.97 599.0 0.37 2.05 23.38
GPS 0.16 0.40 6.88 0.32 15.44 52.55 0.21 0.73 214.63 0.32 2.07 12.17

Average 0.17 0.48 12.47 0.33 12.61 104.44 0.24 4.72 483.33 0.33 3.33 21.94
SGHormer 0.09 0.56 0.18 0.13 6.46 0.58 0.08 1.00 1.64 0.14 4.30 0.30

Table 3: The parameter size (MB), memory usage (GB) and theoretical energy consumption (mJ) of various GTs. Color blocks represent the
improvement in efficiency compared SGHormer with other full-precision methods, with darker colors indicating larger disparities.

form. One of the main categories among these models are
message passing neural networks: GCN [Kipf and Welling,
2017], GIN [Xu et al., 2019], GAT [Veličković et al.,
2017], GatedGCN [Bresson and Laurent, 2018], GatedGCN-
LSPE [Dwivedi et al., 2022], PNA [Corso et al., 2020],
DGN [Beaini et al., 2021], GSN [Bouritsas et al., 2023].
The others are some advanced graph transformers employed
in graph-level tasks widely: SAN [Kreuzer et al., 2021],
Graphormer [Ying et al., 2021], SAT [Chen et al., 2022],
EGT [Hussain et al., 2022], GPS [Rampášek et al., 2022].

Overall performance. The comparative results are demon-
strated in Table 1. It is evident that, despite some gaps
compared to state-of-the-art methods based on binary ground
truth distances, SGHormer has achieved comparable predic-
tive performance on most datasets through carefully designed
network structures. In certain datasets like ZINC, it even out-
performs the predictions of full-precision ground truth meth-
ods. For message passing neural networks, SGHormer out-
performs GCN, GAT and GIN on every datasets. Since the
current model only employs a plain MPNN and a simplifying
global attention mechanism, its performance remains subpar
on datasets with plain node’s feature (eg. one-hot encoding)
like CLUSTER. Improving performance on such datasets is
one of the future directions of our work.

5.2 Theoretical Energy Consumption
To examine the energy efficiency of SGHormer, we mea-
sure SGHormer and other GTs from three different metrics,
model size, memory usage and theoretical energy consump-
tion. However, directly applying the model on neuromorphic
chip is rarely explored [Zhu et al., 2022]. To investigate the
energy consumption of SGHormer, we derived the theoreti-
cal energy consumption from previous works [Zhou et al.,
2022]. Since GTs are still in the early stages of development,
there is no standard model size set for each task. For the sake
of fairness in comparison, we set the same fixed hyperparam-
eters including the number of layers, the number of heads, the
dimension of hidden embeddings for each model while cal-
culating the energy consumption. Besides, different GTs em-
ploying various encoding strategies, part of methods prepro-
cess structural information and embed it into node features,
while others tend to build a learnable encoder block into the
network. We only calculate the energy consumption of trans-

former encoder in inference step by counting floating point
operations (FLOPs) and synaptic operations (SOPs). And the
theoretical energy consumption of SGHormer can be formu-
lated as follows:

E = Ecoding +

L∑
l=1

Etrans (20)

E = αfFLOP coding

+ αs

T∑
t=1

L∑
l=1

(SOP t,l
srb + SOP t,l

mpnn + SOP t,l
attn)

(21)

SOP t,l = rt,l × FLOP t,l (22)

where αf and αs, as scale factors for floating point and
synaptic operations, which are set to 4.5 and 0.9, respectively.
rt,l is fire rate of block in the l-th layer at the t-th time step.
The theoretical energy consumption results are shown in Ta-
ble 3. For all datasets, our method are obviously outperform
than the other GTs in size and energy consumption. The av-
erage energy consumption is 153x lower compared to other
models. This advantage is more pronounced on MNIST and
PATTERN which contain more nodes and edges. Besides,
the size of our model is smaller which contributes to extend
SGHormer to edge devices. Currently, there is still a lack
of relevant operations and support for sparse and binarized
spikes, making it challenging to demonstrate the model’s ad-
vantages in terms of memory usage. We believe that further
designing customized operators for spiking neural network
(SNN) on GPUs will accelerate the development of SNNs.

5.3 Component analysis

To elaborately discuss the effectiveness of different com-
ponents, we construct a series of ablation studies on the
SGHormer. Specifically, the experiments primarily assess the
impacts of three components including: spiking rectify block,
spiking graph self-attention and spiking neuron. There are
four comparative methods implemented by removing or re-
placing one of components. The results are demonstrated in
the Table 4



Model ZINC(↓) PATTERN(↑) ogbg-molhiv(↑)

ours 0.117 86.527 77.473

- SRB 0.129 85.803 77.241
+ SATT 0.114 86.518 76.004

+ IF 0.126 86.179 76.456
+ PLIF 0.109 86.267 77.478

Table 4: Ablation studies on SGHormer. −x means removing the
component x from SGHormer. And +x means replacing the original
component in SGHormer with x.

Spiking rectify block. As shown in table 4, removing the
spiking rectify block significantly impair predictive perfor-
mances of SGHormer on three datasets. For a deep spik-
ing neural network, the inputs will become sparser after each
layer without any intermediate processing or extra supple-
mentary information. In addition, it bring tons of quantiza-
tion error that encoding full-precision raw data into binarized
spikes. Some existing SNNs are sill strongly dependent on
the imprecise spiking representations and directly pass spik-
ing outputs to subsequent processes. We suggest that the lim-
itation make SNNs hard to develop similar the network struc-
ture with a vast number of parameters like ANNs. SRBs con-
sider received spikes as a biased data, the blocks attempt to
learn a estimator for roughly recovering raw embedding.

Spiking graph self-attention. What have been discussed
in the previous section is that output spikes of layers fol-
lows some certain regulation along T time steps. For those
raw inputs that far exceed the threshold of membrane poten-
tial, they often emit early and with a higher firing rate under
the straightforward rate-based encoder. Because of the regu-
larity of output spikes, we suggest that just using few spik-
ing attention matrices from certain time steps can approx-
imatively capture the essential graph structure information.
This assumption can be verified in Table 4. The self-attention
through time described in Eq. 17 (hereafter, SATT) can’t pro-
vide more valuable relation information among nodes com-
pare with the component which just uses the spiking attention
matrix at 1-st the time step.

Spiking neuron. Except for the two core components in the
SGHormer, we also explore the influences of spiking neu-
rons. Table 4 shows that the predictive performances of PLIF
with learnable membrane time constants surpass surpass that
of LIF and IF. Due to the spiking attention matrix are con-
trol the by corresponding spiking neurons. Currently, There
is still no a implementation of a common neuron that can be
generalized to the different graph data. We believe that devel-
oping and designing specialized spiking neurons for GTs or
graph-related tasks may further improve the performance of
SGHormer.

5.4 Parameters analysis
For SGHormer, there are several critical hyperparameters like
the membrane potential threshold Vth and number of time
steps T , will directly affect the performances of SGHormer.
In this section, we deploy experiments on these parameters
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Figure 3: Performances of SGHormer with different membrane
potential threshold and time step on PATTERN and ogbg-molhiv
datasets.

to explore the correlations between predictive performances
and energy consumption of model with different parameter
settings. The results are depicted in Figure 3. We visualize
the changes of metrics as parameters change and scale the
theoretical energy consumption to a similar interval. For the
membrane potential threshold, it is directly connected with
the spiking rate of whole model. As the threshold increases,
the spiking rate of spiking neurons and energy consumption
both decreases. We observe that optimal choices of threshold
is quite different on different datasets. This is one of reasons
why some parameterized LIF, which can automatically ad-
just membrane-related parameters, may achieve better perfor-
mances. The number of time steps is essential to approximate
the real-valued inputs in rate-based SNNs. Theoretically, the
firing rate can represent the original real value accurately as
the number of time steps goes to infinity. We observe that The
advantage of increasing the time steps for SGHormer is more
in terms of speed of convergence rather than its performance.
It make SGHormer can achieve good performance with few
time steps while maintain a low-level energy consumption.
Compared with SATT, SGHormer is more energy-efficient on
large-scale graph data due to the simplifying attention com-
putation.

6 Conclusion
In this study, we have explored a energy-saving graph trans-
former driven by SNN. In order to create the fusion of GT
and SNN, we design spiking rectify block (SRB) and spik-
ing graph self-attention (SGSA). SRB enables SGHormer to
maintain representation power while let spikes as the com-
munication signals among layers. And SGSA partly alle-
viates internal drawbacks of SNNs on strong dependencies
of time steps during calculating the attention scores. Mas-
sive experiments conducted to on graph-level benchmarks
show that well-designed spiking-based GTs can bridge the
performance gaps and achieve the comparable performances
with extremely low energy consumption. As a energy-saving



solutions from the perspective of the biological structure,
SGHormer have potential to pave the path for deploying GTs
on edge devices.
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