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STABLE NON-HAUSDORFF RIEMANNIAN FOLIATIONS

STEPHANE GEUDENS

Abstract. This paper aims to construct foliations F that are stable, meaning that any
other foliation close to F is conjugate to F by a diffeomorphism. Our main result yields
examples of stable Riemannian foliations F with dense leaves. To our knowledge, these
are the first examples of stable Riemannian foliations that are not Hausdorff.

Contents

1. Introduction 1
2. Suspension foliations 3
3. Proof of the Main Theorem 4
4. An example 6
References 8

1. Introduction

A foliation F on a compact manifold M is called stable if any other foliation sufficiently
close to F in the C∞-topology is conjugate to F under a diffeomorphism of M . Here the
C∞-topology on the space of k-dimensional foliations is induced by the inclusion

Folk(M) →֒ Γ(Grk(M)) : F 7→ TF ,
where Grk(M) →M is the Grassmannian fiber bundle of k-planes on M . Unpublished work
by Hamilton [8] contains a stability result for Hausdorff foliations, i.e. those foliations F
for which the leaf space M/F is Hausdorff when endowed with the quotient topology. The
leaves of such a foliation are compact, and if M is connected then there exists a generic leaf
L such that all the leaves of F contained in a saturated dense open are diffeomorphic to L.

Theorem 1.1 (Hamilton [8]). Let M be a compact, connected manifold with a Hausdorff
foliation F . If the generic leaf L satisfies H1(L) = 0, then F is stable.

In fact, various versions of this result have been obtained independently throughout the
years, using a variety of techniques. Langevin and Rosenberg [10] established C1-stability of
fibrations whose fiber L satisfies H1(L) = 0. Epstein and Rosenberg [5] proved the analog
of Thm. 1.1 for Hausdorff Ck-foliations with compact leaves on manifolds that are not
necessarily compact. Finally, Del Hoyo and Fernandes [2] proved the statement of Thm. 1.1
for smooth paths of foliations Ft deforming F , rather than foliations F ′ close to F .

Aside from the Hausdorff foliations appearing in Thm. 1.1, very few examples of stable
foliations are known. El Kacimi Alaoui and Nicolau [4] established stability for a particular
class of non-Hausdorff foliations obtained by suspending linear foliations on tori by suitable
linear Anosov diffeomorphisms. Their proof is an ad hoc application of the method used by
Hamilton to prove Thm. 1.1.
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Recent work by the author and Zeiser [7] aimed to establish a stability result for foliations
that extends Thm. 1.1. To explain the main result of [7], recall that for any foliation F there
is a canonical representation ∇ of the Lie algebroid TF on the normal bundle NF , called
Bott connection. Hence, one obtains a complex

(
Ω•(F , NF), d∇

)
with cohomology groups

H•(F , NF). Heitsch [9] showed that first order deformations of F , modulo those obtained
by applying an isotopy to F , are given by elements in H1(F , NF). Therefore, vanishing
of H1(F , NF) can be interpreted heuristically as the infinitesimal requirement for stability
of F . The main result in [7] states that vanishing of H1(F , NF) actually implies that F
is stable, at least when the foliation F is Riemannian. Recall here that F is Riemannian
if the manifold M admits a Riemannian metric that is bundle-like with respect to F [17].
Equivalently, the foliation F is locally defined by Riemannian submersions.

Theorem 1.2 (Geudens-Zeiser [7]). Let M be a compact manifold and F a Riemannian
foliation on M such that H1(F , NF) = 0. Then F is stable.

To relate this result with Thm. 1.1, note that on a compact manifold M , Hausdorff
foliations are exactly the Riemannian foliations with all leaves compact. Moreover, if the
generic leaf L of a Hausdorff foliation F satisfies H1(L) = 0, then also the cohomology
group H1(F , NF) vanishes [8]. So Thm. 1.2 implies Thm. 1.1. However, it was still unclear
whether Thm. 1.2 admits new examples that are not already covered by Thm. 1.1. This
note aims to fill that gap. We construct examples of Riemannian foliations F with dense
leaves for which H1(F , NF) vanishes, showing that Thm. 1.2 is indeed more general than
Thm. 1.1. To our knowledge, these are the first examples of stable Riemannian foliations
that are not Hausdorff – note that the stable foliations in [4] are not Riemannian.

Main Theorem. Let B be a connected, compact manifold such that π1(B) has Kazhdan’s
property (T) as a discrete group. Assume that there is a connected, compact Lie group G
and a group homomorphism ϕ : π1(B) → G such that ϕ(π1(B)) ⊂ G is dense. Then the
suspension of ϕ gives a Riemannian foliation F with dense leaves on a compact manifold,
such that H1(F , NF) = 0. Consequently, the foliation F is stable.

Since the foliations appearing in the Main Theorem are transversely modeled on the Lie
group G, they are a special kind of Riemannian foliations called Lie foliations. Molino’s
structure theory for Riemannian foliations [15] reduces the study of Riemannian foliations
on compact manifolds to that of Lie foliations with dense leaves. From this point of view,
our Main Theorem yields stable Riemannian foliations of the most elementary kind.

Explicit examples of the Main Theorem can be constructed from arithmetic lattices Γ in
semisimple Lie groups H. Such lattices sometimes admit a dense embedding into a compact
Lie group G. Moreover, since they are finitely presented, they arise as fundamental groups
of compact 4-manifolds B. We work out an explicit example in §4.

The proof of the Main Theorem relies on recent work by El Kacimi Alaoui [3] which com-
putes the cohomology group H1(F , NF) for developable foliations F . These are foliations

F whose lift F̂ to some covering M̂ of M is given by a fibration. Note that the suspension
foliation F of a homomorphism ϕ : π1(B) → G is of this type. The main result of [3] shows
that H1(F , NF) is given by the first group cohomology H1 (π1(B),X(G)). Here the discrete
group π1(B) acts on G by left translations (through the homomorphism ϕ) and therefore
on X(G) by pushforward. Endowing G with a left invariant metric, the representation of
π1(B) on X(G) is orthogonal for the induced L2-inner product. The assumption that π1(B)
has Kazhdan’s property (T) ensures that the cohomology group H1 (π1(B), V ) vanishes
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whenever V is a real Hilbert space and the representation of π1(B) on V is orthogonal [1,
Chapter 2]. This does not immediately imply the vanishing of H1 (π1(B),X(G)) but rather
that of H1

(
π1(B), L2X(G)

)
, where L2X(G) is the Hilbert space of square integrable vector

fields on G for the L2-inner product. However, the fact that ϕ(π1(B)) ⊂ G is dense implies
that the action of π1(B) on G is ergodic, hence a regularity result by Lubotzky-Zimmer [12]
can be applied. It shows that a 1-cocycle π1(B) → X(G), which a priori has a primitive
defined in terms of an element in L2X(G), admits a primitive coming from a smooth vector
field. Consequently, the first group cohomology H1 (π1(B),X(G)) vanishes.

Acknowledgements. I acknowledge support from the UCL Institute for Mathematical and
Statistical Sciences (IMSS). I would like to thank Ioan Mărcuţ for useful discussions about
stability of foliations, and Aziz El Kacimi Alaoui for e-mail exchanges about his paper [3].

2. Suspension foliations

The examples of stable Riemannian foliations that we will construct are obtained by
the suspension method, which we now briefly recall. Let B and T be compact, connected
manifolds and assume that we are given a group homomorphism

ϕ : π1(B) → Diff(T ),

where Diff(T ) denotes the diffeomorphism group of T . Let B̂ be the universal cover of B,

and consider the product manifold B̂ × T . We get an action π1(B) y B̂ × T defined by

γ · (b̃, t) =
(
γ ⋆ b̃, ϕ(γ)(t)

)
, (1)

where ⋆ denotes the natural action of π1(B) on B̂. The action π1(B) y B̂ × T is free

and properly discontinuous, hence the quotient Bϕ := (B̂ × T )/π1(B) is smooth and the
quotient map is a covering map

π : B̂ × T → Bϕ.

The quotient manifold Bϕ is a fiber bundle over B with fiber T . Note that the foliation by

slices B̂×{t} on B̂× T is invariant under the action (1), hence it descends to a foliation F
on Bϕ transverse to the fibers of Bϕ → B. The leaves of F are of the form

(B̂ × Orb(t))/π1(B) ∼= B̂/Stab(t) for t ∈ T,

where Orb(t) ⊂ T is the orbit through t and Stab(t) ⊂ π1(B) is the stabilizer of t. This shows
in particular that compact leaves of F correspond with finite orbits in T . In the following,
we refer to the foliated manifold

(
Bϕ,F

)
as the suspension of ϕ : π1(B) → Diff(T ).

In this note, we are interested in Riemannian foliations F . The suspension foliation of a
homomorphism ϕ : π1(B) → Diff(T ) is Riemannian whenever ϕ takes values in the isometry
group Isom(T, g) ⊂ Diff(T ) of (T, g) for some choice of Riemannian metric g. A particular
case arises when the manifold T is a compact Lie group G. Endowing G with a left invariant
metric g, the group G embeds into the isometry group Isom(G, g) as the subgroup of left
translations. Consequently, given a group homomorphism

ϕ : π1(B) → G,

the associated suspension (Bϕ,F) is a Riemannian foliation (in fact, a Lie G-foliation). We
will only consider homomorphisms ϕ for which the imageH := ϕ(π1(B)) is a dense subgroup
of G. In that case, the suspension foliation F on Bϕ is a Lie G-foliation with dense leaves.
This follows immediately from the fact that F is a transversely parallelizable foliation on a
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compact connected manifold, all of whose basic functions are constant [14, Thm. 4.24]. To
see this, note that a frame of left invariant vector fields on G gives a transverse parallelism

for the horizontal foliation on B̂ × G, which descends to a transverse parallelism for F on
Bϕ. Moreover, the F-basic functions on Bϕ are constant since

C∞
bas(Bϕ) = C∞(G)H = C∞(G)G = R,

where C∞(G)H and C∞(G)G denote the spaces of H-invariant and G-invariant smooth
functions on G. Here we made use of the fact that the subgroup H ⊂ G is dense.

3. Proof of the Main Theorem

The proof of the Main Theorem relies on two auxiliary results. We will first use that
the deformation cohomology of a developable foliation can be expressed in terms of group
cohomology of a suitable discrete group [3]. We will then use a vanishing result for group
cohomology, which holds when the discrete group acting has Kazhdan’s property (T) [12].

3.1. Infinitesimal deformations of developable foliations. The cohomology group
H1(F , NF) governing the deformations of a foliation F is very hard to compute in general.
The situation is better for developable foliations, thanks to work by El Kacimi Alaoui [3].

Definition 3.1. A foliation F on a connected manifold M is developable if there exists a

connected, normal covering π : M̂ → M such that the pullback foliation F̂ on M̂ is given

by the fibers of a locally trivial fibration D : M̂ →W .

The deck transformation group Γ of the covering π : M̂ → M acts freely and properly

discontinuously on M̂ , and since the covering is normal we have that M̂/Γ ∼=M . Moreover,

since the action Γ y M̂ preserves the fibers of the developing map D : M̂ → W , there is
an induced action Γ yW . In particular, the space of vector fields X(W ) is a Γ-module.

Example 3.2. Given a homomorphism ϕ : π1(B) → Diff(T ), where B and T are connected
compact manifolds, the suspension foliation F on Bϕ is developable. Indeed, we have a

connected, normal covering π : B̂ × T → Bϕ, and the pullback foliation F̂ is given by the

fibers of the second projection B̂ × T → T . The deck transformation group is Γ := π1(B).

Given an arbitrary foliation F on a compact manifold M , recall that there is a canonical
TF-representation ∇ on the normal bundle NF := TM/TF , given by

∇XY = [X,Y ],

forX ∈ Γ(TF) and Y ∈ Γ(NF). This representation is called Bott connection. Accordingly,
we get a differential d∇ on the graded vector space Ω•(F , NF) := Γ(∧•T ∗F⊗NF) of foliated
forms with coefficients in NF , given by the usual Koszul formula

d∇η(V1, . . . , Vk+1) =
k+1∑

i=1

(−1)i+1∇Vi

(
η(V1, . . . , Vi−1, V̂i, Vi+1, . . . , Vk+1)

)

+
∑

i<j

(−1)i+jη
(
[Vi, Vj ], V1, . . . , V̂i, . . . , V̂j , . . . , Vk+1

)
.

Heitsch [9] showed that infinitesimal deformations of the foliation F are one-cocycles in
the complex

(
Ω•(F ;NF), d∇

)
. Moreover, if a smooth deformation of F is obtained applying

an isotopy to F , then the corresponding infinitesimal deformation is a one-coboundary in(
Ω•(F ;NF), d∇

)
. Hence, vanishing of the cohomology group H1(F , NF) can be interpreted
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heuristically as the infinitesimal requirement for stability of the foliation F . In case the
foliation F is developable, then H1(F , NF) can be expressed in terms of group cohomology,
as shown by El Kacimi Alaoui [3]. We now recall this result.

Let Γ be a discrete group acting on a vector space V . For each integer n ≥ 1, denote
by Cn(Γ, V ) the vector space of maps Γn → V . By convention, C0(Γ, V ) = V . There is a
differential d on the graded vector space C•(Γ, V ), defined by

dψ(γ1, . . . , γn+1) = γ1 · ψ(γ2, . . . , γn+1)

+
n∑

i=1

(−1)iψ(γ1, . . . , γi−1, γiγi+1, γi+2, . . . , γn+1)

+ (−1)n+1ψ(γ1, . . . , γn).

We denote the associated cohomology groups by H•(Γ, V ). Of particular interest to us is
the first cohomology group H1(Γ, V ), which is given by

H1(Γ, V ) =
{ψ : Γ → V : ψ(γ1γ2) = ψ(γ1) + γ1 · ψ(γ2)}

{χ : Γ → V : χ(γ) = γ · v − v for some v ∈ V } .

In other words, H1(Γ, V ) is the space of crossed homomorphisms Γ → V modulo those
induced by elements of V . We can now state the following result from [3].

Proposition 3.3. Let F be a developable foliation on a connected manifold M with normal

covering π : M̂ → M , deck transformation group Γ and developing map D : M̂ → W .

Assume that the fiber L̂ of D satisfies H1(L̂) = 0. Then H1(F , NF) ∼= H1(Γ,X(W )).

Example 3.4. Let ϕ : π1(B) → Diff(T ) be a group homomorphism, where B and T are

compact connected manifolds. The suspension foliation F on Bϕ lifts under π : B̂×T → Bϕ

to the foliation by fibers of B̂ × T → T . Since the universal cover B̂ is simply connected,

we have H1(B̂) = 0. Hence, Prop. 3.3 implies that H1(F , NF) ∼= H1
(
π1(B),X(T )

)
.

Now consider the special case in which T = G is a compact Lie group and ϕ : π1(B) → G.
We then have X(G) ∼= C∞(G)⊗ g, and since π1(B) acts by left translations it is clear that
the action is trivial on g. It follows that the suspension foliation F of ϕ satisfies

H1(F , NF) ∼= H1
(
π1(B),X(G)

) ∼= H1
(
π1(B), C∞(G)

)
⊗ g. (2)

3.2. Actions of Kazhdan groups. In the previous subsection, we reduced the computa-
tion of the cohomology group H1(F , NF) for a suspension foliation F to group cohomology
of the discrete group π1(B). We will now invoke a vanishing result for cohomology of discrete
groups with Kazhdan’s property (T). For an extensive treatment of property (T) groups,
we refer to the book [1]. Let us just recall the definition here.

Definition 3.5. Let G be a topological group and H a complex Hilbert space. Assume
that ρ : G → U(H) is a unitary representation. For a subset Q ⊂ G and a constant ǫ > 0,
a vector ξ ∈ H is (Q, ǫ)-invariant if

sup
g∈Q

‖ρ(g)ξ − ξ‖ < ǫ‖ξ‖.

Definition 3.6. Let G be a topological group.

i) A subset Q ⊂ G is a Kazhdan set if there exists ǫ > 0 with the following property:
every unitary representation (ρ,H) of G which has a (Q, ǫ)-invariant vector also has a
non-zero invariant vector.
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ii) The group G has Kazhdan’s property (T) if G has a compact Kazhdan set.

Compact topological groups have property (T) [1, Prop. 1.1.5], while Rn and Zn do not
[1, Ex. 1.1.7]. Of special interest to us are semisimple Lie groups G with property (T). A
connected semisimple Lie group G with Lie algebra g has property (T) if and only if no
simple factor of g is isomorphic to so(n, 1) or su(n, 1) [1, Thm. 3.5.4].

Kazhdan’s property (T) is relevant for our purpose because of the following: a count-
able discrete group Γ has property (T) exactly when the first group cohomology H1(Γ, V )
vanishes for every orthogonal representation of Γ on a real Hilbert space V [1, Chapter 2].
This statement is not directly applicable in our situation because the representations that
we encounter are no Hilbert spaces, see (2). To overcome this issue, we need to invoke the
following result by Lubotzky-Zimmer [12, Thm. 4.1]. We only state a particular case of
their result, which holds under more general assumptions that are implied by property (T).

Proposition 3.7. Let Γ be a finitely generated discrete group acting smoothly on a compact
manifold M . Suppose that Γ has Kazhdan’s property (T), and that the Γ-action is isometric
and ergodic. Then both H1(Γ,X(M)) and H1(Γ, C∞(M)) vanish.

In the above, say that the Γ-action is isometric with respect to the Riemannian metric
g on M . Denoting by µ the Riemannian measure coming from g, it follows that Γ acts by
measure preserving automorphisms of (M,µ). Such an action Γ y (M,µ) is called ergodic
if for every Γ-invariant measurable subset N ⊂M , one either has µ(N) = 0 or µ(N) = 1.

3.3. Proof of Main Theorem. Now all preliminaries are in place for us to prove our Main
Theorem. Let us state it again for convenience.

Theorem 3.8. Let B be a connected, compact manifold such that π1(B) has Kazhdan’s
property (T) as a discrete group. Assume that there is a connected, compact Lie group G
and a group homomorphism ϕ : π1(B) → G such that ϕ(π1(B)) ⊂ G is dense. Then the
suspension of ϕ gives a Riemannian foliation F with dense leaves on a compact manifold,
such that H1(F , NF) = 0. Consequently, the foliation F is stable.

Proof. We already argued in §2 that F is a Riemannian foliation (indeed, a Lie G-foliation)
with dense leaves. By Example 3.4, we know that

H1(F , NF) ∼= H1
(
π1(B),X(G)

) ∼= H1
(
π1(B), C∞(G)

)
⊗ g. (3)

The action of π1(B) on G is isometric with respect to any left invariant Riemannian metric
on G. Moreover, it is well-known that if Γ ⊂ G is a dense subgroup of a compact Lie group,
then the action by left translations Γ y G is ergodic with respect to the normalized Haar
measure on G [16, Lemma 2.4.1]. Since by assumption ϕ(π1(B)) ⊂ G is dense, it follows that
the action π1(B) y (G,µ) is ergodic. Moreover, the fundamental group π1(B) of a compact
manifold B is finitely generated. Applying Prop. 3.7, we see that the cohomology group (3)
vanishes. Stability of F immediately follows from Thm. 1.2 in the Introduction. �

4. An example

The aim of this section is to construct a discrete group Γ which can serve as the fun-
damental group π1(B) in Thm. 3.8. We will obtain Γ as a suitable arithmetic lattice in
SO(3, 2) which can be realized as a dense subgroup of SO(5). The lattice in question was
considered before in connection with the Ruziewicz problem, which concerns rotationally
invariant measures on spheres [11, §3.4].
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4.1. Arithmetic lattices. We start by recalling an arithmetic construction of lattices,
following [13, Chapter IX, §1.7]. Fix an integer n ≥ 3 and a subfield K ⊂ C which is a finite
extension of Q. Denote by d = [K : Q] the degree of the extension. Assume that

Φ =
∑

1≤i,j≤n

aijxixj

is a non-degenerate quadratic form in n variables with coefficients in K. Recall that there
are d distinct field embeddings σ1, . . . , σd : K → C with σ1 = Id. We call such an embedding
σ real if σ(K) ⊂ R, otherwise it is called imaginary. Two embeddings of K into C are called
equivalent if one is the complex conjugate of the other. Choosing a representative in each
equivalence class of embeddings, we obtain the set

R := {σ1, . . . , σl}.
For every σ ∈ R, we define kσ := R if σ is real and kσ := C if σ is imaginary. Each field
embedding σ ∈ R gives rise to a new quadratic form

Φσ =
∑

1≤i,j≤n

σ(aij)xixj (4)

and we set

T = {σ ∈ R : kσ = R and Φσ is either positive definite or negative definite}.
Choose a subset S ⊂ R such that R\T ⊂ S. Denote by SOΦ the special orthogonal group
of the quadratic form Φ, consisting of complex matrices with determinant 1 preserving Φ.
It is an algebraic group defined over K. We let O be the ring of integers in K and denote
by SOΦ(O) the group of O-valued matrices in SOΦ. Similarly, we define for each σ ∈ S the
group SOΦσ

(kσ) of kσ-valued matrices preserving the quadratic form Φσ defined in (4). In
the following, we identify SOΦ(O) with its image under the embedding

∏

σ∈S

σ : SOΦ(O) →
∏

σ∈S

SOΦσ
(kσ).

Proposition 4.1. [13, Chapter IX, §1.7] Assume that T 6= R and that the group SOΦ is
almost K-simple. Then SOΦ(O) is an arithmetic lattice in

∏
σ∈S SOΦσ

(kσ).

Almost K-simplicity means that proper algebraic K-closed normal subgroups of SOΦ are
finite. This condition is equivalent to that of either n 6= 4 or n = 4 and the discriminant of
the quadratic form Φ is not a square in K.

4.2. An example. We let n = 5 and consider the field extension Q ⊂ Q(
√
2) of degree 2.

Consider the non-degenerate quadratic form

Φ = x21 + x22 + x23 −
√
2x24 −

√
2x25

in 5 variables with coefficients in Q(
√
2). There are 2 field embeddings σ1, σ2 : Q(

√
2) → C,

namely σ1 = Id and σ2 given by

σ2(a+ b
√
2) = a− b

√
2, a, b ∈ Q.

Both are real, and we have R = {σ1, σ2}. The embedding σ2 defines a new quadratic form

Φσ2
= x21 + x22 + x23 +

√
2x24 +

√
2x25,

and in this case we have T = {σ2}. Let us choose S = {σ1, σ2}. Applying Prop. 4.1 gives
an arithmetic lattice

Γ := SOΦ(Z[
√
2]) ⊂ SO(3, 2) × SO(5).
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The first projection in SO(3, 2)×SO(5) realizes Γ as an arithmetic lattice in SO(3, 2), while
the second projection in SO(3, 2)×SO(5) realizes Γ as a subgroup of the compact Lie group
SO(5). We now check that this lattice can be used to construct an example of Thm. 3.8.

• Lattices in connected semisimple Lie groups are finitely presented [6, §1.1]. Viewing
Γ as a lattice inside SO(3, 2), this implies that Γ is finitely presented, even though
SO(3, 2) has 2 connected components. To see this, let us denote by SO(3, 2)+ its
identity component, which is a normal index 2 subgroup SO(3, 2)+ ⊂ SO(3, 2). The
fact that SO(3, 2)+ is an open subgroup implies that Γ∩SO(3, 2)+ is a lattice inside
SO(3, 2)+, hence Γ ∩ SO(3, 2)+ is finitely presented by the above. Moreover, since

Γ

Γ ∩ SO(3, 2)+
∼= ΓSO(3, 2)+

SO(3, 2)+

is finite, it is also finitely presented. Hence, Γ is finitely presented as well. It follows
that there is a compact, connected 4-dimensional manifold B with π1(B) = Γ.

• We have the compact, connected Lie group G := SO(5) and a group homomorphism
ϕ : Γ → SO(5) given by the restriction of the second projection in SO(3, 2)×SO(5).
It was shown in [11, Prop. 3.4.3] that the projection of Γ in SO(5) is dense.

• Finally, we argue that the discrete group Γ has property (T). We view Γ as a lattice
inside SO(3, 2) and recall that property (T) is inherited by lattices [1, Thm. 1.7.1].
Hence, it suffices to show that SO(3, 2) has property (T). As before, denote by
SO(3, 2)+ its identity component, which is a closed normal subgroup. It follows that
SO(3, 2) has property (T) as soon as we show that SO(3, 2)+ and SO(3, 2)/SO(3, 2)+

have property (T) [1, Prop. 1.7.6]. The identity component SO(3, 2)+ has property
(T) because it is a connected simple Lie group with Lie algebra not of the form
so(n, 1) or su(n, 1) [1, Thm. 3.5.4]. Next, the quotient SO(3, 2)/SO(3, 2)+ is dis-
crete because SO(3, 2)+ ⊂ SO(3, 2) is open. Since finite discrete groups are compact,
it follows that also SO(3, 2)/SO(3, 2)+ has property (T) [1, Prop. 1.1.5].

Applying Thm. 3.8, the suspension of ϕ : π1(B) → SO(5) is a stable Riemannian foliation
F with dense leaves on a compact manifold Bϕ.

Remark 4.2. The above argument works for all values n ≥ 5, considering the quadratic form

Φ = x21 + · · · + x2n−2 −
√
2x2n−1 −

√
2x2n.

We obtain an arithmetic lattice Γ ⊂ SO(n−2, 2)×SO(n) with property (T), which projects
to a dense subgroup in SO(n) [11, Prop. 3.4.3].

The method fails for n < 5. In fact, Thm. 3.8 admits no examples in which G = SO(n)
with n < 5. Indeed, if ϕ : Γ → SO(n) is a group homomorphism where Γ is a discrete
Kazhdan group and n < 5, then the image ϕ(Γ) is finite. This was shown by Zimmer in
[18, Thm. 7] for SO(3) and SO(4). It is immediate in the case of SO(2), because of the
following. Since SO(2) is abelian, the group homomorphism ϕ : Γ → SO(2) factors through
the abelianization Γ/[Γ,Γ]. Because the abelianization of a discrete group with property
(T) is finite [1, Cor. 1.3.6], it follows that the image ϕ(Γ) ⊂ SO(2) is finite. This shows that
the suspension foliation of any homomorphism ϕ : Γ → SO(n), with Γ a discrete Kazhdan
group and n < 5, is Hausdorff since all of its leaves are compact (see §2).
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