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Vortex pinning is a crucial factor that determines the critical current of practical 
superconductors. However, the understanding of its underlying mechanism has long been 
phenomenological without a clear microscopic description. Here using high-resolution 
scanning tunneling microscopy, we studied single vortex pinning induced by point defect 
in layered FeSe-based superconductors. We found the defect-vortex interaction drives 
low-energy vortex bound states away from EF, resulting a “mini” gap which effectively 
lowered the energy of vortex and caused the pinning. By measuring the local 
density-of-states, we directly obtained the elementary pinning energy and estimated the 
pinning force through the spatial gradient of pinning energy. The results align with the 
bulk critical current measurement. We further show that a general microscopic quantum 
model with considering defect-vortex interaction can well capture our observation. It 
indicates the local pairing near pinned vortex core is actually enhanced, which is beyond 
the traditional understanding that non-superconducting regions pin vortices. Our study 
thus revealed a general microscopic mechanism of vortex pinning in superconductors. 



The ability to carry electric current without dissipation is a defining property of 
superconductivity. However, in practical superconductors (mostly type II superconductors), 
external current will apply Lorentz force on quantized magnetic flux and dissipation occurs 
when the accompanied vortices move (Fig. 1a). Fortunately, it was found that defects or 
disorders can prevent the motion of vortices, called flux/vortex pinning effect. The critical 
current density (𝐽𝐽𝐶𝐶) actually depends on vortex pinning strength rather than current induced 
de-pairing 1, 2. Therefore, understanding the mechanism of how a single vortex is pinned by 
defect, namely the elementary vortex pinning, is of fundamental importance for technological 
use of superconductors 3-5. It also lays the foundation of vortex dynamics which determines 
the full electromagnetic response of superconductors. 

In the general description, a vortex has a non-superconducting core with a size of 2ξ (ξ is 
the coherence length, as shown in Fig. 1b). Traditional understanding of vortex pinning is 
based on Ginzburg-Landau (G-L) theory 1,2, which consider the pinning centers as 
non-superconducting regions and the vortex cores attached to them will save the condensation 
energy cost. However, such phenomenological treatment is difficult to describe pinning 
centers much smaller than ξ, such as point-like defects (e.g., impurity atom or vacancy) which 
are the elementary form of defects in practical materials. Some theoretical works added 
impurity term into G-L free-energy to phenomenologically address this issue 6-8. In fact, the 
microscopic description of vortex beyond the G-L theory has already been given by Caroli, de 
Gennes and Matricon (CdGM) 9, which predicted localized bound states with discrete energies 
(E = μΔ2/EF, μ= ±1/2, ±3/2…) in the vortex core (Fig. 1b). Meanwhile, impurity induced 
effect in superconductors was also extensively studied 10. One may expect the local interaction 
between CdGM states and defect states shall play an important role in vortex pinning. The 
theoretical work by Q. Han, L.Y. Zhang and Z. D. Wang 11 has suggested such scenario. 
However, for a long time the study of vortex pinning has been limited to indirect transport or 
force measurements 1-4,12-16. Due to the difficulty of direct investigation on the electron 
structure/energy of a single vortex and its pinning center (defect), the understanding of vortex 
pinning is still phenomenological so far. 

Scanning tunnelling microscopy/spectroscopy (STM/STS) with atomic resolution is a 
powerful tool to study the microscopic structure of a single vortex 17. Particularly, recent 
high-resolution tunneling spectrum has been able to identify discrete CdGM vortex states in 
various FeSe-based superconductors 18-22, as well as atomic defects induced states 23-25. This 
enables direct measurement of vortex–impurity interaction in the atomic scale. In this work, 
we performed detailed STM study on the vortex pinning in (Li,Fe)OHFeSe and single-layer 
FeSe/SrTiO3. We found that when a single vortex is pinned by a point defect in FeSe layer, 
the low-energy CdGM states are “pushed” away from EF, which lowers the formation energy 
of vortices and causes the pinning. It indicates an enhanced pairing at the pinned vortex core, 
which is beyond the traditional understanding that it is the non-superconducting region that 
pins the vortex. Such novel pinning mechanism is well captured by our microscopic quantum 



model describing the vortex-impurity interaction, which can be applied to general 
superconductors. Furthermore, via measuring the local density-of-state (DOS) distribution 
over the pinned/unpinned vortex cores, we are able to obtain the elementary pinning energy 
for the first time. We further tuned the defect-vortex distance via the repulsive vortex-vortex 
interaction, then the pinning force is estimated as the spatial gradient of pinning energy. The 
obtained value (~2×10-4 N/nm) aligns with the bulk critical current measurement. Our work 
thus sets up the microscopic mechanism of vortex pinning induced by point defect. 

 

Fig. 1 | STM investigation of vortex pinning in (Li,Fe)OHFeSe. a, Illustration of vortex pinning in 
layered superconductor. The magnetic flux lines are pinned by individual point defects in each 
superconducting layer. b, The structure of a single vortex core. c, Crystal structure of (Li, Fe)OHFeSe, 
composed of FeSe layers and (Li,Fe)OH layers. d, Topographic image of the FeSe surface of 
(Li,Fe)OHFeSe (Vb = 50mV, I = 60pA). e, Atomically resolved image of a dumbbell-defect at Fe cite. 
f, Zero-bias dI/dV map at B=11T (Vb = 40mV, I = 40pA, T=4.2K), taken at the same region of panel 
(d). Green arrows in (d) and (f) indicate the positions of dumbbell defects and the pinned vortices on 
these defects. Yellow arrows in (f) indicate the free (unpinned) vortices. g, Typical dI/dV spectra on 
dumbbell-defect and defect-free region at B=0T (Vb = 20mV, I = 60pA). h, Typical dI/dV spectra 
taken at the center of pinned and free vortex cores (Vb = 17mV, I = 60pA). Arrows indicate the in-gap 
states. i, A series of dI/dV spectra taken across the pinned vortex core (Vb = 10mV, I = 60pA). The red 
curves track the position of the lowest CdGM states. 

 
The STM experiment was performed in a dilution refrigerator STM (Unisoku) at the 

base temperature of 20 mK (Teff = 160 mK) or at 4.2K when specified. The samples studied 
here are optimally doped (Li,Fe)OHFeSe (TC = 42K) single crystalline film 26,27 and 
single-layer FeSe/SrTiO3 film (sample preparation and experimental details are described in 
Method section). As illustrated in Fig. 1c, (Li,Fe)OHFeSe crystal is composed of alternatively 



stacking FeSe and (Li, Fe)OH layers. We shall note that recent transport studies of (Li, 
Fe)OHFeSe 28 evidenced pancake-like vortices in FeSe layers (as sketched in Fig. 1a), and the 
interlayer vortex coupling is weak due to (Li, Fe)OH intercalation.  

Figure 1d shows a topographic image of the FeSe-terminated surface of cleaved (Li, 
Fe)OHFeSe film. There are commonly observed “dumbbell”-shaped defects indicated by 
green arrows (see Fig. 1e for zoomed-in image), which are mostly Fe vacancies formed 
during sample synthesis 27. On the defect-free region, a full superconducting gap with two 
pairs of coherence peaks at ±8 mV and ±14 mV is observed (Fig. 1g). The flat gap bottom has 
a half width of 5.5 meV, which corresponds to the minimum gap value. The dumbbell defects 
can induce pronounced impurity states (Fig. 1g) 25, suggesting their strong scattering potential. 
After applying an out-of-plane magnetic field of B=11T, vortex cores are visualized in the 
zero-bias conductance map shown in Fig. 1f (taken on the same region of Fig. 1d). Notably, a 
large portion (>50%) of vortex cores are pinned by dumbbell defects (indicated by green 
arrows), which makes the vortex lattice highly distorted. There are also vortices locate at 
defect-free region and we refer them as “free” vortices (indicated by yellow arrows). 
Interestingly, all the pinned vortices display a “dark spot” near their pinning site (defect site). 
As shown below, this feature is caused by suppressed low-energy CdGM state at defect site, 
which is a key manifestation of vortex pinning. Another notable feature in Fig. 1f is that when 
two pinned vortices are too close to each other (those indicated by dashed ellipses), they move 
slightly away from the defect sites to balance the repulsive vortex-vortex interaction and the 
pinning force. 

Fig. 1h shows high-energy resolved dI/dV spectra taken at the center of pinned and free 
vortex cores. For free vortices, a zero-bias conductance peak (ZBCP) with a series of CdGM 
states around EF are observed. The ZBCP was shown to have characteristics of Majorana zero 
mode 29,30. Remarkably, in the pinned vortex the ZBCP and nearby CdGM state are absent, 
resulting in a “mini gap” between ±0.95 mV while a large number of discrete peaks appear 
outside of this gap. Fig. 1i shows a series of dI/dV spectra taken across a pinned vortex core. 
It’s seen that the mini gap has the largest size at the center (defect site), but rapidly decreases 
to a constant value at ~ 1.0 nm away from the pinning center. This behavior gives rise to the 
“dark spot” in the zero-bias dI/dV map, and evidences that the local vortex-impurity 
interaction drives the low-energy CdGM state away from EF, since the distribution of 
impurity state is very localized (with a scale shorter than coherence length) 23-25. The discrete 
peaks outside of mini gap are likely from the hybridization between CdGM state and impurity 
state. 

A direct consequence of a mini gap opening in vortex core is that the formation energy 
of a pinned vortex is lowered with respected to the free vortex, as the low-energy state near 
gap center are reduced. This is essentially why the defect can pin the vortex. The absence of 
ZBCP could be due to the dumbbell defects (Fe vacancies) are strong magnetic impurities 
which may locally break the topological band structure of (Li,Fe)OHFeSe 20. Meanwhile, the 



dumbbell defects seen in topographic image should only pin the “pancake” vortex in the 
topmost FeSe layer (Fig. 1a), whether the vortices are affected by underneath defect is 
unknown (but expected to be weak). We then further examined another FeSe-based 
superconductor, the single-layer FeSe/SiTiO3 which has only one FeSe layer and just show 
conventional CdGM in vortex cores 21, 31. 

 

Fig. 2 | STM investigation of vortex pinning in 1ML FeSe/SrTiO3 (001). a, Topographic image of 
1ML FeSe/SrTiO3, with green arrows indicating three “dumbbell-like” defects (Vb = 28.5mV, I = 
100pA). Inset: atomically resolved image of dumbbell defect. b, Zero-bias dI/dV map taken at the 
same region of panel (a) under B = 8T, with green arrows indicating pinned vortices and yellow 
arrows indicating free vortices (setpoint: Vb = 28.5mV, I = 100pA, T = 4.2K). (c) dI/dV spectra 
measured at the center of free vortex, pinned vortex, and defect-free region at B =0T (Vb = 30mV, I = 
80pA, T = 4.2K). d,e, Color plots of the dI/dV spectra taken across the centers of free vortex and 
pinned vortex, respectively (Vb = 30mV, I = 80pA, T = 4.2K). 

 
Fig. 2a shows the topographic image of a single-layer FeSe/SrTiO3. Dumbbell-like 

defects locate at the Fe sites are also observed, which could be Fe vacancies or impurity 
atoms (Fig. 2a inset). Fig. 2b shows the corresponding zero-bias dI/dV map taken under B = 
8T. Clearly, there are also vortices pinned by defects, which still display “dark spot” at the 
defect site. In Fig. 2c we plot the typical dI/dV spectrum taken at the center of pinned and free 
vortices, and the superconducting gap at defect-free region. Although the spectra are taken at 
T = 4.2K, the shift of low energy CdGM states in pinned vortex is clearly seen (shifted from 
1.5 mV to 3.7 mV). Figs. 2d, 2e display the color plot of dI/dV spectra taken across the free 



and pinned vortices, respectively. Similar to that observed in (Li,Fe)OHFeSe, the “mini gap” 
is also localized around defect site within a region of ~ ±1.5 nm. Therefore, the vortex pinning 
behaviour in single-layer FeSe/SiTiO3 is similar to that of (Li,Fe)OHFeSe. 

A key quantity reflects the vortex pinning strength is the elementary pinning energy 
(𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝), which is the energy difference between a pinned vortex and a free vortex. The 
tunneling spectra (dI/dV) directly reflect the local DOS (LDOS), thus the total energy of a 
vortex can be obtained by integrating LDOS over energy and the area covers the vortex core. 
Then the 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 can be quantitively calculated via: 

𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 = �� 𝑁𝑁(0) ��
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Here the dI/dV is normalized by its value outside of superconductivity gap (normal state 
DOS). 𝑁𝑁(0) is the absolute value of normal state DOS (per area) near EF. The Fermi 
surfaces of (Li,Fe)OHFeSe of FeSe/SiTiO3 are both composed of two electron pockets at M 
point 31-33, thus 𝑁𝑁(0) can be obtained from the band dispersion acquired by quasi-particle 
interference (QPI) measurement (see Part I-1 of supplementary materials). The calculated 
value of 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 for (Li,Fe)OHFeSe and FeSe/SrTiO3, are -1.8 meV and -2.3 meV, respectively. 
To our knowledge, this is the first direct measurement of elementary pinning energy. If taking 
the spatial region where the mini-gap opens as the effective “pinning radius” (𝑟𝑟𝑝𝑝), which is 
≈1.0 nm for (Li,Fe)OHFeSe and ≈1.5 nm for 1ML FeSe/SiTiO3, the pinning force can be 

estimated by 𝑓𝑓𝑝𝑝� = 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝/𝑟𝑟𝑝𝑝  ≈ 1.5 - 1.8×10-13N for a single pancake vortex in FeSe layer. 

A more precise way to measure 𝑓𝑓𝑝𝑝 is through the spatial gradient of 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝. When a 
pinned vortex moves away from pinning site, |𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝|  shall decrease and yield 𝑓𝑓𝑝𝑝 =
𝜕𝜕𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝/𝜕𝜕𝜕𝜕 (Fig. 3a). Here we managed to “push” a pinned vortex of (Li,Fe)OHFeSe via 
repulsive vortex-vortex interaction. Fig. 3b shows a topographic image with a few dumbbell 
defects (marked by numbers). Under a vertical field of B = 6T, two pinned vortices show up 
at defect 1 and defect cluster 3 (Fig. 3c). When the field increased to 7T (Fig. 3d), due to the 
rearrangement of vortex lattice, the vortex on defect cluster 3 “jumped” to defect cluster 2. 
Since the distance between vortex 1 and vortex 2 (10 nm) is significantly shorter than the 
averaged inter-vortex distance at 7T (18 nm), the repulsive interaction makes vortex 1 shift 
slightly with respected to its position at B = 6T. To see this spatial shift more clearly, Figs. 
3e-g show the zoomed-in image and corresponding dI/dV maps (at E = 5 meV) around defect 
1 under B = 6T, 7T, respectively. The center of the pinned vortex is determined by the 
ring-like high-energy CdGM state distribution in Figs. 2f-g. It’s seen that at B = 6T there is 
already a small displacement between vortex center and the defect (d ≈ 0.8nm) and such 
displacement increased to 1.79 nm at B = 7T. 

Figs. 3h-i show the tunneling spectra across defect 1 at B = 6T and 7T, respectively. 
Notably, the defect induced mini gap at B=7T is smaller than that at B = 6T (reduced from 1.9 



meV to 1.1 meV), which indicates a lowered pinning energy at B = 7T. We quantitively 
calculate the 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 difference via dI/dV maps taken over the whole vortex (see Part I-2 of 
supplementary materials for more details). Then the averaged pinning force in the range of 

0.8nm < d <1.79 nm is obtained by: 𝑓𝑓𝑝𝑝� = | 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝(6𝑇𝑇) −𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝(7𝑇𝑇)
𝑑𝑑(7𝑇𝑇)−𝑑𝑑(6𝑇𝑇)

|, which is 2.3 ×10-13 N. 

Considering this pinning force is applied to a single “pancake” vortex in a FeSe layer (Fig. 
1a), the pinning force per unit length for bulk (Li, Fe)OHFeSe (with a c-axis constant of 0.93 

nm) is 𝑓𝑓𝑝𝑝′ ≈ 2.4×10-4 N/m. 

 

Fig. 3 | Estimation of elementary pinning force. a, Illustration of a pinned vortex with a distance of 
d away from pinning site. The pinning force is given by 𝑓𝑓𝑝𝑝 = 𝜕𝜕𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝/𝜕𝜕𝜕𝜕. b, Topographic image of an 
FeSe surface of (Li,Fe)OHFeSe, with red and green arrows indicating typical surface impurities (Vb = 
100mV, I = 10pA). c,d, Zero-bias dI/dV maps under magnetic fields of 6T (panel c) and 7T (panel d) 
in the same region of panel (b). The spatial distribution of vortices varies under different magnetic 
fields (Vb = 30mV, I = 60pA, Teff = 160 mK). e, Topographic image taken in the dashed box in panel 
(b) (Vb = 10mV, I = 60pA). f,g, dI/dV map taken at E = 5meV, under 6T and 7T in the same region of 
panel (e) (Vb = 10mV, I = 60pA). Yellow dashed circles track the distribution of high energy CdGM 
state, and red dot is the position of impurity. h,i, Color plots of a series of spectra taken along the 
positions indicated by the red arrows in panels f and g, respectively (Vb = 10mV, I = 60pA, Teff = 160 
mK). j,k, Magnetic field dependence of Jc at different temperatures and the corresponding pinning 
force density Fp. The black dashed line in (k) is a linear fit to the low field region. 

 
Assuming all the vortex are pinned by the same type of dumbbell defects at low field, the 

bulk 𝐽𝐽𝐶𝐶  should be determined by the (maximum) elementary pinning force via 𝒇𝒇𝒑𝒑′ = 𝑱𝑱𝑪𝑪 × Φ0. 



We performed 𝐽𝐽𝐶𝐶  measurement on the (Li, Fe)OHFeSe sample. Fig. 3j shows the magnetic 
field dependence of 𝐽𝐽𝐶𝐶  at different temperatures. At T = 4K, the variation of 𝐽𝐽𝐶𝐶  is slow at B 
<5T, suggesting there are sufficient pinning sites below this vortex density. This is consistent 
with real-space vortex map at B =11T (Fig. 1f), in which over half of vortices are pinned. Fig. 
3k shows the pinning force density (Fp = 𝑱𝑱𝑪𝑪×B) as function of B. A linear fit to the low field 

region (B < 2T) yields 𝑓𝑓𝑝𝑝′ = 𝜕𝜕𝐹𝐹𝑝𝑝
𝜕𝜕𝜕𝜕

𝛷𝛷0 ≈ 0.8×10-4 N/m. Comparing to the traditional strong 

pinning theory 2 which gives 𝑓𝑓𝑝𝑝′ = 0.45𝜋𝜋𝜉𝜉𝜇𝜇0𝐻𝐻𝑐𝑐2 = 0.45 𝛷𝛷02

8𝜋𝜋𝜋𝜋𝜆𝜆2𝜇𝜇0
 ≈ 8.0×10-4 N/m (taken 𝜉𝜉 

= 2.6 nm and λ = 160 nm for (Li, Fe)OHFeSe film 35), our microscopic measurement based on 
tunneling spectrum already gives a reasonable estimation on 𝑓𝑓𝑝𝑝′. The relatively large value of 
elementary pinning force with comparing to bulk 𝐽𝐽𝑐𝑐 could be due to that there still exists 
interlayer coupling between the pancake vortices in (Li,Fe)OHFeSe (Fig. 1a). Since the 
defects are randomly distributed, the pinning forces applied on pancake vortices in 
neighboring FeSe layers may be partially canceled if the vortex cores are not aligned 
vertically (flux line rigidity induced summation problem 1,2). 

So far, we have directly detected vortex-defect interaction which shifts CdGM states and 
show that it is responsible for vortex pinning. The mini-gap opening at pinned vortex core 
(Figs. 1i and 2e) intuitively indicates a locally enhanced pairing. This is rather beyond the 
phenomenological description that a non-superconducting region pins the vortex 1,2. To 
elucidate the underlying mechanism, we carried out microscopic model calculations. The 
system consists of a conventional superconductor with a vortex and a defect (both located at 
𝒓𝒓 = 0 ). The superconducting state is described by the mean-field Hamiltonian 𝐻𝐻𝑆𝑆𝐶𝐶 =

∑ ∫𝜕𝜕𝒓𝒓[(−ℏ2∇2/2𝑚𝑚− 𝜇𝜇)𝑐𝑐𝒓𝒓𝜎𝜎
† 𝑐𝑐𝒓𝒓𝜎𝜎 + Δ(𝒓𝒓)𝑐𝑐𝒓𝒓𝜎𝜎

† 𝑐𝑐𝒓𝒓𝜎𝜎�
† + Δ∗(𝒓𝒓)𝑐𝑐𝒓𝒓𝜎𝜎�𝑐𝑐𝒓𝒓𝜎𝜎]𝜎𝜎 . The local pairing potential 

is given by 𝛥𝛥(𝒓𝒓) = 𝛥𝛥(𝑟𝑟)𝑒𝑒𝑝𝑝𝑖𝑖𝑖𝑖, where 𝜃𝜃 is the angle of 𝒓𝒓, and 𝑣𝑣 = 1 characterizes the SC 

phase winding. The local gap function takes the form Δ(𝑟𝑟) = 𝛥𝛥0𝑟𝑟/�𝑟𝑟2 + 𝜉𝜉2 36. 𝛥𝛥0 is the 

pairing potential far away from the vortex core and 𝜉𝜉 is the local coherent length. The defect 

can be described by 𝐻𝐻𝑝𝑝𝑖𝑖𝑝𝑝 = ∑ 𝜀𝜀𝑑𝑑𝜕𝜕𝜎𝜎
†

𝜎𝜎 𝜕𝜕𝜎𝜎, where 𝜀𝜀𝑑𝑑 is the impurity level and 𝜕𝜕𝜎𝜎†(𝜕𝜕𝜎𝜎) is the 

creation (annihilation) operator of the local impurity state. The hybridization between the 
impurity and the electrons of superconducting state is given by 𝐻𝐻ℎ𝑦𝑦𝑦𝑦 =

∑ ∫𝜕𝜕𝒓𝒓[𝑉𝑉0(𝑟𝑟)𝜕𝜕𝜎𝜎
†𝑐𝑐𝒓𝒓𝜎𝜎 + ℎ. 𝑐𝑐. ]𝜎𝜎 , where the coupling decays with the distance, 𝑉𝑉0(𝒓𝒓) =

𝑉𝑉0𝑒𝑒−(𝑓𝑓/𝑓𝑓0)2/√𝜋𝜋𝑟𝑟0 with 𝑟𝑟0 being the decay length 37. The above model 𝐻𝐻𝑆𝑆𝐶𝐶 + 𝐻𝐻𝑝𝑝𝑖𝑖𝑝𝑝 + 𝐻𝐻ℎ𝑦𝑦𝑦𝑦 

constitutes a microscopic continuum description of the experimental system (see more details 
in Part II of supplementary materials), which better captures the low-temperature physics at 
thermodynamic limit compared to the phenomenological Ginzberg-Landau theory 1,2.  



The corresponding Bogoliubov-de-Genne equation can be most naturally written in a 
basis expanded by the orbital angular momentum (OAM) partial waves and the Bessel 
functions. For 𝑉𝑉0 = 0, the impurity is uncoupled to the SC. We calculate the in-gap spectrum 
that shown in Fig. 4a. A series of in-gap CdGM states characterized by different OAMs take 
place. For 𝑉𝑉0 ≠0, the coupling term relevant to the in-gap physics can be readily derived 
from 𝐻𝐻ℎ𝑦𝑦𝑦𝑦 after the Bogoliubov transformation, i.e. 

𝐻𝐻imp−CdGM = 2𝜋𝜋∑ ∫𝜕𝜕𝑟𝑟𝑟𝑟𝑉𝑉0(𝑟𝑟)[𝑢𝑢(𝑟𝑟)𝜕𝜕𝜎𝜎
†𝛾𝛾−1/2 + 𝑣𝑣∗(𝑟𝑟)𝛾𝛾1/2

† 𝜕𝜕𝜎𝜎] + ℎ. 𝑐𝑐.𝜎𝜎          (1) 

where 𝑢𝑢(𝑟𝑟) , 𝑣𝑣(𝑟𝑟)  are factors associated with the transformation. 𝛾𝛾±1/2  denotes the 
Bogoliubov quasi-particle operator corresponding to the two lowest CdGM states with OAM 
𝑚𝑚 = ±1/2, as marked by red in Fig. 4a. Eq. (1) indicates that the major effect of the impurity 
is to couple with the lowest two CdGM states, as schematically depicted by Fig. 4b. This 
impurity-CdGM coupling is the driving force for the shift of the CdGM states. 

 
Fig. 4 | Microscopic modeling of vortex pinning. a, The calculated energy spectrum for the free 
vortex case. Two lowest CdGM states with OAM 𝑚𝑚 = ±1/2 are marked by red. b, The microscopic 
mechanism driving the shift of CdGM states. The impurity is strongly coupled to the lowest CdGM 
with OAM 𝑚𝑚 = ±1/2, while leaves the other CdGM states nearly unchanged. c, The evolution of the 
in-gap LDOS with varying 𝜕𝜕 firstly towards and then away from the vortex core. The red curve 
highlights the evolution of CdGM states. The two higher energy peaks are contributed by the impurity 
states. d, The total energy of the lowest CdGM states and the impurity state as a function of Γ. e, The 
local gap function, Δ(𝑟𝑟), self-consistently determined for different Γ.  f, The zoom-in data in the 
region near the vortex core, which makes a closer comparison between the numerical results and the 
experiments. To better describe experiments where the dumbbell defect has a p-wave anisotropy, we 



added a small anisotropic scattering term of the strength 𝑉𝑉1 (See Part II of supplementary materials). 
This term is not necessary for the general pinning mechanism and does not affect Δ𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 obtained in 
panel (d), although it leads to a better quantitative agreement with experiments in Fig. 1(i). The 
parameters used in the calculations are: ∆0=5.5meV, 𝜀𝜀𝑑𝑑 = 2.4meV, 𝜇𝜇 = 110meV, 𝑉𝑉1 = 5.5meV, 
𝑟𝑟0 = 0.53nm. 

 
The hybridization 𝑉𝑉0(𝜕𝜕) between the impurity and the local electrons decays with the 

distance to impurity (𝜕𝜕). We calculate the evolution of the lowest CdGM states and the 
impurity state with changing 𝜕𝜕. As shown in Fig. 4c, with lowering 𝜕𝜕, the in-gap states 
firstly stay intact. However, when getting close to the vortex core (𝜕𝜕 ≲ 2nm), due to the 
enhanced impurity coupling, the two lowest CdGM states are pushed towards slightly and 
then away from the Fermi energy 𝐸𝐸𝐹𝐹 (see part II-2 of supplementary materials for details). 
The zoom-in figure in Fig. 4f clearly shows a significant energy shift of the lowest CdGM 
states, which saturates to higher energies away from 𝐸𝐸𝐹𝐹  at 𝜕𝜕 = 0. The results are in 
quantitative agreement with the experimental data extracted from Fig. 1i. We also found that, 
accompanied by the shift of the CdGM states, the local pairing around the vortex core is 
simultaneously enhanced, as shown by Fig. 4e. This is reflected by reduced coherence length 
in the vortex core with an impurity, obtained by the self-consistent calculation of gap equation 
(see Part II-3 of supplementary materials). 

The shift of the in-gap states inevitably modifies the energetics of the superconducting 
system. We then calculate and plot the total energy of the lowest CdGM states and the 
impurity state (below 𝐸𝐸𝐹𝐹), 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡, as a function of the broadening function Γ = 𝜋𝜋𝜋𝜋0𝑉𝑉02 with 
𝜋𝜋0 the DOS of the normal state. Since all the other CdGM states (𝑚𝑚 ≠ ±1/2) and the 
above-gap continuum are barely affected by the impurity, the quantity Δ𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸tot(𝑉𝑉0) −
 𝐸𝐸tot(0) (for large 𝑉𝑉0), is essentially the energy difference between a pinned vortex and a 
free vortex. Thus, Δ𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 offers the magnitude of elementary pinning energy 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 in the 
perspective of a microscopic description. Δ𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 is evaluated around −0.63∆0 in Fig. 4d, i.e., 
−3.47 meV for ∆0~5.5meV (see Fig. 1g), which is of comparable value with the 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 
estimated by experiments.  

Therefore, our microscopic model well accounts for the experimental findings above. 
We note the CdGM-impurity coupling revealed in Eq. (1) is a general result. Its existence 
neither relies on the pairing details nor the type of impurity, i.e., magnetic or non-magnetic. 
Although non-magnetic impurity does not affect the bulk property of isotropic s-wave 
superconductors, its effect is non-negligible when a vortex is in presence. Since the vortex 
locally breaks time-reversal symmetry (TRS), the impurity-pinned vortex also violates TRS, 
and consequently shares common properties with a magnetic impurity. This will inevitably 
lead to significant modifications to the in-gap physics of s-wave superconductors. 
Microscopically, non-magnetic impurity can induce impurity bound states near the gap edge 10. 
These impurity states are coupled to the lowest CdGM states, generating the pinning effect 



according to our calculations. In previous phenomenological pinning theory 1, pair 
breaking/non-breaking impurities are believed to affect the coefficient of different terms of 
G-L free-energy (so called δTC and δl pinning). Here, we reveal that their microscopic pinning 
mechanism could be unified by the impurity-CdGM coupling. In addition, Fig. 4d shows that 
the impurity coupling strength 𝑉𝑉0 is the key factor that determines the pinning energy and 
thus the pinning force. This observation would provide a guidance for the search of 
superconductors with large critical current 𝐽𝐽𝐶𝐶 . 

In summary, we have performed a comprehensive study on the elementary vortex 
pinning in FeSe-based superconductors. High-resolution tunneling spectrum reveals that the 
coupling between vortex and impurity state is the origin of vortex pinning. The elementary 
pinning energy/force are extracted from local tunneling spectra, which set up a direct 
connection between the microscopic electronic structure of vortex and the macroscopic 
transport quantity of 𝐽𝐽𝐶𝐶  for the first time. The pinning mechanism is well captured by our 
quantum impurity model in an s-wave superconductor with a vortex. The obtained results are 
not sensitive to the detailed features of the pairing and impurity, thus are applicable to broad 
classes of superconductors and pinning centers. Therefore, our study reveals a general 
microscopic mechanism of vortex pinning, which enables practical superconductors to carry 
non-dissipative current. 
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Methods: 
Sample preparation: High quality (Li0.8Fe0.2)OHFeSe single crystalline films were grown on 
LaAlO3 substrate by matrix-assisted hydrothermal epitaxy, as described in Refs. [26,27]. The 
sample was cleaved in ultra-high vacuum and transferred to STM head right after cleaving. 
1ML FeSe/ SrTiO3 sample was grown by co-deposition of high purity Se (99.999%) and Fe 
(99.995%) on SrTiO3 (001) substrate holding at 670 K, followed by annealing at ~800 K for 1 
hours. The SrTiO3 (001) (0.5% Nb doping) substrate were cleaned by direct heating at 1250K in 
ultra-high vacuum. 

STM measurement: The STM experiment was performed in a dilution refrigerator STM 
(Unisoku) at the base temperature of 20 mK (Teff = 160 mK) or at 4.2K when specified. Normal 
PtIr tips were used and cleaned by e-beam heating. Topographic images are taken with constant 
current mode with bias voltage (Vb) applied to the sample. The tunneling conductance dI/dV is 
collected by standard lock-in method with a modulation frequency of 973 Hz. The typical 
modulation amplitude (ΔV) is 30 μeV at T = 20mK and 0.2 meV at T=4.2K. 

Transport measurement of JC: Transport measurements under magnetic field up to B = 14 T 
were carried out via standard four-probe method in a Quantum Design PPMS DynaCool system. 
The values of JC were obtained using the criteria of 1 μV on I–V curves and the bridge 
parameters were characterized by a Bruker DektakXT stylus profilometer. 

Solving the Bogoliubov-de-Genne (BdG) equation of SCs with a pinned vortex: Three 
steps of transformation are performed to cast the BdG Hamiltonian in a proper matrix form. We 
first make a gauge transformation that removes the phase winding of the pairing potential. Then, 
we expand the wave function in terms of the partial waves of different OAMs, denoted by 𝑚𝑚. 
Finally, the radial dependence of the wave function is expanded in the complete basis formed 
by Bessel functions. For each 𝑚𝑚 , the final BdG Hamiltonian is written into a 4𝑁𝑁 + 4 
dimensional matrix, where the 4𝑁𝑁 comes from tensor product of the Nambu, spin and the 
Bessel function space.  𝑁𝑁 is the cutoff in terms of the number of Bessel functions used in the 
expansion, and 𝑁𝑁 = 100 is used in the calculations, which is large enough to ensure numerical 
convergence. The additional 4 dimension of the matrix comes from the impurity Hilbert space, 
which consists of the empty, doubly-occupied state, and two singly-occupied states. Exact 
diagonalization then generates a complete and accurate spectrum of the experimental system, 



including the CdGM, the impurity state, and the above-gap continuum. More details are 
included in Part II of the supplemental materials.  
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Part I: Obtaining the elementary pinning energy/force 
I -1. Calculation of elementary pinning energy through linecut tunneling spectra 

In STM measurement, the tunneling conductance (dI/dV) at a bias voltage of V is 
proportional to the local density-of-state (LDOS) of the sample, assuming the tip DOS and 
tunneling matrix element are constants near EF: 

d𝐼𝐼
d𝑉𝑉

(𝑉𝑉, 𝒓𝒓) ∝ 𝜌𝜌𝑠𝑠(𝐸𝐸𝐹𝐹 + 𝑒𝑒𝑉𝑉, 𝒓𝒓) 

In a superconducting state, the energy gap opening in single-particle DOS lowers the free-
energy of the system, which contributes to the main part of condensation energy. Any in-gap 
bound state (like the CdGM state) will reduce the condensation energy and be destructive to 
superconductivity. Via integrating the LDOS over an energy range covers superconducting gap 
and an area covers the whole pinned/free vortex core, we can obtain the condensation energy 
diffidence between a pinned and a free vortex core, which is defined as the elementary pinning 
energy Upin. The absolute value of LDOS can be obtained by calibrating the dI/dV spectra with 
the normal state DOS near EF of the host superconductor. Then Upin is expressed as:  

𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 = �� 𝑁𝑁(0) ��
d𝐼𝐼
d𝑉𝑉
�
pinned

− �
d𝐼𝐼
d𝑉𝑉
�
free

� 𝐸𝐸d𝐸𝐸d𝑠𝑠
𝐸𝐸𝐹𝐹

𝐸𝐸<−∆
 

Here the dI/dV is normalized by its value outside of superconducting gap, as shown in Figs. 
S1(c,f) for examples (which are normalized at E = -17 meV). 𝑁𝑁(0) is the normal state DOS 
near EF (per area). For (Li,Fe)OHFeSe and 1 ML FeSe/SrTiO3 superconductors, their Fermi 
surfaces (contributed by a single FeSe layer) are composed of two near circular electron pockets 
at the M point (refs. 32-34), as sketched in Fig. S2(a). 𝑁𝑁(0) can be extracted from the band 
dispersion of these pockets measured by in-situ quasi-particle interference (QPI) shown Fig. 
S2. Here we used a parabolic curve 𝐸𝐸(𝑞𝑞) = 𝑎𝑎𝑞𝑞2 − 𝐸𝐸𝑏𝑏 (𝑞𝑞 = 2𝑘𝑘) to fit the dispersion in Fig. 
S2(d,e). which yield Eb = 50meV, kF = 0.17Å-1 for (Li,Fe)OHFeSe, and Eb = 60meV, kF = 0.20 
Å-1for 1ML FeSe/SrTiO3. Then 𝑁𝑁(0) = 2𝑆𝑆 ∙ 2𝜋𝜋𝑘𝑘𝜋𝜋𝑘𝑘 4𝜋𝜋2𝜋𝜋𝐸𝐸⁄  = 2𝑆𝑆𝑘𝑘𝐹𝐹2 4𝜋𝜋𝐸𝐸𝑏𝑏⁄  (𝑆𝑆=2 is the spin 
degeneracy). 

For free vortex and a pinned vortex with a defect at its center, their CdGM states all have 
near isotopic distribution. Then the spatial integration of LDOS can be obtained through a 
linecut dI/dV spectra taken across the vortex core (as shown in Fig. S1(a,b,d,e)), via: 



∫(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)(𝑟𝑟)2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋. All the integrations were performed numerically with a spatial resolution <0.5 
nm and an energy resolution <0.1 meV. The calculated value of Upin is -1.8 meV for 
(Li,Fe)OHFeSe and -2.3 meV for 1 ML FeSe/SrTiO3. 
 
 

 
Fig. S1 (a,b) Color plots of linecut dI/dV spectra taken across the center of pinned vortex and free 
vortex in (Li,FeOH)FeSe. (Vb = 17mV, I = 60pA, Teff = 160mK) (c) Normalized dI/dV spectra taken at 
the center of pinned and free vortex cores of (Li,Fe)OHFeSe. (d, e) Color plots of linecut dI/dV spectra 
taken across the center of pinned vortex and free vortex in 1ML FeSe/SrTiO3 (Vb = 30mV, I = 80pA, T 
= 4.2K). (f) Normalized dI/dV spectra taken at the center of pinned and free vortex cores of 1ML FeSe. 
 



 
Fig. S2. (a) Schematic of the (unfolded) Brillouin zone (BZ) and Fermi surface of (Li,Fe)OHFeSe and 
single-layer FeSe/SrTiO3(001). (b,c) The representative QPI pattern (FFT image) of (Li,Fe)OHFeSe 
and 1ML FeSe/SrTiO3(001), measured at E= 5 meV and E = 16.5 meV (respectively). (d,e) The Q-
space dispersion of the electron pocket of (Li,Fe)OHFeSe and 1ML FeSe/SrTiO3(001), respectively. 
Dashed curves are parabolic fittings using 𝐸𝐸 = 𝐸𝐸𝑏𝑏

𝑞𝑞𝐹𝐹
2 𝑞𝑞2 − 𝐸𝐸𝑏𝑏, which yield Eb = 50 meV, qF = 0.35 Å-1 for 

(Li,Fe)OHFeSe, and Eb = 60 meV, qF = 0.40 Å-1 for 1ML FeSe/SrTiO3. 
 
 
I- 2. Calculation of pinning force through the spatial variation of pinning energy 

As illustrate in Fig. 3a, the pinning force 𝑓𝑓𝑝𝑝 can be calculated through the spatial gradient 
of 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 when the pinned vortex is forced to leave the pinning site (defect site). We calculated 
the 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝 difference between a pinned vortex measure at 7T and 6T, as shown in Fig. S3. The 
𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝  can be calculated by the similar method shown above, except that here the LDOS 
distribution is no longer isotropic (since the vortex is shifted away from the defect). Therefore, 
we used the dI/dV maps taken at various energies to do the spatial integration of LDOS, as 
shown in Fig. S3 below. The absolute value of LDOS is also calibrated in the similar way 
shown above. To increase the accuracy of the results, considering the superconducting DOS 
has particle-hole symmetry, the dI/dV was symmetrized with respect to zero-bias before 
integration. 



 
Fig. S3 (a) dI/dV maps of the pinned vortex taken at different energy, under B = 6T (setpoint: Vb = 
10mV, I = 60pA, Teff = 160mK). (b) dI/dV maps of the pinned vortex taken at different energy, under 
B = 7T (setpoint: Vb = 10mV, I = 60pA, Teff = 160mK). 
 
 
 
Part II: Microscopic modeling of the vortex CdGM state hybridized with the 
impurity state. 

II -1. Model and method 
The SC system under our investigation consists of a local impurity and a vortex, which 

are bound to each other. We start from normal state electrons with attractive interaction induced 
by electron phonon interaction. The BCS-reduced Hamiltonian in two-dimensions (2D) reads 
as 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 = ∑ 𝜀𝜀𝒌𝒌𝜎𝜎𝑐𝑐𝒌𝒌𝜎𝜎

† 𝑐𝑐𝒌𝒌𝜎𝜎 − (𝑈𝑈𝒌𝒌𝜎𝜎 /2)∑ 𝑐𝑐𝑘𝑘′,𝜎𝜎
† 𝑐𝑐−𝑘𝑘′,−𝜎𝜎

† 𝑐𝑐−𝒌𝒌,−𝜎𝜎, 𝑐𝑐𝑘𝑘,𝜎𝜎𝒌𝒌,𝒌𝒌′,𝜎𝜎,𝜎𝜎′ , where 𝜀𝜀𝒌𝒌𝜎𝜎 = 𝑘𝑘2/2𝑚𝑚 −
𝜇𝜇 with 𝑚𝑚 being the electron mass and 𝜇𝜇 the chemical potential of the normal state. At mean-
field level and in the region away from the impurity and vortex, a uniform order parameter Δ0 
can be formed, leading to the conventional self-consistent equation for s-wave superconductors 

(SCs), i.e., 1 = (𝑈𝑈/2)∑ 1/�𝜀𝜀𝒌𝒌𝜎𝜎2 + Δ02𝒌𝒌 . Whereas, near the impurity and vortex, the spatial 

variation and the phase winding of the order parameter should be considered. The impurity its 
coupling to the SC also needs to be considered. Thus, the system is described by the quantum 
impurity model, , where  is the mean-field BCS Hamiltonian 
with spatially varying order parameter, i.e., 



 ,       (1) 

To incorporate the effect of a magnetic flux in the SC at 𝐫𝐫 = 0, we let , where 

the radial dependence  is assumed (37), with  being the SC coherent 

length at the vortex, and  an integer winding number. Clearly,  vanishes at the origin 
 and reaches  for . Meanwhile, the phase of the pairing potential goes from 0 to 

 around  with  going from 0 to. In the following, we consider the case where the 
vortex carries one flux quantum, i.e.,  is assumed. Here, the uniform order parameter Δ0 
and ξ are treated as parameters that are self-consistently determined in mean-field level. 

Here, we consider the normal s-wave superconductor. It will be clear in the following that 
the shifting behavior of the CdGM modes remains qualitatively the same for other pairing 
symmetries, such as the p+ip pairing. Moreover, the shifting behavior of the CdGM modes 
does not rely much on whether the impurity is magnetic or non-magnetic. Thus, we consider a 
non-magnetic quantum impurity model described by  

                                                 ,                                    (2) 

where ( ) is the creation (annihilation) operator of the local impurity state with spin . 
Furthermore, the hybridization between the impurity and the electrons of the SC state is given 
by  

,                   (3) 

where 𝑉𝑉0(𝒓𝒓) is the scattering strength between the electrons in SC and the impurity, which 
usually takes the following form: 

                                        ,                          (4) 

where  is the decaying length.  
The Eqs. (1)-(3) above constitute a non-interacting Anderson-type quantum impurity model 

in a s-wave superconductor along with a magnetic vortex. The vortex center is located at the 
impurity position  due to the pinning effect. It is also important to note that, the impurity 
in (LiFe)OHFeSe has a dumbbell shape that is of p-wave anisotropy (25). This brings about 
anisotropic scattering of the electrons in the SC. Thus, we further consider an anisotropic 
potential seen by the electrons, which is described by: 

                        ,                     (5) 

where  is the strength of the p-wave scattering 

potential seen by the electrons around the impurity, and 𝜃𝜃 is the polar angle of .  generates 
anisotropy, yet its value is dominated by the isotropic component  in the experimental case.  
It is straightforward to include higher order scattering component in Eq.(5), however the 
shifting behavior of the CdGM mode remains qualitatively the same.  



    For the vortex-free case with , the SC Hamiltonian  can be conveniently 
diagonalized by Bogoliubov transformation,  

                                    (6) 

where ( ) is the creation (annihilation) operator of the Bogoliubov quasi-particles. The 
Bogoliubov-de Gennes (BdG) equation leads to the eigenvalues  in the diagonal basis

, i.e.,  

,                      (7) 

where  is the single-particle Hamiltonian of the SC, i.e., 

       (8) 

    In the presence of a vortex, , we make a gauge transformation 

 where  is the Pauli matrix in the Nambu space. Under the 
gauge transformation, the phase of the pairing potential is effectively removed, i.e., 

. Thus, the transformation in terms of the basis reads as, 

. Then, we expand the 

wave function to the orbital angular momentum (OAM) space via , 
where 

   

(9) 
Furthermore, to accurately solve the BdG equation, we expand the radial functions , 

 in the complete basis of Bessel functions, i.e.,  

                                                                (10) 

where  



                                       (11) 

 is the m-th order Bessel function defined in a disc of radius 𝑅𝑅, and  is the j-th root 

of . The basis clearly satisfies the orthogonality, . Under 

the above basis, the BdG equation is finally cast into: 

(12) 

where  and  are matrices in the Bessel function basis with the entries: 

               (13) 

The above transformation to the Nambu-OAM-Bessel basis can be written compactly in the 
second quantized form, namely, the original electron operators are transformed to the 
Bogoliubov quasiparticle operators via,  

       (14) 

and  
           (15) 

By firstly turning off the coupling to the impurity, we can readily obtain the OAM-resolved 
energy spectrum of the SC with a vortex by diagonalization of the Hamiltonian in Eq. (12). As 
shown in Fig. S4, the in-gap states in Fig. S4 clearly demonstrate the existence of CdGM modes 
carrying different OAM quantum numbers, which are half integers  with integer 

. The CdGM modes with different OAM  have different energies, which are more and 
more away from zero energy with increasing . 



 
Fig. S4. The OAM-resolved energy spectrum with m from -11/2 to 11/2. The red dots highlight the 
spectra with the OAM m= ±1/2.  
 
 
II -2. The effective coupling between the CdGM and the quantum impurity. 

Using Eq. (15) above, the hybridization term in Eq. (3) can be mapped to  

          (16) 

Cleary Eq. (16) describes the coupling between the quantum impurity and the Bogoliubov 
quasi-particles with the OAM , where we have focused on the case . The 
Bogoliubov quasi-particles that are coupled to the quantum impurity are marked by red in the 
energy spectrum as shown in Fig. S4. It is clear from Eq.(16) that, except for the above-gap 
bulk states, the in-gap states that are effectively coupled to the impurity only involves the 
lowest energy CdGM modes ( ) with the OAM . From Eq. (16), their effective 
coupling can be read off as: 

 (17) 

where . The mixing term above will inevitably shift the energy 

level of both the lowest CdGM mode and the quantum impurity state. In order to trace the 
effect of the impurity-CdGM coupling, we intentionally introduce a controlling factor  with 

 in front of Eq. (17). For , one artificially turns off the impurity-CdGM 
coupling, while  reproduces the realistic case with the full coupling. 

In terms of the impurity scattering term, we firstly consider the isotropic and short-range 
case by taking  and . In this case, the Gaussian function in 𝑉𝑉0(𝜋𝜋) approaches 

the delta-function . We numerically solve the Eq. (2), Eq.(12) and Eq. (16) in the Nambu-
OAM-Bessel basis introduced above. In our calculation, we introduce a cutoff  in 
terms of the Bessel basis function, which is sufficient as we have numerically confirmed that 
the results are saturated and remain unchanged for even larger .   



Fig. S5(a)(b) shows the evolution of the energy levels of the in-gap states with increasing 
the broadening function , where  is the density of states (DOS) of the normal 
state. As shown in Fig. S5, the behavior of the in-gap states with increasing  strongly depends 
on the relative energies of the impurity state and the CdGM mode at zero coupling . 
From Fig. S5(a) where , we find that when the effective coupling between the 
two states is turned off with 𝛼𝛼 = 0, the impurity level and the lowest CdGM mode (with OAM 
𝑚𝑚 = ±1/2) crosses with each other with increasing Γ (the dashed curves in Fig. S5(a)). Hence, 
under the full coupling with 𝛼𝛼 = 1, the two states strongly hybridize with each other, as shown 
by Fig. S5(a). This is further verified by the calculated ratio of the wave function amplitude of 
the two states, as shown by Fig. S5(c). However, in Fig. S5(b) where , the two 
states do not cross with each other at 𝛼𝛼 = 0, as shown by the dashed curves. Thus, we do not 
observe a strong mixing of the two states. Instead, the coupling between the two states 
generates the shifting of the CdGM mode. Specifically, the impurity state at the electron (hole) 
side is pushed to higher (lower) energies while the  ( ) CdGM mode is 
pushed towards lower (higher) energies. Interestingly, the  and the CdGM 
modes cross with each other at zero energy at a critical , as shown in Fig. S5(b).  

The evolution of the impurity state (on the electron side) and the  CdGM mode 
is shown in Fig. S5(d), with a fixed and an increasing . It is clearly shown that the impurity-
CdGM hybridization has a “repulsion effect”, which pushes the two states away from each 
other in energies. As will be clear in the following, this “repulsion effect” can well account for 
our experiments at the quantitative level.  

It should now be clear that, since it is the coupling with the impurity that drives the shift 
of the CdGM state, and the coupling remains qualitatively unchanged for other pairing 
symmetries, e.g., the p+ip SC, the shifting behavior of the CdGM mode should be insensitive 
to the SC pairing symmetries. This further supports our starting point in Eq.(1). 



 
Fig. S5. The in-gap states calculated for the isotropic scattering 𝑉𝑉1 = 0. (a,b) The in-gap states as a 
function of the broadening function Γ. The solid and dashed curve show the results for 𝛼𝛼 = 1 and 0, 
respectively. (c) The calculated ratio of the wave function amplitude between the impurity and the 
CdGM state as a function Γ. (d) The evolution of the impurity state (on the electron side) and the 𝑚𝑚 =
1/2 CdGM state with varying α from 0 to 1. Γ is set to the critical value Γ𝑐𝑐 where the 𝑚𝑚 = 1/2  and 
𝑚𝑚 = −1/2 CdGM modes cross with each other in (b). 𝜖𝜖𝑑𝑑 = 0 is used in (a,c) and 𝜖𝜖𝑑𝑑 = 0.043 in (b,d).  
 
 
II -3. Self-consistent determination of the local pairing function around the vortex core. 

In real space, the shift of the CdGM state is manifested by the localization around the 
vortex center. We calculate the spatial distribution of the two lowest CdGM states for different 
Γ.  As shown by the Fig. S6(a),(b), the CdGM states become much more localized for the 
pinned vortex case. Thus, more states are squeezed towards the vortex center 𝒓𝒓 = 0 . 
Consequently, the local gap function ∆(𝜋𝜋) around the vortex center is expected to be effectively 
enhanced.  

The gap function ∆(r)  around a free vortex should, in principle, be self-consistently 
determined. According to previous studies, e.g., Ref. (36), a satisfactory description of the gap 
function can take the form as Δ(𝜋𝜋) = 𝛥𝛥0𝜋𝜋/�𝜋𝜋2 + 𝜉𝜉2. It should be noted that the shape of the 
gap profile is known to affect only slightly the quasi-particle energies; it does not change the 
key features of the vortex core states which are mainly controlled by the vortex topology. 
Therefore, the adopted function form of Δ(𝜋𝜋) is expected to closely reproduce the true core 



spectrum and the corresponding eigenstates, for both the free vortex and the pinned vortex 
cases.  

When the vortex is pinned by the defect, the gap functions Δ(𝜋𝜋) will be quantitatively 
modified (without affecting the vortex topology). Since 𝛥𝛥0 is the gap away from the vortex, its 
value remains unchanged. Whereas, the local coherent length 𝜉𝜉 in Δ(𝜋𝜋) can be modified. In 
order to investigate how the local pairing is changed by the defect, we treat ξ as a variational 
parameter in the SC order parameter, and self-consistently determine its value at the mean-field 
level. Specifically, we calculate the total energy of the whole system,  

 ,  

where U is the attractive interaction between electrons induced by the electron-phonon 
coupling, 𝐸𝐸𝐵𝐵𝐵𝐵  is the mean-field energy of all the Bogoliubov quasi-particles in the bulk 
continuum below the Fermi level, and 𝐸𝐸𝐵𝐵𝑑𝑑𝐶𝐶𝐶𝐶 and 𝐸𝐸𝑝𝑝𝑖𝑖𝑝𝑝 are the energy of the in-gap CdGM 
states and the impurity states, respectively, which are dependent on Δ(𝜋𝜋) and thus on 𝜉𝜉. The 
SC gap away from the vortex 𝛥𝛥0  is determined by the conventional gap equation 

, where 𝜉𝜉𝑘𝑘 = �(𝑘𝑘
2

2𝑖𝑖
− 𝜇𝜇)2 + Δ02 . Through minimizing 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 , we are able to 

determine ξ for different impurity coupling 𝑉𝑉0 (and fixed 𝑈𝑈). The results are shown by Fig. 4(e) 
of the main text, where we observe that 𝜉𝜉 decreases with increasing 𝑉𝑉0 or Γ. Hence, compared 
to the free vortex case, the local pairing potential is effective enhanced when an impurity is in 
presence.  

We also plot the calculated LDOS at the vortex center for different parameters in Fig. 
S6(c),(d), with taking into account the contribution from all the CdGM states, the impurity state 
and the above-gap continuum. For a larger broadening factor, we observe from Fig. S6(d) that 
the SC gap (the black curve) is effectively obscured by the vortex due to the in-gap CdGM 
states (the blue curve), which is however enhanced when one further considers the pinning 
effect of the impurity (the red curve). For a smaller broadening factor, the in-gap peaks are 
more clearly shown, as displayed by Fig. S6(c). We note Fig. S6(c) and (d) are in qualitative 
agreement from the experimental data in Fig. 1(h) and Fig. 2(c) of the main text.  



 
Fig. S6. The spatial distribution of the lowest CdGM mode in a free vortex (a) and impurity pinned 
vortex (b). (c) and (d) The LDOS calculated for (i) the clean SC, (ii) the free vortex (at vortex center), 
and (iii) the pinned vortex case (at vortex center), with taking into account the contribution from all the 
CdGM states, the impurity states, and the above-gap continuum. The delta function encountered in the 
calculations are approximated by Gaussian function with a broadening factor 𝑏𝑏. (c) and (d) show the 
results for 𝑏𝑏 = 0.002 and 𝑏𝑏 = 0.02, respectively. The larger broadening factor in (d) observe the 
discrete spectrum in (c).   
 
 
II -4. Comparison with experiments. 

We now consider the more realistic case where the impurity scattering has anisotropy with 
nonzero .  The anisotropic scattering component  introduces a new hybridization term in 
the Nambu-OAM-Bessel basis, i.e.,  

 (18) 

where . Clearly, Eq. (18) introduces a direct coupling 

between the two lowest CdGM modes with  and . The energy spectra of 
the in-gap states are calculated and shown in Fig. S7(a), (b) with taking into account the 
nonzero . It is found that the direct coupling between the CdGM modes with  and 

 always gaps out the gapless crossing point at . The gapless point is sensitive to 
, as the latter breaks the OAM conservation. The gap value with increasing  is shown in 

Fig. S7(b). As shown, the gap becomes quite significant even for the case with a relatively 
small anisotropy, i.e., .  



 
Fig. S7. (a) The in-gap states with anisotropic scattering. The solid and dashed data are results for 

 and 0 respectively. (b) The energy gap at Γ𝑐𝑐 caused by the anisotropy as a function of .  

 
Finally, to make quantitative comparison with our experiments, we now consider the 

impurity scattering of a finite range, i.e.,  in Eq. (4).  now decays with the 
distance  from the impurity (vortex) center. In our experiments, the STM tip is gradually 
moved along a line-cut towards and then away from the impurity center. The distance between 
the tip and the impurity center is denoted by . Since STM measures the local DOS at the tip 

site, we can use the scattering strength at , i.e., , to simulate the local quantity 

measured by our experiments. With tuning the position of STM tip,  is accordingly 
varied, leading to a continuous evolution of the in-gap states in our calculations. The calculated 
results with tuning  are shown in Fig. S8(a), which are compared to the experimental data 
marked by stars. Here, we only plot the lowest CdGM mode and the impurity state for clarity. 
A more complete comparison between our calculations and experiments is illustrated in Fig. 
S8(b) and (c). As shown, our calculation successfully accounts for the shifting behavior of the 
CdGM modes at quantitative level. Our calculations also predict a shifting of the impurity state 
to higher energy until it reaches the SC gap edge. Corresponding signatures can be found in 
Fig. S8(c), which is however obscured by the other in-gap CdGM states. This could be an 
interesting signature for further exploration.  



 
Fig. S8. The comparison between the numerical simulation and the STM data in experiments. The 
dashed curves in (b) and (c) indicate the evolution of the lowest CdGM state with moving the STM tip. 
The parameters used have been illustrated in the main text. 
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