
A WALL CROSSING FORMULA FOR MOTIVIC

ENUMERATIVE INVARIANTS

ANDRÉS JARAMILLO PUENTES

Abstract. We prove an analog of the wall crossing formula for Wel-
schinger invariants relating the difference of signed curve counting of real
curves passing through configurations that differ by a pair of complex
conjugated points, and a correspondence Welschinger invariant of the
blow up.

We prove this analogue for the motivic count of rational curves of
fixed degree passing through a generic configuration of points, counted
with a motivic multiplicity in the Grothendieck-Witt ring of a base field,
extending the notions in the correspondence theorem between motivic
invariants for k-rational point conditions and tropical curves, presented
in [8].

We use this formula to compute the degree 4 motivic enumerative
invariants of the projective plane counting curves passing through con-
figurations of points defined over quadratic extensions of a base field.
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1. Introduction

Let k be a perfect field of characteristic different than 2 and 3. The
Grothendieck-Witt ring GW(k) of the field k is the group completion of the
semi-ring of isometry classes of non-degenerate symmetric bilinear forms
over k under the direct sum, endowed with the tensor product. It is gener-
ated by the rank one forms

⟨a⟩ : k × k −→ k : (x, y) 7−→ axy, a ∈ k∗.
1
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Given a natural number d and a generic configuration P of 3d− 1 points
of the projective plane over k, we define the motivic count

NA1

d,k(P) :=
∑
C

multA
1

k (C) ∈ GW(k),

where the sum runs over rational degree d curves C in P2
k passing through

the configuration P, counted with the multiplicity

(1) multA
1

k (C) := Trk(C)/k

( ∏
z node of C

〈
Nk(z)/k(C)D(z)

〉)
∈ GW(k),

where k(C) is the field of definition of the curve C, k(z) is the field of

definition of the node and D(z) ∈ k(z)∗/ (k(z)∗)2 is the element such that
the two tangent directions at the node z define a quadratic field extension

k(z)
[√

D(z)
]
of k(z). Here Tr denotes the map induced by the trace of

the field extension on the Grothendieck-Witt rings and N denotes the norm
of the field extension. For details about this definition please confer to [9,
Subsection 1.2.4.].

This definition can be naturally extended to other surfaces, generalizing
the notion of degree by considering curves realizing a fixed cohomology class.

In [9] and [10] is proved that the counts NA1

d,k are independent of the choice
of configuration of point as long as the configuration is generic; albeit in a
more general statement.

For an algebraically closed field, since all finite field extensions are trivial,
the configuration P is comprised of k-rational points and all motivic multi-
plicities are isometric to the symmetric bilinear form ⟨1⟩. In particular, over
the complex numbers we have that

NA1

d,C = Nd · ⟨1⟩ ∈ GW(C),

where Nd is the classical degree d Gromov-Witten invariant of the com-
plex projective plane. Therefore, the rank of the motivic Gromov-Witten
invariant recovers the classical complex one.

Over the real numbers, the näıve count of curves depends on the configu-
ration of points P and hence it is not an invariant. In [14], it is proved that
the invariance is restored by considering the real rational curves C, endowed
with multiplicities given by WelR(C) := (−1)e(C), where e(C) is the number
of isolated real nodes of the curve C. The signed sum of degree d rational real
curves passing through P is known as the degree d Welschinger invariant Wd

of the real projective plane. The motivic count considers curves defined over
the base field as well as curves defined over finite field extensions. The total
number of curves is the Gromov-Witten invariant Nd. However, there are
two cases to consider. On one hand, a real rational curve C has motivic
multiplicity

multA
1

R (C) = ⟨WelR(C)⟩ .
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On the other hand, a complex curve C that is not defined over the real
numbers has motivic multiplicity

multA
1

R (C) = TrC/R (⟨1⟩) = ⟨1⟩+ ⟨−1⟩ ∈ GW(R).

In the former case, the signature of the motivic multiplicity coincides with
the sign WelR(C). In the the latter case, the signature of the motivic multi-
plicity vanishes. Additionally, let us remark that in this case the rank of the
motivic multiplicity is two, accounting for the curve itself and for its com-
plex conjugate. They are the same curve from a schematic point of view.
Since the Welschinger invariant counts only real curves, we have that

sig
(
NA1

d,R(P)
)
= Wd.

By the Sylvester theorem, a non-degenerated real symmetric bilinear form
is determined by its rank Nd and its signature Wd. Hence,

NA1

d,R(P) =
Nd +Wd

2
⟨1⟩+ Nd −Wd

2
⟨−1⟩ ∈ GW(R).

Tropical geometry provides combinatorial tools for the computation of
the complex and real invariants. We aim to harness them in order to de-
termine relations among motivic invariants. Mikhalkin’s celebrated corre-
spondence theorem in [12] establishes a correspondence between complex
algebraic curves and tropical curves counted with multiplicities. In this cor-
respondence, we study the number of complex curves that tropicalize to a
single tropical curve. This number is the complex multiplicity of the tropi-
cal curve. Subsequently, the complex invariant Nd equals the sum over all
tropical curves satisfying the required constrains (degree, genus and point
conditions) counted with this complex multiplicity. Additionally, this corre-
spondence extends to the real invariants. One can study the local contribu-
tion to the real signed count, defining a real multiplicity in such a way that
the real invariant Wd equals the sum over the same set of tropical curves
counted with the real multiplicity. In [8], we proved Theorem 1.2, extending
the correspondence between algebraic and tropical curves to arbitrary per-
fect fields of large characteristic. In order to state this theorem, let us first
introduce the notion of motivic multiplicity for tropical curves.

Assume Γ is a simple degree ∆ embedded tropical curve, i.e., its dual
subdivision S is comprised of triangles and parallelograms. Additionally,
assume that all unbound edges of Γ have weight one.

Definition 1.1. Let v be a trivalent vertex of Γ dual to the triangle ∆v. Let
us denote by σv, σ

′
v and σ′′

v the three edges of the triangle ∆v and by Int(∆v)
its number of interior lattice points. The motivic multiplicity of the vertex v
is the class

mA1

v :=

{〈
(−1)Int(∆v)|σv||σ′

v||σ′′
v |
〉
+ |∆v |−1

2 h if ∆v has only odd edges,
|∆v |
2 h otherwise.
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Here, the norm | · | denotes the lattice length for a segment, and twice
the Euclidean area for the triangle ∆v, and h denotes the hyperbolic form
⟨1⟩+ ⟨−1⟩ ∈ GW(k). The motivic multiplicity of the tropical curve Γ is the
product of its vertex multiplicities over all its trivalent vertices

multA
1

k (Γ) :=
∏

v∈V (Γ),val(v)=3

mA1

v .

Let us remark that the rank and signature (for real fields) of the mo-
tivic multiplicity is the complex and real multiplicity, respectively, both for
vertices and, subsequently, for simple nodal tropical curves.

Now, in order to study the relation between algebraic and tropical curves,
we consider our algebraic curves as curves in families. We see the coefficients
of a defining equation of the curve as elements of the Puiseux series with
coefficients over k. The inclusion of fields k ⊂ k{{t}} induces an isomorphism
of rings (cf. [11, Theorem 4.7])

GW(k) −→ GW(k{{t}})
⟨a⟩ 7−→ ⟨a⟩

which allow us to compute the motivic invariants we are studying in the
Puiseux series and mapping back to the base field through this canonical
isomorphism. Let us consider a generic configuration P of k-rational points

in P2
k, a generic configuration of k{{t}}-rational points P̃ in P2

k{{t}} such that

the set of initial terms {ai0 |
∑∞

i=i0
ait

i/N ∈ P} of P̃ coincides with P and

such that the set of point-wise valuations P := val
(
P̃
)
defined as the set(−i0/N,−j0/M)

∣∣∣∣∣∣
 ∞∑

i=i0

ait
i/N ,

∞∑
j=j0

bjt
j/M

 ∈ P̃, ai0 , bj0 ̸= 0


is tropically generic. This context allows us to state the following correspon-
dence theorem.

Theorem 1.2 ([8]). Let k be a field of characteristic 0 or characteristic
greater than d. If Γ ⊂ R2 is a rational degree d tropical curve passing
through P, then under the canonical isomorphism GW(k{{t}}) ∼= GW(k)

the quadratic multiplicity multA
1

k (Γ) of Γ is mapped to∑
C

multA
1

k (C),

where the sum runs over all rational curves C in P2
k{{t}} passing through P̃

and tropicalizing to Γ.

A consequence of Theorem 1.2 together with the invariance of the motivic
counts with respect to the configuration of points, proved in [9], yields the
following corollary.
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Corollary 1.3 ([8]). If k is a perfect field of characteristic 0 or characteristic
greater than d, then

NA1

d,k(P) =
Nd +Wd

2
⟨1⟩+ Nd −Wd

2
⟨−1⟩ ∈ GW(k),

for any generic configuration P of 3d− 1 k-rational points in P2
k.

In motivic enumerative geometry, there are many instances where the
invariants lie in the ideal generated by the forms ⟨1⟩ and ⟨−1⟩. This suggest
a relation to the fact that the enumerative problem can be stated over Z,
together with the fact that the Grothendieck-Witt ring of Z is generated
by ⟨1⟩ and ⟨−1⟩. However, this is not always the case. For example, the
count of lines on the Fermat cubic surface yields ⟨−3⟩+4h+⟨1⟩+Trk(σ)/k ⟨1⟩,
where Trk(σ)/k is the trace form from the étale algebra given by the fields
of definition of the point conditions σ to the base field. Another example is
the count of rational plane cubics

NA1

3,k(P) = 2h+Trk(σ)/k ⟨1⟩,

for any generic configuration P (cf. [9] for details about the two examples).
In the former example, the Fermat cubic surface is not toric. In the latter
one, if the configuration of points P is entirely k-rational, then the field
of definition of each point condition is k and the étale algebra k(σ) = k8;
and hence Trk(σ)/k ⟨1⟩ = 8 ⟨1⟩, which coincides with the statement in Corol-
lary 1.3.

The goal of this article is to extend our computation of NA1

d,k to quadratic

extensions using wall crossing formulas. I.e., we aim to compute NA1

d,k for

generic configurations of points Pc̄, where c̄ = (ci)i∈I , comprised of a mix
of k-rational points pi and points qj defined over quadratic extensions k(

√
cj)

of k. The point qj is a scheme-theoretical point, it represents two points over
the algebraic closure of k.

Over the real numbers, one can partition the configuration of points.
Pick natural numbers s and t such that t+2s = 3d− 1. Then, for a generic
configuration Ps comprised of t real points in P2

R and s pairs of complex
conjugated points in P2

C \ P2
R, we can define Wd(s) as the count of real

curves passing through Ps counted with the sign WelR. In [14], Welschinger
proved that the difference of real invariants differing by a pair of complex
conjugated points in their point conditions, equals twice the real invariant
associated to the blow up, i.e., they satisfy

(2) Wd(s)−Wd(s+ 1) = 2 · W̃d−2E(s),

where W̃d−2E(s) is the signed count of real curves C lying on the blow
up Blp(P2

R) of P2
R at a real point p ∈ Ps passing through a generic configura-

tion of t− 2 real points and s pairs of complex conjugated points, such that
the cohomology class of C equals dL− 2E, where L is the strict transform
of a generic line in P2

R and E is the exceptional divisor of the blow up.
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Over arbitrary fields, we study the difference of motivic invariants asso-
ciated to configurations that differ by one pair of k-rational points on one
hand, and a pair of conjugated points in a quadratic extension on the other.
Over the algebraic closure, there is no distinction between the two cases and
so, the rank of such difference should vanish. Over the real number such
difference must specialise to the Equation (2).

In order to state our results, let us extend our definitions. LetX be a toric
del Pezzo surface such that the blow up ofX at a k-point p ∈ X is also a toric
del Pezzo surface, together with an appropriated notion of degree. Hence,
assume that X is the projective plane or its blow up at one or two k-points.
LetD = dL−

∑
dEiEi be a divisor inX such that n := deg(−D·KX)−1 ≥ 0.

Here d, dEi ∈ Z, L is the strict transform of a generic line in P2
k, and Ei is the

exceptional divisor of the blow up, if any. Given a generic configuration P
of n points of X, we define the motivic count

NA1

X,D,k(P) :=
∑
C

multA
1

k (C) ∈ GW(k),

where the sum runs over all rational curves C in X, in the same cohomol-
ogy class as D, passing through P, counted with the multiplicity given by
Equation (1). By [9, 10] this is invariant with respect to the generic con-
figuration as long as the points are defined over isomorphic field extensions.
If two configurations differ by a pair of points, either k-points or a pair of
conjugated points, we have the following relation.

Theorem 1.4. If P and P ′ are two generic configurations of points of X
such that P \ P ′ consist of two k-rational points p, p′, and P ′ \ P consist of
a pair of conjugated points q defined over a quadratic extension k(

√
c), then

NA1

X,D,k(P)−NA1

X,D,k(P ′) = δ ·NA1

Blp(X),D−2E,k(P ∩ P ′),

where δ = Trk×k/k (⟨1⟩)−Trk(
√
c)/k (⟨1⟩), and E is the exceptional divisor of

the blow up.

The rank of the form δ is zero and its signature, for real fields and neg-
ative c, equals 2. Let us remark that the rank of both sides of the formula
vanishes, and taking the signature (for real fields and negative c) specialise
our statement to Welschinger’s theorem in Equation (2).

Let us comment that although Theorem 1.4 is stated for algebraic invari-

ants, we can use the same arguments for the tropical invariants NA1,trop

studied in [6]. In a joint project with Markwig, Pauli and Röhrle, we
are working towards a correspondence theorem for quadratic field exten-
sions, from which this formula can be deduced. Brugallé and Wickelgren
are working towards a quadratically enriched Abramovich-Bertram formula
that would generalise this relation.

In Section 2 we provide some key facts of tropical, toric and A1-enu-
merative geometry. Followed by a proof of Theorem 1.4. In Section 3 we
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Σ1P2 Blp (Σ1)

Figure 1. Lattice polygons corresponding to the blow up
at a k-point fixed by the torus action.

compute the motivic invariants of degree 4 of P2
k for configurations of points

having points defined over quadratic field extensions.
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The author would like to thank Erwan Brugallé, Hannah Markwig, Marc
Levine, Sabrina Pauli and Kirsten Wickelgren, for fruitful discussions about
the different techniques, motivic and tropical, that were used in this paper.

2. Wall crossing formula for quadratic field extensions

In the first part of this section we provide two notions of tropical geometry
and some relations between elements of the Grothendieck-Witt ring that are
key to the proof of Theorem 1.4 presented at the end of this section.

2.1. Tropical Geometry. This paper assumes a basic knowledge of trop-
ical geometry, like tropical curves, their degree, genus and the dual subdi-
vision of its degree. We refer the reader to [7, Section 3], where we give an
introduction to the basic notions of tropical geometry that we use in this
paper, or to more classical references like [13, 5] for further details. In this
subsection we introduce two notions that we use in our arguments that may
be unfamiliar to the reader.

The first one is the notion of vertically stretched configurations of points
in R2. These are configurations whose points are ordered, with monotone
entries in both its abscissae and ordinates, and such that the difference of
consecutive ordinates is of larger magnitude than the difference of the cor-
responding abscissae. Tropical curves that pass through vertically stretched
configurations of points in R2 were studied in [3]. Their combinatorics can
be studied systematically. Vertically stretched configurations form an open
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set in the space of configurations, which allows us to pick a configuration of
this sort and still study generic conditions on tropical curves.

A second fact that we use is that if a tropical curve having degree ∆ as
in the left polygon in Figure 1 passes through a vertically stretched configu-
ration of points such that two simple points p, p′ or a double point (a point
arising from the degeneration of two simple points) q′ that are at the top-
most part of the configuration, then the tropical curve around these points
looks like the ones in Figures 2, 3 and 4.

The second notion that we need is not proper to tropical geometry, but to
toric geometry. If we assume that a toric surface X has a zero-dimensional
toric orbit at a point p, then the blow up Blp(X) is toric and their associated
polygons are like the ones in Figure 1. We refer the reader to [4] for a detailed
construction. Since we only consider the projective plane P2 and its blow
up in up to three k-points, and we can always change coordinates to set any
point as a point invariant by the toric action, the polygons of the blow ups
look like the standard triangle ∆m := Conv{(0, 0), (0,m), (m, 0)}, to which
we chop off up to three corners, each corner being isomorphic to ∆2 by a
SL(2,Z) action. Examples can be found in Figures 5 and 6.

2.2. A1-Enumerative Geometry. Motivic invariants are elements in the
Grothendieck-Witt ring GW(k) of the base field k, which we assumed perfect
of characteristic not 2 or 3. In this paper, we make use of the arithmetic of
elements of GW(k) as well as the trace map from quadratic extensions to
the base field

Trk(
√
c)/k : GW(k(

√
c)) −→ GW(k)

induced by the algebraic trace trk(
√
c)/k : k(

√
c) −→ k that sends an element

to the sum of its Galois conjugates. In this section we present the relations
that we use and the aforementioned trace map. For further details about the
notions of A1-enumerative geometry that we use in motivic tropical geome-
try, we refer the reader to [7, Section 2]. As we stated in the introduction,
the Grothendieck-Witt ring GW(k) is generated by the classes of bilinear
forms

⟨a⟩ : k × k → k : (x, y) 7−→ axy,

for a ∈ k∗. These generators are subject to the relations

•
〈
ab2
〉
= ⟨a⟩,

• ⟨a⟩ ⟨b⟩ = ⟨ab⟩,
• ⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨ab(a+ b)⟩,
• ⟨a⟩+ ⟨−a⟩ = ⟨1⟩+ ⟨−1⟩,

given that a, b, a + b ∈ k∗. Recall that we define they hyperbolic form h as
the form ⟨1⟩+ ⟨−1⟩. The following proposition computes the trace form of
elements in GW(k(

√
c)) that are multiples of one element of the base {1,

√
c}

of the k-vector space k(
√
c).

Proposition 2.1 ([7]). If a ∈ k, then

(1) Trk(
√
c)/k(⟨a⟩) = ⟨2a⟩+ ⟨2ac⟩,
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p

p′

q

Figure 2. Tropical curves of degree ∆1 passing through two
k-points or a double point defined over a quadratic extension
k(
√
c).

(2) Trk(
√
c)/k(⟨a

√
c⟩) = h.

Lemma 2.2. If α ∈ GW(k(
√
c)) is an integer sum of elements ⟨a⟩, a ∈ k∗,

then

Trk(
√
c)/k(α) = α · Trk(√c)/k(⟨1⟩) ∈ GW(k).

Proof. The trace form map Trk(
√
c)/k is a homomorphism of groups. Hence,

the lemma follows from the equality

Trk(
√
c)/k(⟨a⟩) = ⟨2a⟩+ ⟨2ac⟩ = ⟨a⟩ · (⟨2⟩+ ⟨2c⟩) = ⟨a⟩ · Trk(√c)/k(⟨1⟩).

□

In general, motivic multiplicities can be arbitrary. However, the motivic
multiplicities of curves passing through configurations of points that are k-
rational and the curves under consideration in this paper are generated by
elements ⟨a⟩ , a ∈ k∗. Thus, we have that in this setting the trace forms of
quadratic extensions are multiplicative.

2.3. Proof of Theorem 1.4. In [9], it is proved that the motivic count

NA1

X,D,k does not depend on the generic configuration, but only on the iso-
morphism class of the étale algebra of fields of definition of the point con-
ditions. Hence, without lost of generality, we can pick our configurations P
and P ′ in such a way that the respective configurations over the field of

Puiseux series P̃ and P̃ ′ are mapped by the valuation to a configuration of
points that is vertically stretched (see preamble of Theorem 1.2) and that
send, under the valuation map, the symmetric difference of the two config-

urations to the topmost part. Explicitly, we want to pick configurations P̃

and P̃ ′ such that the points p := val(p̃), p′ := val(p̃′) and q := val(q̃) are the
topmost part of a vertically stretched configuration, where p̃, p̃′ and q̃ are
lifts of p, p′ ∈ P \ P ′ and q ∈ P ′ \ P to k{{t}} and k(

√
c){{t}}, respectively.

Since we picked our configuration so that the points under study corre-
spond to the corner of the polygon that is being blown up, this choice of
configuration constrains the tropical curves that pass through the configu-

rations P and P ′
to have a dual polygon divided into two different combina-

torial patterns: we can chop off a triangle ∆1 or ∆2 in such a way that the
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p

p′ q

2

Figure 3. Tropical curves of degree ∆2 passing through two
k-points or a double point defined over a quadratic extension
k(
√
c), intersecting the bottom divisor in two k-points.

curve corresponding to the triangle ∆i contains p, p
′ or q, and the remaining

curve contains P ∩ P ′
.

The first case consists of tropical curves that pass through the special
points as in Figure 2. Cutting the plane R2 at a horizontal line just below
the special points will split each tropical curve Γ into two pieces: the top
part Γt and the bottom part Γb. The curve Γt has degree ∆1, while the
curve Γb has as degree the Newton polygon ∆ := ∆ \ ∆1. The algebraic
curves that tropicalize to Γ split into pieces lying on Tor(∆v) for every ver-
tex v of Γ. In Tor(∆1), the corresponding piece is a line that tropicalizes
to Γt. This line has no nodes, it is defined over the base field (since it is
defined as a line passing through two k-points or a pair of conjugated points)
and it intersects the toric boundary transversally. Hence, the motivic con-
tribution equals ⟨1⟩ (see Equation (1), or [8] for detailed computations).
Thus, the motivic multiplicity of the tropical curve Γ is trivially multiplica-

tive as multA
1

k (Γ) = multA
1

k (Γt) · multA
1

k (Γb). Therefore, we have that the
difference of the contributions of the tropical curves in this case vanishes
since the tropical curves contributing to each count have the same bottom
part. Thus,∑

Γ⊃P
deg(Γt)=∆1

multA
1

k (Γ)−
∑
Γ⊃P ′

deg(Γt)=∆1

multA
1

k (Γ)

=

 ∑
Γt⊃{p,p′}

deg(Γt)=∆1

multA
1

k (Γt)−
∑

Γt⊃{q}
deg(Γt)=∆1

multA
1

k (Γt)

 ·
∑

Γb⊃P∩P ′

deg(Γb)=∆

multA
1

k (Γb)

= (⟨1⟩ − ⟨1⟩) ·
∑

Γb⊃P∩P ′

deg(Γb)=∆

multA
1

k (Γb) = 0.

The second case consists of tropical curves that pass through the spe-
cial points as in Figure 3 or as in Figure 4. These subcases are mutu-
ally exclusive. They can be distinguished by the field of definition of the



A WALL CROSSING FORMULA FOR MOTIVIC ENUMERATIVE INVARIANTS 11

p

p′

2

q

2

2

2

Figure 4. Tropical curves of degree ∆2 passing through two
k-points or a double point defined over a quadratic extension
k(
√
c), intersecting the bottom divisor in a double point.

point r ∈ P ∩ P ′, where r is the point just below the points p, p′ or q. In
the former case, the point r is k-rational, while in the latter one it is defined
over a quadratic extension k(

√
c′). Like above, cutting the plane R2 at a

horizontal line just above r splits each tropical curve Γ into two pieces: the
top part Γt and the bottom part Γb. The curve Γt has degree ∆2, while the

curve Γb has as degree the Newton polygon ∆̃ := NP(Blp(X)) of the blow
up of X at a k-point.

For the subcase as in Figure 3, if the curve Γt passes through p and p′, it
is reducible and consists of two k-lines. Each reducible component has de-
gree ∆1 and Γt has degree the Minkowski sum 2∆1 = ∆2. Its local motivic
multiplicity is ⟨1⟩ and it is trivially multiplicative. There are two such possi-
bilities for the curve Γt by exchanging p and p′. Else, if Γt passes through q,
its local motivic multiplicity equals Trk(

√
c))/k (⟨1⟩) and it is multiplicative,

by Lemma 2.2. Therefore, in this case we have that∑
Γ⊃P

deg(Γt)=2∆1

multA
1

k (Γ)−
∑
Γ⊃P ′

deg(Γt)=∆2

multA
1

k (Γ)

=

 ∑
Γt⊃{p,p′}

deg(Γt)=2∆1

multA
1

k (Γt)−
∑

Γt⊃{q}
deg(Γt)=∆2

multA
1

k (Γt)

 ·
∑

Γb⊃P∩P ′

deg(Γb)=∆̃

multA
1

k (Γb)

=
(
2 · ⟨1⟩ − Trk(

√
c))/k (⟨1⟩)

)
·NA1

Blp(X),D−2E,k(P ∩ P ′).

For the subcase as in Figure 4, the vertical edge passes through the point r.
We consider an additional horizontal cut along the line that passes through r.
This cutting splits the tropical curve Γ into two pieces of the same degrees
as before: the top part Γt

− and the bottom part Γ−
b . The difference is the

gluing of the algebraic curves, along the toric divisor Tork(σ), happens at

the k(
√
c′)-point r. Hence, there is a refinement of the point condition at

the boundary given by the trace of ⟨1⟩ from k(
√
c′) to k. By Lemma 2.2,



12 ANDRÉS JARAMILLO PUENTES

the multiplicity of the tropical curve Γ splits as

multA
1

k (Γ) = multA
1

k (Γt
−) ·multA

1

k (Γ−
b ),

with the difference that both pieces have point conditions at the boundary.
In order to compute the contribution from Γt

−, we can enlarge our field of

definition to k(
√
c′), since the point conditions at the boundary are defined

in this field extension, and trace down to k. Remark that in k(
√
c′), the

points r and its Galois conjugate are rational, so up to an isomorphism of
the toric boundary, the tropical curves split as in Figure 3. The trace forms
of the respective multiplicities are

Trk(
√
c′)/k (2 · ⟨1⟩) = 2 · ⟨1⟩ · Trk(√c′)/k (⟨1⟩) ,

Trk(
√
c′)/k

(
Trk(

√
c,
√
c′)/k(

√
c′) (⟨1⟩)

)
= Trk(

√
c′)/k (⟨1⟩) · Trk(√c)/k (⟨1⟩) ,

by Lemma 2.2. Hence, in the ring GW(k), we have that the difference of
the multiplicities equals(

2 · ⟨1⟩ − Trk(
√
c)/k (⟨1⟩)

)
· Trk(√c′)/k (⟨1⟩) .

To conclude, let us observe that in this subcase, a tropical curve Γb ⊃ P∩P ′

contributing to NA1

Blp(X),D−2E,k(P ∩ P ′) has multiplicity

multA
1

k (Γb) = Trk(
√
c′)/k (⟨1⟩) ·multA

1

k (Γ−
b ),

since the point condition given by r has been moved to the boundary and its
contribution is multiplicative due to Lemma 2.2. Therefore, we have that in
this subcase∑

Γ⊃P
deg(Γt)=∆2

multA
1

k (Γ)−
∑
Γ⊃P ′

deg(Γt)=∆2

multA
1

k (Γ)

=
(
2 · ⟨1⟩ − Trk(

√
c)/k (⟨1⟩)

)
· Trk(√c′)/k (⟨1⟩) ·

∑
Γb⊃P∩P ′

deg(Γb)=∆̃

multA
1

k (Γ−
b )

=
(
2 · ⟨1⟩ − Trk(

√
c))/k (⟨1⟩)

)
·NA1

Blp(X),D−2E,k(P ∩ P ′).

The two main cases are exhausting for vertically stretched configurations.
Since the cases are mutually exclusive for each tropical curve, we have that

the difference of the counts NA1

X,D,k(P) and NA1

X,D,k(P ′) is the sum of the
computed differences. □

Let us remark that in this proof we studied the local behaviour of the
tropical curve around its topmost part. Since the motivic counts are in-
variants, the same proof works for configurations of points having points
defined over arbitrary field extensions as long as there is at least one point
defined at most over a quadratic extension to separate them in the verti-
cally stretched configuration. A similar proof can be constructed for higher



A WALL CROSSING FORMULA FOR MOTIVIC ENUMERATIVE INVARIANTS 13

Σ1P2 Blp (Σ1)

Figure 5. Lattice polygons corresponding to quartic curves
in the projective plane P2, and to curves in the first Hirze-
bruch surface Σ1 of degree 4− 2E, respectively.

degree extensions by studying tropical curves with higher degree points, but
the combinatorics and local motivic contribution may be more challenging.

3. Motivic plane invariants of degree 4 over quadratic field
extensions

In this section, we apply the wall crossing formula of Theorem 1.4 in
order to compute a complete list of the motivic plane invariants of degree 4
for configurations of points defined over quadratic field extensions. From
now on, we denote by 4 in the degree the class of 4L where L is the strict
transform of a generic line in P2. We denote by Ps a generic configuration of
points with exactly s pairs of conjugated points, defined over the quadratic
extensions k(

√
c1), k(

√
c2), . . . , k(

√
cs), respectively. We define

βi := Trk(√ci)/k (⟨1⟩) .

In order to apply Theorem 1.4 iteratively, we compute the invariants for
the blow up Σ1 of P2 at a k-point, of degree 4−2E; for the blow up Blp (Σ1)
of Σ1 at a k-point, of degree 4−2E−2E′; and lastly, using that the motivic
invariant of the blow up of Σ1 at two k-points, of degree 4−2E−2E′−2E′′

is ⟨1⟩. We compute these invariants in backward order with respect to the
number of blown up points.

Let us start by observing that the polygon associated to the blow up
of Σ1 at two k-points of degree 4 − 2E − 2E′ − 2E′′ is equal to ∆2, as
in Figure 6. It follows from the fact that there is only one conic in P2

passing through 5 points, either k-rationals or pairs of conjugated points
over quadratic extensions, that the motivic invariant

NA1

Blp,p′ (Σ1),4−2E−2E′−2E′′,k = ⟨1⟩ .
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Σ1P2 Blp (Σ1) Blp,p′ (Σ1)

Figure 6. Lattice polygons corresponding to curves in
Blp (Σ1) of degree 4− 2E − 2E′, and to curves in Blp,p′ (Σ1)
of degree 4− 2E − 2E′ − 2E′′, respectively.

Now, we use Theorem 1.2 to compute the motivic invariant of Blp (Σ1)
for a configuration that is k-rational. Applying the formula of Theorem 1.4
to increase the number of points in the configuration defined over quadratic
extensions yields

NA1

Blp(Σ1),4−2E−2E′,k(Ps+1) = NA1

Blp(Σ1),4−2E−2E′,k(Ps) + βs+1 − 2 · ⟨1⟩ .

Therefore, the motivic invariants equal

NA1

Blp(Σ1),4−2E−2E′,k(P0) = 2h+ 8 · ⟨1⟩ ,

NA1

Blp(Σ1),4−2E−2E′,k(P1) = 2h+ 6 · ⟨1⟩+ β1,

NA1

Blp(Σ1),4−2E−2E′,k(P2) = 2h+ 4 · ⟨1⟩+ β1 + β2,

NA1

Blp(Σ1),4−2E−2E′,k(P3) = 2h+ 2 · ⟨1⟩+ β1 + β2 + β3.

The next step is to compute the motivic invariants of Blp (Σ1), using
Theorem 1.2 for a configuration that is k-rational and applying the formula
of Theorem 1.4 as before. This formula yields

NA1

Σ1,4−2E,k(Ps+1) =NA1

Σ1,4−2E,k(Ps)

+ (βs+1 − 2 · ⟨1⟩) ·NA1

Blp(Σ1),4−2E−2E′,k(Ps).
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Therefore, the motivic invariants equal

NA1

Σ1,4−2E,k(P0) = 18h+ 48 · ⟨1⟩ ,

NA1

Σ1,4−2E,k(P1) = 18h+ 32 · ⟨1⟩+ 8 · β1,

NA1

Σ1,4−2E,k(P2) = 18h+ 20 · ⟨1⟩+ 6 · β1 + 6 · β2 + β1β2,

NA1

Σ1,4−2E,k(P3) = 18h+ 12 · ⟨1⟩+ 4 ·
3∑

i=1

βi +
∑

1≤i<j≤3

βiβj ,

NA1

Σ1,4−2E,k(P4) = 18h+ 8 · ⟨1⟩+ 2 ·
4∑

i=1

βi +
∑

1≤i<j≤4

βiβj ,

The final step is to compute the motivic invariants of P2, using Theorem 1.2
for an initial step and iterating the formula of Theorem 1.4

NA1

P2,4,k(Ps+1) = NA1

P2,4,k(Ps) + (βs+1 − 2 · ⟨1⟩) ·NA1

Σ1,4−2E,k(Ps).

Therefore, the motivic invariants equal

NA1

P2,4,k(P0) = 190h+ 240 · ⟨1⟩ ,

NA1

P2,4,k(P1) = 190h+ 144 · ⟨1⟩+ 48 · β1,

NA1

P2,4,k(P2) = 190h+ 80 · ⟨1⟩+ 32 · (β1 + β2) + 8 · β1β2,

NA1

P2,4,k(P3) = 190h+ 40 · ⟨1⟩+ 20 ·
3∑

i=1

βi + 6 ·
∑

1≤i<j≤3

βiβj + β1β2β3,

NA1

P2,4,k(P4) = 190h+ 16 · ⟨1⟩+ 12 ·
4∑

i=1

βi + 4 ·
∑

1≤i<j≤4

βiβj +
∑

1≤i<j<l≤4

βiβjβl,

NA1

P2,4,k(P5) = 190h+ 8 ·
5∑

i=1

βi + 2 ·
∑

1≤i<j≤5

βiβj +
∑

1≤i<j<l≤5

βiβjβl.

Let us remark that the last line of each set of motivic invariants presented
in this section can be seen as a polynomial in GW(k)

[
β̄
]
that specialise to

configurations with any number of k-points by setting any βi as the trace
form Trk×k/k (⟨1⟩) = 2 · ⟨1⟩, or equivalently, choosing di as a square in k∗.
We opted for the current presentation to allow for a parallel with other
refined invariants, like the Block-Göttsche invariants introduced in [1], whose
polynomial properties for invariants counting rational curves are studied
in [2].

Other algebraic examples can be computed using Theorems 1.2 and 1.4.
For example, for plane curves of degree greater than 4 and configurations
with up to 3 conjugated points. However, without a correspondence theorem
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for quadratic field extensions, only the case of plane curves of degree 4 have
a complete presentation deduced from the relation in Theorem 1.4.
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volume 35 of Oberwolfach Seminars. Birkhäuser Verlag, Basel, second edition, 2009.

[6] Andrés Jaramillo Puentes, Hannah Markwig, Sabrina Pauli, and Felix Röhrle. Arith-
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