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Abstract

This paper presents a novel approach to generating stabilizing controllers for a large class of dynamical systems
using diffusion models. The core objective is to develop stabilizing control functions by identifying the closest
asymptotically stable vector field relative to a predetermined manifold and adjusting the control function based on
this finding. To achieve this, we employ a diffusion model trained on pairs consisting of asymptotically stable vector
fields and their corresponding Lyapunov functions. Our numerical results demonstrate that this pre-trained model can
achieve stabilization over previously unseen systems efficiently and rapidly, showcasing the potential of our approach
in fast zero-shot control and generalizability.

1 INTRODUCTION
One of the longstanding challenges in nonlinear systems and control is the construction of Lyapunov functions. While
Lyapunov functions can essentially be characterized by solutions to partial differential equations (PDEs) and neural
network solutions to such PDEs can effectively provide Lyapunov functions [12], solving PDEs for each system can
still be time-consuming. Another challenge in computing neural Lyapunov functions is the inclusion of a satisfiability
modulo theories (SMT) solver for counterexample-guided training. Verifying that a neural network satisfies all the
conditions necessary to be a Lyapunov function is often computationally expensive and significantly increases the
training time of such methods. Additionally, the neural Lyapunov function only aids in the verification of a single
control system, thus failing to take into account possible uncertainties in the model parameters or the ability to gener-
alize into systems with slightly different dynamics. This could pose difficulties when testing the controller in real-life
systems.

Generative models, such as diffusion models [8, 20], map inputs from a noisy space to the data space. In more
recent works, diffusion models have learned to transform noisy inputs or boundary conditions into solutions for PDEs,
including the Poisson equation and the Navier-Stokes equation, without incorporating any information about the PDEs
into their loss function [2, 15]. Furthermore, denoising diffusion restoration models (DDRMs) [10, 14] can restore
clean data in linear inverse problems using a pre-trained diffusion model, eliminating the need for fine-tuning.

In this paper, we investigate the potential of using pre-trained generative diffusion models to generate Lyapunov
functions and stabilizing controllers for nonlinear systems. More specifically, we aim to train a diffusion model, G,
that generates pairs of asymptotically stable vector fields and their corresponding Lyapunov functions. This simplifies
the control problem to finding a controller such that the closed-loop system possesses a Lyapunov-stable vector field,
indicating it falls within the range of G. The Lyapunov function produced by G further assists in verifying stability
for the control problem. This approach offers several advantages over existing learning-based methods for Lyapunov
functions (e.g., [3, 23]): (a) it can significantly reduce the computational effort required to identify a stabilizing
controller, (b) it has the capability to generalize to control problems not encountered in the training data, and (c) it can
offer stability guarantees with the generated Lyapunov functions.

We propose Manifold Guided Lyapunov Control (MGLC), a novel approach to feedback control problems based
on diffusion models. We assume that the stabilized controlled system is drawn from a manifold M that contains
asymptotically stable dynamical systems. We also introduce a manifold W that contains all possible configurations
of the dynamical system with different control functions. This simplifies the control problem to finding points where
M and W intersect. We train a diffusion model with pairs of asymptotically stable vector fields and their Lyapunov
functions to estimate M and incorporate the control design process into the reverse diffusion process. At every time
step, we estimate the projection of our vector field into M by computing Tweedie’s estimate, and we update the
parameters of the controller to minimize a loss function that reduces the distance between our vector field between the
two vector fields.
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Our proposed solution to this problem significantly reduces the computational cost of finding a Lyapunov func-
tion. Rather than training a neural network for a specific system, often facilitated by an SMT solver for generating
counterexamples [1], we use a pre-trained diffusion model to directly output a Lyapunov function that verifies the
convergence of our system. As a result, this approach will be useful for solving a large class of control problems rather
than a single control problem, thus facilitating zero-shot control, where we achieve stabilization of unseen systems.
We introduce theoretical guarantees that our reverse diffusion sampling method will converge to the manifold M , thus
concluding that we have derived a stabilizing controller. We train the generator on a dataset of pairs of asymptoti-
cally stable vector fields and their Lyapunov functions. Finally, we test our method on four control problems whose
dynamics are not in the dataset and are therefore unseen.

Notation

Denote X as the discretization of the domain into a grid and f (X ,u(X)) as the vector field f projected onto the grid
X with controller u(·). We use ψ = (ψ1, ...,ψn) to refer to the learnable parameters for a controller u(ψ)(·), where n
is the number of learnable parameters. Subsequently, ψt are the parameters of the control system at time step t in the
denoising diffusion process. Therefore, xt := f (X ,u(ψt )(X)) denotes the projection of the vector field f (·,u(ψt )(·)) on
the gridpoints X at time step t in the denoising diffusion process, where the parameters of the controller are ψt . Lastly,
x0|t := E[x0|xt ] refers to the estimate of the asymptotically stable vector field x0 conditioned on the vector field at time
step t, xt . This estimate is computed using Tweedie’s formula, which we will formally define in Section 2.2.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Lyapunov Stability
Throughout this work we consider a control system of the following form

ẋ = f (x,u), x(0) = x0, (1)

where x ∈ D is the state space of the system, D ⊂ Rn is an open set containing the origin and u ∈ U ⊂ Rm is the
feedback control input given by u = u(x), where u(·) is a continuous function of the state. Moreover, we assume that
f is a locally Lipschitz continuous vector field, u(·) is locally Lipschitz with u(0) = 0, and f (0,0) = 0.

Definition 1. (Asymptotic Stability) The system (1), under a feedback controller u = u(x), is asymptotically stable at
the origin if for any ε ∈R+, there exists δ (ε) ∈R+ such that if ||x0||< δ , then ||x(t)||< ε for all t ≥ 0. Furthermore,
there exists some ρ > 0 such that ||x0||< ρ implies limt→∞ ||x(t)||= 0.

Definition 2 (Lie Derivatives). Let D ⊂ Rn. The Lie derivative of a continuously differentiable scalar function V :
D → R over a vector field f (·,u(·)) and feedback controller u(·) is defined as

V̇ (x) =
n

∑
i=1

∂V
∂xi

ẋi =
n

∑
i=1

∂V
∂xi

fi(x,u(x)) (2)

Theorem 1. If there exists a continuously differentiable scalar function V (x) satisfying V (0) = 0, V (x) > 0 if x ̸= 0,
and ∇V (x) · f (x,u(x)) < 0, for a given feedback controller u, then the system is asymptotically stable (or Lyapunov-
stable) at the origin, and V is called a Lyapunov function [3].

Consequently, in control problems ẋ = f (x,u), a feedback control function u = k(x) is a stabilizing controller if
ẋ = f (x,k(x)) is an asymptotically stable system. The existence of a Lyapunov function verifies the stability of the
system. However, verifying the Lyapunov conditions is a difficult task that can be handled by SMT solvers as in [3, 23]
to identify regions where the neural network V violates the conditions for it to be a Lyapunov function and a penalty
term for those regions is added to its loss function.

2.2 Diffusion Models
Denoising diffusion models [19, 20] are among the current leading methods for generative modeling [8, 18]. They
have shown great success in applications such as the generation of images, speech, and video, as well as image super-
resolution [18, 21]. Other applications include physics-guided human motion (e.g., PhysDiff [22]), customized ODE
solvers that are more efficient than Runge-Kutta methods [13], molecule generation [9], and more [21]. Furthermore,
they are stable to train and are relatively easy to scale [21].



Diffusion models consist of a forward process where data is iteratively corrupted by adding noise. This is modeled
by the following process:

xt =
√

α tx+
√

1−α tεt , t ∈ [0,T ], (3)

where α t > 0 is a scaling parameter that monotonically decreases with t, εt ∼N (0, I) is Gaussian noise, and x ∼ pdata
is clean data. The goal of a diffusion model is to reverse this process. This is done by introducing a denoising model
εθ (xt , t) trained with the loss function ∥εt − εθ (xt , t)∥2 to estimate the Gaussian noise. This model approximates the
score function ∇xt log pt(xt).

This methodology allows us to generate realistic data. Particularly, denoising diffusion implicit models (DDIM)
[18] perform sampling using a two-step procedure for multiple time steps. The first step involves computing x0|t :=
E[x0|xt ] using Tweedie’s estimate, which we will define below.

Definition 3 (Tweedie’s estimate [6, 5]). The Tweedie’s estimate for E[x0|xt ] governed by the process in equation (3)
is given by the following expression:

x0|t =
xt −

√
1−α tεθ (xt , t)√

α t
. (4)

The DDIM algorithm consists of the estimate of x0|t in equation (4) coupled with the estimate of xt−1 by the
following process:

xt−1 =
√

α t−1x0|t +
√

1−α t−1εθ (xt , t). (5)

This process is repeated for multiple time steps. Note as we denoted previously, xt denotes the discretization of the
right-hand side of (1) on grid points X at time t in the denoising diffusion process. Therefore, (5) says we are updating
discretized values of the right hand corresponding to updated parameters of the controller.

2.3 Diffusion on Manifolds
Diffusion models for inverse problems have gained interest with the advent of denoising diffusion restoration models
(DDRM) [10], originally used to deblur images by assuming that the original clean image was drawn from a pre-
trained unconditional diffusion model. This field, otherwise known as guided diffusion, has been improved upon with
diffusion posterior sampling [4], partially collapsed Gibbs sampler [14], and manifold constraints [4].

The problem of guided diffusion involves sampling from a conditional score function ∇xt log p(xt |y) conditioned
on a variable y instead of sampling from the data distribution ∇xt log p(xt) as done in the pre-trained diffusion model.
In many applications, this conditioning y can be a text input [16], an image input, or an image that we intend to
restore [14]. This conditional score function can be separated into two terms using Bayes’ theorem: ∇xt log p(xt |y) =
∇xt log p(xt)+∇xt Lt(xt ;y). Sampling from ∇xt log p(xt) is done by our diffusion model, but the sampling procedure
∇xt Lt(xt ;y) must be carefully chosen.

The authors of [4] assume that the data distribution has support in a low-dimensional manifold, known as the
manifold hypothesis. They exploit this property to enable conditional sampling on an unconditionally trained diffusion
model, thus achieving state-of-the-art performance in inpainting, colorization, and reconstruction tasks in images.

The work of [7] builds upon this literature by using tangent spaces on the data manifold M to return improved
estimates of the original clean data. This method shows state-of-the-art results in image quality and image restoration
speed.

2.4 Problem Formulation
In this paper, we will consider nonlinear control systems of the following form

ẋ = f (x,u), x(0) = x0, (6)

where x ∈ D is the state of the system and u(·) is the feedback control input. Our goal is to derive a controller u(·)
such that the trajectory of the system converges to the origin for all x0 ∈ D.

3 MANIFOLD-GUIDED LYAPUNOV CONTROL (MGLC)
Define the manifold M of asymptotically stable control vector fields as

M = { f (X ,u(X)) : u is a stabilizing state feedback controller}. (7)
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(a) DDIM (Unconditional) (b) MPGD (c) MGLC (ours)

Figure 1: A schematic view of MGLC. Our proposed method introduces a new manifold W corresponding to the set
of vector fields that can be returned by modifying our control input function.

We build upon past works in diffusion on manifolds by constructing a manifold W = { f (X ,u(ψ)(X)) : ψ ∈ Ψ} which
is the set of vector fields with our parameterized control input function u(ψ)(·). Therefore, we want to learn a controller
u(ψ) such that f (X ,u(ψ)(X)) ∈ M ∩W . A schematic view is posted in Figure 1, comparing DDIM [18], MPGD [7],
and our proposed method (MGLC).

3.1 Proposed Method
We introduce a manifold hypothesis for our problem that assumes our dataset of interest, that is discretized values
of the set of asymptotically stable vector fields, lies on a manifold that is low-dimensional compared to the set of all
functions defined in a domain containing X projected onto X .

Assumption 1 (Manifold Hypothesis). The support X of the set of asymptotically stable vector fields projected onto
a grid X lies on a k-dimensional manifold M ⊂ Rd with k << d.

Compared to [7], we introduce a new manifold W , which constrains the vector fields our model can output to the
set of vector fields with all possible configurations of parameters for our control function.

Assumption 2. The manifold W = { f (X ,u(ψ)(X)) : ψ ∈ Ψ} contains the vector field f with all possible control
parameter configurations. We assume W ∩Mt ̸= /0 for all t = 0, ...,T , in other words, W intersects every manifold
Mt .

We also assume that the manifolds Mt and Mt−1 are ”close enough” so that a path along the tangent of W from
Mt ∩W intersects Mt−1 close to a point in Mt−1 ∩W .

Assumption 3. For any time step t = 1, ...,T , the manifolds Mt and Mt−1 are ”close enough” with respect to the
manifold W such that a first-order path along W is a good approximation. Rigorously, for every point xt ∈ Mt ∩W ,
there exists a smooth path γ : [0,1]→ W such that γ(0) = xt and γ(1) = y, where y is a point in Mt−1 satisfying two
properties:

1. The path γ is entirely contained in the tangent space Txt W . This means y is contained in Txt W ∩Mt−1.

2. The Euclidean distance d(y,Mt−1 ∩W ) is less than ε for an arbitrarily small ε > 0.

We then define a notion of probabilistic concentration of noisy data on a manifold to aid in our convergence results
in this paper. This was introduced in the work of [5] and then improvised in the paper by [7] to fit with the discrete-time
setting of diffusion models.



Proposition 1 (Probabilistic Concentration [5, 7]). The distribution of noisy data pi(xi) =
∫

p(xi|x)p0(x)dx with
p(xi|x) ∼ N (

√
α tx,(1−α t)I) is concentrated on the (d − 1)-dimensional manifold Mt := {y ∈ Rn : d(y,

√
α tM) =√

(1−α t)(d − k). Rigorously, for all ε > 0, there exists a δ > 0 such that pt(Bε
√

(1−αt )(d−k)(Mt))> 1−δ .

We compute the estimate of x0 conditioned on xt , x0|t := E[x0|xt ] by computing the Tweedie’s estimate

x0|t =
1√
α t

(xt −
√

1−α tεθ (xt , t)) (8)

We then update the parameters ψ using the following gradient update

ψt−1 = ψt − ct∇ψ Lt(xt ;ψ), (9)

with some loss function Lt(xt ;ψ). Note that Tweedie’s estimate is used in the computation of the loss function as
described in Algorithm 1. Finally after updating the parameters ψ , we can estimate xt−1:

xt−1 = f (X ,uψt−1(X)). (10)

3.2 Convergence Proofs
We introduce the following theorems that highlight our main theoretical contribution in this paper. They compute
the loss function Lt(xt ;ψt) and step size ct and provides convergence guarantees in the sense that the vector field
f (X ,uψ0(X)) returned by our proposed methodology has marginal distribution concentrated about W ∩M and there-
fore uψ0(X) is a stabilizing controller for the system. We first introduce a lemma that explains the choice of Lt(xt ;ψ)
and ct .

Proposition 2. Fix t and assume f (X ,uψt (X)) ∈ Mt . Then with loss function

Lt(xt ;ψ) =

∥∥∥∥∥∥∥ f (X ,u(ψt )(X))−

√
α t−1 −

√
1−αt−1

√
αt√

1−αt

1−
√

1−αt−1√
1−αt

x0|t

∥∥∥∥∥∥∥
2

=: ∥rt∥2 , (11)

where we assume that rt lies on the tangent space of W at the point f (X ,uψt (X)), and step size

ct = (1−
√

1−α t−1√
1−α t

) (12)

we have that there exists xt−1 probabilistically concentrated in Mt−1 such that

xt−1 = f (X ,uψt (X))− ctrt . (13)

Proof. By the assumption that xt := f (X ,u(ψt )(X)) ∈ Mt , this vector field lies on the manifold of the diffusion model
at time t and therefore by Proposition 1, there exists a scaling constant α t and an asymptotically stable vector field
x ∈ M such that xt =

√
α tx+

√
1−α tε . As the diffusion model is given by the DDIM algorithm as stated in (4) and

(5), this states that there exists an asymptotically stable vector field xt−1 ∈ Mt−1, concentrated on Mt−1 with high
probability, such that

xt−1 =
√

α t−1x0|t +
√

1−α t−1
xt −

√
α tx0|t√

1−α t
. (14)

Substituting xt = f (X ,u(ψt )(X)) and xt−1 = f (X ,u(X)) gives

f (X ,u(X)) =

√
1−α t−1√
1−α t

f (X ,u(ψt )(X))

+

(√
α t−1 −

√
1−α t−1

√
α t√

1−α t

)
x0|t (15)

By a first-order approximation,

f (X ,u(X)) = f (X ,u(ψt )(X))−∇ψ f (X ,u(ψt )(X))h (16)



for some vector h ∈ Rn. Set

−h =[∇ψ f (X ,u(ψt )(X))∇ψ f (X ,u(ψt )(X))T ]−1 (17)

∇ψ f (X ,u(ψt )(X))T (18)[
(1−

√
1−α t−1√
1−α t

) f (X ,u(ψt )(X))

+

(√
α t−1 −

√
1−α t−1

√
α t√

1−α t

)
x0|t

]
. (19)

Since f (X ,u(ψt )(X))[∇ψ f (X ,u(ψt )(X))∇ψ f (X ,u(ψt )(X))T ]−1 is the matrix representation of the projection onto the
column space of f (X ,u(ψt )(X)) this is the projection onto the tangent space of W at the point f (X ,uψt (X)). Therefore,
as rt is assumed to lie on the tangent space, the projection matrix

P =∇ψ f (X ,u(ψt )(X))

[∇ψ f (X ,u(ψt )(X))∇ψ f (X ,u(ψt )(X))T ]−1

∇ψ f (X ,u(ψt )(X))T (20)

acts as the identity matrix on rt . It follows that

∇ψ f (X ,u(ψt )(X))h = (1−
√

1−α t−1√
1−α t

)rt (21)

and (15) is satisfied for this choice. Therefore, substituting and simplifying gives

f (X ,u(X)) = f (X ,u(ψt )(X))− ctrt (22)

Remark 1. Note that since rt lies on the tangent plane we see that xt−1 lies in Txt W ∩Mt−1. Therefore, by Assumption
3 there exists parameters ψt−1 such that f (x,uψt−1(X)) lies in an ε neighborhood of f (X ,u(X)) obtained from Propo-
sition 2. Intuitively, this shows that updating parameters in (9) computes the difference in parameters corresponding
to a linear shift from Mt ∩W to Mt−1.

Theorem 2. Let M be the set of asymptotically stable vector fields projected onto a grid. Let ct be defined as in
equation (12). Assume the diffusion model εθ is optimal. With the update rule (8)–(10) with Lt(xt ;ψt) defined as in
equation (11), we can obtain an xt−1 ∼ N(xt−1; f (X ,uψt−1(X)),σ2

t I) whose marginal distribution

p(xt−1) =
∫

N (xt−1; f (X ,uψt−1(X)),σ2
t I)p(xt |x)p(x)dxdxt (23)

is probabilistically concentrated on Mt−1 ∩W

Proof. We first acknowledge that there is a one-to-one correspondence between xt and ψt for all t = 0, ...,T , thus
showing that p(xt) = p(ψt). We also acknowledge that xt ∈W for all t since the update rule xt = f (X ,u(ψt )(X)) forces
this property on xt .

We then prove that for all t, there exists an x ∈ M ∩W such that the xt generated from equations (8)–(10) can
also be generated by the forward process of the diffusion model constrained to the W manifold. In other words,
ψt =

√
α tψ +

√
1−α tε for some ψ ∈ W ,ε ∈ N (0, I), where x = f (X ,u(ψ)(X)). We prove this using induction.

For the base case, let t = T . Since the parameters ψT are drawn from a Gaussian prior, ψT =
√

αT ψ+
√

1−αT ε =
ε for any ψ ∈ M since αT = 0.

The proof for t ≤ T , has been done in Proposition 2 and Remark 1. We are guaranteed the existence of parameters
φt for any t ≤ T such that f (X ,uφt (X)) lies in an ε neighborhood of some xt ∈ Mt .This completes the proof by
induction.

Proposition 2 and Theorem 2 allow us to propose a methodology for updating the parameters ψ to design a
stabilizing controller.



3.3 Algorithm
We provided our proposed algorithm in Algorithm 1 below. This algorithm returns the stable vector field x0 and the
stabilizing controller ψ0. This algorithm will be tested in four baselines to derive stabilizing controllers.

Algorithm 1 Manifold Guided Lyapunov Control (MGLC)
Require: f (·,u(·)), Pretrained diffusion model εθ (·, ·)

1: Initialize ψT ∼ N (0, I)
2: for t=T,...,1 do
3: Set xt = f (X ,u(ψt ))
4: Estimate x0|t using (4)
5: Compute Lt(xt ;ψt) and ct using (11) and (12) respectively
6: Update ψt−1 = ψt − ct∇ψt Lt(xt ;ψt)
7: end for
8: return x0 = f (X ,u(ψ0)) and ψ0

4 IMPLEMENTATION
In this section, we explain the dataset and the unconditional diffusion model we trained for this paper. To ensure the re-
producibility of our results, we provided our source code in the following GitHub repository: https://github.com/amartyamukherjee/minimal-
diffusion

An overview of our model is posted in Figure 2. We train the diffusion model to output images with three channels.
The first two channels correspond to f1(X) and f2(X), the two scalar elements of an asymptotically stable vector field.
The third channel corresponds to V (X), the Lyapunov function that verifies their stability.

4.1 Dataset Generation
For our diffusion model, we made a dataset of 2,000 pairs of ( f ,V ) in 2D space. The first 1,000 pairs we made have
the following format:

f (x) = Ax+β
T
f tanh(Wf x) (24)

V (x) = βV · tanh(WV x+bV ), (25)

where A is a 2×2 Hurwitz matrix. Each entry of β f ∈R2×20 is sampled from N (0,0.22), and each entry of Wf ∈R20×2

is sampled from N (0,1). V (x) is a neural Lyapunov function trained identically to the method in [23] to minimize
the loss (V̇ +∥x∥2).

For the next 1,000 pairs, we focus on second-order systems. We use the fact stated below.

Fact 1 (Example 4.8 of [11]). Consider the system

ẋ1 = x2 (26)
ẋ2 =−h1(x1)−h2(x2), (27)

where h1(·) and h2(·) are locally Lipschitz and satisfy hi(0) = 0,yhi(y)> 0,∀y ∈ (−a,a)\{0}. This system is asymp-
totically stable with the following Lyapunov function candidate

V (x1,x2) =
∫ x1

0
h1(y)dy+

1
2

x2
2, (28)

satisfying
V̇ =−x2h2(x2). (29)

Using this fact, we can design the following system:

ẋ1 = x2 (30)
ẋ2 =−c1x1 − c2 tanhx1 − c3x2 − c4 tanhx2 (31)

V (x1,x2) =
c1

2
x2

1 + c2 log(coshx1)+
1
2

x2
2, (32)

where ci is drawn from the uniform distribution U(0,5). This ensures that V̇ =−x2(c3x2 + c4 tanhx2)≤−c3x2
2.

https://github.com/amartyamukherjee/minimal-diffusion
https://github.com/amartyamukherjee/minimal-diffusion


p(x0|xT)

q(xT|x0)

V(x,y)

f2(x,y)

f1(x,y)

N(0,s^2)

Figure 2: An overview of our model in the 2D control setting. We train the generator to output images with three
channels. The first two channels are the scalar elements of an asymptotically stable vector field, f1(x,y) and f2(x,y).
The third channel is a Lyapunov function V (x,y) that verifies the stability of the vector field.

4.2 Diffusion model
We trained a diffusion model by modifying the GitHub repository by [17] that is based on DDIM. This model involves
a forward (or ”diffusion process”) that is a Markov chain, which gradually adds Gaussian noise to the data given by a
cosine scheduler. Upon training our diffusion model, we needed to normalize our vector fields and Lyapunov function
so that each pixel has values in [−1,1]. This means that our model is trained with Lyapunov functions that satisfy
V̇ = c∥x∥2 for the first 1,000 data points and V̇ < cx2

2 for the second 1,000 data points, where c is a strictly positive
constant.

We trained our diffusion model in parallel using two NVIDIA 3090Ti GPUs for our dataset of 2,000 samples and
the training time was approximately 8 hours.

4.3 Controller
The format of the controller is

u(ψ)(x) =C
n

∑
i=1

tanh(ψixi), (33)

where ψi, i = 1, ...,n are trainable parameters. At every step of the reverse diffusion process, we update the parameters
ψ using the loss function defined in equation (11) and the step size in equation (12).

5 NUMERICAL RESULTS
We finally used this pre-trained model to derive stabilizing controllers for four unseen nonlinear systems. We notice
that the derivation of a controller took only 16 seconds.

5.1 Inverted Pendulum
The inverted pendulum is governed by the following dynamics:

θ̈ =
mgl sinθ +u−0.1θ̇

ml2 , (34)

where our constants are g = 9.81,m = 0.15, l = 0.5. Using our MGLC algorithm, our control function is

u(x1,x2) = 20tanh(−4.16928θ)+20tanh(−3.14848θ̇). (35)

To verify the stability of this system, we solved it numerically with 100 different initial conditions using RK45 and
plotted the trajectories in Figure 4. The plot shows that all the trajectories converged to the origin, thus showing that
our control function is stabilizing.



Figure 3: Visualization of MGLC for the inverted pendulum environment

Figure 4: Trajectories of the controlled inverted pendulum system with 100 different randomly sampled initial condi-
tions

We have also posted a visualization of the convergence of our system for 5 time steps in Figure 3. Since f1,t(x)= x2,
we decided to omit that channel in this visualization. We have also plotted our estimate of the second channel of x0|t ,
which we will call f2,0|t . That channel shows a convergence of our system to a stable but noisy vector field, which is
used in our loss function for updating ψ . We have also shown the evolution of our candidate Lyapunov function in the
third channel.



5.2 Damped Duffing Oscillator
The damped Duffing oscillator is governed by the following dynamics:

ẋ1 = x2 (36)

ẋ2 =−0.5x2 − x1(4x2
1 −1)+0.5u. (37)

The uncontrolled system (u = 0) has two stable equilibrium points, (−0.5,0) and (0.5,0), and an unstable equilibrium
point in the origin (0,0). Using our MGLC algorithm, our control function is

u(x1,x2) = 20tanh(−3.89859x1)+20tanh(−4.46941x2). (38)

The numerical solutions of our system, plotted in Figure 5, show that our control function is stabilizing.

Figure 5: Trajectories of the controlled damped Duffing oscillator system with 100 different randomly sampled initial
conditions

5.3 Van Der Pol Oscillator
The controlled Van Der Pol oscillator system is governed by the following dynamics:

ẋ1 = 2x2 (39)

ẋ2 =−0.8x1 +2x2 −10x2
1x2 +u. (40)

The uncontrolled system (u = 0) shows a limit cycle in a neighborhood near the origin, and an unstable equilibrium
point in the origin (0,0). Using our MGLC algorithm, our control function is

u(x1,x2) = 20tanh(−5.05384x1)+20tanh(−3.25052x2). (41)

The numerical solutions of our system, plotted in Figure 6, show that our control function is stabilizing.



Figure 6: Trajectories of the controlled Van Der Pol oscillator system with 100 different randomly sampled initial
conditions

5.4 Noisy Inverted Pendulum
In this experiment, we consider the pendulum system in equation (34) with uncertainties in the parameters m, l and the
control u. At each time step, we replace m, l in the system with m+z1, l+z2, and the control is given by (1+z3)u(ψ)(x),
where zi are sampled from the uniform distribution U(−0.05,0.05) for i = 1,2,3.

u(x1,x2) = 20tanh(−4.01703x1)+20tanh(−3.63485x2). (42)

To verify the stability of this system, we solved it numerically with 100 different initial conditions using the Euler-
Maruyama scheme and plotted the trajectories in Figure 7. The plot shows that all the trajectories converged to the
origin, thus showing that our control function is stabilizing.



Figure 7: Trajectories of the controlled inverted pendulum system designed with uncertainties in parameters and
control inputs on 100 different randomly sampled initial conditions

6 CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions
This paper introduces a new approach to the control of nonlinear systems by identifying the closest asymptotically
stable vector field relative to a predetermined manifold. We employ diffusion models to aid us in estimating this stable
vector field using Tweedie’s estimate. We finally use this estimate to update the parameters of our control function.
This method helps us achieve fast zero-shot control for control problems that are unseen by the diffusion model.
This work, as a result, presents a novel application of diffusion models for transfer learning in control problems.
Furthermore, the design of a stabilizing control only needs evaluations of the vector field f (x,u) at grid points X , thus
showing that this can easily be implemented as a data-driven approach.

6.2 Future Works
One key area of further exploration is the extension of this work to systems of high dimensions. Since the diffusion
model outputs images in a pixel format, we were able to only work with 2D systems. The extension to high dimensions
may be possible using models such as latent diffusion [16]. The work of [7] has provided improved convergence
guarantees using perfect encoders as done in latent diffusion. We expect that, equivalently, improved convergence
guarantees can be expected using perfect encoders of high-dimensional systems.
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