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RESIDUAL FINITENESS OF FUNDAMENTAL n-QUANDLES OF LINKS

NEERAJ KUMAR DHANWANI, DEEPANSHI SARAF, AND MAHENDER SINGH

Abstract. In this paper, we investigate residual finiteness and subquandle separability
of quandles. The existence of these finiteness properties implies the solvability of the word
problem and the generalised word problem for quandles. We prove that the fundamental
n-quandle of any link in the 3-sphere is residually finite for each n ≥ 2. This supplements
the recent result on residual finiteness of link quandles and the classification of links whose
fundamental n-quandles are finite for some n. We also establish several general results on
these finiteness properties and give many families of quandles admitting them.

1. Introduction

Let S be a subset of a group G. Then S is said to be separable in G if given any element
x ∈ G \ S, there exists a finite group F and a group homomorphism φ : G → F such that
φ(x) 6∈ φ(S). The group G is residually finite if the trivial subgroup is separable in G, and
it is subgroup separable if every finitely generated subgroup is separable in G.

Subgroup separability has applications in combinatorial group theory and low dimen-
sional topology. If a finitely presented group G is residually finite, then it has the solvable
word problem. More generally, if G is a finitely presented subgroup separable group, then
the generalised word problem is solvable in G. In the context of 3-manifold topology, sub-
group separability has been used to solve immersion to embedding problems. For instance,
it is known due to Thurston that subgroup separability allows passage from immersed
incompressible surfaces to embedded incompressible surfaces in finite covers.

The aim of this paper is to investigate these properties in the category of quandles with
a focus on fundamental quandles of links in S3. Quandles are right distributive algebraic
structures that appear naturally as strong invariants of links and as non-degenerate set-
theoretical solutions to the Yang-Baxter equation. More formally, a quandle is a set with
a binary operation that satisfies three axioms modelled on the three Reidemeister moves of
planar diagrams of links in S3. Joyce [13] and Matveev [16] independently proved that each
oriented diagram D(L) of a link L gives rise to a quandle Q(L), called the fundamental
quandle, which is independent of the diagram D(L). Further, they showed that if K1 and
K2 are oriented knots with Q(K1) ∼= Q(K2), then there is a homeomorphism of S3 mapping
K1 onto K2, not necessarily preserving the orientation of the ambient space. Although, the
fundamental quandle is a strong invariant for knots, it is usually difficult to check whether
two quandles are isomorphic. This has motivated the search for newer properties of these
structures. Since fundamental quandles of links in S3 are always infinite, except for the
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case when it is the unknot or the Hopf link, it is reasonable to look for residual finiteness
of these quandles. In this direction, it has been proved in [6, 7] that, along with many
classes of quandles arising from groups, the fundamental quandles of oriented links in S

3

are residually finite. Since link quandles are finitely presented, it follows that they have the
solvable word problem.

In this paper, we carry out this study further in two directions. Firstly, we consider the
residual finiteness of some canonical quotients of fundamental quandles of oriented links in
S3, called fundamental n-quandles, where n ≥ 2. Using Thurston’s geometrisation theorem,
Hoste-Shanahan [12] derived the complete list of links which have a finite fundamental
n-quandle for some n ≥ 2. It turns out that most of the links have infinite fundamental
n-quandles for almost all values of n. Thus, it is reasonable to ask whether these n-quandles
are residually finite. Employing consequences of Thurston’s geometrisation theorem and

related results, we first prove that if L is an oriented link and M̃n(L) is the n-fold cyclic

branched cover of S3, then π1(M̃n(L)) is abelian subgroup separable (Theorem 3.9). Using

this result and a description of π1(M̃n(L)) as a subgroup of a canonical quotient of the link
group π1(S

3 \L), we prove that the fundamental n-quandle of any oriented link is residually
finite for each n ≥ 2 (Theorem 3.12).

Secondly, we develop a general theory of subquandle separability of quandles, which im-
plies the solvability of the generalised word problem for these algebraic structures. Among
other results, we prove that certain subquandles of quandles arising from subgroup sepa-
rable groups are separable (Proposition 5.3). We also establish subquandle separability of
certain twisted unions of subquandle separable quandles (Proposition 5.6), abelian quan-
dles generated by two elements (Theorem 5.8), and finitely generated free abelian quandles
(Theorem 5.9).

2. Preliminaries

This section reviews the essential preliminary material that will be employed throughout
the paper. To set our convention, recall that, a quandle is a set X with a binary operation
∗ that satisfies the following axioms:

(1) x ∗ x = x for all x ∈ X .
(2) Given x, y ∈ X , there exists a unique z ∈ X such that x = z ∗ y.
(3) (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ X.

Analogous to groups, quandles can be represented by their presentations.

Example 2.1. Let L be an oriented link in S3. Then the fundamental quandle Q(L) of L
can be constructed from a regular diagram D(L) of L. Suppose that D(L) has s arcs and
t crossings. We assign labels x1, x2, . . . , xs to arcs of D(L), and then introduce the relation
rl given by xk ∗ xj = xi at the l-th crossing of D(L) as shown in Figure 1. It is known due
to [13, 16] that

Q(L) ∼= 〈x1, x2, . . . , xs | r1, r2, . . . , rt〉,

and it is an invariant of the isotopy type of the link L.
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xk

xj

xi

Figure 1. Quandle relation at a crossing.

Example 2.2. Though links in the 3-sphere are rich sources of quandles, many interesting
examples arise particularly from groups, some of them will be used in later sections.

• If G is a group, then the set G equipped with the binary operation x ∗ y = y−1xy
gives a quandle structure on G, called the conjugation quandle, and denoted by
Conj(G).

• Let H be a subgroup of a group G and α ∈ Aut(G) that acts trivially on H . Then,
the set G/H of right cosets becomes a quandle with the binary operation

Hx ∗Hy = Hα(xy−1)y.

In particular, if α is the inner automorphism of G induced by an element x0 in the
centraliser of H in G, then the quandle operation on G/H becomes

Hx ∗Hy = Hx−1
0 xy−1x0y,

and we denote this quandle by (G/H, x0).
• The preceding example can be extended as follows. Let G be a group, {xi | i ∈ I}
be a set of elements of G, and {Hi | i ∈ I} a set of subgroups of G such that
Hi ≤ CG(xi) for each i. Then, we can define a quandle structure on the disjoint
union ⊔i∈IG/Hi by

Hix ∗Hjy = Hix
−1
i xy−1xjy,

and denote this quandle by ⊔i∈I(G/Hi, xi).

If X is a quandle and x ∈ X , then the map Sx : X → X given by Sx(y) = y ∗ x is
an automorphism of X fixing x. The group Inn(X) generated by such automorphisms is
called the inner automorphism group of X . The quandle X is called connected if Inn(X)
acts transitively on X .

Using the defining axioms [22, Lemma 4.4.7], any element of a quandle X can be written
in a left-associated product of the form

((· · · ((x0 ∗
ǫ1 x1) ∗

ǫ2 x2) ∗
ǫ3 · · ·) ∗ǫn−1 xn−1) ∗

ǫn xn,

where xi ∈ X and ǫi ∈ {1,−1}. For simplicity, we write the preceding expression as

x0 ∗
ǫ1 x1 ∗

ǫ2 · · · ∗ǫn xn.
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A quandle X is called an n-quandle if each Sx has order dividing n. In other words, if X
is an n-quandle, then

x ∗n y := x ∗ y ∗ y ∗ · · · ∗ y︸ ︷︷ ︸
n times

= x

for all x, y ∈ X .

2.1. Enveloping group. To each quandle X , we associate its enveloping group Env(X),
which is given by the presentation

Env(X) = 〈ex, x ∈ X | ex∗y = e−1
y exey for all x, y ∈ X〉.(2.1.1)

The association X 7→ Env(X) defines a functor from the category of quandles to that
of groups, which is left adjoint to the functor G 7→ Conj(G) from the category of groups
to that of quandles. Analogously, there is a functor from the category of groups to the
category of n-quandles for each n ≥ 2. To be precise, given a group G, we consider the set

Qn(G) = {x ∈ G | xn = 1}

equipped with the binary operation of conjugation, which is clearly an n-quandle. In the
reverse direction, given an n-quandle X , we define its n-enveloping group to be

Envn(X) = 〈ex, x ∈ X | enx = 1, ex∗y = e−1
y exey for all x, y ∈ X〉.

It follows from [22, Theorem 5.1.7] that if a quandle X has the presentation

X = 〈x1, x2, . . . , xs | r1, r2, . . . , rt〉 ,

then Env(X) has the presentation

Env(X) = 〈ex1, ex2 , . . . , exs | r̄1, r̄2, . . . , r̄t〉 ,

where each relation r̄i is obtained from the relation ri by replacing each expression x ∗ y
by e−1

y exey and x ∗−1 y by eyexe
−1
y . Furthermore, if X is an n-quandle, then it follows that

Envn(X) has the presentation

Envn(X) =
〈
ex1 , ex2, . . . , exs | e

n
x1

= 1, enx2 = 1, . . . , enxs = 1, r1, r2, . . . , rt
〉
,

where each relation ri is obtained from the relation ri by replacing each expression x ∗ y by
e−1
y exey and x ∗−1 y by eyexe

−1
y .

Given a quandle X and an integer n ≥ 2, the n-quandle Xn ofX is defined as the quotient
of X by the relations

x ∗n y := x ∗ y ∗ y ∗ · · · ∗ y︸ ︷︷ ︸
n times

= x

for all x, y ∈ X . It follows that

Envn(X) ∼= Envn(Xn)

for each n ≥ 2.
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2.2. Homogeneous representation of n-quandles. Given a quandle X , there is a right
action of Env(X) on X , which on generators of Env(X) is given by

x · ey = x ∗ y

for x, y ∈ X . Recall that

Envn(X) ∼= Env(X)/〈〈eny , y ∈ X〉〉.

Let g = eǫ1y1e
ǫ2
y2
· · · eǫryr be an element of Env(X), where yi ∈ X and ǫi ∈ {1,−1}. If X is an

n-quandle, then for each x ∈ X , we have

x · (genyg
−1) = x ∗ǫ1 y1 ∗

ǫ2 y2 ∗ · · · ∗
ǫr yr ∗ y ∗ y ∗ · · · ∗ y︸ ︷︷ ︸

n−times

∗−ǫryr ∗ · · · ∗
−ǫ2 y2 ∗

−ǫ1 y1

= x ∗ǫ1 y1 ∗
ǫ2 y2 ∗ · · · ∗

ǫr yr ∗
−ǫr yr ∗ · · · ∗

−ǫ2 y2 ∗
−ǫ1 y1

= x,

and hence the action descends to an action of Envn(X) on X . The following result can be
proved easily, and we present a proof for the benefit of the reader.

Proposition 2.3. Let X be an n-quandle and {xi | i ∈ I} a set of representatives of orbits
of X under the action of Env(X). Let Hi be the stabiliser of xi in Envn(X) under the above
action. Then Hi lies in the centraliser of exi in Envn(X) and the orbit map induces an
isomorphism ⊔i∈I(Envn(X)/Hi, exi)

∼= X of quandles.

Proof. Let h ∈ Hi such that h = eǫ1x1e
ǫ2
x2
· · · eǫrxr for some xj ∈ X and ǫj ∈ {1,−1}. Then, we

see that

h−1exih = e−ǫrxr
e−ǫr−1

xr−1
· · · e−ǫ1x1

exie
ǫ1
x1
eǫ2x2 · · · e

ǫr
xr

= exi∗ǫ1x1∗ǫ2x2∗···∗ǫrxr

= exi·h

= exi ,

and hence Hi lies in the centraliser of exi in Envn(X). Thus, we obtain the quandle
⊔i∈I(Envn(X)/Hi, exi). Since Env(X) acts transitively on connected components of X , the
induced action of Envn(X) is also transitive on connected components of X . Further, since
Hi is the stabiliser of xi in Envn(X), we have a bijection

φ : ⊔i∈I(Envn(X)/Hi, exi) → X

induced by the orbit map Hig 7→ xi · g. It remains to check that φ is a quandle homomor-
phism. Indeed, for u, v ∈ Envn(X), we have

φ(Hiu ∗Hjv) = φ(Hie
−1
xi
uv−1exjv)

= xi · (e
−1
xi
uv−1exjv)

= xi · (uv
−1exjv), since xi · e

−1
xi

= xi ∗
−1 xi = xi

= (((xi · u) · v
−1) ∗ xj) · v

= (xi · u) ∗ (xj · v)

= φ(Hiu) ∗ φ(Hjv),
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which completes the proof. �

As a consequence, we generalise a result of Hoste and Shanahan [12, Theorem 3.2] to
arbitrary n-quandles. See also [4, Proposition 3.1] and [13, Section 3.5] for the one way
implication.

Corollary 2.4. Let X be an n-quandle for some n ≥ 2. Then X is finite if and only if
Envn(X) is finite.

Proof. By [12, Theorem 3.2], if X is finite, then Envn(X) is finite. The converse follows
from Proposition 2.3. �

3. Residual finiteness and fundamental n-quandles of links

3.1. Residual finiteness and subquandle separability of quandles. We begin by
recalling the definition of a subgroup separable group.

Definition 3.1. A subset S of a group G is said to be separable in G if for each x ∈ G \S,
there exists a finite group F and a group homomorphism φ : G→ F such that φ(x) 6∈ φ(S).
If the singleton set S consisting of only the identity element is separable, then G is called
residually finite. If each finitely generated subgroup of G is separable, then G is called
subgroup separable.

Recall that, the profinite topology on a group G has a basis consisting of right cosets of
all finite index subgroups of G. By definition, every right coset of a finite index subgroup is
closed in the profinite topology. An easy check shows that a subgroup H of G is separable
in G if and only if H is closed in the profinite topology on G [15, 21]. We will use this
equivalent definition of subgroup separability to prove the following result.

Proposition 3.2. Let H and K be subgroups of G such that [G : K] is finite. Let L = H∩K
such that [H : L] is finite and L is a separable subgroup of K. Then H is a separable
subgroup of G.

Proof. Since L is a separable subgroup ofK, it is closed in the profinite topology onK. Since
[G : K] is finite, it follows that K is closed in the profinite topology on G. Consequently, L
is closed in the profinite topology on G. Since [H : L] is finite, H is a finite union of right
cosets of L, and hence it is closed in the profinite topology on G. Thus, it follows that H
is a separable subgroup of G. �

As a consequence of Proposition 3.2, we recover the following well-known result.

Corollary 3.3. Let G be a group admitting a residually finite subgroup of finite index.
Then G is residually finite.

In analogy with groups, we introduce the following definition for quandles.

Definition 3.4. A subset S of a quandle X is said to be separable in X if for each x ∈
X \ S, there exists a finite quandle F and a quandle homomorphism φ : X → F such that
φ(x) /∈ φ(S). If each singleton set is separable, then X is called residually finite. If each
finitely generated subquandle of X is separable, then X is called subquandle separable.
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We note that residual finiteness of fundamental quandles of links has been established
recently in [6, 7].

Let G be a group andH a finitely generated subgroup of G. The generalised word problem
is the problem of deciding for an arbitrary element w in G whether or not w lies in H . Let
X be a quandle and Y its finitely generated subquandle. We can define the generalised
word problem for quandles as the problem of deciding for an arbitrary element w in X
whether or not w lies in Y . The following is an analogue of the corresponding result for
groups.

Proposition 3.5. A finitely presented subquandle separable quandle has the solvable gen-
eralised word problem.

Proof. Let X = 〈S | R〉 be a finitely presented subquandle separable quandle and Y be
its finitely generated subquandle. Let x be an element of X . We describe two procedures
to determine whether x is in Y or not. The first procedure lists all the elements obtained
from elements of Y using the relations in R. If, at some stage, x turns up as one of these
elements, then x ∈ Y .

The second procedure lists all the finite quandles. Since X is finitely generated, for each
finite quandle F , the set Hom(X,F ) of all quandle homomorphisms is finite. Now, for each
homomorphism φ ∈ Hom(X,F ), we look for φ(x) and φ(Y ) in F and check whether or not
φ(x) ∈ φ(Y ). If, at some stage, φ(x) /∈ φ(Y ), then x /∈ Y . Since X is a finitely presented
subquandle separable quandle and Y is a finitely generated subquandle of X , one of the
above procedures must stop in finite time. �

The following result from [7, Proposition 3.4] will be used later in proving our main result
on fundamental n-quandles of links.

Proposition 3.6. Let G be a group, {xi | i ∈ I} be a finite set of elements of G, and
{Hi | i ∈ I} a finite set of subgroups of G such that Hi ≤ CG(xi) for each i. If each Hi is
separable in G, then the quandle ⊔i∈I(G/Hi, xi) is residually finite.

3.2. Residual finiteness of fundamental n-quandles of links. Let L be an oriented
link in S3 with components K1, K2, . . . , Km. Then, as in Example 2.2, we can associate
the fundamental quandle Q(L) to the link L, which is constructed from a regular diagram
D(L) of L and admits the presentation

Q(L) = 〈x1, x2, . . . , xs | r1, r2, . . . , rt〉 ,

where each xi is an arc of D(L), and each relation rl is given by xk ∗ xj = xi as per
the corresponding crossing in D(L). The preceding presentation yields the presentation
of Env(Q(L)), which is precisely the Wirtinger presentation of the link group π1(S

3 \ L).
Hence, Env(Q(L)) ∼= π1(S

3 \ L) for any link L.
A less sensitive, but presumably more tractable invariant of a link L is the fundamental n-

quandle Qn(L) defined for each natural number n ≥ 2 as the quandle with the presentation

Qn(L) = 〈x1, x2, . . . , xs | r1, r2, . . . , rt, u1, u2, . . . , uk〉,
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where each relation uℓ is of the form xi∗
nxj = xi for distinct generators xi and xj . It follows

from [8, Proposition 3.1] that the additional relations u1, u2, . . . , uk suffice to make Qn(L)
an n-quandle. If L is a link with more than one component, then both Q(L) and Qn(L)
are disconnected with one component Qi(L) and Qi

n(L), respectively, for each component
Ki of L.

Passing from the presentation of Qn(L) to the presentation for Envn(Qn(L)), we see
that Envn (Qn(L)) is a quotient of Env(Q(L)). In fact, we may present Envn (Qn(L)) by
adjoining the relations xn = 1 for each Wirtinger generator x of the link group π1 (S

3 \ L) ∼=
Env(Q(L)). While the fundamental quandle of a non-trivial knot, except the Hopf link, is
always infinite, its corresponding fundamental n-quandle can be finite. In fact, it is known

due to Hoste and Shanahan [12, Theorem 3.1] that, if M̃n(L) is the n-fold cyclic branched

cover of S3, branched over the link L, then Qn(L) is finite if and only if π1(M̃n(L)) is finite.

Proposition 3.7. If L is an oriented link and n ≥ 2, then Envn (Qn(L)) is a residually
finite group.

Proof. In view of [22, Remark 5.1.5, Theorem 5.2.2], for each n ≥ 2, we have

π1

(
M̃n(L)

)
∼= E0

n,

where E0
n is the subgroup of Envn(Qn(L)) consisting of all elements whose total exponent

sum equals to zero modulo n. Since fundamental groups of 3-manifolds are residually finite

[11], it follows that π1(M̃n(L)), and hence E0
n is residually finite. By [12, Section 3], the

subgroup E0
n is of finite index in Envn (Qn(L)). Hence, by Corollary 3.3, Envn (Qn(L)) is

residually finite. �

Proposition 3.8. If K is an oriented knot and n ≥ 2, then Env (Qn(K)) ∼= π1(M̃n(K))⋊Z.
Moreover, Env (Qn(K)) is residually finite.

Proof. Since K is a knot, the fundamental n-quandle Qn(K) is connected and E0
n =

[Envn(Qn(K)),Envn(Qn(K))]. By [4, Corollary 4.2], we have

Env(Qn(K)) ∼= [Envn(Qn(K)),Envn(Qn(K))]⋊ Z.

Further, by [22, Remark 5.1.5, Theorem 5.2.2], we have

[Envn(Qn(K)),Envn(Qn(K))] ∼= π1(M̃n(K))

and hence Env(Qn(K)) ∼= π1(M̃n(K))⋊Z. For the second assertion, recall from [17, Theo-
rem 7] that semi-direct products of finitely generated residually finite groups are residually

finite. Since both π1(M̃n(K)) and Z are residually finite, it follows that Env (Qn(K)) is
residually finite. �

Theorem 3.9. If L is an oriented link and n ≥ 2, then π1(M̃n(L)) is abelian subgroup
separable.

Proof. By the Prime Decomposition Theorem [18, Theorem 1], every compact connected
orientable 3-manifold without boundary which is not the 3-sphere is homeomorphic to a

connected sum of prime 3-manifolds. Thus, we have M̃n(L) = N1#N2# · · ·#Nq, where
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each Ni is a compact connected orientable prime 3-manifold without boundary. The van-
Kampen Theorem gives

π1(M̃n(L)) ∼= π1(N1) ∗ π1(N2) ∗ · · · ∗ π1(Nq).

Recall that a 3-manifold is irreducible if every embedded 2-sphere bounds a 3-ball. It is
known that, with the exception of 3-manifolds S3 and S1 × S2, an orientable manifold is
prime if and only if it is irreducible [18, Lemma 1]. By [10, Proposition 6], a free product of
abelian subgroup separable groups is abelian subgroup separable. Thus, it suffices to prove
that π1(N) is abelian subgroup separable for each compact connected irreducible orientable
3-manifold N without boundary.

By the Geometrization Theorem [2, Theorem 1.7.6], if N is such a 3-manifold, then there
exists a (possibly empty) collection of disjointly embedded incompressible tori T1, . . . , Tp in
N such that each component of N cut along T1 ∪ · · · ∪ Tp is hyperbolic or Seifert fibered.

• If N is Seifert fibered, then by [20, Corollary 5.1], π1(N) is double coset separable,
and hence it is abelian subgroup separable.

• If N is hyperbolic, then π1(N) is subgroup separable by [2, Corollary 4.2.3], and
hence it is abelian subgroup separable.

• If N admits an incompressible torus, then it is Haken [2, p.45, A.10]. It follows from
[10, Theorem 1] that π1(N) is abelian subgroup separable.

This completes the proof of the theorem. �

Let L be a link with components K1, K2, . . . , Km and n ≥ 2. For each i, let mi and
ℓi be the fixed longitude and the meridian of the component Ki, respectively. By abuse
of notation, we also denote by mi and ℓi their images in the quotient Envn(Qn(L)). In

view of the isomorphism π1

(
M̃n(L)

)
∼= E0

n, we can further view each ℓi as an element of

π1

(
M̃n(L)

)
.

Proposition 3.9 leads to the following result.

Corollary 3.10. Let L be an oriented link with components K1, K2, . . . , Km and n ≥ 2.
Then, the subgroup 〈ℓi〉 generated by the fixed longitude ℓi of Ki is subgroup separable in

π1(M̃n(L)) for each i.

Corollary 3.11. Let L be an oriented link with components K1, K2, . . . , Km and n ≥ 2.
For each i, let mi and ℓi be the fixed meridian and the longitude of Ki, respectively. Then,
Pi = 〈mi, ℓi〉 is a separable subgroup of Envn(Qn(L)) for each i.

Proof. By [12, Section 3], the subgroup π1(M̃n(L)) is of finite index in Envn(Qn(L)). Since

ℓi ∈ π1

(
M̃n(L)

)
∼= E0

n, it follows that Pi ∩ π1(M̃n(L)) = 〈ℓi〉. Also, we have [Pi : ℓi] =

n. Further, by Corollary 3.10, 〈ℓi〉 is a separable subgroup of π1

(
M̃n(L)

)
. Hence, by

Proposition 3.2, Pi is a separable subgroup of Envn(Qn(L)). �

We can now deduce the main result of this section.

Theorem 3.12. If L is an oriented link and n ≥ 2, then the fundamental n-quandle Qn(L)
is residually finite.
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Proof. Let L be an oriented link with components K1, K2, . . . , Km. Let mi and ℓi be
the fixed meridian and the longitude of Ki, respectively. Then, by [12, Theorem 1.1] or
Proposition 2.3, we can write

Qn(L) ∼= ⊔mi=1(Envn(Qn(L))/Pi, mi),

where Pi = 〈mi, ℓi〉. Corollary 3.11 implies that each Pi is a separable subgroup of
Envn(Qn(L)). The result now follows from Proposition 3.6. �

By [6, Theorem 5.11], every finitely presented residually finite quandle has the solvable
word problem. Thus, the preceding theorem leads to the following corollary.

Corollary 3.13. If L is an oriented link and n ≥ 2, then the fundamental n-quandle Qn(L)
has the solvable word problem.

We conclude this section with the following natural problem.

Problem 3.14. Classify links in S3 whose fundamental quandles and fundamental n-
quandles (for n ≥ 2) are subquandle separable. As expected, the problem is intimately
related to subgroup separability of link groups.

4. Residual finiteness of general quandles

In this section, we establish residual finiteness of some classes of quandles.

Definition 4.1. Let S be a non-empty set and n ≥ 2. A quandle FQn(S) containing S is
called a free n-quandle on the set S, if given any map φ : S → X , where X is an n-quandle,
there is a unique quandle homomorphism φ̄ : FQn(S) → X such that φ̄|S= φ.

Proposition 4.2. Let S be a non-empty set and n ≥ 2. Then FQn(S) ∼= FQ(S)n, where
the latter is the n-quandle of the free quandle FQ(S) on S. Further, FQn(S) is residually
finite.

Proof. Let φ : S → X be a map, where X is an n-quandle. Then, by the universal
property of free quandles, we have a unique quandle homomorphism φ̃ : FQ(S) → X such

that φ̃|S= φ. Since X is an n-quandle, the homomorphism φ̃ factors through the n-quandle
FQ(S)n of FQ(S). That is, there exists a unique quandle homomorphism φ̄ : FQ(S)n → X
such that φ̄|S= φ. Thus, by the uniqueness of universal objects, FQ(S)n ∼= FQn(S).

Consider the free product G = ∗SZn of cyclic groups of order n, one for each element of
S. Since free products of residually finite groups are residually finite, G is a residually finite
group, and hence Conj(G) is a residually finite quandle. By [13, Section 2.11, Corollary 2],
FQn(S) is a subquandle of Conj(G), and hence it is also residually finite. �

Let G be a group and α ∈ Aut(G). Then the twisted conjugation quandle Conj(G,α) is
the set G equipped with the quandle operation

x ∗ y = α(y−1x)y.

These structures appeared in Andruskiewitsch-Graña [1, Section 1.3.7] as twisted homoge-
neous crossed sets. We prefer calling them twisted conjugation quandles since Conj(G,α) =
Conj(G) when α is the identity map.
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Proposition 4.3. Let G be a finitely generated residually finite group and α ∈ Aut(G).
Then the twisted conjugation quandle Conj(G,α) is residually finite.

Proof. By [3], there is an embedding of quandles Conj(G,α) →֒ Conj(G ⋊α Z), where the
action of Z on G is defined via the automorphism α. By [17, Theorem 7, p.29], a split
extension of a residually finite group by a finitely generated residually finite group is again
residually finite. Thus, G ⋊α Z is a residually finite group, and hence Conj(G ⋊α Z) is a
residually finite quandle. Since subquandle of a residually finite quandle is residually finite,
Conj(G,α) is residually finite. �

A quandle X is said to be abelian if Inn(X) is an abelian group. Equivalently, X is
abelian if (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X . In [14], a description of all finite
quandles with abelian enveloping groups has been given, and it has been proved that any
such quandle must be abelian.

Proposition 4.4. If X is a finitely generated abelian quandle, then Env(X) is a residually
finite group.

Proof. We have the central extension

1 → ker(ψX) → Env(X)
ψX−→ Inn(X) → 1,

where ψX(ex) = Sx for each x ∈ X . Since X is finitely generated, Env(X) is finitely
generated. Further, since X is abelian, Inn(X) is an abelian group. Thus, Env(X) is
a finitely generated metabelian group. It follows from the well-known result of Hall [9,
Theorem 1] that Env(X) is residually finite. �

Proposition 4.5. A finitely generated abelian quandle is residually finite.

Proof. Let X be a finitely generated abelian quandle. Let {xi | i ∈ I} be a finite set of
representatives of orbits of X under the action of Inn(X), and let Hi be the stabiliser of
xi under this action. Since Hi ≤ CInn(X)(Sxi), arguments in the proof of proposition in [13,
Section 2.4] shows that

X ∼= ⊔i∈I(Inn(X)/Hi, Sxi)

as quandles. Since Inn(X) is abelian, each of its subgroup, in particular, eachHi is separable
in Inn(X). Thus, by Proposition 3.6, X is a residually finite quandle. �

5. Subquandle separability of general quandles

In this section, we explore subquandle separability of some classes of quandles.

Proposition 5.1. A trivial quandle is subquandle separable.

Proof. Let X be a trivial quandle and S a finitely generated subquandle of X . If X has
only one element, then there is nothing to prove. Suppose that X has at least two elements.
Consider x ∈ X \ S and let {a, b} be a trivial quandle. Define φ : X → {a, b} by φ(x) = a
and φ(z) = b for all z 6= x. It is easy to see that φ is a quandle homomorphism with
φ(x) /∈ φ(S), and hence X is subquandle separable. �
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Proposition 5.2. If X is a residually finite quandle, then every finite subquandle of X is
separable.

Proof. Let S = {x1, x2, . . . , xk} be a finite subquandle of X . For each z ∈ X \S, there exists
a finite quandle Yi and a quandle homomorphism φi : X → Yi such that φi(z) 6= φi(xi).

Define Φ : X →
∏k

i=1 Yi by Φ(x) = (φ1(x), φ2(x), . . . , φk(x)). Then, we have Φ(z) /∈ Φ(S),
which is desired. �

If G is a group and α ∈ Aut(G), then the binary operation

x ∗ y = α(xy−1)y

gives a quandle structure on G, denoted by Alex(G,α). These quandles are called general-
ized Alexander quandles. IfG is abelian, then Alex(G,α) is precisely the twisted conjugation
quandle Conj(G,α). The following results generalise [6, Proposition 4.1 and Proposition
4.2].

Proposition 5.3. Let G be a subgroup separable group, H a finitely generated subgroup of
G and α an inner automorphism of G such that α(H) = H. Then the following assertions
hold:

(1) Alex(H,α|H) is a separable subquandle of Alex(G,α).
(2) Conj(H,α|H) is a separable subquandle of Conj(G,α).

Proof. Let α be the inner automorphism induced by g ∈ G, and let x ∈ Alex(G,α) \
Alex(H,α|H). By subgroup separability of G, there exists a finite group F and a group
homomorphism φ : G → F such that φ(x) /∈ φ(H). Let β be the inner automorphism
of F induced by φ(g). It follows that φ viewed as a map Alex(G,α) → Alex(F, β) is a
quandle homomorphism with φ(x) /∈ φ(Alex(H,α|H)). Hence, Alex(H,α|H) is a separable
subquandle of Alex(G,α), which proves (1). The proof of assertion (2) is analogous. �

If G is a group, then the binary operation

x ∗ y = yx−1y

gives the quandle Core(G), called the core quandle of G.

Corollary 5.4. Let G be a subgroup separable group and H ≤ G. Then the following
assertions hold:

(1) If Conj(H) is a finitely generated subquandle of Conj(G), then it is a separable
subquandle of Conj(G).

(2) If Core(H) is a finitely generated subquandle of Core(G), then it is a separable
subquandle of Core(G).

Proof. Since Conj(H) is finitely generated as a subquandle, it follows that H is finitely
generated as a subgroup of G. The first assertion follows by taking α to be the identity
map in Proposition 5.3(2). For the second assertion, since Core(H) is a finitely generated
subquandle, it follows that H is a finitely generated subgroup of G. Now, for any x ∈ G\H ,
there is a finite group F and a group homomorphism φ : G → F such that φ(x) 6∈ φ(H).
Viewing φ : Core(G) → Core(F ) shows that φ(x) 6∈ φ(Core(H)), which is desired. �
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Proposition 5.5. Let X be a quandle. Then the following assertions hold:

(1) If {Xi | i ∈ I} is a family of separable subquandles of X, then ∩i∈IXi is a separable
subquandle of X.

(2) If {αi | i ∈ I} is a family of automorphisms of X, then ∩i∈IFix(αi) is a separable
subquandle of X. Here, Fix(αi) = {x ∈ X | αi(x) = x} for each i.

Proof. If x ∈ X \ ∩i∈IXi, then there exists j such that x ∈ X \Xj. Since Xj is separable
in X , we have a surjective quandle homomorphism φ : X → Y , where Y is finite, such that
φ(x) /∈ φ(Xj). Thus, φ(x) /∈ φ(∩i∈IXi), which is desired.

By [6, Proposition 6.4], each Fix(αi) is a separable subquandle of X . It now follows from
assertion (1) that ∩i∈IFix(αi) is a separable subquandle of X . �

Let (X1, ⋆1) and (X2, ⋆2) be quandles, f ∈ CAut(X1)(Inn(X1)) and g ∈ CAut(X2)(Inn(X2)).
Then, by [5, Section 9], X := X1 ⊔X2 turns into a quandle with the operation ∗ defined as

x ∗ y =





x ⋆1 y if x, y ∈ X1,

x ⋆2 y if x, y ∈ X2,

f(x) if x ∈ X1 and y ∈ X2,

g(x) if x ∈ X2 and y ∈ X1.

Proposition 5.6. Let (X1, ⋆1) and (X2, ⋆2) be subquandle separable quandles, f ∈ Z(Inn(X1))
and g ∈ Z(Inn(X2)). Then (X, ∗) is subquandle separable.

Proof. Let Y be a subquandle of X and z ∈ X \ Y . Without loss of generality, we can
assume that z ∈ X1. Since z ∈ X1 and Y ∩X1 is a separable subquandle of X1, there is a
surjective quandle homomorphism φ : X1 → F , where (F, ◦) is a finite quandle, such that
φ(z) /∈ φ(Y ∩X1). Let p be a symbol disjoint from F and F ′ = F ⊔ {p}. Define a binary
operation ◦′ on F ′ as

x ◦′ y =





x ◦ y if x, y ∈ F,

p if x = p,

φ(f(z)) if y = p,

where z ∈ X1 is such that φ(z) = x. We claim that (F ′, ◦′) is a quandle. Suppose that
z1, z2 ∈ X1 such that φ(z1) = φ(z2) = x. Since f ∈ Inn(X1), we see that φ(f(z1)) =
φ(f(z2)), and the binary operation ◦′ is indeed well-defined. Let Sp : F ′ → F ′ be the
right multiplication by p. For arbitrary x1, x2 ∈ F , let z1, z2 ∈ X1 such that φ(z1) = x1
and φ(z2) = x2. Suppose that Sp(x1) = Sp(x2), that is, x1 ◦′ p = x2 ◦′ p. This gives
φ(f(z1)) = φ(f(z2)). Since f ∈ Inn(X1), it follows that x1 = φ(z1) = φ(z2) = x2. Thus, Sp
is injective, and finiteness of F ′ implies that it is a bijection of F ′. Further, we see that

Sp(x1 ◦
′ x2) = Sp(x1 ◦ x2) = φf(z1 ⋆1 z2) = φf(z1) ◦

′ φf(z2) = Sp(x1) ◦
′ Sp(x2),

Sp(x1 ◦
′ p) = Sp(φf(z1)) = φf(f(z1)) = φf(z1) ◦

′ p = Sp(x1) ◦
′ Sp(p)

and

Sp(p ◦
′ x2) = Sp(p) = p = p ◦′ Sp(x2) = Sp(p) ◦

′ Sp(x2).
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Using the fact that f ∈ Z(Inn(X1)), we have

Sx1(x2 ◦
′ p) = Sx1(φf(z2)) = φSz1f(z2) = φfSz1(z2) = Sx1(x2) ◦

′ p = Sx1(x2) ◦
′ Sx1(p)

and
Sx1(p ◦

′ x2) = Sx1(p) = p = Sx1(p) ◦
′ Sx1(x2).

This proves our claim. It is easy to see that the map Φ : X → F ′ defined by Φ(X2) = p
and Φ(y) = φ(y) for y ∈ X1, is a quandle homomorphism. Further, Φ(z) /∈ Φ(Y ), and the
result follows. �

The following observation will be used to establish subquandle separability of some
abelian quandles.

Proposition 5.7. Let X be an abelian quandle. Then the following assertions hold:

(1) The number of orbits of X equals the cardinality of a minimal generating set for X.
(2) If X is finitely generated, then its n-quandle Xn is finite for each n ≥ 2.

Proof. Let S be a minimal generating set for X . Then the number of orbits of X under
the action of Inn(X) is atmost |S|. Suppose that there exist x, y ∈ S such that they are in
the same orbit, that is, there is an element η ∈ Inn(X) such that η(x) = y. Since Inn(X)
is an abelian group, we can write η = Sǫ1x1S

ǫ2
x2
. . . Sǫrxr , where ǫi ∈ Z and xi ∈ S are distinct

generators. If xi = x or y for some i, then by reordering, we can assume that x1 = y or
xr = x. This gives Sǫ2x2S

ǫ3
x3
. . . Sǫr−1

xr−1
(x) = y, where none of the xi equals x or y. Thus, the

generator y can be written as a product of other generators from S, which contradicts the
minimality of S. This proves assertion (1).

If X is finitely generated and abelian, then so is Xn. Let S = {x1, x2, . . . , xr} be a finite
generating set for Xn. Then, any element of Xn can be written in the form xi ∗

ǫ1 x1 ∗
ǫ2

x2 . . . ∗
ǫr xr for some 1 ≤ i ≤ r and 0 ≤ ǫj ≤ n− 1 with ǫi = 0. Thus, we have |Xn|≤ rnr−1,

which proves assertion (2). �

Theorem 5.8. An abelian quandle generated by two elements is subquandle separable.

Proof. Let X = 〈S | R〉 be a presentation of X , where S = {x, y}. Since X is abelian,
any element of X can be written in the form x ∗n y or y ∗m x for some n,m ∈ Z. If
X is finite, then there is nothing to prove. So, we assume that X is infinite. We claim
that R must be a singleton set. Suppose that R contains elements from the orbits of
both x and y. This implies that {x ∗n y = x, y ∗m x = y} ⊆ R for some n,m ∈ Z. In
this case, X is an lcm(n,m)-quandle. It follows from Proposition 5.7 that X must be a
finite quandle, which is a contradiction. Thus, R contains elements from only one orbit,
say, R = {x ∗n1 y = x, x ∗n2 y = x, . . . , x ∗nr y = x}. An easy calculation shows that
X = 〈S | x ∗n y = x〉, where n = gcd(n1, n2, . . . , nr), and hence the claim holds.

We can now assume that X = 〈x, y | x ∗n y = x〉 for some n ∈ Z. Let Y be a finitely
generated subquandle of X such that Y 6= X . If x ∗k y, y ∗l x ∈ Y for some k, l ∈ Z,
then x = (x ∗k y) ∗−k (y ∗l x) ∈ Y and y = (y ∗l x) ∗−l (x ∗k y) ∈ Y . This gives Y = X ,
which is a contradiction. Hence, Y contains elements from only one orbit, say, that of x.
Consequently, Y is generated by {x ∗n1 y, x ∗n2 y, . . . , x ∗nr y} for some r ≥ 1 and ni ∈ Z.
Since X is abelian, it follows that Y is a finite trivial subquandle. The theorem now follows
from Proposition 4.5 and Proposition 5.2 �
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Let X = 〈x1, x2, . . . , xr〉 be a finitely generated abelian quandle. Then, any element of
X can be written in the form

xi ∗
n1 x1 ∗

n2 x2 · · · ∗
nr xr

for some 1 ≤ i ≤ r and nj ∈ Z such that ni = 0. Following [19], we denote the element
xi ∗

n1 x1 ∗
n2 x2 · · · ∗

nr xr of X by the tuple of integers (i;n1, n2, . . . , nr). With this notation,
the quandle operation in X is given by

(5.0.1) (i;n11, n12, . . . , n1r) ∗ (j;n21, n22, . . . , n2r) = (i;n1, n2, . . . , nr),

where nk = n1k for k 6= j and nj = n1j + 1 if j 6= i.

Theorem 5.9. A finitely generated free abelian quandle is subquandle separable.

Proof. Let X be a finitely generated free abelian quandle. Then X has a presentation

X = 〈x1, x2, . . . , xr | xi ∗ xj ∗ xk = xi ∗ xk ∗ xj for all 1 ≤ i, j, k ≤ r〉.

Let Y be a subquandle of X such that Y 6= X . As in the proof of Theorem 5.8, it is clear
that if Y contains elements from each orbit under the action of Inn(X), then the repeated
use of equation (5.0.1) implies that Y contains all the generators of X . This gives Y = X ,
a contradiction. Now, suppose that Y is generated by the set

{(i1;n
1
11, n

1
12, . . . , n

1
1r), (i1;n

1
21, n

1
22, . . . , n

1
2r), . . . , (i1;n

1
k11
, n1

k12
, . . . , n1

k1r
),

(i2;n
2
11, n

2
12, . . . , n

2
1r), (i2;n

2
21, n

2
22, . . . , n

2
2r), . . . , (i2;n

2
k21
, n2

k22
, . . . , n2

k2r
), . . . ,

(ip;n
p
11, n

p
12, . . . , n

p
1r), (ip;n

p
21, n

p
22, . . . , n

p
2r), . . . , (ip;n

p
kp1
, npkp2, . . . , n

p
kpr

)}.

Let us set {j1, j2, . . . , jq} = {1, 2, . . . , r}\{i1, i2, . . . , ip}. Let x = (i;n1, n2, . . . , nr) ∈ X \Y .
If i ∈ {j1, j2, . . . , jq}, then define the map η : X → {a, b} by η(xt) = a for t 6= i and
η(xi) = b, where {a, b} is a two element trivial quandle. Then, η is a quandle homomorphism
with η(x) /∈ η(Y ), and we are done. Next, let i ∈ {i1, i2, . . . , ip}, say i = it. Since X is free
abelian, x = (i;n1, n2, . . . , nr) /∈ Y if and only if

(nj1 , nj2, . . . , njq) /∈ {(nit1j1 , n
it
1j2
, . . . , nit1jq), (n

it
2j1
, nit2j2, . . . , n

it
2jq), . . . , (n

it
ktj1

, nitktj2 , . . . , n
it
ktjq

)}.

We choose a sufficiently large N ∈ N such that

(nj1 , nj2 , . . . , njq) /∈ {(nit1j1 , n
it
1j2

, . . . , nit1jq), (n
it
2j1

, nit2j2 , . . . , n
it
2jq

), . . . , (nitktj1 , n
it
ktj2

, . . . , nitktjq)} mod N.

Let XN be the corresponding N -quandle of X , which is finite by Proposition 5.7. Then,
the quandle homomorphism η : X → XN has the property that η(x) 6∈ η(Y ), and the proof
is complete. �
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