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Abstract

The position response of a particle subjected to a perturbation is of general interest in physics. We

study the modification of the position response function of an ensemble of cold atoms in a magneto-

optical trap in the presence of tunable light-assisted interactions. We subject the cold atoms to

an intense laser light tuned near the photoassociation resonance and observe the position response

of the atoms subjected to a sudden displacement. Surprisingly, we observe that the entire cold

atomic cloud undergoes collective oscillations. We use a generalised quantum Langevin approach

to theoretically analyse the results of the experiments and find good agreement.
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I. INTRODUCTION

Cold atoms are excellent candidates for precision measurements [1] and for studying time

dependent response [2, 3] of atoms to external perturbations. Tracking the position response

function of cold atoms is expected to enhance the understanding of many-body physics with

cold atoms and quantum gases. One particular area of interest has been precision molecular

spectroscopy using ultra-cold atoms which is known as photoassociation (PA) spectroscopy

[4–11]. The traditional detection scheme in such experiments has always been to measure

a trap loss where the photoassociated molecules leave the trap [4, 5, 7–9, 12, 13]. It is well

known that near such PA transitions the inter-atomic interaction strength is significantly

modified due to dipole-induced dipole interactions even when the bound state is not created

[14–18].

Here we report a technique for detecting changes in inter-atomic interactions near a

photoassociation resonance, without relying on existing trap-loss measurements [4, 5, 7–

9, 12, 13]. Our technique involves observing the atomic position response to a sudden

external light pulse in a Magneto-Optical Trap (MOT), offering an alternative approach

to study light-assisted collisions between ultra-cold atoms. By adjusting the cooling laser

parameters and the magnetic field gradient, we can control the damping and spring constants

of the atomic motion. Such response measurements of cold atoms in the MOT have been

the subject of interest of many past studies [19–22] including some recent ones [3, 23–25].

Generally, motion of the atoms in the MOT is well understood and the response function can

be modelled efficiently using a generalized Langevin formalism [26]. The corrections to such

measurements taking into account the beyond two-level approximation has also been the

subject of a recent work [25]. Here we present an experimental study and the corresponding

theoretical treatment of the motion of the atoms trapped in a MOT under the influence of

an additional laser beam which tunes the interactions between the atoms. In the latter part

of the paper, we present the details of our experimental sequence, the observations and the

theoretical analysis.

We notice a qualitatively interesting transition in the behaviour of position response

function of the trapped cloud. In a parameter space which is overdamped, surprisingly the

emergence of collective oscillations (which occurs in underdamped regime) is observed in the

position response function as a result of tuning the interactions between the atoms. The
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cloud can be viewed as being in contact with a bath of optical molasses where we tune the

inter-atomic interaction using the PA beam in the vicinity of a molecular resonance [18].

II. MEASUREMENT OF POSITION RESPONSE FUNCTION

A. Experimental set-up and method

A detailed description of our machine capable of trapping large numbers of 39K and 23Na

atoms in a Magneto-Optical Trap (MOT) can be found in [27]. This setup enables fast

loading of atoms into the 3DMOT with the help of two independent 2D+MOTs, resulting in

a high signal-to-noise ratio fluorescence images for precise centroid positioning of the atomic

clouds. In our experiment, as schematically depicted in Fig. 1 upper panel, we introduce

two additional beams to the trapped cloud: a driving beam, red-detuned 6.5Γ from the 39K

D2 line, and a Photoassociation (PA) beam from a separate laser, tuned to a 39K∗
2 PA line

at 390.976803 THz [7], with an accuracy of ±1 MHz. This PA line, chosen for its relevance

to single-photon excitation of 39K∗
2 just below the 4P3/2 + 4S1/2 level and being ∼ 1000 Γ

red-detuned, minimizes photon scattering by cold 39K atoms while facilitating measurements

of strong molecular transitions.

The experiment is performed in two separate sequences and two different settings. Initially,

we prepare the 39K atoms, which have been laser-cooled and trapped in a MOT. In our first

setting, we allow only the driving beam onto the MOT, keeping the PA-beam blocked. While

performing the second part of the experiment, we allow the driving beam and observe its

effect on the cloud keeping the PA-beam ON throughout the experiment. In either of these

settings, when we shine the driving beam with or without the PA-beam onto the trapped

39K atoms, we track the movement of the centroid of the cloud.

In order to give uniform optical force on the entire cross section of the 39K atom cloud, the

diameter of the beam has been kept at 10 mm which is sufficient for a cloud of diameter

∼ 4 mm. This beam shifts the center of the trapping region to align with the zero point of

the optical force. We give a detailed timing sequence for measuring the response function

(Fig. 1 lower panel) of cold 39K atoms. Initially, cold atoms are loaded into the MOT for

10 s. Blocking the 2D+MOT path, a driving beam is applied for 0.5 s, allowing the cold

atomic cloud to reach a new equilibrium and to ensure that the dynamics of the cloud is
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FIG. 1. Upper Panel : A schematic diagram of the experimental setup. In the diagram, it can

be observed that the driving beam and the PA-beam are merged and sent through the same path

towards the trapped 39K cloud in the vaccuum chamber. Lower Panel : Pulse sequence generated

from LabVIEW used in this experiment. After the atoms are loaded in the MOT, the driving

beam is switched on for a duration of 0.5 s. t1 (t2) is the time-delay between imparting the driving

beam and measuring the response of the atoms without (with) the PA-beam on. Both t1 and t2

are varied from 0.2 ms to 30 ms (also called as τpostdrive) simultaneously.
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solely influenced by the driving beam. After switching off the beam, we track the motion of

the atoms via fluorescence imaging. A weak (0.05 Isat) and off-resonant (5Γ blue detuned)

reference beam is directed at the MOT, followed by capturing 3 frames with an Andor ICCD

camera. The reference beam prepared so as to not disturb the cold atoms, aids in position

tagging. The sequence involves: 1) capturing the driven atomic cloud with the reference

beam, 2) capturing without the atomic cloud but with the reference beam, and 3) capturing

with both the reference beam and 3DMOT beams off to note background counts.

In the next phase of our experiment, we first observed the motion of the atomic cloud under

a driving beam (intensity 0.3 Isat) alone. We then added a PA-beam to this setup, following

the same procedure as the previous phase of our experiment. The motion of the cloud was

recorded using the previously described method, ensuring the post-drive duration (τpostdrive)

matched with that of the driving beam-only observations. After capturing the images, we

turned off the MOT. Within our selected range of parameters we observed the overall shift

in the centroid position of the cold atomic cloud to be around 3 mm. This shift is more or

less the same irrespective of the presence or absence of the PA-beam which has an intensity

(|E0|2 per unit area) of 400 mW/mm2.

B. Experimental determination of the response function from the average dis-

placement of the trapped cloud

In this section we briefly outline the experimental method of determination of the re-

sponse function from the measured average displacement discussed in ref. [3]. The average

displacement ⟨X(t)⟩ is related to the position response function R(t) by the equation,

⟨X(t)⟩ =

∫ t

−∞
R(t− t′)f(t′)dt′ (1)

This gives the expectation value of the velocity on differentiation with respect to time t,

⟨Ẋ(t)⟩ :

⟨Ẋ(t)⟩ =

∫ t

−∞
Ṙ(t− t′)f(t′)dt′ (2)
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Here f(t) is the external perturbing force, which in our experiment takes the form of a

“top-hat function”:

f(t) =

f0, for −∞ < t < 0

0, for t ≤ −∞, t ≥ 0
(3)

Substituting f(t) in Eq. (2), we get,

R(t) = −⟨Ẋ(t)⟩
f0

(4)

FIG. 2. ⟨X(t)⟩ for both the incidents when only the driving beam is allowed to perturb the cold

atomic cloud without and with the PA beam being present. [Inset] (a) The average displacement

of cold cloud without and (b) in the presence of light-assisted interaction induced by the presence

of Photoassociation laser. The error bars indicate ±1σ statistical error estimated from several sets

of data.

In the experiment we measure the average displacement ⟨X(t)⟩ of the cold atomic cloud as

shown in Fig. 2, and using the relation Eq. (4) we extract the response function R(t). We

observe in the inset (b) of Fig. 2 a collective oscillation of the cold cloud in the presence

of the PA-beam while all other parameters are kept the same as in the inset (a) of Fig. 2.
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Therefore we conclude that the collective oscillation arises due to inter-atomic interaction

which is induced by the PA-beam. We record several sets of data to confirm the response

of the cold atoms. The measurement statistical 1σ errors are reported in the insets of Fig.

2 along with the data points.

C. The role of the photoassociation laser frequency

FIG. 3. A schematic energy diagram showing an excited bound state formation using specific

angular frequency (ωL) excitation laser. The upper (lower) potential energy curve shows the inter-

atomic potential as a function of the inter-atomic separation of the excited (ground) molecular

manifold.

In Fig 3 a schematic diagram of the photoassociation (PA) process is described [10]. There

are discrete angular frequencies (ωL) at which the specific excited bound states can be

addressed. Typically the linewidths of such excited molecular bound-states are in the range

of ∼GHz. Near each of the molecular resonances the inter-atomic interaction strength also

diverges. In our experiment, we choose ωL to be one such molecular resonance angular

frequency. Generally in a PA spectroscopy experiment, the intensity of the PA laser is kept

very high so as to induce significant atom loss from the trap. In contrast, we deliberately
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keep the PA laser intensity at a moderate level so that the atom loss is not significantly high

while the inter-atomic interaction is still strong at resonance. Therefore, we can investigate

the modification in the dynamics of the trapped cloud. In the theoretical analysis, discussed

above, ωL is taken as a parameter where the inter-atomic interaction is a maximum.

III. MODEL OF N-INTERACTING PARTICLES IN A THERMAL BATH: GEN-

ERALIZED LANGEVIN EQUATION AND POSITION RESPONSE FUNCTION

This is a basic model for calculating the position response function for N interacting par-

ticles, where N is arbitrary. Using two interacting particles (i.e. N = 2) in contact with

a thermal bath as a toy model, we have calculated the response function of the centroid

coordinate of the interacting particles under the influence of a laser field.

A. Description of the two-body model

Starting from a Hamiltonian for a system of N = 2 interacting particles coupled to a heat

bath of independent harmonic oscillators and integrating out the bath degrees of freedom,

we arrive at the quantum Langevin equation (QLE). We extract the position response func-

tion of the system from this QLE. This response function captures the collective behaviour

observed in the experiment.
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FIG. 4. A schematic representation of the two particle system centroid or the centre of mass

interacting with bath particles. The bath particles are harmonic oscillators and are represented by

small particles and they do not interact with one another, hence the bath is called an IO bath. The

system particles are represented by the two big gray solid circles, the centroid of which is shown

by a dashed circle.

To start with we consider the coupled system bath model, where the system is composed

of two particles of the same mass (M1 = M2 = 1) interacting with one another under

the influence of an external laser field E(t). The bath is composed of K non interacting

independent particles of mass mα (α = 1, 2..., K) and frequency ωα (α = 1, 2..., K). This

model is called the Independent-Oscillator (IO) model [26]. There is a coupling of strength

cα (α = 1, 2..., K) between the system coordinate (centroid coordinate Xc =
∑2

i=1 Xi/2)

and bath coordinates. The Hamiltonian of the coupled system-bath model is given by,

H = Hs +Hb +Hc (5)

Hs =
2∑

i=1

(
P 2
i

2
+

Ω2
0X

2
i

2
+ diE(t)

)
+

2∑
i,j,i̸=j

q2

2r3a
XiXj (6)

Hb =
∑
α

(
p2α
2mα

+
mαω

2
αx

2
α

2

)
(7)

Hc =
∑
α

(
c2α

2mαω2
α

X2
c − cαxαXc

)
(8)

Here, Hs, Hb, Hc are respectively the system Hamiltonian, bath Hamiltonian and system-

bath coupling Hamiltonian. ra = |X1 − X2| is the inter-atomic distance. A schematic
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diagram of the two particle centroid interacting with independent bath particles is shown

in Fig. 4. Ω0 is the oscillator frequency of each of the system particles, di, i = 1, 2 are the

dipole moments of the two system particles, each of charge q. The recipe for arriving at the

QLE involves deriving the effective equations of motion of the system coordinates Xi, Pi by

integrating out the bath coordinates xα, pα. Using Heisenberg equations of motion we get

the QLE of the centre of mass coordinate of the interacting system :

Ẍc + Ω2
0Xc +

q2

r3a
Xc − 2

∫ t

t0

dsγ(t− s)Ẋc = ζ(t)− qE(t) (9)

where,

γ(t) =
∑
α

c2α
mαω2

α

cos(ωαt) (10)

ζ(t) =
∑
α

cα

[(
xα(t0)−

cα
mαω2

α

Xc(t0)

)
cos(ωαt) +

pα(t0)

mαωα

sin(ωαt)

]
(11)

are the dissipation kernel and noise terms, and E(t) = E0 cos(ωLt), |E0|2 per unit area of

the beam is the intensity of the laser and ωL is the laser angular frequency. The pairwise

interaction strength is a maximum at ωL, not at the resonant absorption angular frequency

of photons by the atoms. The bath information is only retained in the dissipation γ(t) and

noise ζ(t) terms. In the continuum limit, K −→ ∞ the thermal noise satisfies the following

spectral properties,

⟨ζ(t)⟩ = 0 (12)

⟨{ζ(t), ζ(t′)}⟩ =
1

2π

∫ ∞

−∞
dωRe[γ(ω)]ℏω coth

(
ℏω

2kBT

)
e−iωt (13)

⟨[ζ(t), ζ(t′)]⟩ =
1

π

∫ ∞

−∞
dωRe[γ(ω)]ℏωe−iωt (14)

The above relation is obtained considering that the bath is in thermal equilibrium at the

initial time t0 and is given by distribution function, f(ω) = 1/(e(ℏω/2kBT )−1). In the Fourier

domain we can write the solution to the QLE,

Xc(ω) =
ζ(ω)− qE(ω)

−ω2 + ω2
s − 2iωγ(ω)

=
ζ(ω)− qE(ω)

(ω − s1)(ω − s2)
(15)

Here, ω2
s = Ω2

0 +
q2

r3a
, s1, s2 are the roots of the quadratic equation in the denominator of Eq.

(15). In order to extract the roots s1, s2 we need to model the thermal bath dissipation kernel

γ(t). Here we consider an Ohmic bath model [23] for which γ(t) = 2γ0δ(t) or γ(ω) = γ0.
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For the Ohmic bath, s1 = −iγ0 − iγs, s2 = −iγ0 + iγs, where γs =
√

γ2
0 − ω2

s . Using the

fluctuation-dissipation theorem [28] which relates the Fourier transforms of the response

function R(t) and the position correlation function CX(t) = ⟨{Xc(t), Xc(0)}⟩/2,

ImR(ω) =
1

ℏ
tanh

(
ℏω

2kBT

)
CX(ω) (16)

we get ImR(ω) for two particles interacting with one another, coupled to an Ohmic bath in

the presence of a laser field,

ImR(ω) =
ωγ0 + q2E2

0 [δ(ω − ωL) + δ(ω + ωL)]
2

(ω2 − s21)(ω
2 − s22)

(17)

Using Kramer’s Kronig relations we can calculate ReR(ω),

ReR(ω) =
1

π
P

∫ ∞

−∞

ω′ImR(ω′)

(ω′2 − ω2)
dω′

and hence combining the real and imaginary parts we get the frequency dependent response

function R(ω) = ReR(ω) + iImR(ω), which on performing an inverse Fourier transform

gives the time dependent response function R(t),

R(t) =

∫ ∞

−∞
dωR(ω)e−iωt (18)

=
e−γ0t

γs
sinh γst+Re

(
q2E2

0e
−(γ0−γs)ts2 [δ(s1 − ωL) + δ(s1 + ωL)]

2

4γ0γs(γ2
s − γ2

0)

)

+Re

(
q2E2

0e
−(γ0+γs)ts1 [δ(s2 − ωL) + δ(s2 + ωL)]

2

4γ0γs(γ2
s − γ2

0)

)
(19)

In a similar way one can solve the case of three interacting particles and find the response

function. We have generalised the two particle system analysis to the context of a three

particle system and found the QLE,

Ẍc + Ω2
0Xc +

2q2

r3a
Xc − 3

∫ t

t0

dsγ(t− s)Ẋc = ζ(t)− qE(t) (20)

and the response function is given by,

R(t) =
e−γ′

0t

γ′
s

sinh γ′
st+Re

(
q2E2

0e
−(γ′

0−γ′
s)ts2 [δ(s1 − ωL) + δ(s1 + ωL)]

2

4γ′
0γ

′
s(γ

′2
s − γ′2

0 )

)

+Re

(
q2E2

0e
−(γ′

0+γ′
s)ts1 [δ(s2 − ωL) + δ(s2 + ωL)]

2

4γ′
0γ

′
s(γ

′2
s − γ′2

0 )

)
(21)

Here Xc =
∑3

i=1 Xi/3, γ
′
0 = 3γ0/2, γ

′2
s = γ′2

0 − ω′2
s ,ω

′2
s = Ω2

0 + 2q2/r3a, s1 = −iγ′
0 − iγ′

s, s2 =

−iγ′
0 + iγ′

s.
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B. N-particles pairwise interacting in a thermal bath

We generalize the formalism further to a N particle system. The QLE for a N particle

system reduces to,

Ẍc + Ω2
0Xc +

Nq2

r3a
Xc −N

∫ t

t0

dsγ(t− s)Ẋc = ζ(t)− qE(t) (22)

and the response function is given by,

R(t) =
e−γ′

0t

γ′
s

sinh γ′
st+Re

(
q2E2

0e
−(γ′

0−γ′
s)ts2 [δ(s1 − ωL) + δ(s1 + ωL)]

2

4γ′
0γ

′
s(γ

′2
s − γ′2

0 )

)

+Re

(
q2E2

0e
−(γ′

0+γ′
s)ts1 [δ(s2 − ωL) + δ(s2 + ωL)]

2

4γ′
0γ

′
s(γ

′2
s − γ′2

0 )

)
(23)

=
e−γ′

0t

γ′
s

sinh γ′
st+R2(t) +R3(t) (24)

where,

R2(t) =


Re

(
q2E2

0e
−(γ′0−γ′s)ts2

4γ′
0γ

′
s(γ

′2
s −γ′2

0 )

)
, for ωL = |s1|

0

(25)

R3(t) =


Re

(
q2E2

0e
−(γ′0+γ′s)ts1

4γ′
0γ

′
s(γ

′2
s −γ′2

0 )

)
, for ωL = |s2|

0

(26)

Here Xc =
∑N

i=1 Xi/N , γ′
0 = Nγ0/2, γ

′2
s = γ′2

0 −ω′2
s ,ω

′2
s = Ω2

0+Nq2/R3, s1 = −iγ′
0− iγ′

s, s2 =

−iγ′
0 + iγ′

s. Note that the dissipation kernel and the noise terms remain the same as in the

two particle case, the only change appears in Xc. In the absence of interactions when γ′
0 >>

Ω0, we get the expected overdamped behaviour in the position response function, however

if we include interactions keeping γ′
0,Ω0 unchanged we notice an oscillatory behaviour in

the position response function. This is rather surprising but it can be understood from a

comparison of the two time scales γ′−1
0 and γ′−1

s . In the absence of interactions, γ′2
0 > γ′2

s

and both are real, resulting in an exponentially damped behaviour of the position response

function. Inclusion of interactions leads to the condition, γ′2
0 < γ′2

s where γ′
s is imaginary,

resulting in an oscillatory behaviour of the position response function. The response function

given by Eq. (28) captures the transition from damped to oscillatory behaviour without and

with interactions, respectively. We have used Eq. (28) in the paper for comparing our theory

with the experimentally observed data.
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FIG. 5. The normalized response function for both the incidents with only the driving beam

perturbing the cold atomic cloud in the overdamped regime without and with the PA beam present.

IV. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

Following the methods described in section II we measure the centroid position of the

cloud as a function of time and extract the position response function, R(t). We normalize

R(t) w.r.t. its maximum value. We plot the normalized position response function of the

cold atomic cloud as a function of τpostdrive. The resulting observation is summarized in

Fig 5. The transition from an overdamped motion to an underdamped oscillatory motion

is clearly visible in the same run of an experiment upon the addition of an inter-atomic

interaction induced by the PA-beam. The derivation of the Generalized Quantum Langevin

equation (QLE) and the extraction of the position response function of the centroid of N−

interacting atoms under the influence of an external laser are outlined in the section III. The

QLE and the position response functions are given respectively by the equations:

Ẍc + Ω2
0Xc +

Nq2

r3a
Xc −N

∫ t

t0

dsγ(t− s)Ẋc = ζ(t)− qE(t) (27)
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R(t) =
e−γ′

0t

γ′
s

sinh γ′
st+R2(t) +R3(t) (28)

R2(t) =


Re

(
q2E2

0e
−(γ′0−γ′s)ts2

4γ′
0γ

′
s(γ

′2
s −γ′2

0 )

)
, for ωL = |s1|

0

(29)

R3(t) =


Re

(
q2E2

0e
−(γ′0+γ′s)ts1

4γ′
0γ

′
s(γ

′2
s −γ′2

0 )

)
, for ωL = |s2|

0

(30)

Here Xc =
∑N

i=1 Xi/N , is the centroid displacement, γ′
0 = Nγ0/2, γ

′2
s = γ′2

0 − ω′2
s ,ω

′2
s =

Ω2
0 + Nq2/r3a, s1 = −iγ′

0 − iγ′
s, s2 = −iγ′

0 + iγ′
s and E(t) = E0cos(ωLt) is the external

laser field. ωL is the angular frequency of the photoassociation laser field which induces

the interaction between the atoms. In the experiment, we measure the average displacement

⟨Xc(t)⟩ which is related to the position response function R(t) as, R(t) = −⟨Ẋc(t)⟩/f0 II. The

strength of the interaction depends on ωL following the details of the two-body inter-atomic

potential [10, 29]; however, in our description, we have considered ωL to be a parameter.

γ′
0 pertains to the damping coefficient due to the optical molasses and the frequency

constant Ω0 stems from the magnetic field gradient of the MOT. Three distinct cases appear

for the motion of the atomic cloud in the absence of inter-atomic interactions, depending

on the values of γ′
0,Ω0: an overdamped motion for γ′

0 > Ω0, a critically damped motion for

γ′
0 = Ω0 and an underdamped motion for γ′

0 < Ω0.Since we can choose a suitable parameter

space in our experiment to operate either in the overdamped or underdamped regime, we

consider the overdamped case. We have fitted the data using Eq.(28) which is the position

response function for N interacting atoms under the influence of an external laser, stemming

from a generalised QLE (Eq.(27)).
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FIG. 6. The molasses parameters are chosen such that the normalized position response function

of the cold atomic cloud is in the underdamped regime. In (a) The data has been recorded in

the absence of the ’PA-beam’ and (b) in the presence of the ’PA-beam’. The data has been fitted

here with the equation of the position response function which gives ω′
s = 2π × 90 Hz for (a) and

ω′
s = 2π × 102 Hz for (b).

We extract a damping coefficient, γ′
0, using the fit to the data. This damping coefficient is

∼ 1.23× 10−23 kg/sec. In the absence of interactions when γ′
0 >> Ω0, we get the expected

overdamped behaviour in the position response function.
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FIG. 7. The normalized response function with the PA-beam kept ON at a fixed intensity while

its frequency is changed, once above and once below a particular molecular transition frequency.

Only when the laser is kept at the molecular transition line (ωL = 2π× 390.976803 THz), the

oscillatory behaviour can be observed whereas if the PA-laser frequency is tuned to below or above

the molecular transition line (which are 390.973435 THz and 390.979431 THz in the figure), the

clear oscillatory nature is absent.

However, an oscillatory behaviour emerges in the position response function when we include

atom-atom interactions keeping γ′
0,Ω0 unchanged. This is rather surprising but it can be

understood from a comparison of the two time-scales γ′−1
0 and γ′−1

s . In the absence of

interactions, γ′2
0 > γ′2

s and both are real, resulting in an exponentially damped behaviour

of the position response function Eq.(28). Inclusion of interactions leads to the condition,

γ′2
0 < γ′2

s where γ′
s is imaginary, resulting in an oscillatory behaviour of the position response

function Eq.(28).

We investigated the effect of inter-atomic interaction on the position response function in

the under-damped regime as well. In Fig 6, we summarize our observation in this regime.

In Fig 6(a) the normalised position response function of the cold cloud (as a function of
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time) is shown without the light-assisted atom-atom interaction, whereas in Fig 6(b) the

atom-atom interaction has led to a marked increase in the oscillation frequency by more than

10%. The response function given by Eq. (28) captures this enhancement of the frequency

of oscillations in the under-damped regime without and with interactions, respectively.

Figs. 5 and 6 show a comparison between the experimentally measured response function

and the theoretical response function from Eq.(28) for the overdamped and underdamped

regimes respectively. The theoretical expression shows a very good fit to the experimental

data for both cases. The dipole moment of a 39K atom in its ground state is much smaller

than that of a Rydberg atom [30], or an atom possessing high dipole moment such as

Chromium [31] at sub-micro Kelvin temperatures. Therefore, the angular dependence of

the dipole-dipole interaction has been neglected in our theoretical modelling.

We conducted additional experiments where the PA-beam was kept ON at the same

intensity but its frequency was shifted away from the molecular transition frequency. In

Fig. 7, we show the response function for three different values of ωL. Dramatically, the

oscillatory behaviour is seen only when ωL is tuned to a molecular resonance whereas shifting

ωL slightly (±3 GHz) takes it to an overdamped motion. This resonance tracking is beyond

the discussed theoretical model (Eq.(28)) because ωL is taken as a fixed parameter. The

atom-atom interaction strength as a function of ωL is discussed in the section III.

In our magneto-optically trapped cold atomic cloud of 39K, the inter-atomic interactions

are described by the s-wave scattering length, a (for temperatures ≤ 2 mK). For large PA

beam detuning from the atomic transition (|δ| ≫ Γ, where Γ is the decay rate of the atomic

transition), the scattering length a(ωL) is adjusted by the PA laser frequency ωL and the

PA-beam intensity I [16, 18] as a(ωL) = abg + lopt
Γm

ωL−(ωn+snI)
. Here, abg is the background

scattering length, Γm is the spontaneous emission rate from the excited molecular state,

and ωn + snI is intensity-dependent shift of the resonance frequency. The optical length

lopt, indicative of the PA line-strength, incorporates the influence of the PA laser. With

the background scattering length of 39K atoms being negative (−abg ≃ 33a0), the inherent

inter-atomic interaction is attractive and corresponds to an overdamped behavior of the

position response function without the PA beam. By applying the PA beam near a molecular

resonance the interaction alters, enabling a shift from an overdamped to an underdamped

behaviour of the position response function.
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V. CONCLUSION AND OUTLOOK

In this study, we alter the inter-atomic interactions by exposing a cold cloud of 39K atoms

to a beam tuned to one of the PA lines. Tracking the position response function, we offer a

novel approach to detect resonant enhancement of interaction strength in cold atoms. Ex-

tending beyond existing theoretical analysis [3], our study incorporates light-assisted inter-

atomic interactions into a generalized Langevin formalism, focusing on their impact on

the position response function over a significant range of time scales, while disregarding

molecule formation due to its brevity in this context. Our theoretical analysis aligns well

with our experimental observations, setting the stage for more intricate future models of

inter-atomic interactions as well as by including angle dependent dipole-dipole interactions

in quantum-degenerate clouds. Moreover, our experimental system also allows us to study

a mass-imbalanced cold atomic mixture of 23Na and 39K which opens avenues to explore the

position response function amidst varying intra- and inter-species atomic interactions.
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