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Abstract

Graphs and complex networks can be successively separated into
connected components associated to respective seed nodes, therefore
establishing a respective hierarchical organization. In the present
work, we study the properties of the hierarchical structure implied by
distance-based cutting of Erdős-Rényi, Barabási-Albert, and a specific
geometric network. Two main situations are considered regarding the
choice of the seeds: non-preferential and preferential to the respec-
tive node degree. Among the obtained findings, we have the tendency
of geometrical networks yielding more balanced pairs of connected
components along the network progressive separation, presenting lit-
tle chaining effects, followed by the Erdős-Rényi and Barabási-Albert
types of networks. The choice of seeds preferential to the node degree
tended to enhance the balance of the connected components in the
case of the geometrical networks.

1 Introduction

The way in which graphs and complex networks react to topological
changes can provide interesting information about their respective proper-
ties, including resilience (e.g. [1, 2, 3, 4, 5, 6, 7]). In this work, we approach
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Figure 1: An original graph (a) with three seed nodes identified as square nodes in green,
blue, and orange. The same graph partitioned (b), in terms of the shortest topological
distances, between the three seed nodes. Nodes that have the same distance to two or more
seeds are assigned randomly to one of those seeds, in a manner than can be understood
as being analog to the concept of Dirichlet tessellation (or Voronoi diagrams, e.g. [15]).
Once partitioned, the graph can be separated (c) into connected components respective to
each of the seeds by removing the edges extending between nodes belonging to different
partitions. This basic separation approach can then be repeated, yielding a respective
hierarchy.

the situation in which graphs are progressively separated into new graphs as
a consequence of their nodes being associated to distinct seed, or reference,
nodes. Interestingly, in a manner similar to that observed in [8] respectively
to graph cutting performed by random walks, the successive separation of
graphs among involved seed nodes also establish a respective hierarchy be-
tween the obtained connected components, which can be effectively visualized
in terms of respective dendrograms. The hierarchical structure of complex
networks consists of an area that has motivated continuing attention in the
respective literature (e.g. [9, 10, 11, 12, 13, 14, 8]).

Given a complex network (or graph) Γ with N nodes, as well as a set
S containing M of these nodes (without repetition), which are henceforth
called seed nodes, it is possible to partition (e.g. [14]) Γ into M respective
subgraphs defined by the nodes that are closer to each of the respective seeds.
These subgraphs can then be separated, yielding M independent connected
components which are, themselves, new graphs. Figure 1 illustrates the above
described procedure respectively to a simple graph.

In addition to its intrinsic theoretical interest, the above described oper-
ation, which is henceforth called hierarchical cutting of a complex network,
potentially underlies some real-world situations of interest. These include the
establishment of countries around respective reference capital cities, which
can be subdivided into states and respective capitals, municipalities, and city
regions (boroughs). Similarly, knowledge networks (e.g. [16, 17, 18]) can also
be successively subdivided into subgraphs established respectively to specific
sets of seed nodes (main topics).

From the above context, the present work can be understood as providing
subsidies not only for modeling these types of hierarchical networks but also
for characterizing their specific topological properties which, in the present
work (as in [8]), is performed while paying special attention to size and
balance of each of the obtained new pair of connected components.
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These properties are of particular interest as they directly characterize
how the components are successively separated, also providing an indication
of the respective resilience to the cuts. For instance, a previous study [8] has
indicated that the sectioning of complex networks of the ER and BA types
performed by random walks tend to yield chained dendrograms (e.g. [19,
20, 13, 21]), characterized by successive separations into a large group and
another group often involving only one node. This type of chained cutting
can be understood to be strongly unbalanced, implying the tendency of a
large component to be found at most hierarchical levels.

Chained cutting tends to allow relatively large components (though ap-
pearing in unbalanced manner) extending along several cutting hierarchies.
On the other hand, more balanced cuttings involving pairs of connected com-
ponents with not only similar but also relatively large sizes, tend to require
fewer hierarchical levels before the complete separation of the original net-
work. It should be observed that chained or more balanced cuttings can be
both intrinsically desirable or undesirable, depending on specific problems
and respective objectives.

One aspect of specific interest developed in the present work concerns
the study of how the adoption of a distance-based methodology for cutting
graphs and complex networks can affect the sizes and balance of the obtained
components. Because the intrinsic topology of each type of complex network
model can be expected to influence the successive network separation in
specific manners, we shall consider three distinct models of networks in the
reported studies, namely Erdős–Rényi (ER) [22], Barabási–Albert (BA) [23],
and a specific Geometric Graph (GEO) – e.g. [15, 24]. As in [8], we resource
to scatterplots in the component size coordinate space (n1, n2) in order to
better understand the size and balance of the connected components obtained
along the hierarchical cutting procedure.

In addition to choosing the seeds uniformly among the existing nodes, we
also study the effect of choosing them preferentially to the node degree. Even
though ER and GEO networks tend to have nodes with similar degree, sta-
tistical fluctuations can generate a few nodes with degree substantially larger
and smaller than the respective average. Thus, the use of non-preferential
and preferential choice of seeds can be expected to have influence in the
hierarchical cuttings obtained not only for the BA networks, which are in-
trinsically degree-skewed but also on the considered ER and GEO structures.

This work starts by describing the main concepts and methods and follows
by presenting the obtained results and the respective discussion.

2 Concepts and Methods

Given a network (or graph) Γ with N nodes (the network size), it is
possible to calculate the topological distance δij between each pair of nodes
(i, j), which can be organized as a respective distance matrix D.

Now, let us consider a set S of M nodes sampled from the N original
nodes without repetition. These nodes will be henceforth called seed nodes
or, simply, seeds.

In case a specific node k is selected from the set S, the network nodes that

3



Figure 2: Illustration of the recurrent application of the distance-based cutting of networks
respectively to M = 3 seeds, which are shown as square nodes.

are closest to k than to any of the other seed nodes can be identified, which
can be understood as a region of influence of the node k in the network Γ.
Nodes that are equally distant to more than one of the seeds are randomly
assigned among those nodes. The identification of the regions of influence
respective to each of the seed nodes therefore establishes a partitioning of
the original graph into M respective subgraphs.

Once a partitioning of the original network is obtained respectively to
the M seeds, it becomes possible to separate or disconnect these subgraphs,
which can be done by removing every edge that interconnects nodes belonging
to distinct regions of influence.

The above described separation of a graph intoM connected components,
which is illustrated in Figure 2 for M = 3, can then be repeated in recur-
rent manner, with M seed nodes being chosen within each of the obtained
connected components. The recurrence ends when all connected components
have a size of 1. The obtained successive cuttings establish a respective hier-
archy among the obtained components, as illustrated in Figure 3, which can
also be represented as a respective dendrogram.

It is interesting to assign a tuple (n1, n2, . . . , nM) to each branching, where
ni corresponds to the size of the respective components. It is also assumed
that n1 ≤ n2 ≤ . . . ≤ nM .

In the particular case of M = 2, the graphs will always be separated
into two respective connected components, yielding a respective dendrogram
which is also a binary tree. In this case, it is possible to represent all pos-
sible separations in terms of their respective tuples (n1, n2), which can be
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Figure 3: Dendrogram obtained from the distance-based cutting illustrated in Fig. 3.

visualized in terms of a respective scatterplot.
Figure 4 depicts the polygonal region defining the coordinates (n1, n2) of

possible connected components in the case M = 2. It is henceforth assumed
that only connected components with a size larger or equal to N/2 are taken
into account while preparing this type of scatterplot and regions.

The line AB indicates that n1, n2 > 0, and the line segment BE is implied
by n1 + n2 ≥ N/2. Similarly, the bounding line AC corresponds to the cases
in which n1 + n2 = N , being therefore respective to the first separation of
the original network. The line DE establishes a separation of the bounded
region into respectively to the two following configurations: (1) ADEB pairs
of component sizes that are relatively small and less balanced; and (2) DCE
pairs of component sizes that are relatively large and more balanced.

Maximum balance is obtained for the cases resulting in point C. The total
density (probability) at the two above regions is henceforth indicated as P2

and P3, with P2+P3 = 1. A portion of the region ADEB, namely AFGB, is
understood to correspond to chained pairs of connected components, being
characterized by n1 ≪ n2. Observe that the extension of region AFGB along
the horizontal axis is equal to N/10. The probability of having chained pairs
of components can thus be obtained by integrating the density within the
region ADEB, yielding respective probability P3. Observe the existence of
overlap between the regions ADEB and AFGB, so that P1 + P2 + P3 ≥ 1.

It is interesting to observe that the above described diagram can also be
constructed considering normalized values of the size of pairs of connected
component sizes, so that they yield respective fractions (f1, f2) — with f1 =
n1/n, f2 = n2/n and f1 + f2 = 1, of the size n of the connected component
from which they originated.

Table 1 summarizes the three probabilities considered in this work as a
means to characterized the balance and chained of the pairs of connected
components obtained along distance-based cutting of complex networks.
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Figure 4: The region of possibly observable coordinates (n1, n2), assuming the components
to have al least size N/2, is defined by four vertices A,B,C, and E. The most balanced
situation, characterized by the two resulting components having the same size, corresponds
to the point C. Henceforth, the region within the bounding polygon is separated into two
sub-regions delimitated by the polygons ABDE and CDE, with the latter being associated
to more balanced pairs of connected components which are also relatively large. The total
density of observations resulting within these two regions are henceforth expressed as
P2 and P3. A portion of the region ABDE, namely that comprised within AFGB, is
also considered to correspond to chained pairs of components, leading to a respective
probability P1.

Table 1: The three probabilities adopted for characterizing balance and chaining of pairs
of connected components obtained along distance-based cutting of complex networks. In
all cases n1 ≤ n2, P2 + P3 = 1, and P1 ≤ P2.

Prob. Region Meaning
P1 AFGB Prob. of chained pairs (n1 < N/20, n1 ≪ n2)
P2 ADEB Prob. of non-balanced pairs (n1 < N/4)
P3 DCE Prob. of nearly balanced pairs (n1 ≥ N/4)

6



(a) (b) (c)

Figure 5: Scatterplots of component sizes (n1, n2) obtained for 2000 networks of ER (a),
BA(b), and GEO (c) types considering the uniform choice of the seed nodes. The points
on the line segment AC correspond to the very first separation of the original network
(n1 + n2 = N). The green cross-hair indicates the average ± standard deviation of the
values of n1 and n2. The networks of GEO type resulted in the most balanced components,
indicated by the concentration of cases near point E. At the same time, the BA network
tended to yield the less balanced connected components, with the observed coordinates
covering most of the bounding polygon.

3 Results and Discussion

Experiments have been performed considering ER, BA, and GEO net-
works with N = 100 nodes and average degree ⟨k⟩ ≈ 5.7. The results
obtained respectively to non-preferential and preferential choice of the seeds
(respectively to the node degree) are reported in the following sub-sections.

3.1 Non-Preferential Choice of Seeds

At each separation stage, the M nodes are chosen uniformly among the
existing nodes. Figure 5 presents the scatterplots (n1, n2) obtained for 2000
networks of the three considered types.

Interestingly, the GEO networks yielded a concentration of points that
mostly surround the point E. At the same time, the observed initial sepa-
rations, lying on line AC, shifted to the right-hand side of the figure, also
indicating an enhanced balance of component sizes. The less balanced con-
nected components have been obtained for the BA networks, with the ob-
served points extending widely within the bounding region. The ER networks
led to intermediate results.

The enhanced balance of component sizes observed for the GEO case are
related to the intrinsic topological uniformity of this type of networks, as well
as for the fact that these are also not small world, having nodes conforming
to a two-dimensional space.

Figure 6 provides three illustrations of dendrograms obtained for each of
the three network types considered in the present work. Each line corre-
sponds to a network type.

The dendrograms (g–i) corresponding to GEO networks resulted sub-
stantially more balanced, with little chaining, thus confirming the previously
reported and discussed results. At the same time, the BA networks led to
the more chained dendrograms, which are consequently particularly unbal-
anced, with one of the connected components tending to be substantially
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Figure 6: Examples of dendrograms obtained for the ER (a–c), BA (d–f), and GEO (g–i)
types of networks subjected to distance-based hierarchical cutting, considering a uniform
choice of seeds. The vertical axis corresponds to the size of the connected components,
while the horizontal axes refers to the labels of the network nodes.
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Figure 7: Scatterplots of component sizes (n1, n2) obtained for 2000 networks of ER (a),
BA(b), and GEO (c) types considering the choice of the seeds as being preferential to the
node degree. Interestingly, this alternative strategy led to even further enhanced balance
of the connected components obtained in the GEO networks.

larger than the other component in each respective pair. The ER networks
resulted with intermediate properties between those obtained for the GEO
and BA networks.

3.2 Preferential Choice of Seeds

In this sub-section we repeat all the previous experiments, but now choos-
ing the seeds proportionally to the node degree.

Figure 7 presents the scatterplots obtained for the ER, BA, and GEO
networks.

Interestingly, in the case of GEO networks, the preferential choice of seed
nodes led to even more balanced and relatively large connected components,
as also reflected on the larger value of P2 obtained for this type of cutting.
This effect could be related to the fact that the choice of seed nodes with a
large degree in GEO networks tended to provide a more effective partitioning
of the associated regions characterized by less intense statistical dispersion
while determining the respective regions of influence.

Also of particular interest, while the preferential approach led to minor
differences in the case of the ER networks, in the case of BA networks it
yielded connected components that are less balanced than those obtained in
the case of non-preferential choice of seeds. That is possibly a consequence of
the fact that the latter type of choice tended to enhance the intense original
degree skew already present in the original BA networks.

Further interesting insights about the effects of preferential choice of the
seeds can be observed in the example dendrograms in Figure 8.

While a relatively minor effect of preferential choice can be observed re-
spectively to the ER and GEO cases, the BA dendrograms resulted in sub-
stantially more chained. This could be an effect of the scale-free structure of
these types of networks, which are therefore characterized by the tendency
to have hubs. More specifically, a seed corresponding to a hub node will tend
to define a large respective region of influence, and therefore, of connected
component size, with this tendency recurring along the topological scales as
a consequence of the scale-free nature of BA networks.

As indicated by the probabilities P1 and P2, the consideration of prefer-
ential choice of seeds in the ER and GEO network cases also led to slightly
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Figure 8: Examples of dendrograms obtained for the ER (a–c), BA (d–f), and GEO (g–i)
types of networks subjected to distance-based hierarchical cutting, with the choice of seeds
being preferential to the node degree. Interestingly, intensely chained dendrograms have
been obtained for the distance-based cutting of BA networks (d–f) when the seeds are
chosen proportionally to the node degree.
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Figure 9: Examples of dendrograms obtained for the ER (a), BA (b), and GEO (c) types
of networks subjected to distance-based hierarchical cutting, with the choice of seeds being
non-preferential to the node degree. Similar tendencies can be observed respectively to the
case M = 2, with the GEO network leading to the more balanced dendrograms, followed
by the ER and BA cases.

enhanced balanced pairs of connected components.

4 Distance-Based Cutting with Three Seeds

The experimental results previously reported in this work were character-
ized by M = 2, leading to cutting hierarchies that correspond to binary trees.
The present section provides some illustration of cases considering M = 3
seeds. Because the diagrams as described in Figure 4 are not possible in this
case, we henceforth limit our attention to dendrogram visualizations of the
obtained hierarchies.

Figure 9 illustrates dendrograms obtained by the distance-based hierar-
chical cutting of ER, BA, and GEO models, with the seeds being chosen
uniformly (non-preferentially to the node degree). Networks of size N = 300
have been considered in order to obtain a larger number of hierarchical levels.
The horizontal axes are shown in logarithm scale for the sake of better vi-
sualization, given that the size of the connected components decreases much
more steadily along the hierarchies as in the case M = 2.

Interestingly, the same tendencies observed for the case M = 2 can be
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observed from Figure 9. More specifically, the GEO model led to the more
balanced dendrograms, followed by the ER and BA cases. The latter type of
networks were again characterized by intense chaining and unbalance along
the respective hierarchies.

5 Concluding Remarks

The topological and dynamical properties of graphs and complex net-
works have been extensively studied from the point of view of respective
measurements (e.g. [25, 26, 27]). At the same time, analyzing how graphs
and networks undergo successive, hierarchical cutting under some specific
type of action, as performed by random walks or distance-based node assign-
ment among seeds, has the potential for providing further insights about the
intrinsic topological and dynamic properties of graphs and networks.

In the present work, we approached the modeling and characterization
of distance-based hierarchical cutting of three types of complex networks,
namely ER, BA, as well as a specific geometric model GEO. Scatterplots of
the sizes of pairs of obtained connected components have been employed as
a means to visualize and analyze the effects of distance-based hierarchical
cutting of the three considered types of network models while taking into
account two ways of choosing the seeds (non-preferential and preferential to
the node degree).

The obtained results indicate that, at least for the considered types and
configurations of networks, the distance-based cutting of the specific type of
GEO networks led to the most balanced and relatively large sizes of connected
components, with dendrograms characterized by little chaining. At the same
time, the BA networks yielded less-balanced pairs of connected components,
with dendrograms incorporating intense chaining.

Interesting results have been identified also regarding the effect of per-
forming distance-based hierarchical cutting of networks while choosing the
respective seeds preferentially to the node degree. More specifically, this type
of cutting led to even relatively larger and more balanced pairs of connected
components appearing along the cutting of GEO networks. Also of inter-
est, the preferential approach led to less balanced cuttings in the case of BA
networks.

In addition to their many theoretical implications, the obtained results
are also potentially important in real-world situations. For instance, they
show that it could be particularly difficult to separate scale-free networks
into sub-components with similar, balanced sizes by using distance-related
approaches. At the same time, even random distance-based separation of geo-
metrical networks tends to yield more balanced and relatively large connected
components. Thus, in case knowledge networks have a scale-free structure,
the obtention of respective balanced ontologies would tend to require specific
heuristics and methodologies to be developed and applied.

A preliminary consideration of M = 3 indicated that the effects observed
for M = 2 tend to be conserved. More specifically, more balanced dendro-
grams were obtained for the GEO networks, followed by the ER and BA
cases.
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It is also interesting to contrast the here reported results with the previous
study of hierarchical cutting of networks by random-walks [8]. Interestingly,
the distance-based cutting methodology yielded substantially less chained
dendrograms, with relatively large and more balanced connected components
obtained along the cutting dynamics. Contrariwise, the cutting of complex
networks by random walks tends to result in highly chained hierarchies, with
the geometrical model tending to allow moderately more balanced and rel-
ative large pairs of connected components. This result therefore suggests a
fundamental difference in the distance-based and random walk-based hierar-
chical cutting of complex networks.

The reported concepts, methods, and results pave the way to a number
of related further research, including the consideration of other sizes, config-
urations, and types of networks such as those involving modular structure,
variations of the cutting strategy (e.g. along the spanning tree associated to
the complex networks), as well as the study of the impact of the cuttings on
other networks properties such as modularity, overall distances, assortativity,
and clustering, among other possibilities. Another interesting possibility is
to generalize the described two-dimensional diagram for hierarchical cuttings
performed with more than two seeds.

Acknowledgments

Alexandre Benatti thanks MCTI PPI-SOFTEX (TIC 13 DOU 01245.010
222/2022-44). Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0)
and FAPESP (grant 2022/15304-4).

References

[1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of
complex networks. Nature, 406(6794):378–382, 2000.

[2] A. E. Motter and Y.-C. Lai. Cascade-based attacks on complex net-
works. Physical Review E, 66(6):065102, 2002.

[3] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda. Error and
attack tolerance of complex networks. Physica A: Statistical mechanics
and its applications, 340(1-3):388–394, 2004.

[4] D. Miorandi and F. De Pellegrini. K-shell decomposition for dynamic
complex networks. In 8th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks, pages 488–
496. IEEE, 2010.

[5] J. Gao, B. Barzel, and A.-L. Barabási. Universal resilience patterns in
complex networks. Nature, 530(7590):307–312, 2016.

[6] O. Artime, M. Grassia, M. De Domenico, J. P. Gleeson, H. A. Makse,
G. Mangioni, M. Perc, and F. Radicchi. Robustness and resilience of
complex networks. Nature Reviews Physics, pages 1–18, 2024.

13



[7] S. Shao, X. Huang, H. E. Stanley, and S. Havlin. Percolation of localized
attack on complex networks. New Journal of Physics, 17(2):023049,
2015.

[8] A. Benatti and L. da F. Costa. Hierarchical cutting of complex networks
performed by random walks. ResearchGate, 2024.

[9] M. Sales-Pardo, R. Guimera, A. A. Moreira, and L. A. N. Amaral. Ex-
tracting the hierarchical organization of complex systems. Proceedings
of the National Academy of Sciences, 104(39):15224–15229, 2007.

[10] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and
the prediction of missing links in networks. Nature, 453(7191):98–101,
2008.

[11] A. Benatti and L. da F. Costa. Recovering hierarchies in terms of con-
tent similarity. Journal of Physics A: Mathematical and Theoretical,
56(24):245003, 2023.

[12] A.-L. Barabási, E. Ravasz, and Z. Oltvai. Hierarchical organization of
modularity in complex networks. In Statistical Mechanics of Complex
nNtworks, pages 46–65. Springer, 2003.
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