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WEIGHTED EHRHART THEORY VIA MIXED HODGE MODULES

ON TORIC VARIETIES

LAURENŢIU MAXIM AND JÖRG SCHÜRMANN

ABSTRACT. We give a cohomological and geometrical interpretation for the weighted Ehrhart

theory of a full-dimensional lattice polytope P, with Laurent polynomial weights of geometric

origin. For this purpose, we calculate the motivic Chern and Hirzebruch characteristic classes

of a mixed Hodge module complex M whose underlying cohomology sheaves are constant

on the T-orbits of the toric variety XP associated to P. Besides motivic coefficients, this also

applies to the intersection cohomology Hodge module. We introduce a corresponding gen-

eralized Hodge χy-polynomial of the ample divisor DP on XP. Motivic properties of these

characteristic classes are used to express this Hodge polynomial in terms of a very general

weighed lattice point counting and the corresponding weighted Ehrhart theory. We introduce,

for such a mixed Hodge modules complex M on X , an Ehrhart polynomial EP,M generalizing

the Hodge polynomial of M and satisfying a reciprocity formula and a purity formula fitting

with the duality for mixed Hodge modules. This Ehrhart polynomial and its properties depend

only on a Laurent polynomial weight function on the faces Q of P. In the special case of the

intersection cohomology mixed Hodge module, the weight function corresponds to Stanley’s

g-function of the polar polytope of P, hence it depends only on the combinatorics of P. In

particular, we obtain a combinatorial formula for the intersection cohomology signature.

1. INTRODUCTION

We give a cohomological and geometrical perspective for the Ehrhart theory of a full-

dimensional lattice polytope P, expressed here in the form of a weighted Ehrhart theory, with

Laurent polynomial weights fQ(y) ∈ Z[y±1] of geometric origin being attached to the faces

/0 6= Q� P of the polytope (with the partial order given by face inclusion). The classical com-

binatorial approach to reciprocity can be linearly extended to this weighted Ehrhart theory.

Motivation for using such weights comes from our prior work [19] on Hirzebruch characteris-

tic classes of toric varieties (associated to such polytopes), as well as from the use of Stanley’s

g-functions in the recent generalized Ehrhart reciprocity theorem of [2].

1.1. Combinatorial and geometrical posets and their identification. We review here some

basic notions explaining the relation between lattice polytopes and toric geometry; for more

details see [8, 13].

Let M ∼= Zn be a lattice and P⊂MR := M⊗R∼= Rd be a full-dimensional lattice polytope.

To P one associates a fan Σ = ΣP ⊂ NR := N⊗R, with N the dual lattice of M, called the inner

normal fan of P. To the fan ΣP one further associates a projective toric variety X = XP with
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2 L. MAXIM AND J. SCHÜRMANN

torus T (whose character lattice is M) and an ample Cartier divisor D = DP. There is a order-

reversing one-to-one correspondence between the faces /0 6= Q � P of P and the cones σQ of

ΣP, with dimR(Q) = n− dimR(σQ). There is an order-reversing one-to-one correspondence

between the cones σQ of ΣP and the T-orbits OQ of the toric variety XP, with dimC(OQ) =
n−dimR(σQ). Then the identification between the faces /0 6= Q� P of P and the torus orbits

OQ of the toric variety XP is order-preserving, with dimR(Q) = dimC(OQ).
If, in addition, P contains the origin in its interior, then its polar polytope P◦⊂NR is defined

as in [13, Section 1.5], as a full-dimensional lattice polytope with respect to the lattice N, and

containing the origin in the interior. By taking cones at the origin of NR over the proper faces

of P◦, with /0 corresponding to the origin, one gets the same lattice fan ΣP (hence the same toric

variety XP). This correspondence between the proper faces /0 � Q◦ ≺ P◦ of P◦ and the cones

of ΣP is order-preserving, increasing real dimension by 1. (Here dimR /0 =−1 by convention.)

This induces an order-reversing one-to-one correspondence between the faces Q of P, and the

faces Q◦ of the polar polytope P◦, switching the roles of polytopes and emptysets seen as

faces. Moreover, for a proper face /0 6= Q≺ P, one has dimR(Q)+dimR(Q
◦) = n−1.

The original polytope P ⊂ MR is classically used for counting lattice points (and the cor-

responding Ehrhart theory), fitting with sections of the ample line bundle OXP
(DP) on XP

[10, 13, 8]. The torus orbits of XP give a natural T-invariant Whitney stratification, which is

particularly useful in our geometric interpretation of weighted lattice points counting via the

theory of Hirzebruch homology classes Ty∗ of [5] and the corresponding Hirzebruch-Riemann-

Roch theorem; see [19]. The polar polytope P◦ appears in Stanley’s work [27] for recursively

defining his g-polynomials gQ◦(t) ∈ Z[t], with g( /0) = 1, for the Eulerian graded poset given

by the faces /0 � Q◦ � P◦. It is well-known [27, 4, 11, 12, 25] that these g-polynomials are

related to the intersection cohomology complex of XP. In the use of the g-polynomials, we

will (implicitly) assume that P contains the origin in its interior (so that the polar polytope is

well-defined).

1.2. Weighted Ehrhart theory. Let us now assign to the above posets Laurent polynomial

weights via a weight vector f = { fQ}, with fQ(y)∈Z[y
±1] indexed here by the faces /0≺Q�P

of P. We assemble these weights, together with the combinatorics of P, into the weighted

Ehrhart polynomial EP, f (ℓ,y), as follows.

Definition 1.1. For ℓ ∈ Z>0, define the weighted Ehrhart polynomial of P and f by

(1.1) EP, f (ℓ,y) := ∑
Q�P

fQ(y) · (1+ y)dim(Q) · |Relint(ℓQ)∩M|,

with |− | denoting the cardinality of a finite set, and Relint(ℓQ) is the relative interior of the

face ℓQ of the dilated polytope ℓP.

By classical Ehrhart theory (e.g., see [10, 8]), EP, f (ℓ,y) has the following properties:

(1) EP, f (ℓ,y) is obtained by evaluating a polynomial EP, f (z,y) at z = ℓ ∈ Z>0.

(2) (Constant term) For ℓ= 0,

EP, f (0,y) = ∑
Q�P

fQ(y) · (−1− y)dim(Q),

i.e., evaluating |Relint(ℓQ)∩M| at ℓ= 0 as (−1)dim(Q).
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(3) (Reciprocity formula) For ℓ ∈ Z>0,

(1.2) EP, f (−ℓ,y) = ∑
Q�P

fQ(y) · (−1− y)dim(Q) · |ℓQ∩M|.

Assume now that the origin is an interior point of P, so that we can consider the weight

vector given by Stanley’s g-polynomials

(1.3) fQ(y) = gQ◦(−y) =: g̃Q(−y)

for the polar polytope of P, with g /0(−y) = g̃P(−y) = 1. In this setup, it was shown in [2,

Theorems 1.3 and 2.6] that the following purity property holds:

(1.4) EP, f (−ℓ,y) = (−y)n ·EP, f (ℓ,1/y).

This is in fact a special case of the the results in loc.cit., for the constant polynomial ϕ = 1.

Moreover, our definition (1.1) for EP, f (ℓ,y) equals Gϕ=1(ℓ,y) from [2, formula (14)]. In the

case when P is a simple polytope, the polar polytope P◦ is simplicial, so that gQ◦(−y) = 1,

for all faces Q of P. In this case, as explained in [2], the equality (1.4) implies the Dehn-

Sommerville relations for P.

1.3. Geometric viewpoint on weighted Ehrhart theory. The condition that P is simple

translates into the fact that the corresponding toric variety XP is a rational homology manifold,

i.e., the constant sheaf on XP agrees with the shifted intersection cohomology complex:

QXP
≃ ICXP

[−n] =: IC′XP
.

Then the classical Dehn-Sommerville relations correspond to the Poincaré duality isomor-

phism for rational cohomology, motivating the use of intersection cohomology coefficients

for non-simple lattice polytopes. In fact, using the intersection Hodge module IC′
H
XP

and its

purity, we give a geometric proof of formula (1.4), as it will be explained below.

1.3.1. Geometric realization of weight vectors and duality. First, we identify the weight vec-

tors { fQ}, seen as Z[y±1]-valued functions on the set of faces Q of P, with the T-invariant

Z[y±1]-valued constructible functions on X = XP, via

{ fQ} 7→ ∑
Q�P

1OQ
· fQ ∈ FT(X)[y±1].

Note that FT(X)[y±1] is a Z[y±1]-module freely generated by the T-invariant constructible

functions 1OQ
∈ FT(X)⊂ FT(X)[y±1].

There is a tautological injective homomorphism

τ : FT(X)[y±1]−→ K0(var/X)[L−1]

to the Grothendieck group of varieties over X , localized at the Lefschetz motive L= [C→ pt],
given by

1OQ
· fQ(y) 7→ [OQ →֒ X ] · fQ(−L).

The image τ(FT(X)[y±1]) of this monomorphism is the Z[L±1]-submodule freely generated

by the images of the classes [OQ →֒ X ] ∈ K0(var/X)→ K0(var/X)[L−1].
Most of our calculations can already be done on this motivic level. But in order to iden-

tify the intersection cohomology complex and duality we need to go one step further, to the
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Grothendieck group K0(MHM(X)) of Saito’s mixed Hodge modules on X . There is a canoni-

cal homomorphism (see (2.3))

χHdg : K0(var/X)[L−1]→ K0(MHM(X))

commuting with duality (introduced on the left hand side in [3], and with the duality DX on

the right hand side given by the Verdier duality of mixed Hodge modules), see [26] for details.

We have

χHdg([OQ →֒ X ] · fQ(−L)) = [( jQ)!Q
H
OQ

] · fQ(−[Q(−1)]),

with jQ : OQ →֒ X the orbit inclusion and QH
OQ

denoting the constant Hodge module on OQ.

The restriction of χHdg to the subgroup τ(FT(X)[y±1]) is injective, with image given by the

free Z[u±1]-submodule of K0(MHM(X)) generated by elements of the form [( jQ)!Q
H
OQ

], where

u = [Q(−1)] ∈ K0(MHM(pt))≃ K0(MHSp). Here the module structure on K0(MHM(X)) is

induced from the exterior product for the identification X ≃ pt×X , and MHSp is the abelian

category of graded polarizable Q-mixed Hodge structures, with Q(−1) the corresponding Tate

Hodge structure of weight 2.

The ambient Grothendieck groups K0(var/X)[L−1] and K0(MHM(X)) are only used for-

mally in the background. For our applications to the toric context, we only need to work with

the (sub)groups

(1.5) { fQ}←→ FT(X)[y±1]←→ τ(FT(X)[y±1])←→ χHdg

(
τ(FT(X)[y±1])

)

realizing our weight vectors in the language of constructible functions, motivic, and mixed

Hodge module contexts, respectively. These identifications are linear over the following ring

coefficient isomorphisms, with −y = L= u:

Z[y±1]←→ Z[y±1]←→ Z[L±1]←→ Z[u±1],

identifying the coordinate basis elements as follows:

eQ := {δQ,Q′}←→ 1OQ
←→ [OQ →֒ X ]←→ [( jQ)!Q

H
OQ

].

By their definitions, all groups homomorphisms in (1.5) are surjective. In our geometric

applications, we work in the group χHdg

(
τ(FT(X)

)
, recovering the corresponding weight

vector { fQ} via

fQ(y) := χy(i
∗
xQ
[M ])

as the Hodge χy-polynomial of the stalk class i∗xQ
[M ], with [M ] ∈ χHdg

(
τ(FT(X)

)
, and ixQ

:

{xQ} →֒ X the inclusion of a point xQ chosen in the orbit OQ. Then our aim is to show that

many invariants of [M ] depend only of this choice of a weight function.

Specific to the toric context is that the last submodule χHdg

(
τ(FT(X)[y±1])

)
is preserved

under duality, since each torus orbit has a T-invariant affine neighborhood of product type.

Since IC′
H
X is a pure Hodge module of weight n, so that DX IC′

H
X ≃ IC′

H
X [2n](n), we get the

following purity property:

(1.6) DX [IC
′H
X ] = u−n · [IC′

H
X ].

Note that this duality has the following module property: DX(u · −) = u−1 ·DX(−). This

induces a duality involution D on the Z[y±1]-module of weight functions with the correspond-

ing module property D(y · −) = y−1 ·D(−). Under this identification, [IC′HX ] corresponds
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in our language to the collection of Stanley’s g-functions g̃ := {g̃Q(−y)}, i.e., g̃Q(−y) =

χy(i
∗
xQ
[IC′HX ]), see [4, 12, 11, 25].

1.3.2. Degree calculations. The power of working with motivic and mixed Hodge module

Grothendieck groups resides in their functorial calculus, e.g., pushforward for a proper map

commuting with cross-product (e.g., module structure), and duality. Applying this to the

constant map X → pt, together with the Hodge χy-polynomial homomorphism, we get for

example:

[OQ →֒ X ] 7→ χy([OQ →֒ pt]) = (−y−1)dim(Q).

When translated back to the side of weight vectors, this degree map corresponds to the constant

term EP, f (0,y) of the weighted Ehrhart polynomial, also motivating the presence of the factor

(y+ 1)dim(Q) in the definition of EP, f (ℓ,y). Note that this degree map on the constructible

function side FT(X)[y±1] is not the usual one, which one recovers just for y = −1 (with the

convention 00 = 1).

The advantage of working on the mixed Hodge module side is the use of mixed Hodge

module complexes M ∈ DbMHM(X) and their important properties to represent weight vec-

tors. Pushing [M ] down to a point yields [H∗(X ;M )]∈K0(MHSp), with cohomology groups

getting induced (graded polarizable) mixed Hodge structures. Here the corresponding Hodge

χy-polynomial is defined in terms of the Hodge filtration.

As an example, M = IC′
H
X is pure of weight zero in the sense of Saito [22, 23], so that

IH i(X) := H i(X ; IC′
H
X ) is a pure Hodge structure of weight i. On the other hand, [IH∗(X)] ∈

Z[u±1], i.e., it is of Tate type. These two properties imply the vanishing of odd intersection co-

homology groups, so that Iχy(X) := χy([IH∗(X)]) coincides with the intersection cohomology

Poincaré polynomial IPX(t) = hP(t), up to the change of variable t2 =−y. As is well-known,

one also has a similar purity and odd vanishing property for the stalks of [IC′HX ] (e.g., see [25]).

So we get

hP(t) = IPX(t) = EP, f (0,−t2)

= ∑
Q�P

g̃Q(t
2) · (t2−1)dim(Q)

= ∑
/0�Q◦≺P◦

gQ◦(t
2) · (t2−1)n−1−dim(Q◦),

(1.7)

which gives a geometric interpretation of Stanley’s recursion for the h-polynomial (see also

[12, 11, 25]). Furthermore, using the Hodge index theorem for intersection cohomology [20],

one gets for y = 1 the following combinatorial formula for the Goresky-MacPherson signature

of X = XP:

(1.8) sign(X) = EP,g̃(0,1) = ∑
Q�P

g̃Q(−1) · (−2)dim(Q).

Lastly, pushing (1.6) to a point and applying the χy-homomorphism yields the duality formula

Iχy(X) = (−y)n · Iχ1/y(X).

This already recovers Stanley’s “master duality” theorem [28, Thm. 3.14.9], as well as the

generalized Dehn-Sommerville relations for the h-polynomial of a lattice polytope (boiling
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down to Poincaré duality for IH∗(X)). In terms of the corresponding Ehrhart polynomials,

this duality formula reads as

EP,g̃(0,y) = (−y)n ·EP,g̃(0,1/y),

which proves (1.4) for ℓ= 0.

1.3.3. Generalized Hirzebruch-Riemann-Roch and weighted Ehrhart theory. We can now ex-

plain our geometric interpretation of the weighted Ehrhart theory, in terms of the Hirzebruch

class transformation

Ty∗ : K0(MHM(X))→H2∗(X ;Q)[y±1]

of [5, 26]. Our approach extends, and reduces to, Danilov’s classical work [10], by using

two key formulae for the Hirzebruch classes of the basic elements [( jQ)!Q
H
OQ

] and their duals

[( jQ)∗Q
H
OQ

]; see (5.1) and (5.2). This Hirzebruch class transformation commutes with proper

pushforwards, cross-products, and with duality in the following sense:

(1.9) Ty∗ ◦DX = D◦Ty∗,

where DX is induced from the duality of mixed Hodge modules, and D on H2i(X ;Q) is defined

by (−1)i · id, extended to H2∗(X ;Q)[y±] by y 7→ 1/y. On a point space, Ty∗ reduces to the

Hodge χy-polynomial. The Hirzebruch classes Ty∗([M ]) fit into the following generalized

Hirzebruch-Riemann-Roch formula (see Theorem 4.4)

(1.10) χy(X ,D;M ) =
∫

X
ch(OX(D))∩Ty∗([M ]),

with D = DP the ample Cartier divisor on X = XP associated to P; see Section 4 for the precise

definition of χy(X ,D;M ).

Then for [M ] ∈ χHdg

(
τ(FT(X)[y±1])

)
, and ℓ ∈ Z>0, we prove in Proposition 6.1 the fol-

lowing identity:

χy(X , ℓD;M ) =
n

∑
k=0

(
1

k!

∫

X
[D]k∩Ty∗([M ])

)
ℓk

= ∑
Q�P

χy(i
∗
xQ
[M ]) · (1+ y)dim(Q) · |Relint(ℓQ)∩M|

= EP, f (ℓ,y),

(1.11)

with weight vector fQ(y) = χy(i
∗
xQ
[M ]), where the summation on the right is over the faces Q

of P, and xQ ∈ OσQ
is a point in the orbit of XP associated to (the cone σQ in the inner normal

fan of P corresponding to) the face Q. This reproves in cohomological terms the polynomial

property for EP, f (ℓ,y), together with the formula for the constant term

EP, f (0,y) = χy([H
∗(X ;M )]).

Using the above cohomological description of EP, f (ℓ,y), together with the duality property

(1.9), we get the following identity (see Theorem 6.10):

EP,M (−ℓ,y) = EP,DXM (ℓ,1/y),(1.12)
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which yields the reciprocity formula (1.2), for the weight vector defined as above from the

stalk classes of M . If M is such a self-dual pure Hodge module of weight n on X = XP, so

that DX [M ] = u−n · [M ] with u = [Q(−1)], then the following purity property follows:

(1.13) EP,M (−ℓ,y) = (−y)n ·EP,M (ℓ,1/y).

In particular, if M = IC′
H
X , corresponding to the weight function fQ(y) = g̃Q(−y), the purity

property (1.13), together with classical Ehrhart reciprocity, proves formula (1.4).

1.4. Structure of the paper. The paper is structured as follows.

In Section 2, we give a general introduction to the K-theoretic Hodge-Chern class DRy,

which is used for the definition of the homology Hirzebruch classes Ty∗ of mixed Hodge

module complexes. We explain here the basic calculus and properties of these classes.

Preparing the ground for the toric context, in Section 3 we detail the stratum-wise calcula-

tion of these classes. Under the technical assumption of (virtual) stratum-wise constancy of the

underlying cohomology sheaves of the coefficients, this reduces to a motivic type calculation.

These results apply to more coefficients that those from the subgroup χHdg

(
τ(FT(X)[y±1])

)
.

In Section 4, for a Cartier divisor D on a compact complex algebraic variety X , we define

for a mixed Hodge module complex M a generalized Hodge polynomial χy(X ,D;M ), which

can be computed via a generalized Hirzebruch-Riemann-Roch theorem in terms of the Chern

character of OX(D) and the Hirzebruch class Ty∗([M ]) of the Grothendieck class of M . For

D = 0 this reduces to the usual Hodge polynomial χy(X ;M ) of M . We also prove in this

section a key duality formula (4.6) for χy(X ,D;M ).
In Section 5 we specialize to the toric context, and make the characteristic class formulae

from the previous sections much more explicit. For a first read, those interested in applications

to Ehrhart theory can start with this section, taking for granted a few technical results from the

prior sections.

In the final Section 6, we expand on the weighted Ehrhart theory, giving a geometric view

and proofs of the results discussed in this introduction.
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plications” - CF 132/31.07.2023 funded by the European Union - NextGenerationEU - through
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Münster: Dynamics – Geometry – Structure. L. Maxim and J. Schürmann also thank the Isaac

Newton Institute for Mathematical Sciences for the support and hospitality during the program
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2. HOMOLOGY HIRZEBRUCH CLASSES VIA MIXED HODGE MODULES

Let X be a complex algebraic variety, and denote by MHM(X) the abelian category of alge-

braic mixed Hodge modules on X , with K0(MHM(X))≃ K0(D
bMHM(X)) the Grothendieck

group of (bounded complexes of) mixed Hodge modules on X . Recall that MHM(pt)≃MHSp

is (equivalent to) the category of (graded-)polarizable Q-mixed Hodge structures.

For any such variety X , Saito constructed a functor of triangulated categories

GrF
p DR : DbMHM(X)−→Db

coh(X)
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commuting with proper pushforwards, with GrF
p DR(M )≃ 0 for almost all p and M fixed; see

[22, Sec.2.3], [23, Sec.3.10, Prop.3.11] and [24, Sec.1]. Here Db
coh(X) denotes the bounded

derived category of OX -modules with coherent cohomology.

Example 2.1. If X is a closed subvariety of a n-dimensional complex algebraic manifold Z,

and M ∈ MHMX(Z) is a mixed Hodge module on Z with support on X , then GrF
p DR(M )

is the complex associated to the de Rham complex DR(M ) of the underlying algebraic left

DZ-module M with its integrable connection ∇:

DR(M ) = [M
∇
−→M ⊗OZ

Ω1
Z

∇
−→ ·· ·

∇
−→M ⊗OZ

Ωn
Z]

with M in degree −n, filtered by

FpDR(M ) = [FpM
∇
−→ Fp+1M

∇
−→ ·· ·

∇
−→ Fp+nM ⊗OZ

Ωn
Z].

By properties of mixed Hodge modules, the graded parts of the De Rham complex belong to

Db
coh(X). In the (ambient) smooth case, we use the same symbol for both the mixed Hodge

module and the underlying filtered (left) DZ-module �

For any complex algebraic variety X , the transformations GrF
p DR induce group homomor-

phisms

GrF
p DR : K0(MHM(X))−→ K0(D

b
coh(X))≃ K0(X),

with K0(X) the Grothendieck group of the abelian category of coherent OX -modules.

Definition 2.2 (Brasselet–Schürmann–Yokura [5, 26]). The Hodge–Chern class transforma-

tion of a complex algebraic variety X is:

DRy : K0(MHM(X))−→ K0(X)⊗Z[y±1]

DRy([M]) := ∑
i,p

(−1)i
[
H

iGrF
−pDR(M)

]
· (−y)p

= ∑
p

[
GrF
−pDR(M)

]
· (−y)p

The Hirzebruch class transformation is defined by

Ty∗ := td∗ ◦DRy : K0(MHM(X))→ H∗(X)[y±1]

with td∗ : K0(X)→ H∗(X) the Todd class transformation [1] of the singular Grothendieck–

Riemann–Roch theorem of Baum-Fulton-MacPherson, linearly extended over Z[y±1], and

H∗(X) := HBM
2∗ (X)⊗Q is the even degree Borel-Moore homology of X with Q-coefficients.

Remark 2.3. As shown in [5, 26], the transformations DRy and (by Riemann-Roch) Ty∗ com-

mute with proper pushforward and with cross-products ⊠.

Example 2.4 (Degree). Let us illustrate the above definition when X = pt is a point space. In

this case we have

K0(pt) = Z, H∗(pt) =Q, MHM(pt) = MHSp,

where MHSp is, as before, Deligne’s category of graded-polarizable mixed Q-Hodge struc-

tures, with switching the increasing D-module filtration to a decreasing Hodge filtration so
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that on a point space this identification gives GrF
−pDR = Gr

p
F . By definition, we then have for

H• ∈ DbMHSp that

(2.1) χy(H
•) := DRy([H

•]) = Ty∗([H
•]) = ∑

j,p

(−1) j dimCGr
p
F H

j
C
(−y)p

is the corresponding Hodge χy-polynomial, defining a ring homomorphism

χy : K0(MHSp)−→ Z[y±1]⊂Q[y±1].

E.g., for n ∈ Z, χy(Q(n)) = (−y)−n, where Q(n) denotes the Tate Hodge structure of weight

−2n on the vector space Q. Similarly,

χy(X) := χy([H
•
c (X ;QH

X )])

is the (compactly supported) Hodge polynomial of X . E.g., χy((C
∗)n) = (−y−1)n. �

Example 2.5. By functoriality, for X compact, M ∈DbMHM(X), and k : X→ pt the constant

map to a point,

(2.2) χy(X ;M ) := χy([H
•(X ;M )]) = χy([k∗M ]) =

∫

X
Ty∗([M ])

is the degree of the Hirzebruch class of M . For M = QH
X the constant Hodge module, this

fits with χy(X) as defined above. �

Definition 2.6. Let K0(MHSp)Tate be the subring of K0(MHSp) generated by u := [Q(−1)]
and u−1 := [Q(1)], with a surjective ring homomorphism Z[u±1]→ K0(MHSp)Tate. This is an

isomorphism since its composition with χy is the isomorphism Z[u±1]→ Z[y±1], u 7→ −y.

Let K0(var/X) be the motivic relative Grothendieck group of complex algebraic varieties

over X , i.e., the free abelian group generated by isomorphism classes [ f ] := [ f : Y → X ] of

morphisms f to X , divided out be the usual scissor relation. The pushdown f!, cross-product

⊠ and pullback g∗ for these relative Grothendieck groups are defined by composition, cross-

product and, resp., pullback of arrows. These transformations are linear over K0(var/pt) by

the cross-product for pt×X ≃ X . Denote by L := [C→ pt] the Lefschetz motive. There is a

natural group homomorphism on the localized Grothendieck group

(2.3) χHdg : K0(var/X)[L−1]→ K0(MHM(X)), [ f : Y → X ] 7→ [ f!Q
H
Y ] ,

mapping L to u = [Q(−1)] ∈ K0(MHSp) = K0(MHM(pt). This transformation commutes

with pushdown f!, cross-product ⊠ and pullback g∗. The compositions

mCy := DRy ◦χHdg : K0(var/X)[L−1]→ K0(X)[y]

and

Ty∗ := Ty∗ ◦χHdg : K0(var/X)[L−1]→ H∗(X)[y]

are the motivic Chern and Hirzebruch classes from [5, 26], as studied in the toric context in

[19] (without localization).

As usual, for a variety X we set

mCy(X) := mCy([idX ]) = DRy([Q
H
X ])

and

Ty∗(X) := Ty∗([idX ]) = Ty∗([Q
H
X ])
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for QH
X the constant Hodge module (complex) on X . Note that these classes can also be defined

in terms of the filtered Du Bois complex (see [5]).

Moreover, if X is pure-dimensional we set

ICy(X) := DRy([IC
′H
X ]), ITy∗(X) := Ty∗([IC

′H
X ]),

with IC′
H
X := ICH

X [−dim(X)]. If X is compact, the degree of ITy∗(X) is the Iχy-polynomial

Iχy(X) := χy(X ; IC′
H
X ).

If X is moreover a rational homology manifold (e.g., a complex algebraic V -manifold like a

simplicial toric variety), then IC′
H
X ≃QH

X (which also motivates our shift convention).

Remark 2.7 (Normalization). If X is smooth and M =QH
X is the constant Hodge module, then

GrF
−pDR(QH

X )≃Ω
p
X [−p]

for 0≤ p≤ dim(X), and it is 0 otherwise. So,

mCy(X) =
dim(X)

∑
p=0

[Ωp
X ] · y

p =: Λy(Ω
1
X),

the total Λ-class of the cotangent bundle of X . If, moreover, X is compact, the degree of

mCy(X) is exactly the Hirzebruch χy-genus of X .

Example 2.8. Assume XΣ is a toric variety (or a complex algebraic V -manifold). Then

(2.4) mCy(XΣ) =
dim(X)

∑
p=0

[Ω̂
p
XΣ
] · yp ∈ K0(XΣ)[y],

where Ω̂
p
XΣ

denotes the corresponding sheaf of Zariski differential p-forms. In fact, this for-

mula holds even for a torus-invariant closed algebraic subset X :=XΣ′ ⊆XΣ (i.e., a closed union

of torus-orbits) corresponding to a star-closed subset Σ′ ⊆ Σ, with the sheaves of differential

p-forms Ω̃
p
X as introduced by Ishida [17]:

(2.5) mCy(X) =
dim(X)

∑
p=0

[Ω̃
p
X ] · y

p ∈ K0(X)[y].

This follows, as in [19], from [17, Proposition 4.2], via the identification of these Ishida

sheaves with the (shifted) graded parts of the filtered Du Bois complex (and similarly for

the Du Bois complex of a complex algebraic V -manifold, by [20, Section 2.7]). �

Remark 2.9. For later use, note also that IC′
H
X is a direct summand of f∗Q

H
M ∈ DbMHM(X)

for any resolution of singularities f : M→ X . By functoriality, this yields that GrF
−pDR(IC′HX )

is a summand of R f∗Ω
p
M[−p] ∈ Db

coh(X), therefore GrF
−pDR(IC′HX ) ≃ 0 for all p < 0 or p >

dim(X). In particular, Iχy(X) ∈ Z[y] is a polynomial in y, with Iχ0(X) an intersection coho-

mology version of the arithmetic genus of X .

Remark 2.10 (Effect of duality). As shown in [26, Corollary 5.19, Remark 5.20], the transfor-

mations DRy and Ty∗ commute with duality, i.e.,

DRy ◦DX = D◦DRy, Ty∗ ◦DX = D◦Ty∗,
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where DX is induced from the duality of mixed Hodge modules, and D on K0(X) is induced

by Grothendieck duality (e.g., see [15, Part 1, Sect.7], [18, Part 1]) extended to K0(X)[y±]
by y 7→ 1/y. Similarly, one uses the duality involution ∨ in homology, given on Hi(X) by

(−1)i · id, extended to H∗(X)[y±] by y 7→ 1/y. The relation between the two duality formulas

above is via a corresponding duality formula for the Todd class transformation:

(2.6) td∗ ◦D= D◦ td∗

Note also that the effect of the Tate twist (n) on DRy and Ty∗ is just multiplication by (−y)−n,

i.e., for M ∈ DbMHM(X) with M (n) := M ⊠Q(n), one has

DRy([M (n)]) = (−y)−n ·DRy([M ]),

and similarly for Ty∗. A similar statement holds for the motivic transformations mCy and

Ty∗, with duality on the localization K0(var/X)[L−1] defined as in [26, Section 4B] and [3].

All these duality transformations are functorial for proper maps, so that for X compact with

k : X → pt proper, one gets

(2.7) χy(X ;DXM ) = χ1/y(X ;M ).

Indeed, over a point space, Grothendieck duality and homological duality are trivial, while the

mixed Hodge module duality is the usual duality of mixed Hodge structures, e.g., DptQ(n) =
Q(−n).

Example 2.11. Applying the above remark to the self-dual object ICH
X , with DX ICH

X ≃ ICH
X (n),

for a pure-dimensional algebraic variety X with n = dim(X), one gets the identity

(2.8) ITy∗(X) = (−y)n ·

(
n

∑
i=0

(−1)i · IT1/y,i(X)

)
.

In particular, if y = 1, then

(2.9) IT1∗(X) = (−1)n ·

(
n

∑
i=0

(−1)i · IT1,i(X)

)
= (−1)n · (IT1∗(X))∨ ,

i.e., IT1,i(X) = 0 if n+ i is odd. For X compact, by taking degrees and using Remark 2.9, one

gets

(2.10) Iχy(X) = (−y)n · Iχ1/y(X) ∈ Z[y]⊂ Z[y±1],

so, if y = 1 and n odd, then Iχ1(X) = 0. �

Remark 2.12. In the case of a projective complex algebraic variety X , one has by the intersec-

tion cohomology Hodge index theorem [21, Sect.3.6] the equality

(2.11) Iχ1(X) = sign(X),

with sign(X) the Goresky-MacPherson intersection homology signature. If X is moreover

a rational homology manifold (e.g., a complex algebraic V -manifold like a simplicial toric

variety), sign(X) coincides with the usual signature defined via the intersection pairing in

rational homology.



12 L. MAXIM AND J. SCHÜRMANN

3. COMPUTATIONS VIA STRATIFICATIONS

Recall the following result, which in the case of toric varieties will be applied to the Whitney

stratification given by the torus orbits:

Proposition 3.1. [20, Prop.5.1.2] For a complex variety X, fix M ∈ DbMHM(X) with un-

derlying bounded constructible complex K := rat(M ) ∈ Db
c(X). Let S = {S} be a complex

algebraic stratification of X so that for any stratum S ∈S , S is smooth, S̄ \ S is a union of

strata, and the sheaves LS,ℓ := H ℓK|S are local systems on S for any ℓ ∈ Z. If

jS : S
iS,S̄
→֒ S̄

iS̄,X
→֒ X

is the inclusion map of a stratum S ∈S , then:

(3.1) [M ] = ∑
S,ℓ

(−1)ℓ
[
( jS)!L

H
S,ℓ

]
= ∑

S,ℓ

(−1)ℓ (iS̄,X)∗
[
(iS,S̄)!L

H
S,ℓ

]
∈ K0(MHM(X)),

where LH
S,ℓ =Hℓ+dim(S)( jS)

∗M [−dim(S)] is the shifted smooth mixed Hodge module on S with

LS,ℓ = rat(LH
S,ℓ). In particular,

(3.2) DRy([M ]) = ∑
S,ℓ

(−1)ℓ (iS̄,X)∗DRy

(
[(iS,S̄)!L

H
S,ℓ]
)
,

and

(3.3) Ty∗([M ]) = ∑
S,ℓ

(−1)ℓ (iS̄,X)∗Ty∗

(
[(iS,S̄)!L

H
S,ℓ]
)
.

Example 3.2 (Constant cohomology sheaves along strata). If the above stratification S of X

can be chosen so that the local systems LS,ℓ on S are actually constant for any S and ℓ, with

stalk (the mixed Hodge structure) LS,s,ℓ for s ∈ S fixed, then it follows by rigidity (e.g., see [7,

Section 3.1]) that the (admissible) variation of mixed Hodge structures LH
S,ℓ on S (correspond-

ing to a smooth mixed Hodge module as in the above Proposition) is the constant variation.

This implies that, if aS : S→ pt is the constant map and is,S : {s} →֒ S denotes the inclusion,

then

LH
S,ℓ ≃ a∗Si∗s,SLH

S,ℓ = a∗SLH
S,s,ℓ ≃QH

S ⊗a∗SLH
S,s,ℓ ≃QH

S ⊠LH
S,s,ℓ.

Since for any variety Z, K0(MHM(Z) is a unitary K0(MHM(pt)-module (via pullback and

tensor product), under our assumptions formula (3.1) becomes:

[M ] = ∑
S,ℓ

(−1)ℓ (iS̄,X)∗
[
(iS,S̄)!Q

H
S

]
· [LH

S,s,ℓ]

= ∑
S

(iS̄,X)∗
[
(iS,S̄)!Q

H
S

]
· [Ms],

(3.4)

with Ms := i∗sM and is := jS ◦ is,S : {s} →֒ X for s ∈ S chosen, so that

(3.5) [M ] = ∑
S

(iS̄,X)∗
[
(iS,S̄)!Q

H
S

]
· i∗s [M ].
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In particular, upon applying DRy and using the fact that this transformation commutes with

cross-products, we get

DRy([M ]) = ∑
S

(iS̄,X)∗DRy

[
(iS,S̄)!Q

H
S

]
·χy(i

∗
s [M ])

= ∑
S

(iS̄,X)∗mCy([S →֒ S̄]) ·χy(i
∗
s [M ]),

(3.6)

with χy([Ms]) ∈ Z[y±1] regarded as a weight (depending on M ) attached to the stratum con-

taining s. A similar formula can be obtained for Ty∗([M ]) by further applying td∗ to formula

(3.6). �

Definition 3.3. We call M ∈ DbMHM(X) a stratum-wise constant complex of mixed Hodge

modules (with respect to an algebraic stratification S as above) if the cohomology sheaves of

the underlying constructible complex K = rat(M ) ∈ Db
c(X) are constant along the strata of

the stratification. More generally, we call a class [M ] ∈ K0(MHM(X)) virtually (Tate-type)

stratum-wise constant if equality (3.5) holds (and i∗s [M ] ∈ K0(MHSp)Tate) .

Remark 3.4. Note that by the above formulae (3.4) and (3.5), a stratum-wise constant complex

of mixed Hodge modules M represents a virtually stratum-wise constant class [M ]. Only the

virtually stratum-wise constant property was needed to derive formula (3.6). For example, if,

in the notations of Example 3.2, all the local systems LS,ℓ on S underlie unipotent variations

of mixed Hodge structures (i.e., the graded parts GrW
k LS,ℓ of the weight filtration are constant,

for all k ∈ Z), then [M ] ∈ K0(MHM(X)) is virtually stratum-wise constant.

Example 3.5. In the notations of Example 3.2, let [LH ] ∈ K0(MHM(pt)) be the Grothendieck

class of a mixed Hodge structure LH . Then, for a fixed stratum S ∈S of X , the class

[LH ] · (iS̄,X)∗
[
(iS,S̄)!Q

H
S

]
=
[
(iS̄,X)∗(iS,S̄)!L

H
S ] = [MS],

where LH
S =QH

S ⊠LH , is virtually stratum-wise constant, with i∗s [MS] = [LH ] for s∈ S all other

stalks equal to zero. This shows that a class [M ] is virtually stratum-wise (Tate-type) con-

stant if, and only if, it belongs to the (free) K0(MHM(pt))-submodule (resp., K0(MHSp)Tate-

submodule) of K0(MHM(X)) generated by classes (iS̄,X)∗
[
(iS,S̄)!Q

H
S

]
, S ∈S . �

Remark 3.6. Under the assumption of (virtual) stratum-wise constancy, formula (3.6) reduces

the calculation of Hodge-Chern and Hirzebruch classes to the motivic calculus of [19], up to

assigning the above mentioned Laurent polynomial weights χy(i
∗
s [M ]) to each stratum S, with

s ∈ S chosen. For instance, the stratum-wise constancy assumption is automatically satisfied

in the toric context for T-equivariant mixed Hodge modules, e.g., the IC-complex, see [29,

Lemma 1.2].

Example 3.7 (Mapping situation). Let f : Y → X be a proper morphism of algebraic varieties.

Let S = {S} be a complex algebraic stratification of X so that for any stratum S ∈S , S is

smooth, and S̄ \S is a union of strata. Assume that all sheaves Rℓ f∗QY |S are constant on S for

any ℓ ∈ Z and S ∈S . Then in the above notations, one gets by proper base change,

f∗mCy(Y ) = mCy([ f ]) = DRy([ f∗Q
H
Y ])

= ∑
S

(iS̄,X)∗mCy([S →֒ S̄]) ·χy( f−1(s)),(3.7)



14 L. MAXIM AND J. SCHÜRMANN

for s ∈ S chosen. If X (and hence Y ) is compact, by taking degrees in (3.7), we get

χy(Y ) = ∑
S

χy(S) ·χy( f−1(s)) = ∑
S

(
χy(S̄)−χy(∂ S̄)

)
·χy( f−1(s)),

with ∂ S̄ = S̄\S. For similar stratified multiplicative formulae, see [8].

For instance, if f is a closed inclusion of a union of strata, then only strata in Y contribute

in formula (3.7), each with multiplicity 1. Another example is provided by a projective bun-

dle P(V )→ X , with V → X an algebraic vector bundle of constant rank r + 1, so that all

multiplicities are equal, and given by χy(P
r). �

Remark 3.8. More generally, the property of stratum-wise constant higher direct image sheaves

Rℓ f∗QY |S is satisfied if f : f−1(S)→ S is a Zariski locally trivial fibration for all strata S ∈S .

This property also holds for a T-equivariant proper morphism f : Y → X , with X a toric variety

with torus T (by [29, Lemma 1.2]).

The terms mCy([S →֒ S̄]) = DRy

[
(iS,S̄)!Q

H
S

]
appearing in formula (3.6) are computed via

resolutions of singularities as follows (see [20, Prop.5.2.1] and [19, Prop.2.2]):

Proposition 3.9. Let iS,Z : S →֒ Z be a smooth partial compactification of a stratum S so that

D := Z \ S is a simple normal crossing divisor, and iS,S̄ = πZ ◦ iS,Z for a proper morphism

πZ : Z→ S̄. Then we have

(3.8) mCy([S →֒ S̄]) = DRy(
[
(iS,S̄)!Q

H
S

]
) = (πZ)∗

[
OX(−D)⊗ΛyΩ1

Z(log(D)
]
∈ K0(S̄)[y],

and

Ty∗

(
[(iS,S̄)!Q

H
S ]
)
= ∑

q≥0

(πZ)∗td∗
[
OZ(−D)⊗Ω

q
Z(logD)

]
yq

= (πZ)∗td∗
[
OZ(−D)⊗ΛyΩ

q
Z(logD)

]
∈ H∗(S̄)[y].

(3.9)

Remark 3.10. For later use, let us also mention here the following formula, using the above

notations (see, e.g., [26, Example 5.8]):

(3.10) DRy(
[
(iS,S̄)∗Q

H
S

]
) = (πZ)∗

[
ΛyΩ1

Z(log(D)
]
∈ K0(S̄)[y],

and similarly for Ty∗.

These formulae become more explicit and much simplified in the toric context, as it will be

discussed in Section 5 below.

4. A GENERALIZED HRR FOR ARBITRARY COEFFICIENTS

Let X be a compact complex algebraic variety of dimension n, with D a Cartier divisor on

X . Fix M ∈ DbMHM(X). Note that, for any integer p, we have

GrF
p DR(M )⊗OX(D) ∈ Db

coh(X),

and we define the Hodge polynomial of (X ,D,M ) by the formula

χy(X ,D;M ) := ∑
p∈Z

χ
(
X ,GrF

−pDR(M )⊗OX(D)
)
· (−y)p

=: χ(X ,DRy([M ])⊗OX(D)),
(4.1)
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which only depends on [M ] ∈ K0(MHM(X)). In the last notation, we extend the tensor prod-

uct linearly over Z[y±1]. This is well defined since GrF
p DR(M )≃ 0 for almost all p.

Example 4.1. If X is smooth and M =QH
X is the constant Hodge module, then

GrF
−pDR(QH

X )≃Ω
p
X [−p]

for 0≤ p≤ dim(X), and it is 0 otherwise, so

χy(X ,D;QH
X ) =

n

∑
p=0

χ
(
X ,Ω

p
X ⊗OX(D)

)
· yp,

wich is exactly χy(X ,OX(D)), the Hirzebruch polynomial of D, see [16, Sect.15.5]. �

Example 4.2. Assume X is a toric variety or a complex algebraic V -manifold. Then

χy(X ,D;QH
X ) =

n

∑
p=0

χ
(

X ,Ω̂
p
X ⊗OX(D)

)
· yp,

where Ω̂
p
X denotes the corresponding sheaf of Zariski differential p-forms. As before, a similar

formula holds for a torus-invariant closed algebraic subset XΣ′ ⊆ XΣ of a toric variety XΣ (i.e.,

a closed union of torus-orbits) corresponding to a star-closed subset Σ′ ⊆ Σ, with the sheaves

of differential p-forms Ω̃
p
XΣ′

as introduced by Ishida [17]. �

Remark 4.3. By abuse of notation, we will set, for any variety X with a Cartier divisor D,

χy(X ,OX(D)) := χy(X ,D;QH
X ) = χ(X ;mCy(X)⊗OX(D))

and, if X is pure dimensional of complex dimension n,

Iχy(X ,OX(D)) := χy(X ,D; IC′
H
X ),

where IC′
H
X := ICH

X [−n].

We next prove a generalized Hirzebruch-Riemann-Roch for (X ,D) as above, with any co-

efficients M ∈ DbMHM(X).

Theorem 4.4. (generalized Hirzebruch-Riemann-Roch with arbitrary coefficients)

Let X be a compact complex algebraic variety, let D be a Cartier divisor on X, and fix M ∈
DbMHM(X). Then the Hodge polynomial of (X ,D,M ) is computed by the formula:

(4.2) χy(X ,D;M ) =
∫

X
ch(OX(D))∩Ty∗([M ]).

Proof. This is an application of the module property of the Todd class transformation, accord-

ing to which, if α ∈ K0(X) and β ∈ K0(X), then

(4.3) td∗(β ⊗α) = ch(β )∩ td∗(α),
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with ch denoting the Chern character. We therefore have the following sequence of equalities:
∫

X
ch(OX(D))∩Ty∗([M ]) = ∑

p∈Z

[∫

X
ch(OX(D))∩ td∗([GrF

−pDR(M )])
]
· (−y)p

(4.3)
= ∑

p∈Z

[∫

X
td∗([GrF

−pDR(M )⊗OX(D)])
]
· (−y)p

(∗)
= ∑

p∈Z

χ
(
X ,GrF

−pDR(M )⊗OX(D)
)
· (−y)p

= χ(X ;DRy([M ])⊗OX(D))

= χy(X ,D;M ),

(4.4)

where (∗) follows from the degree property of the Todd class transformation. �

Corollary 4.5. If D = 0, we get

(4.5) χy(X ,0;M ) =

∫

X
Ty∗([M ]) = χy(X ;M ),

which is the usual Hodge polynomial of M as in (2.2).

We next prove a twisted version of the duality formula (2.7).

Corollary 4.6 (Duality formula). Let X be a compact complex algebraic variety, let D be a

Cartier divisor on X, and fix M ∈ DbMHM(X). Then

(4.6) χy(X ,D;DXM ) = χ1/y(X ,−D;M ).

Proof. Since Grothendieck duality on a point space is the identity, the assertion follows by

pushing down to a point the following duality formula for twisted Hodge-Chern classes:

DRy([DXM ])⊗OX(D) = D
(
DR1/y([M ])

)
⊗OX(D)

= D
(
DR1/y([M ])⊗OX(−D)

)
.

Here, the first equality follows from Remark 2.10, and the second by the module property

of Grothendieck duality, i.e., if L a line bundle and F is a coherent sheaf of OX -modules

on X , then D(L ⊗F ) = L ∨⊗D(F ), with L ∨ the dual line bundle; e.g., see [15, Part 1,

Sect.7]. �

Example 4.7. If M is a self-dual pure Hodge module of weight k, hence DX(M ) ≃M (k),
then

(4.7) χy(X ,D;M ) = (−y)k ·χ1/y(X ,−D;M ).

This also applies to shifted pure Hodge modules since for any mixed Hodge module com-

plex, DX(M [m])≃ (DXM )[−m], and even shifts do not change the class in the Grothendieck

group. For example, ICH
X is a pure Hodge module of weight n, for X pure n-dimensional, so

formula (4.7) applies to IC′
H
X to give: Iχy(X ,OX(D)) = (−y)n · Iχ1/y(X ,OX(−D)). �

More explicit formulae for χy(X ,D;M ) can be obtained via the projection formula by

expressing Ty∗([M ]) in terms of a stratification of X , as in Propositions 3.1 and 3.9. As

an application, we’ll work this out in detail in the next section in the toric context.
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5. CHARACTERISTIC CLASS FORMULAE IN TORIC GEOMETRY

In this section we apply the above formulae in the case of toric varieties (e.g., associated

to a full-dimensional lattice polytope), which are known to be Whitney stratified by the torus

orbits. We are also interested here in the classes ITy∗ of toric varieties, and what they “count”

when the variety comes from a polytope.

In view of formula (3.6), the key additional input in the toric situation is the following result

derived in [19]:

Proposition 5.1. [19, Prop.3.2] Let XΣ be the toric variety defined by the fan Σ. For any cone

σ ∈ Σ, with orbit Oσ and inclusion iσ : Oσ →֒ Oσ =Vσ in the orbit closure, we have:

(5.1) mCy([iσ ]) = DRy(
[
(iσ )!Q

H
Oσ

]
) = (1+ y)dim(Oσ ) · [ωVσ ],

where ωVσ is the canonical sheaf on the toric variety Vσ .

This follows from Proposition 3.9 by using the fact that Ω1
Z(log(D)) is the trivial sheaf of

rank dim(Oσ ), together with R(πZ)∗OZ(−D) ≃ ωVσ using a toric resolution πZ : Z → Vσ in

Proposition 3.9.

Remark 5.2. In the above notations, we get from Remark 3.10 the following formula, using

the fact that Vσ has rational singularities, so R(πZ)∗OZ ≃ OVσ ,

(5.2) DRy(
[
(iσ)∗Q

H
Oσ

]
) = (1+ y)dim(Oσ ) · [OVσ ].

Together with formula (3.6), this gives the following:

Theorem 5.3. Let XΣ be the toric variety defined by the fan Σ. For each cone σ ∈ Σ with

orbit Oσ , let kσ : Vσ →֒ XΣ be the inclusion of the orbit closure, and fix a point xσ ∈ Oσ

with inclusion ixσ : {xσ} →֒ XΣ. Let M ∈ DbMHM(XΣ) (resp., [M ] ∈ K0(MHM(X))) be a

(Grothendieck class of a) mixed Hodge module complex on XΣ which is (virtually) stratum-

wise constant with respect to the stratification given by the torus orbits Oσ , σ ∈ Σ. Then:

(5.3) DRy([M ]) = ∑
σ∈Σ

χy(i
∗
xσ
[M ]) · (1+ y)dim(Oσ ) · (kσ )∗[ωVσ ].

Ty∗([M ]) = ∑
σ∈Σ

χy(i
∗
xσ
[M ]) · (1+ y)dim(Oσ ) · (kσ )∗td∗([ωVσ ])

= ∑
σ∈Σ

χy(i
∗
xσ
[M ]) · (−1− y)dim(Oσ ) · (kσ)∗ (td∗(Vσ))

∨ .
(5.4)

In particular, if X is compact,

χy(X ;M ) = ∑
σ∈Σ

χy(i
∗
xσ
[M ]) · (−1− y)dim(Oσ ).

For the second equality in (5.4), we use the duality property of td∗, namely, if X is a Cohen-

Macaulay variety (e.g., a toric variety like the closure of a torus orbit, see [8, Thm.9.2.9]),

then we have (e.g., see [14, Ex.18.3.19]):

(5.5) D([OX ]) = (−1)dim(X) · [ωX ], tdk(X) = (−1)dim(X)−ktdk([ωX ]).
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Example 5.4 (Toric fibrations). Let f : Y → X be a proper toric morphism of toric varieties,

with the corresponding lattice homomorphism fN : N′→N surjective (i.e., f is a toric fibration

in the sense of [9, Prop.2.1]). Let Σ′, Σ be the fans of Y , resp., X . Since f is a toric fibration,

a T′-orbit Oσ ′ (σ ′ ∈ Σ′) is mapped by f to a T-orbit f (Oσ ′) = Oσ (σ ∈ Σ), such that the

restriction map fσ ′ = f |Oσ ′
: Oσ ′→Oσ is isomorphic to a projection Oσ ′ ≃Oσ×(C∗)ℓ→Oσ

and ℓ = dim(Oσ ′)− dim(Oσ ) the relative dimension of fσ ′ (see [9, Lem.2.6 and Prop.2.7]).

Let

(5.6) dℓ(Y/σ) := |Σℓ(Y/σ)|

with

(5.7) Σℓ(Y/σ) := {σ ′ ∈ Σ′ | f (Oσ ′) = Oσ , ℓ= dim(Oσ ′)−dim(Oσ )}.

Under the above notations and assumptions, we have

(5.8) f∗mCy(Y ) = ∑
σ∈Σ

χy( f−1(sσ )) · (1+ y)dim(Oσ ) · (kσ)∗[ωVσ ]

for sσ ∈ Oσ , with

χy( f−1(sσ )) = ∑
ℓ≥0

dℓ(Y/σ) · (−y−1)ℓ.

A similar formula holds for f∗Ty∗(Y ). See [6, Prop.3.9] for an equivariant analogue of these

formulae. �

Let us next recall that an open affine subvariety Uσ ⊂ XΣ corresponding to a cone σ ∈ Σ, is

of global product type

Uσ = Zσ ×Oσ ,

as follows. Choose a splitting N = Nσ ⊕N′ of N, where Nσ = N ∩〈σ〉 is the lattice spanned

by σ , with a corresponding splitting T = Tσ ×T′ of T. Here Zσ is the Tσ -toric variety of σ
in Nσ ⊗R, and T′ ≃ Oσ .

Lemma 5.5. Let X = XΣ be the toric variety with torus T associated to a fan Σ in NR = N⊗R,

with the Whitney stratification S given by the T-orbits. Then:

(a) ( jS)∗Q
H
S (resp., [( jS)∗Q

H
S ] ∈ K0(MHM(X))) is (virtually) stratum-wise (Tate-type)

constant for each S ∈S , with jS : S →֒ X the inclusion.

(b) ICH
X ((resp., [ICH

X ] ∈ K0(MHM(X))) is (virtually) stratum-wise (Tate-type) constant

along S .

(c) If M (resp., [M ]) is (virtually) stratum-wise (Tate-type) constant along S , then so is

its dual DXM (resp., DX [M ]).

Proof. It suffices to prove the above properties on each open affine subvariety Uσ ⊂ X , for

σ ∈ Σ, with the splitting Uσ = Zσ ×Oσ , as recalled above. Let pσ : Uσ → Zσ be the smooth

projection map with fiber Oσ . Then (a) follows from the smooth base change property for

the underlying constructible complex. Similarly, smooth pullback of mixed Hodge module

complexes preserves the K0(MHSp)Tate-module structure. Item (b) can also be checked on

the underlying perverse sheaf ICX , where it follows by induction using (a) and the Deligne

construction. Again, these operations preserve the K0(MHSp)Tate-module structure (see also

[25, (1.7.6)]). For (c), the stratum-wise constant case follows inductively from the fact that

duality commutes (up to a shift) with the smooth pullback. Applying this to [( jS)!Q
H
X ] as in
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Example 3.5, one proves the virtual stratum-wise constant case since duality commutes with

cross-products (and duality on a point preserves the Tate type). �

Remark 5.6. In the notations of the Introduction, the subgroup

χHdg

(
τ(FT(X)[y±1])

)
⊂ K0(MHM(X))

corresponds to the subgroup given by classes [M ] wich are virtually stratum-wise Tate-type

constant along the T-orbit stratification of the toric variety X .

Theorem 5.3 and Lemma 5.5(b) yield the following (the case of the constant Hodge module

was already considered by the authors in [19]):

Corollary 5.7. Let XΣ be the toric variety defined by the fan Σ. For each cone σ ∈ Σ with orbit

Oσ , let kσ : Vσ →֒ XΣ be the inclusion of the orbit closure, and fix a point xσ ∈ Oσ . Then we

have the following formulae:

(5.9) DRy([IC
′H
XΣ
]) = ∑

σ∈Σ

χy(IC
′H
XΣ
|xσ ) · (1+ y)dim(Oσ ) · (kσ )∗[ωVσ ].

ITy∗(XΣ) = ∑
σ∈Σ

χy(IC
′H
XΣ
|xσ ) · (1+ y)dim(Oσ ) · (kσ)∗td∗([ωVσ ])

= ∑
σ∈Σ

χy(IC
′H
XΣ
|xσ ) · (−1− y)dim(Oσ ) · (kσ )∗ (td∗(Vσ ))

∨ .
(5.10)

In particular, if XΣ is a simplicial toric variety then χy(IC
′H
XΣ
|xσ ) = χy(Q

H
XΣ
|xσ ) = 1 for all

σ ∈ Σ.

Example 5.8 (y = 1, signature). The intersection homology signature of a projective toric

variety XΣ is computed by

(5.11) sign(XΣ) = ∑
σ∈Σ

χ1(IC
′H
XΣ
|xσ ) · (−2)dim(Oσ ).

For the case of a simplicial toric variety, see e.g., [19, formula (1.12)]. �

6. APPLICATIONS TO WEIGHTED LATTICE POINT COUNTING

Let us recall how the classical lattice point counting in a polytope relates to characteristic

classes. Let M ∼= Zn be a lattice and P⊂MR
∼= Rn be a full-dimensional lattice polytope with

associated projective toric variety XP, inner normal fan ΣP and ample Cartier divisor DP. By

the classical work of Danilov [10], the (dual) Todd classes of XP can be used for counting the

number of lattice points in (the interior of) a lattice polytope P, namely,

(6.1) |P∩M|=

∫

XP

ch(OXP
(DP))∩ td∗(XP) = ∑

k≥0

1

k!

∫

XP

[DP]
k∩ tdk(XP),

(6.2) |Int(P)∩M|=

∫

XP

ch(OXP
(DP))∩ td∗([ωXP

]) = ∑
k≥0

(−1)n

k!

∫

XP

[−DP]
k∩ tdk(XP),
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where the summation is over the faces Q of P, |− | denotes the cardinality, and Int(P) is the

interior of P. This also gives the coefficients of the Ehrhart polynomial of P counting the

number of lattice points in the dilated polytope ℓP := {ℓ ·u | u ∈ P} for a positive integer ℓ:

EhrP(ℓ) := |ℓP∩M|=
d

∑
k=0

akℓ
k,

with

ak =
1

k!

∫

XP

[DP]
k∩ tdk(XP).

Note that by the above formulae one gets EhrP(0) = a0 =
∫

XP
td∗(XP) = 1, and the reciprocity

identity

(6.3) EhrP(−ℓ) = (−1)n · |Int(ℓP)∩M|.

Recall that in [19] the authors showed that the homology Hirzebruch class

Ty∗(XP) = ∑
σ∈ΣP

(1+ y)dim(Oσ ) · (kσ )∗td∗([ωVσ ])(6.4)

can be used to count lattice points in a lattice polytope P so that points in the interior of a face

Q of P carry the weight (1+ y)dim(Q). More precisely, one has (see [19, Theorem 1.3]):

(6.5) ∑
Q�P

(1+ y)dim(Q) · |Relint(Q)∩M|=
∫

X
ch(OXP

(DP))∩Ty∗(XP) = χy(XP,OXP
(DP)),

with Relint(Q) the relative interior of a face Q.

The classes Ty∗([M ]), and in particular ITy∗(XP), serve a similar purpose, but the weights

need to be adjusted, as the formulae of Theorem 5.3 suggest.

Proposition 6.1 (Weighted lattice point counting). If X =XP is the projective toric variety with

ample Cartier divisor D = DP associated to a full-dimensional lattice polytope P⊂MR
∼=Rn,

and ℓ ∈ Z>0, then for any M ∈ DbMHM(X) (resp., [M ] ∈ K0(MHM(X))) a (Grothendieck

class of a) mixed Hodge module complex on X which is (virtually) stratum-wise constant with

respect to the stratification given by the torus orbits, we have

χy(X , ℓD;M ) =

∫

X
eℓ[D]∩Ty∗([M ])

=
n

∑
k=0

(
1

k!

∫

X
[D]k∩Ty∗([M ])

)
ℓk

= ∑
Q�P

χy(i
∗
xQ
[M ]) · (1+ y)dim(Q) · |Relint(ℓQ)∩M|,

(6.6)

where the summation on the right is over the faces Q of P, and xQ ∈OσQ
is a point in the orbit

of XP associated to (the cone σQ in the inner normal fan of P corresponding to) the face Q.

Proof. For a face Q of P, denote by iQ : VσQ
:= XQ →֒ X the inclusion of the orbit closure

associated to the (cone σQ of the) face Q. Note that we have dimR(Q) = dimR(OσQ
). Then by
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(5.4) the following equality holds:
∫

X
ch(OX(ℓD))∩Ty∗([M ])= ∑

Q�P

χy(i
∗
xQ
[M ]) ·(1+y)dim(Q)

∫

X
ch(OX(ℓD))∩(iQ)∗td∗([ωXQ

]).

It remains to prove that for any face Q of P, we have that:

(6.7)

∫

X
ch(OX(ℓD))∩ (iQ)∗td∗([ωXQ

]) = |Relint(ℓQ)∩M|.

This follows exactly as in [19, Theorem 1.3] by using Danilov’s formula (6.2) for the orbit

closure XQ, together with

(6.8)

∫

X
ch(OX(ℓD))∩ (iQ)∗td∗([ωXQ

]) =
∫

XQ

ch(OXQ
(ℓDQ))∩ td∗([ωXQ

]).

The latter equality uses the projection formula, together with (iQ)
∗(OXP

(ℓDP) = OXQ
(ℓDQ).

�

Definition 6.2 (Weighted Ehrhart polynomials). In the above notations, the expression

EP,M (ℓ,y) := ∑
Q�P

χy(i
∗
xQ
[M ]) · (1+ y)dim(Q) · |Relint(ℓQ)∩M| ∈ Z[y±1]

is obtained by evaluating the polynomial

EP,M (z,y) =
n

∑
k=0

(
1

k!

∫

XP

[DP]
k∩Ty∗([M ])

)
zk

at z = ℓ. We call this polynomial the weighted Ehrhart polynomial of P with coefficients

induced from M ∈ DbMHM(XP) (resp., [M ] ∈ K0(MHM(XP))), a (Grothendieck class of a)

mixed Hodge module complex on XP which is (virtually) stratum-wise constant with respect

to the stratification given by the torus orbits.

More generally, for a Laurent polynomial weight function

f : {faces of P}→ Z[y±1], Q 7→ fQ(y)

defined on the set of faces of P, we define as in the Introduction an associated weighted Ehrhart

polynomial by

EP, f (ℓ,y) := ∑
Q�P

fQ(y) · (1+ y)dim(Q) · |Relint(ℓQ)∩M|.

Remark 6.3. Note that any M ∈DbMHM(XP) (resp., [M ]∈K0(MHM(XP))), a (Grothendieck

class of a) mixed Hodge module complex on XP which is (virtually) stratum-wise constant with

respect to the stratification given by the torus orbits, induces a weight function on the faces

of P defined by fQ(y) = χy(i
∗
xQ
[M ]), with xQ ∈ OσQ

a point in the orbit of XP associated to

(the cone σQ in the inner normal fan of P corresponding to) the face Q and ixQ
: {xQ} → XP

the inclusion map. Moreover, any weight function f can be obtained in this way from such

a mixed Hodge module complex M , e.g., by using direct sums and shifts of (iQ)!Q
H
OσQ

(nQ),

with nQ ∈ Z (or, using the subgroup χHdg

(
τ(FT(X)[y±1])

)
as in the Introduction). In partic-

ular, the expression EP, f (ℓ,y) is obtained by evaluating a polynomial EP, f (z,y) at z = ℓ.

By using the first equality of (6.6), we obtain the following:
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Proposition 6.4. In the above notations,

(6.9) EP,M (0,y) = χy(XP,0;M ) = χy(XP;M )

is the usual Hodge polynomial of M .

Example 6.5. Let us next give some examples for Proposition 6.1, formulated in terms of

Ehrhart theory. If X = XP is the projective toric variety with inner normal fan Σ = ΣP and

ample Cartier divisor D = DP associated to a full-dimensional lattice polytope P⊂MR
∼= Rn,

and ℓ∈Z>0, for a face Q of P, denote by iQ : VσQ
:= XQ →֒ X the inclusion of the orbit closure

associated to the (cone of the) face Q.

(a) For M = (iQ)!Q
H
OσQ

, we get

(6.10) EP,M (ℓ,y) = (1+ y)dim(Q) · |Relint(ℓQ)∩M| ∈ Z[y],

with EP,M (0,y) = χy(OσQ
) = (−y−1)dim(Q).

In particular, by evaluating EP,M (ℓ,y) at y = 0, we get the polynomial EP,M (ℓ,0) =
|Relint(ℓQ)∩M| counting lattice points in the relative interior of the dilated face ℓQ,

with EP,M (0,0) = (−1)dim(Q).

(b) Let X ′ := XP′ be a torus-invariant closed algebraic subset of X = XP corresponding to

a polytopal subcomplex P′ ⊆ P (i.e., a closed union of faces of P), with M = QH
X ′

pushed forward to the ambient XP. Then

(6.11) EP,M (ℓ,y) = ∑
Q�P′

(1+ y)dim(Q) · |Relint(ℓQ)∩M| ∈ Z[y],

where the summation is over the faces Q of P′. Hence, EP,M (ℓ,0) = |ℓP′∩M|, so if

y = 0 we recover the classical Ehrhart polynomial EhrP′(ℓ) for P′, and

EP,M (0,y) = χy(X
′) = ∑

Q�P′

(−y−1)dim(Q),

which gives that

EP,M (0,0) = ∑
Q�P′

(−1)dim(Q) = χ(P′)

is the topological Euler characteristic of P′; see also [19, formula (4.4)]. Similarly, for

the inclusion of the open complement jU : U = X \X ′ →֒ X , with M = ( jU)!Q
H
U , we

get similar formulae summing over faces Q of P not contained in P′.

(c) For M = (iQ)∗Q
H
OσQ

, we get by (5.2) and Danilov’s formula (6.1) that

(6.12) EP,M (ℓ,y) = (1+ y)dim(Q) · |ℓQ∩M| ∈ Z[y],

with EP,M (0,y) = χy(VσQ
), EP,M (ℓ,0) = |ℓQ∩M| fitting also for y = 0 with the clas-

sical Ehrhart polynomial for Q, and EP,M (0,0) = χ(Q). Note that our choice of M

satisfies the stratum-wise constant assumption, e.g., by Lemma 5.5. �

Let X = XP be as before the projective toric variety with inner normal fan Σ = ΣP and ample

Cartier divisor D = DP associated to a full-dimensional lattice polytope P⊂MR
∼= Rn. Then

another important example is provided by M = IC′
H
XP

. As explained in the Introduction, in

the case when P contains the origin in its interior (so that its polar polytope P◦ is defined),
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the stalk contributions χy(IC
′H
XP
|xQ

) have the following combinatorial description (see, e.g.,

[4, 12, 11, 25], etc):

(6.13) χy(IC
′H
XP
|xQ

) = g̃Q(−y) := gQ◦(−y),

with Q a face of P and Q◦ the corresponding face of the polar polytope P◦, and gQ◦(t) ∈ Z[t]
the Stanley g-polynomial of Q◦, cf. [27, Sect.3]. We then get:

Corollary 6.6. If X = XP is the projective toric variety with ample Cartier divisor D = DP

associated to a full-dimensional lattice polytope P⊂MR
∼= Rn, and ℓ ∈ Z>0, then:

∫

X
eℓ[D]∩ ITy∗(X) = Iχy(X ,OX(ℓD))

= ∑
Q�P

χy(IC
′H
X |xQ

) · (1+ y)dim(Q) · |Relint(ℓQ)∩M|

= EP,IC′(ℓ,y) ∈ Z[y],

(6.14)

where the summation is over the faces Q of P, and xQ ∈ OσQ
is a point in the orbit of X = XP

associated to (the cone σQ in the inner normal fan of P corresponding to) the face Q. In

particular, EP,IC′(0,y) = Iχy(X), with EP,IC′(0,0) = Iχ0(X). Moreover, for y = 1, one gets a

weighted Ehrhart polynomial

(6.15) EP,IC′(ℓ,1) = ∑
Q�P

χ1(IC
′H
XP
|xQ

) ·2dim(Q) · |Relint(ℓQ)∩M|

whose constant term EP,IC′(0,1)= Iχ1(X)= sign(X) is the intersection cohomology signature

of the projective toric variety X = XP.

Example 6.7. Assuming in addition that the origin is an interior point of P, the formulas of the

above corollary have a combinatorial interpretation, since the weight function for M = IC′
H
XP

is fQ(y) = g̃Q(−y). With this weight function, we get the corresponding weighted Ehrhart

polynomial

(6.16) EP, f (ℓ,y) = ∑
Q�P

g̃Q(−y) · (1+ y)dim(Q) · |Relint(ℓQ)∩M| ∈ Z[y],

with

(6.17) Iχy(X) = EP, f (0,y) = ∑
Q�P

g̃Q(−y) · (−1− y)dim(Q),

hence for y = 1 one gets via (2.11) the following combinatorial formula for the intersection

cohomology signature of X = XP:

(6.18) sign(X) = EP, f (0,1) = ∑
Q�P

g̃Q(−1) · (−2)dim(Q).

�

Remark 6.8 (Simple polytopes). If the full-dimensional polytope P is simple, then X = XP is

a simplicial toric variety, hence IC′
H
X ≃ QH

X . So, in this case, χy(IC
′H
X |xQ

) = 1 and formula

(6.15) reduces to:

EP,IC′(ℓ,1) = ∑
Q�P

2dim(Q) · |Relint(ℓQ)∩M|,
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with constant term sign(X) = ∑Q�P(−2)dim(Q); see also [19, formula (1.12)].

Remark 6.9 (Intersection cohomology Poincaré polynomials). Making ℓ= 0 in formula (6.14)

yields via Example 6.5(a):

Iχy(X) =

∫

X
ITy∗(X) = ∑

Q�P

χy(IC
′H
X |xQ

) · (−1− y)dim(Q),(6.19)

computing the intersection cohomology Hodge polynomials of X = XP in terms of local con-

tributions and the combinatorics of the polytope. Moreover, using the fact that both [IH∗(X)]

and [IC′HXP
|xQ

] are of Tate type in K0(MHS), upon substituting y =−t2 in (6.19), one recovers

a formula of Fieseler [12, Theorem 1.1] for the intersection cohomology Poincaré polynomial

of X , see also [11], [25], etc.

We next discuss the effect of duality on weighted Ehrhart polynomials, in the form of the

following reciprocity formula. This takes the form of a purity statement for pure Hodge mod-

ules.

Theorem 6.10 (Reciprocity and Purity). In the above notations, for any M ∈ DbMHM(X)
(resp., [M ] ∈ K0(MHM(X))) a (Grothendieck class of a) mixed Hodge module complex on X

which is (virtually) stratum-wise constant with respect to the stratification given by the torus

orbits, we have

EP,M (−ℓ,y) = EP,DXM (ℓ,
1

y
).(6.20)

In particular, if M is such a self-dual pure Hodge module of weight n on X = XP, then the

following purity property holds:

(6.21) EP,M (−ℓ,y) = (−y)n ·EP,M (ℓ,
1

y
).

More generally, for any weight function f on the faces of P, we have

(6.22) EP, f (−ℓ,y) = ∑
Q�P

fQ(y) · (1+ y)dim(Q) ·
(
(−1)dim(Q) · |ℓQ∩M|

)
.

Proof. Formula (6.20) follows immediately by combining (6.6) with the duality formula (4.6).

Indeed, with D = DP the associated Cartier divisor of P,

EP,M (−ℓ,y) = χy(X ,−ℓD;M ) = χ1/y(X , ℓD;DXM ) = EP,DXM (ℓ,
1

y
).

Formula (6.21) follows similarly by using (4.7).

Let now f be a weight function as above, and choose a representative [M ]∈K0(MHM(XP))
which is virtually stratum-wise constant along the T-orbits, such that EP, f = EP,M . Then

DX [M ] is also virtually stratum-wise constant along the T-orbits by Lemma 5.5. By (5.3), we

have

DRy([M ]) = ∑
Q�P

χy(i
∗
xQ
[M ]) · (1+ y)dim(Q) · (iQ)∗[ωVσQ

]

= ∑
Q�P

fQ(y) ·DRy

(
[(iQ)!Q

H
OσQ

]
)
,

(6.23)
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with fQ(y) = χy(i
∗
xQ
[M ]). Moreover, since on the smooth stratum S, QH

S ≃ IC′
H
S is a pure

Hodge module of weight dim(S), we get as in Remark 2.10 that

DRy

(
DX

(
[(iQ)!Q

H
OσQ

]
))

= (−y)−dim(Q) ·DRy

(
[(iQ)∗Q

H
OσQ

]
)
.

Since DRy commutes with dualities, up to exchanging y by 1/y, we then have

DR1/y(DX [M ]) = ∑
Q�P

fQ(y) · (−y)dim(Q) ·DR1/y

(
[(iQ)∗Q

H
OσQ

]
)
.

Then, with X = XP, D = DP, we get:

EP, f (−ℓ,y) = χ1/y(X , ℓD;DXM ) =
∫

X
eℓD∩ td∗(DR1/y(DX [M ]))

= ∑
Q�P

fQ(y) · (−y)dim(Q) ·

∫

X
eℓD∩T1/y,∗

(
[(iQ)∗Q

H
OσQ

]
)

(6.12)
= ∑

Q�P

fQ(y) · (−y)dim(Q) ·

(
1+

1

y

)dim(Q)

· |ℓQ∩M|

= ∑
Q�P

fQ(y) · (1+ y)dim(Q) ·
(
(−1)dim(Q) · |ℓQ∩M|

)
.

�

Example 6.11. The reciprocity formula (6.20) can be applied to all cases of Example 6.5.

In the (dual) cases (a) and (c), for M = (iQ)!Q
H
OσQ

with DX [M ] = [(iQ)∗Q
H
OσQ

(dim(Q))] ∈

K0(MHM(X)), formula (6.20) specializes to the classical Ehrhart reciprocity (6.3) for Q.

Indeed,

EP,M (ℓ,y) = (1+ y)dim(Q) · |Relint(ℓQ)∩M|

and

EP,DXM (ℓ,
1

y
) = (1+ y)dim(Q) ·

(
(−1)dim(Q) · |ℓQ∩M|

)
.

�

Example 6.12 (IC-reciprocity). Assume P contains the origin in its interior. Then for M =

IC′
H
X , corresponding to the weight function fQ(y) = g̃Q(−y), the weighted Ehrhart polynomial

becomes:

(6.24) EP, f (ℓ,y) = ∑
Q�P

g̃Q(−y) · (1+ y)dim(Q) · |Relint(ℓQ)∩M| ∈ Z[y].

Moreover, by (6.22) or classical Ehrhart reciprocity, we get

(6.25) EP, f (−ℓ,
1

y
) = ∑

Q�P

g̃Q(−
1

y
) · (−y)−dim(Q) · (1+ y)dim(Q) · |ℓQ∩M|.

Hence using (6.21) for IC′
H
X , we get

(6.26) EP, f (ℓ,y) = ∑
Q�P

g̃Q(−
1

y
) · (−y)n−dim(Q) · (1+ y)dim(Q) · |ℓQ∩M|.

�
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Remark 6.13. Our definition (6.24) for EP, f (ℓ,y) equals Gϕ=1(ℓ,y) from [2, formula (14)] for

the constant function ϕ = 1, and formula (6.26) matches the definition of Gϕ=1(ℓ,y) given

in [2, formula (9)]. Moreover, our general reciprocity formula (6.21) recovers the reciprocity

formula [2, Theorems 1.3 and 2.6] for the constant function ϕ = 1.

As another consequence of (6.21) for M = ICH
XP

and y = 1, we obtain the following gener-

alization of [19, (4.5), (4.6)] (where the simplicial case was considered, with all g̃Q(−1) = 1).

Corollary 6.14. For a full-dimensional lattice polytope P⊂MR ≃ Rn with toric variety X =
XP, one has the following identity:

(6.27)

∑
Q�P

χ1(IC
′H
X |xQ

) ·

(
1

2

)codim(Q)

· |Relint(ℓQ)∩M|= ∑
Q�P

χ1(IC
′H
X |xQ

) ·

(
−

1

2

)codim(Q)

· |ℓQ∩M|,

where for each face Q of P we choose a point xQ in the T-orbit of X corresponding (via the

inner normal fan of P) to Q. If, moreover, P contains the origin in its interior, then a similar

formula is obtained with χ1(IC
′H
X |xQ

) = g̃Q(−1).

Proof. Assume for simplicity that P contains the origin in its interior. Then (6.27) follows by

setting y = 1 in formulae (6.24) and (6.26), and then dividing the resulting expressions by 2n

with n = dim(P) = dim(X). Here, we use the weights fQ(1) = χ1(IC
′H
X |xQ

) = g̃Q(−1). �
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