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Abstract: The relaxation time approximation (RTA) of the kinetic Boltzmann equation
is likely the simplest window into the microscopic properties of collective real-time transport.
Within this framework, we analytically compute all retarded two-point Green’s functions of
the energy-momentum tensor and a conserved U(1) current in thermal states with classical
massless particles (a ‘CFT’) at non-zero density, and in the absence and presence of broken
translational symmetry. This is done in 2 + 1 and 3 + 1 dimensions. RTA allows a full
explicit analysis of the analytic structure of different correlators (poles versus branch cuts)
and the transport properties that they imply (the thermoelectric conductivities, and the
hydrodynamic, quasihydrodynamic and gapped mode dispersion relations). Our inherently
weakly coupled analysis thereby also enables a direct comparison with previously known
strongly coupled results in holographic CFTs dual to the Einstein-Maxwell-axion theories.
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1 Introduction and summary of results

Microscopic dynamics of the ‘fundamental’ constituents of matter gives rise to collective,
macroscopic dynamics, including to fluids and gases. Such collective behavior, however,
depends on complicated dynamics of many particles: for example, there are on the order of
1025 molecules in a liter of water. Whether these constituents (particles, atoms, molecules)
are classical or quantum, a complete description of such a system at the level of each
particle is intractable. Instead, the simplest physically transparent description of such
dynamics combines methods of statistics and detailed knowledge of individual collisions.
Such a description of a many-body system is known as kinetic theory and it crucially relies
on the concept of quasiparticles (see e.g. [1–8]). A way to understand the full, time-reversal-
invariant microscopic dynamic in kinetic theory is the so-called BBGKY hierarchy [9–12],
which couples together the dynamics of all n-particle distribution functions over the phase
space. The famous Boltzmann equation is a truncation of this infinite chain of integro-
differential equation to a single dynamical equation for a one-particle distribution function
f(t,x,p) in the phase space that depends on the collision integral or the collision kernel
accounting for the microscopic dynamics of 2-to-2 particle collisions. Even then, analyzing
the Boltzmann equation exactly and solving it even numerically remains extremely difficult.
For recent progress in finding such solutions in certain cases, see Refs. [13–17].

The Boltzmann equation can be further reduced to a simple differential equation
within the context of the so-called relaxation time approximation (RTA), also known as
the Bhatnagar-Gross-Krook approximation [18]. One way to understand this approxima-
tion, in physical terms, is by considering the possible spectrum of the linearized collision
integral (see Ref. [19]). If we assume that an eigenvalue exists that is ‘parametrically’ sep-
arated from the remaining ones, which dominates the late-time relaxation of the system
with a single relaxation time τR, then we can approximate the collision integral by the
well-known RTA approximation [20] discussed in detail below. Within this approximation,
the Boltzmann equation can often be solved analytically. While in itself an ‘effective’ and
truncated (UV-incomplete) description, such explicit results are extremely instructive and
valuable for the analysis of (weakly-coupled) low-energy collective states of matter (see
e.g. Refs. [21–27] and references therein).

While often used outside of its appropriate regime in the literature, the kinetic descrip-
tion fundamentally relies on the weakly-coupled picture of a dilute gas of particles colliding
with each other. This intrinsic limitation of such a description therefore means that if the
particles become strongly interacting, it is hard to justify the numerous limits of the un-
derlying quantum field theory (QFT) that we routinely make to render kinetic calculations
tractable. An independent approach to the study of strongly coupled states of matter that
is microscopic and UV-complete is the holographic duality (the AdS/CFT correspondence)
[28] (see Refs. [29–32]). Its limitation, on the other hand, is that it is in practice limited
to large-N , typically supersymmetric conformal theories (CFTs). Nevertheless, holography
has provided us with a wealth of invaluable information about thermal and dense collective
states of matter. Despite the formidable difficulties in using holography beyond the large-N
limit (see Refs. [33] and [32]), computations beyond infinite ’t Hooft coupling can be per-
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formed by the inclusion of classical higher-derivative supergravity corrections to the bulk
Einstein-Hilbert action in 4 + 1 dimensions [34] (see also [19, 35]). As per the holographic
description, spectra of correlation functions correspond to the ring-down spectra of dual
linearly perturbed black holes: the quasinormal modes [36]. In a sense, quasiparticle exci-
tations in kinetic theory spectra are replaced by the quasinormal modes of black holes. The
central feature of the holographic finite-temperature (T ̸= 0) spectra are isolated simple
poles and the absence of branch cuts, which were found in a finite-T QFT calculation at
zero coupling by Hartnoll and Kumar [37]. The transition from one picture to another, as
a function of the coupling constant, has been relatively well understood in recent year from
the point of view of holography [19, 38–41] (for related earlier work on current correlators
in finite density states in 2 + 1 dimensions, see Refs. [42, 43]). Studies of spectra from the
angle of finite-T are unfortunately dramatically harder and are therefore extremely rare,
existing only in the simple large-N vector models [44, 45].

A natural question that arises in the investigation of thermal states and their physical
excitations is what can be learnt from the simplification of weakly-coupled QFTs: namely,
from kinetic theory. Despite the fact that the Boltzmann equation was written down in
its full form in 1872 and has been extensively studied since then, it was only in 2015 that
Romatschke analyzed the full analytic structure of retarded two-point correlation functions
in RTA [22]. For subsequent extensions, see Refs. [46, 47]. This 3+1 dimensional calculation
could then be compared with the spectra obtained from the holographic bulk Einstein
gravity with the thermal Schwarzschild black brane background solution in 4+1 dimensions
and its finite coupling extensions (cf. Ref. [19]). What the RTA kinetic theory analysis of
[22] shows is the combination of a branch cut along with the ‘universal’ hydrodynamic poles
present in any finite-T holographic calculation. For discussions of linearized hydrodynamics,
hydrodynamic correlators and the nature of dispersion relations of diffusion and sound,
see Refs. [48–50]. The full picture of how QFTs interpolate between the weakly-coupled
picture with branch cuts and the strongly-coupled picture with only poles remains to be
understood although a highly suggestive and potentially complete mechanism has emerged
from the holographic studies of higher-derivative gravity [19, 41].

Holography has enabled us to study not only thermal states but, among numerous other
setups, also finite-density states with a finite chemical potential µ ̸= 0. The easiest way to
incorporate a U(1) charge into the boundary CFT is to study the bulk Einstein-Maxwell
theory with the Reissner-Nördstrom black brane background. For holographic analyses
of this theory, see Refs. [51–57]. On the other hand, holographic models seeking closer
contact with ‘realistic’ condensed matter systems that include a lattice and, for example,
give rise to a finite conductivity in a µ ̸= 0 state, were developed by explicitly breaking
the boundary translational symmetry in Refs. [58–60]. In particular, the simplest of these
models, the so-called Einstein-Maxwell-dilaton model which accounts for finite T , µ and
a translation-symmetry breaking parameter Γ was then studied in detail by Davison and
Goutéraux [61]. Some other papers studying holography with broken translations include
Refs. [62–67]. Finite coupling corrections to the picture they developed are presently not
well understood.

The goal of this paper is to bridge the gap between a weakly coupled description of
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matter in terms of kinetic theory and the strongly coupled holographic studies of thermal
states that exhibit some combination finite density and broken translations. We analyti-
cally compute all retarded two-point functions of conserved operators in such systems by
developing and solving in each case the appropriate RTA kinetic theory equations. This
then allows us to classify and study the behaviour of physical modes that dominate the low-
energy (late-time) dynamics of collective states, which are controlled by the conservation
laws of operators corresponding to continuous global symmetries: the energy-momentum
tensor Tµν and the U(1) current Jµ. These conservation laws (or the Ward identities) are

∇µT
µν =

{
0, ν ̸= i,

−ΓT 0i, ν = i,
(1.1)

∇µJ
µ = 0, (1.2)

where we have allowed for the breaking of momentum conservation with the help of the
parameter Γ. In each case, we derive the full set of dispersion relation of all hydrodynamic
and gapped modes visible by RTA as well as various transport coefficients, such as the
thermoelectric conductivities accessible by the linear response theory and the Kubo formu-
lae. A number of examples also exhibits interesting interplay between hydrodynamic and
low-energy gapped modes (i.e., their ‘collisions’ in the complex frequency plane), which can
be understood in the context of quasihydrodynamics when the pole collisions occur near the
hydrodynamic regime [68]. The complete classification of all cases computed from RTA in
3 + 1 and 2 + 1 dimensions is collected in Tables 1 and 2, respectively.

More precisely, in these two tables, we schematically depict the qualitative properties
of the RTA spectra of all channels of two-point functions composed of Tµν and Jµ in the
complex frequency ω plane for some fixed (small or on the order comparable to other scales
in the problem) wavevector (or ‘momentum’) k aligned with the x axis. In 3+1 dimensions,
the remaining symmetries allow for a decomposition of correlators into decoupled spin
0, 1 and 2 channels with respect to the SO(2) symmetry of spatial rotations about the
momentum vector. In 2 + 1, they can be decomposed into even and odd channels with
respect to the Z2 symmetry associated with parity transformations about the momentum
vector.

Each spectrum in 3 + 1 and 2 + 1 dimensions contains a branch cut running between
the branch points at ω = ±k − i/τR, where τR is the RTA relaxation time. Most spectra
also contain hydrodynamic modes (gapless modes when Γ = 0), which we represent with
black dots. Diffusive modes are placed on the imaginary axis and a pair of sound modes is
placed symmetrically (with respect to the imaginary axis) in the complex plane at the same
imaginary value as the diffusive poles. Some spectra also contain gapped modes. A gapped
mode independent of the existence of momentum relaxation (represented with a green dot)
exists only in 2 + 1 dimensional even current-current (density-density) correlators and ex-
hibits a collision with the diffusive mode after which both modes become propagating. This
phenomenon is represented by blue arrows. This marks an important qualitative difference
between the behavior of current correlators in 2 + 1 and 3 + 1 dimensions, which was de-
scribed in the context of holography in Ref. [43]. The second type of gapped modes exists
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as a result of momentum relaxation (plotted with a black dots) and exhibits quasihydro-
dynamic collisions with a diffusive mode. Those collisions are represented by red arrows.
The 2 + 1 dimensional ⟨JJ⟩ correlator with momentum relaxation parallel to momentum
is special in that it exhibits both types of pole collisions. Finally, we note that at µ = 0,
the ⟨TµνJρ⟩ correlators vanish.

⟨JJ⟩ ⟨TT ⟩ ⟨TJ⟩
spin 0 spin 1 spin 0 spin 1 spin 2 spin 0 spin 1

T ̸= 0

• • • •

— —

T,Γ∥ ̸= 0

• •

— —

T,Γ⊥ ̸= 0

• • • •

— —

T, µ ̸= 0

•• • • • • • • • •

T, µ,Γ∥ ̸= 0

• • •

T, µ,Γ⊥ ̸= 0

•• • • • • • • • •

Table 1. A ‘periodic table’ of analytic structures of Tµν and Jµ correlators in 3+1 dimensions. The
first row T ̸= 0 corresponds to results found in [22]. The second and third rows are a momentum
dissipation (Γ∥ is dissipation in the direction parallel to the perturbations’ wavevector, while Γ⊥
is dissipation in the transverse direction) extension to the first row. The fourth row T, µ ̸= 0,

is the thermoelectric case. The fifth and sixth row are the momentum dissipating thermoelectric
case. Hydrodynamic poles are denoted by black points. The logarithmic branch cut is denoted by
a squiggly line. In the case of nonzero Γ∥, we denote the movement of the poles with increasing k

with red lines, indicating that there is a collision at k ∼ Γ∥. After the collision, the poles acquire a
real part and become propagating. We provide more details of the analytic structure of the spin 0
⟨JJ⟩T,µ ̸=0 in Figure 4.

The outline of the paper is as follows: in Section 2, we first discuss the RTA kinetic
theory. We present the method for the calculation of correlation functions and discuss
the relevant aspects of the thermoelectric effect. With the basics established, we state the
complete set of analytic results for the correlators in Section 3, which represents the main
result of the present work. We then analyze both in 2 + 1 and in 3 + 1 dimensions various
details of the uncharged correlators in Section 4, the uncharged correlators with momentum
breaking in Section 5, the charged case in Section 6 and the charged momentum breaking
case in Section 7. Conclusions and future directions are then discussed in Section 8. To
facilitate a stringent consistency check of our kinetic theory results in the (hydrodynamic)
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⟨JJ⟩ ⟨TT ⟩ ⟨TJ⟩
even odd even odd even odd

T ̸= 0

• • • •

— —

T,Γ∥ ̸= 0

• •

— —

T,Γ⊥ ̸= 0

• • • •

— —

T, µ ̸= 0

• •• • • • • • • •

T, µ,Γ∥ ̸= 0

• • •

T, µ,Γ⊥ ̸= 0

• •• • • • • • • •

Table 2. A ‘periodic table’ of analytic structures of Tµν and Jµ correlators in 2+1 dimensions. In
addition to the labelling used in Table 1, the new structure of colliding poles at τRk ∼ 1 (where τR
is the relaxation time) is depicted with blue arrows. The green dots are the special gapped modes
in 2 + 1 dimensions that remain gapped when Γ = 0. For the even channel ⟨JJ⟩ correlators, the
branch cut is drawn so as to make the representation of the gapped pole (in green) clearer. We note
that the shape of the cut can indeed be arbitrarily chosen so long as it connects the two branch
points. We include more details of the even ⟨JJ⟩T ̸=0 in Figure 1, the even ⟨TT ⟩T,Γ∥ ̸=0 in Figure 2
and the even ⟨JJ⟩T,µ,Γ∥ ̸=0 in Figure 5.

low-energy limit, we also perform an independent hydrodynamic calculation of all studied
correlators in Appendix A. Finally, Appendix B contains certain necessary details of the
kinetic theory calculation that pertain to contact terms.

2 Set up

2.1 Kinetic theory in the RTA

In this section, we lay down the basic ideas of RTA kinetic theory, following the conven-
tions of [22]. The Boltzmann equation for the on-shell one particle distribution function,
f(t,x,p), is

[pµ∂µ + Fµ∇pµ ] f = C[f ], (2.1)
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where Fµ represents the forces acting on a particle and C[f ] is the collision kernel. The
electromagnetic and gravitational forces are

Fµ = Fµνpν , (2.2)

Fµ = −Γµ
αβp

αpβ, (2.3)

respectively. Fµν is the electromagnetic field strength tensor and Γµ
αβ is the Christoffel

symbol. Here, we will take the collision kernel to be the Anderson-Witting [20] RTA kernel,
namely

C[f ] =
pµuµ
τR

(f − f eq) , (2.4)

where

f eq(t,x,p) = e(p·u(t,x)+µ(t,x))/T (t,x), (2.5)

is the equilibrium distribution function to which the system relaxes on the timescale of
τR. Furthermore, the lowest moments of the distribution function provide the current and
energy momentum tensor in d+ 1 dimensions

Jµ =

∫
ddp

(2π)d
pµ

p0
f, (2.6)

Tµν =

∫
ddp

(2π)d
pµpν

p0
f, (2.7)

which are conserved:

∇µT
µν = 0, ∇µJ

µ = 0. (2.8)

For conservation to hold, the RTA prescription requires moments of (2.4) to vanish, which
results in the matching conditions

uν

∫
ddp

(2π)dp0
pµpν (f − feq) = 0, uν

∫
ddp

(2π)dp0
pν (f − feq) = 0. (2.9)

Furthermore, it will also be convenient to define the following thermodynamic quantities
in equilibrium for massless particles using the Maxwell-Boltzmann distribution function:

n0 =
2πd/2

(2π)d
Γ(d)

Γ(d/2)
e

µ0
T0 T d

0 , (2.10)

ε0 = d T0n0, P0 =
1

d
ε0, (2.11)

χ =

∫
ddp

(2π)d
f0(p)

T0
Ωd p

d−1 =
n0

T0
, (2.12)

d(ε0 + P0) =

∫
ddp

(2π)d
f0(p)

T0
Ωd p

d+1, (2.13)

where n0 is the equilibrium number density, ε0 is the equilibrium energy density, P0 is
the equilibrium pressure, χ is the static susceptibility, p = |p|, f0(p) = e−(p−µ0)/T0 and
Ωd = 2πd/2/Γ(d/2) is the solid angle in d spatial dimensions. The two relevant cases for
our discussion are d = 2 and d = 3 where Ω2 = 2π and Ω3 = 4π, respectively.
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2.2 Computation of the correlators

We turn on the external sources, δAµ and δgµν , inducing a change in the temperature,
chemical potential and the four velocity

T (t,x) = T0 + δT (t,x), (2.14)

µ(t,x) = µ0 + δµ(t,x), (2.15)

uµ(t,x) = (1,0) + δuµ(t,x). (2.16)

Note that we normalize uµuµ = −1. The external fields, by causing a change in the macro-
scopic variables, modify the equilibrium distribution function and the distribution function

f eq(t,x,p) = f0(p) + δf eq(t,x,p), (2.17)

f(t,x,p) = f0(p) + δf(t,x,p). (2.18)

For the purposes of this paper, we will expand around the Maxwell-Boltzmann distribution
f0(p) = e−(p0−µ0)/T0 . We will also be working with massless particles, p2 = 0.

We see that the change in the equilibrium distribution (2.5) is

δf eq =
f0
T0

(
δµ+ p0v · δu + (p0 − µ0)

δT

T0

)
. (2.19)

In Fourier space1, the linearized Boltzmann equation reads2

(−iω + ik · v) δf − f0
T0

(
v · E − Γ0

αβp
0vαvβ

)
= −δf − δf eq

τR
, (2.20)

where the electric field is Ei = ∇iA0 − ∂tA
i. The solution is given by

δf =

f0
T0
τRE · v − f0

T0
τRΓ

0
αβp

0vαvβ + δfeq

1 + τR(−iω + ik · v)
. (2.21)

We then compute the change to current and energy momentum tensor via (2.6) and
(2.7), respectively. We determine (δµ, δT, δu) by self-consistently solving the matching
conditions (2.9) in terms of the external gauge field, δAµ, and metric perturbations, δgµν .
In other words, we need to self-consistently solve for (δµ, δT, δui) via

δJ0 = δn(µ, T ), (2.22)

δT 00 = δε(µ, T ), (2.23)

δT 0i = (ε0 + P0)δu
i. (2.24)

where (δT, δµ) are related to (δn, δε) via [48]

δn =
∂n0

∂µ0
δµ+

∂n0

∂T0
δT, (2.25)

δε =
∂ε0
∂T0

δT +
∂ε0
∂µ0

δµ. (2.26)

1The convention we follow for Fourier transforms is f(ω,k) =
∫∞
−∞ dt

∫
d3x eiωt−ik·xf(t,k).

2Note that we used the identity presented in [22]; Γµ
αβpµp

αpβ = pµ∂µp
2 = 0 to substitute Γi

αβpip
αpβ =

−Γ0
αβp0p

αpβ .
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We would like to take a moment to highlight that although we are working in the
linear regime at the level of perturbations, the non-trivial matching conditions include
non-linearities. Finally, we compute the retarded correlators via the variational principle,
namely, by writing

Jµ = Jµ
0 −Gµ,ν

JJ δAν −
1

2
Gµ,αβ

JT δgαβ + . . . , (2.27)

Tµν = Tµν
0 − 1

2
Gµν,αβ

TT δgαβ −Gµν,α
TJ δAα + . . . , (2.28)

where

Gµ,ν
JJ = − δJµ

δAν
, Gµν,α

TJ = −δTµν

δAα
, Gµ,αβ

JT = −2
δJµ

δgαβ
, Gµν,αβ

TT = −2
δTµν

δgαβ
. (2.29)

2.3 Momentum breaking

In theories that study transport (hydrodynamics) with momentum relaxation, the usual
equations of motion (the conservation laws) can be modified to include explicit momentum
non-conservation as in equation (1.1), while leaving the energy conservation intact (see
Ref. [60, 61, 69]). This in turn modifies the two-point function Ward identities, which are
now of the form

ikµG
µ,ν
JJ = 0 (2.30)

ikµG
µ,αβ
JT = 0, (2.31)

ikµG
µν,α
TJ =

{
0, ν ̸= i,

−ΓG0i,α
TJ , ν = i,

(2.32)

ikµG
µν,ρσ
TT =

{
0, ν ̸= i,

−ΓG0i,ρσ
TT , ν = i,

(2.33)

up to contact terms, which are thoroughly considered in Appendix B.
To include momentum relaxation in RTA kinetic theory, we note that the equilibrium

to which the system evolves is modified due to the presence of the momentum relaxation.
As a result, the equilibrium distribution function (2.5) becomes

fΓ
eq = exp [(pµuµ − τR pµΓµνuαg

αν + µ)/T ] . (2.34)

We choose Γµν = diag(0,Γ∥,Γ⊥,Γ⊥) in 3+1 dimensions and Γµν = diag(0,Γ∥,Γ⊥) in 2+1

dimensions.3 Alternatively, we can modify the collision kernel directly via

C[f ] =
pµuµ
τR

(f − feq)−
pαuα
T

uαg
αµΓµνp

νf, (2.35)

which has the interpretation of the addition of inelastic scattering to the usual RTA.
3It is important to note that Γµν is not a tensor and hence does not transform covariantly. This stems

from the fact that it parametrizes a term explicitly breaking translational symmetry.
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Both interpretations provide the same modification to the RTA at linear order. Ex-
plicitly, perturbing to linear order, we see that in addition to the terms in (2.19), we have
terms proportional to Γ:

δfΓ
eq = δfeq − τR piΓij

(
δuj − δg0kδ

jk
) f0
T0

. (2.36)

Note that with this choice of Γµν orthogonal to uµ in the local rest frame, the leading-order
solution is not modified. One can easily see that this choice reproduces our desired form of
momentum dissipation in (1.1).

2.4 Thermoelectric effect

We continue with the calculation of the thermoelectric transport matrix in linearized theory:(
δJ i

δQi

)
=

(
σij T0α

ij

T0α̃
ij T0κ̄

ij

)(
Ej

− 1
T0
∇jδT

)
, (2.37)

where the current and energy momentum tensor is given in (2.6) and (2.7), respectively, and
the heat current δQi = δT 0i−µ0δJ

i. Since we consider time-reversal invariant systems (i.e.
in absence of magnetic effects), it follows that α = α̃ due to Onsager reciprocal relations
[70]. This will provide a non-trivial check on the consistency of our results.

We briefly recall the relations between external perturbations of the metric δgµν and
gauge field δAµ and the sources E and ∇T of the system’s response. For this purpose
we summarize the argument of [71–73] in terms more suitable to our setup. We start
in Euclidean signature and introduce the temperature rescaled dimensionless time t̄ ≡
tT , which transforms the tt-component of our metric. Consequently, a small change in
temperature is equivalent to perturbation in the t̄t̄-component of the metric:

gt̄t̄ =
1

T 2
0

− 2
δT

T 3
0

≡ ηt̄t̄ + δgt̄t̄, (2.38)

where we denote T0 the equilibrium value of temperature. Since we are working in the
linearized regime, we can freely deform our perturbations with infinitesimal diffeomorphisms
generated by a vector field ξµ:

δg′µν = δgµν + ∂µξν + ∂νξµ. (2.39)

The external gauge field Aµ = Āµ + δAµ, where Āt = µ0, is also transformed via the Lie
derivative

A′
µ = Aµ +Aν∂µξ

ν + ξν∂νAµ. (2.40)

Let us choose
ξµ = − 1

iω̄

δT

T 3
0

δt̄µ, (2.41)

with the time dependence of e−iω̄t̄, where ω̄ is the rescaled frequency ω̄ = ω/T0. One
can then show that in this new gauge the temperature perturbation is encoded in the
off-diagonal components of the metric perturbation:

δg′t̄t̄ = 0, δg′jt̄ = −∂jδT

iω̄T 3
0

. (2.42)
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In our new gauge the spatial components of the gauge field perturbation take the form of

δA′
t̄ = δAt̄ −

Āt̄

T0

δT

T0
, δA′

j = δAj + Āt̄
1

iω̄

∂jδT

T 2
0

. (2.43)

The electric field Ej is expressed in the zero momentum limit k = 0 as simply Ej = iωδAj .
Utilizing this, rescaling back and continuing to Lorentz signature, we obtain the relations

δg′tt = 0, δg′tj = − 1

iω

∂jδT

T0
, δA′

j =
Ej

iω
− µ0

1

iω

∂jδT

T0
. (2.44)

Expressing E and ∇δT with δA′
µ and δg′µν we write down the thermoelectric transport

matrix from (2.37) as(
δJ i

δQi

)
=

(
σij αijT0

α̃ijT0 κ̄ijT0

)(
iωδA′

j + iωµ0δg
′
tj

iωδg′tj

)
. (2.45)

In order to obtain the correct behavior of the imaginary components of the conductivities,
we must substract the ω = 0 part of the appropriate correlator [32, 61, 72]. With this in
mind, we can read off the transport coefficients from (2.45):

σij(ω) = − 1

iω
lim
k→0

(
Gij

JJ(ω, k)−Gij
JJ(0, k)

)
, (2.46)

α̃ij(ω) = − 1

iωT0
lim
k→0

(
Gij

QJ(ω, k)−Gij
QJ(0, k)

)
, (2.47)

αij(ω) = − 1

iωT0
lim
k→0

(
Gij

JQ(ω, k)−Gij
JQ(0, k)

)
, (2.48)

κ̄ij(ω) = − 1

iωT0
lim
k→0

(
Gij

QQ(ω, k)−Gij
QQ(0, k)

)
, (2.49)

where the correlators are defined in (2.29) and

δXi

δQj
= 2

δXi

δgtj
− µ0

δXi

δAj
. (2.50)

3 Analytic expressions of the correlators

The computation of the correlators, as outlined in Section 2.2, requires integrating the dis-
tribution function (2.21) over the phase space and solving self-consistently for the relevant
macroscopic variables (δn, δT, δui). Here we present the main result of the paper, namely,
the explicit analytic expressions of all correlators. We will subsequently analyze their struc-
ture in the following sections. Without loss of generality, we will align our perturbation to
be in the 1−direction in all cases below.

We note that the correlators exhibit certain symmetries in their indices (e.g., the pair-
wise symmetry Gαβ,µν = Gµν,αβ) and satisfy the Ward identities (2.30)–(2.33). As such,
we write down the minimum set necessary to reconstruct all of the (nonzero) correlators.
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3.1 Finite temperature correlators

For completeness, we begin by writing down the correlators from [22]. Turning on only the
external gauge field (thereby generating a change in the number density, δn), we find the
following correlators in 3 + 1 dimensions

G0,0
JJ = −χ(2kτR + L(τRω + i))

2kτR + iL
, (3.1)

G2,2
JJ = −

χω
(
L
(
k2τ2R − (τRω + i)2

)
− 2kτR(τRω + i)

)
4k3τ2R

, (3.2)

where we defined L ≡ ln
(
ω−k+i/τR
ω+k+i/τR

)
. Staying in 3 + 1 dimensions, we now turn on only

the metric perturbation, which leads to

G00,00
TT = −3(ε0 + P0)

(
1 +

k2τR(2kτR + L(τRω + i))

2k3τ2R + ik2LτR + 6ikτRω + 3iLω(τRω + i)

)
, (3.3)

G22,00
TT = −3(ε0 + P0)

(
2

3
+

ω
(
L
(
k2τ2R − τ2Rω

2 − 4iτRω + 3
)
− 2kτR(τRω + 3i)

)
4k3τ2R + 2ik2LτR + 12ikτRω + 6iLω(τRω + i)

)
, (3.4)

G02,02
TT = − (ε0 + P0)

3iL
(
k2τ2R − (τRω + i)2

)
+ 2kτR

(
2k2τ2R − 3iτRω + 3

)
×
(
3L(τRω + i)

(
k2τ2R − (τRω + i)2

)
+ 2kτR

(
2k2τ2R − 3(τRω + i)2

))
, (3.5)

G23,23
TT = −ω(ε0 + P0)

16k5τ4R

×
(
3L
(
k2τ2R + (1− iτRω)

2
)2 − 10k3τ3R(τRω + i) + 6kτR(τRω + i)3

)
. (3.6)

Next, we provide the same correlators as above, but in 2 + 1 dimensions. The ⟨JJ⟩
correlators are given by

G0,0
JJ = −χ (R+ iωτR − 1)

−1 +R
, (3.7)

G2,2
JJ = −χ

iωτR (R+ iωτR − 1)

k2τ2R
, (3.8)

where we introduced the shorthand notation R ≡
√
k2τ2R − (ωτR + i)2. The ⟨TT ⟩ correla-

tors are

G00,00
TT = −2(ε0 + P0)

(
1 +

k4τ4R + ik2ωτ3R (R+ iτRω + 1)

k4τ4R + k2ωτ3R(−ωτR + 2i)− 4iω3τ3R

)
, (3.9)

G02,02
TT = −

(ε0 + P0)
(
k2τ2R − 2ωτR (−iR+ ωτR + i)

)
k2τ2R − 4iωτR

, (3.10)

G22,22
TT = (ε0 + P0)

×

(
1−

(
k2τ2R − ω2τ2R

) (
k4τ4R + 2ω3τ3R (−iR+ ωτR + i) + k2ωτ3R (−3ωτR + 2iR)

)
k6τ6R + k4ωτ5R(2i− ωτR)− 4ik2ω3τ5R

)
.

(3.11)
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3.2 Finite temperature correlators with momentum relaxation

Longitudinal relaxation. In 3 + 1 dimensions, the presence of momentum relaxation in the
longitudinal direction only affects the spin 0 channel:

G00,00
TT = −3(ε0 + P0)

(
1 +

k2τR(2kτR + L(τRω + i))

−6ikτRωΓ̃∥ + 3LωΓ̃∥(1− iτRω) + 2k3τ2R + ik2LτR

)
, (3.12)

G22,00
TT = −(ε0 + P0)

×
(
1 +

i
(
4k3τ2R + k2LτR(3τRω + 2i)− 6kτRω(τRω + i)− 3Lω(τRω + i)2

)
2
(
6kτRωΓ̃∥ + 3LωΓ̃∥(τRω + i) + 2ik3τ2R − k2LτR

) )
,

(3.13)

where we introduced the dimensionless Γ̃ ≡ ΓτR−1. In the 2+1 dimensional case the even
channel is modified to

G00,00
TT = −2(ε0 + P0)

×

(
1 +

(
k4τ4R + ik2ωτ3R

(
−2Γ∥τR +R+ iτRω + 1

))
−k2ωτ3R(4iΓ∥τR + τRω − 2i)− 4ω2τ2RΓ̃∥(Γ∥τR − iωτR) + k4τ4R

)
, (3.14)

G22,00 = −2(ε0 + P0)

×
(
k2τ2R − ω2τ2R − iΓ∥ωτ

2
R

) (
k2τ2R + iωτR

(
−2Γ∥τR +R+ iτRω + 1

))
−k2ωτ3R(4iΓ∥τR + τRω − 2i)− 4ω2τ2RΓ̃∥(Γ∥τR − iωτR) + k4τ4R

. (3.15)

Transverse relaxation. In the 3+1 dimensional case, the presence of transverse momentum
relaxation affects the spin 1 channel:

G02,02
TT = 3(ε0 + P0)

(
− 1

3

+
iτRω

(
L
(
−k2τ2R + (τRω + i)2

)
+ 2kτR(τRω + i)

)
3LΓ̃⊥

(
k2τ2R − (τRω + i)2

)
+ 2kτR

(
−3Γ⊥τR(τRω + i) + 2ik2τ2R + 3τRω + 3i

)),
(3.16)

while, analogously, in the 2 + 1 dimensional case, it modifies the odd sector:

G02,02
TT = −2(ε0 + P0)

(
1− iωτR (2Γ⊥τR −R− iτRω − 1)

−4Γ2
⊥τ

2
R + Γ⊥τR(4 + 4iτRω) + k2τ2R − 4iωτR

)
. (3.17)

3.3 Finite temperature and finite density correlators

Next, we turn on both an external gauge field and the metric. In this case, the ⟨TT ⟩ corre-
lators remain unaffected by µ0 ̸= 0. This somewhat unintuitive result of the ‘asymmetric’
representation of modes that exist in the spectra of ⟨TT ⟩, ⟨JJ⟩ and ⟨TJ⟩ correlators is a
consequence of the equation of state that we consider. In fact, the same phenomenon is
also exhibited by the correlators computed purely from the theory of hydrodynamics. We
show this in Appendix A.
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We therefore present only ⟨JJ⟩ and ⟨TJ⟩ correlators. The correlators in the 3 + 1

dimensional case are

G0,0
JJ =

χ (2kτR + (ωτR + i)L)

4 (L− 2ikτR)

×
(
i+

3k2τ2R (2ikτR − L)

2k3τ3R + ik2τ2RL+ 6iωkτ2R + 3iωτRL (ωτ −R+ i)

)
, (3.18)

G2,2
JJ =

χω
(
L
(
−k2τ2R + (τRω + i)2

)
+ 2kτR(τRω + i)

)
16k3τ2R

×

(
1 +

12k3τ3R
3iL

(
k2τ2R − (τRω + i)2

)
+ 2kτR

(
2k2τ2R − 3iτRω + 3

)) , (3.19)

G00,0
TJ = − 3k2T0τRχ(2kτR + L(τRω + i))

ik2LτR + 2k3τ2R + 6ikτRω + 3iLω(τRω + i)
, (3.20)

G22,0
TJ = −

T0χ
(
k2LτR(3τRω + 2i) + 4k3τ2R − 6kτRω(τRω + i)− 3Lω(τRω + i)2

)
2(ik2LτR + 2k3τ2R + 6ikτRω + 3iLω(τRω + i))

, (3.21)

G02,2
TJ =

3T0τRχω
(
L
(
−k2τ2R + (τRω + i)2

)
+ 2kτR(τRω + i)

)
3iL

(
k2τ2R − (τRω + i)2

)
+ 2kτR

(
2k2τ2R − 3iτRω + 3

) . (3.22)

In the 2 + 1 dimensional case, this is given by

G0,0
JJ = χ

(R+ iωτR − 1)

R− 1

1

3R
(
k2τ2R(R− 1) + 2i(R− 1)ωτR − 2ω2τ2R

)
×
(
−3k4τ4R + k2τ2R(3R+ ωτR(3ωτR + 4i)− 3) + 2ωτR(ωτR + i)(R+ iωτR − 1)

)
,

(3.23)

G2,2
JJ = χ

ωτR
(
k2τ2R (−3iR+ 3ωτR − i) + 4ωτR (−R− iωτR + 1)

)
3k2τ2R

(
k2τ2R − 4iωτR

) , (3.24)

G00,0
TJ = −2(ε0 + P0)

k2τ2R
(
k2τ2R + iωτR (R+ iωτR + 1)

)
3T0

(
k4τ4R + k2ωτ3R(2i− ωτR)− 4iω3τ3R

) , (3.25)

G22,0
TJ = −

(ε0 + P0)
(
k4τ4R + 2ω3τ3R (−iR+ ωτR + i) + k2ωτ3R (−3ωτR + 2iR)

)
3T0

(
k4τ4R + k2ωτ3R(2i− ωτR)− 4iω3τ3R

) , (3.26)

G02,2
TJ = 2(ε0 + P0)

ωτR (ωτR − i (1 +R))

3T0

(
k2τ2R − 4iωτR

) . (3.27)

We bring to the attention the factorization of the denominator of G0,0
JJ in the uncoupled

cases (both in 2 + 1 and 3 + 1 dimensions) which are now effectively a product of the
denominator of the uncoupled correlators G0,0

JJ and G00,00
TT . This factorization carries over to

the cases with momentum dissipation that we consider next and motivates how we present
the analysis part of the paper.
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3.4 Finite temperature and finite density correlators with longitudinal mo-
mentum relaxation

Finally, turning on momentum dissipation, the correlators in 3 + 1 dimensions in response
to an external gauge field and metric are

G0,0
JJ =

χ(2kτR + L(ωτR + i))

4(L− 2ikτR)

×

(
i−

3k2τ2R(2kτR + iL)

6kωτ2RΓ̃∥ + 3LΓ̃∥ωτR(ωτR + i) + 2ik3τ3R − k2τ2RL

)
, (3.28)

G00,0
TJ = −

3(ε0 + P0)k
2τ2R(2kτR + L(ωτR + i))

4T0

(
−6ikωτ2RΓ̃∥ + 3LωτRΓ̃∥(1− iτRω) + 2k3τ3R + ik2τ2RL

) , (3.29)

G22,0
TJ = − (ε0 + P0)

8T0

(
−6ikωτ2RΓ̃∥ + 3LωτRΓ̃∥(1− iωτR) + 2k3τ3R + ik2τ2RL

)
×
(
4k3τ3R + k2τ2RL(3ωτR + 2i)− 6kωτ2R(ωτR + i)− 3LωτR(ωτR + i)2

)
. (3.30)

The same correlators as above, but in 2 + 1 dimensions are given by

G0,0
JJ =

χ(R+ iτRω − 1)

R− 1

1

3R
(
k2τ2R(R− 1) + 2ωτRΓ̃∥(−iR+ τRω + i)

)
×
(
k2τ2R(τRω(2iΓ∥τR + 3τRω + 4i) + 3R− 3)

− 2ωτRΓ̃∥(τRω + i)(R+ iτRω − 1)− 3k4τ4R

)
, (3.31)

G00,0
TJ =

−2(ε0 + P0)k
2τ2R

(
k2τ2R + iωτR(−2Γ∥τR +R+ iτRω + 1)

)
3T0

(
−k2ωτ3R(4iΓ∥τR + τRω − 2i)− 4ω2τ2RΓ̃∥(Γ∥τR − iωτR) + k4τ4R

) , (3.32)

G22,0
TJ = − (ε0 + P0)

3T0

(
−k2ωτ3R(4iΓ∥τR + ωτR − 2i)− 4ω2τ2RΓ̃∥(Γ∥τR − iωτR) + k4τ4R

)
×
(
ik2ωτ3R(−2Γ∥τR + 2R+ 3iωτR) + 2ω2τ2R(Γ∥τR − iωτR)(R+ iωτR − 1) + k4τ4R

)
.

(3.33)

3.5 Finite temperature and finite density correlators with transverse momen-
tum relaxation

We start with the 3 + 1 dimensional results:

G2,2
JJ =

χωτR
(
L
(
−k2τ2R + (ωτR + i)2

)
+ 2kτR(ωτR + i)

)
16k3τ3R

×
(
1 +

12ik3τ3R
3LΓ̃⊥

(
k2τ2R − (ωτR + i)2

)
+ 2kτR

(
−3Γ⊥τR(ωτR + i) + 2ik2τ2R + 3ωτR + 3i

)),
(3.34)

G02,2
TJ =

3iτRω(ε0 + P0)
(
L
(
−k2τ2R + (ωτR + i)2

)
+ 2kτR(ωτR + i)

)
4T0

(
3LΓ̃⊥

(
k2τ2R − (ωτR + i)2

)
+ 2kτR

(
−3Γ⊥τR(ωτR + i) + 2ik2τ2R + 3ωτR + 3i

)) .
(3.35)
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Finally, in 2 + 1 dimensions, we have

G2,2
JJ =

χωτR
(
R(ωτR + i)− i

(
k2τ2R − (ωτR + i)2

))
3k2τ2RR

×
(
1 +

2k2τ2RR

R
(
2iΓ⊥τR(ωτR + i) + k2τ2R − 2iωτR + 2

)
+ 2Γ̃⊥

(
k2τ2R − (ωτR + i)2

)),
(3.36)

G02,2
TJ =

2i(ε0 + P0)ωτR
(
k2τ2R +R(−1 + iωτR)− (ωτR + i)2

)
3T0

(
R
(
2Γ⊥τR(1− iωτR)− k2τ2R + 2iωτR − 2

)
− 2Γ̃⊥

(
k2τ2R − (ωτR + i)2

)) .
(3.37)

4 Finite temperature results

In this section, we consider the physics implied by the correlators at finite temperature
(T ̸= 0), zero charge density (µ = 0) and with unbroken conservation of momentum (Γ = 0).

In order to systematically analyze the results, we categorize the perturbations (and
therefore correlators) according to the transformation properties of the symmetry group of
the perpendicular space. In the case of 3+1 dimensions this involves considering the SO(2)

group acting on the transverse plane, dividing the perturbations into scalars, vectors, and
tensors. In the 2 + 1 dimensions we have the Z2 symmetry y → −y, which allows us to
classify our objects into odd and even sectors. For a summary of the structures of the
spectra, see Tables 1 and 2.

4.1 3 + 1 dimensions

The spectrum of the energy-momentum tensor and current correlators at T ̸= 0 (and
µ = Γ = 0 was analyzed by Romatschke in 2015 [22]. As this is the simplest case, we begin
with the recap of those results.

First, we note that due to the presence of the logarithm, there is a pair of branch points
in all of the correlators at

ω(k) = − i

τR
± k. (4.1)

The pole structures in each of the cases can be summarized as follows.

• ⟨JJ⟩:

Spin 0. Considering the analytic structure of (3.1), we see that there is a single pole
at

ω(k) =
i

τR
(kτR cot(kτR)− 1) . (4.2)

This exact dispersion relation can be written in terms of the hydrodynamic (gradient
expanded) power series as (see Refs. [50, 74])

ω(k) = −i

∞∑
n=1

ank
2n, an = −

(−4)nB2nτ
2n−1
R

(2n)!
, (4.3)
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where Bn are the Bernoulli numbers.

Spin 1. The correlator (3.2) has no additional analytic structure apart from the
standard branch cut present in all correlators.

Transport coefficients. We can directly use the hydrodynamic series to determine the charge
diffusion constant by expanding

ω(k) = −iDk2 +O(k4). (4.4)

Hence, D is given in terms of the relaxation time by

D =
τR
3
. (4.5)

Another way to extract the transport coefficients (which we will use in most of the work)
is to use the explicit correlators along with the Kubo formulae (see Ref. [22]). For thermal
charge transport, we have

D = − 1

χ
lim
ω→0

lim
k→0

ω

k2
Im G0,0

JJ =
τR
3
, (4.6)

τ∆ =
1

χD
lim
ω→0

lim
k→0

1

k2
Re G0,0

JJ = τR, (4.7)

where τ∆ is a second-order transport coefficient.

• ⟨TT ⟩:
Spin 0. Turning our attention to the spin 0 channel (3.3), we find a pair of sound
modes

ω(k) = ± 1√
3
k − 2i

15
τR k2 +O(k3). (4.8)

Spin 1. Next, the spin 1 channel is diffusive

ω(k) = −i
τR
5
k2 +O(k4). (4.9)

Spin 2. Finally, we have the spin 2 channel (3.6), which has no additional pole
structure, just like the spin 1 channel of ⟨JJ⟩.

Transport coefficients. We can extract the following transport coefficients

η = − lim
ω→0

lim
k→0

1

ω
ImG23,23

TT =
τRT0s

5
, (4.10)

τΠ =
1

η
lim
ω→0

lim
k→0

(
1

ω2
ReG23,23

TT +
κ

2

)
= τR, (4.11)

κ = −2 lim
ω→0

lim
k→0

1

k2
ReG23,23

TT = 0, (4.12)

where η is the shear viscosity, s = (ε0 + P0)/T0 is the entropy density, and τΠ and κ

are hydrodynamic second-order transport coefficient. They are the only two coefficients
that play a role in linearized conformal hydrodynamics and thereby enter into two-point
functions (see Ref. [75]). In this work, for brevity, we will not explicitly study any higher-
order transport coefficients (see Refs. [76–80]), although, since we have access to explicit
Green’s functions for all ω and k, we could compute them at any order in the gradient
expansion.

– 17 –



4.2 2 + 1 dimensions

We now turn our attention to the analytic structure of the correlators in 2 + 1 dimensions.
We note that there is also a branch cut, however, it arises from a square root, instead of a
logarithm as in 3 + 1 dimensions. The pair of branch points is located at the same values
of momenta as in 3 + 1 dimensions, i.e. at

ω(k) = − i

τR
± k. (4.13)

• ⟨JJ⟩:

Even. For the correlator (3.7), the poles are given by

ω(k) =
−i±

√
k2τ2R − 1

τR
, (4.14)

which we plot in the right panel of Figure 1. We therefore find a gapless pole exhibiting
charge diffusion and gapped pole. Expanded as power series, their dispersion relations
are, respectively,

ω(k) = − i

2
τRk

2 +O(k4), (4.15)

ω(k) = − 2i

τR
+

i

2
τRk

2 +O(k4). (4.16)

The poles exhibit a collision for real k, which is qualitatively of type described by
the theory of quasihydrodynamics [68]. The collision occurs at k∗ = 1/τR and for
real k > k∗, the dispersion relations acquire a real part and thereby correspond to
propagating modes. We present the collision in Figure 1.

Odd. As was the case in 3+1 dimensions, the odd channel does not exhibit additional
structure apart from the branch cut.

Transport coefficients. The diffusion coefficient and the second order hydrodynamic timescale
can be extracted from G0,0

JJ [22] to find

D =
τR
2
, (4.17)

τ∆ = τR. (4.18)

• ⟨TT ⟩:

Even. Next, we consider the correlator (3.9). This correlator has a sound mode

ω(k) = ± 1√
2
k − i

8
τR k2 +O(k3). (4.19)

The third zero of the denominator in (3.9) has a positive imaginary part. However,
it does not represent a pole as the correlator is analytic at that point.

Odd. The odd channel (3.10) exhibits a diffusive pole with the (exact) dispersion
relation

ω(k) = −i
τR
4
k2. (4.20)
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Transport coefficients. To compute the shear viscosity, we turn on only time dependent
perturbations in the transverse direction, namely δg12 = δg12(t) [75]. The shear viscosity
in this case is given by

η

s
=

τRT0

4
. (4.21)

Figure 1. Left: The analytic structure of the correlator G0,0
JJ from (3.7) is plotted in the complex

frequency plane. All other parameters set to unity. The positions of the two poles of (4.14) are
indicated by dotted lines, while the arrows represent the movement direction as 0 < kτR < 1.5. We
plot the branch cut at kτR = 1.5. The black crosses represent the branch points while the chosen
branch cut is shown as a jagged line. Right: Real and imaginary part of the poles (4.14) in the
2+ 1 dimensional case. The faint dashed grey lines represent the asymptotes ±kτR of the real part
of the poles.

5 Finite temperature results with momentum dissipation

In this section, we consider finite temperature correlators with zero charge density and
unbroken momentum conservation. This will only affect the ⟨TT ⟩ correlators, so we limit
our discussion to these cases. Furthermore, adding longitudinal momentum dissipation will
affect only the spin 0 channel in 3+1 and even channel in 2+1 dimensions. Similarly, adding
transverse dissipation modifies the spin 1 and odd sector in 3 + 1 and 2 + 1 dimensions,
respectively. As outlined in the previous section, the logarithmic and square root branch
cut will be present in the 3 + 1 and 2 + 1 dimensional cases, respectively.

5.1 3 + 1 dimensions

• ⟨TT ⟩ with Γ∥ ̸= 0:
Spin 0. Let us consider the correlator (3.12) in the case of k ∼ Γ∥ ≪ 1/τR. This
is reminiscent of the coherent regime in [61] (cf. [32]) if we identify their Λ with our
inverse relaxation time 1/τR. As a result, we obtain two modes

– 19 –



ω(k) =
±
√
3
√
4k2 − 3Γ2

∥ − 3iΓ∥

6
+

k2τR
15

 ∓2
√
3Γ∥√

4k2 − 3Γ2
∥

− 2i

+O
(
k4,Γ4

∥

)
. (5.1)

The above expression reduces to the calculated sound modes of (4.8) in the limit of
Γ∥ → 0. We observe the collision of poles at k∗ =

√
3Γ∥/2, which allows us to conclude

that propagating ‘sound-like’ modes dictate the transport properties for k >
√
3Γ∥/2.

For k <
√
3Γ∥/2 only dissipative ‘diffusive’ hydrodynamic and gapped modes are

present.

Spin 1 and 2. These channels remain unchanged from the Γ∥ = 0 case.

• ⟨TT ⟩ with Γ⊥ ̸= 0:
Spin 0 and 2. The analytic structure of these channels are unaffected by Γ⊥.

Spin 1. In this channel there is still a ‘diffusive’ mode, but it becomes gapped and
shifted by Γ⊥:

ω(k) = −iΓ⊥ − i
τR

5(1− Γ⊥τR)
k2 +O(k4). (5.2)

Taking the limit Γ⊥ → 0, we recover (4.9).

5.2 2 + 1 dimensions

• ⟨TT ⟩ with Γ∥ ̸= 0:
Even. In this channel, for small k, we have two purely damped ‘diffusive’ modes,
which collide for k ∼ Γ∥ and become propagating. We expand in kτR, Γ∥τR ≪ 1 and
obtain

ω(k) =
±
√

2k2 − Γ2
∥ − iΓ∥

2
+

τRk
2

8

∓
Γ∥τR√

2k2τ2R − Γ2
∥τ

2
R

− i

+O
(
k4,Γ4

∥

)
. (5.3)

The expressions (5.3) reduce to the calculated sound modes of (4.19) in the limit of
Γ∥ → 0. The poles now collide at k∗ =

√
2Γ∥/2. We show the collision of these poles

as a function of kτR in Fig. 2 and as a function of ΓτR in Fig. 3.
Odd. This channel remains unchanged from the Γ∥ = 0 case.

• ⟨TT ⟩ with Γ⊥ ̸= 0:
Even. The sound modes are unchanged and have the dispersion relations stated in
(4.19).
Odd. The ‘diffusive’ mode is shifted by Γ⊥

ω(k) = −iΓ⊥ − i
τR

4(1− Γ⊥τR)
k2 +O(k4). (5.4)
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Figure 2. Left: the analytic structure of T,Γ∥ ̸= 0 ⟨TT ⟩ correlator (3.14) in 2 + 1 dimensions
as a function of 10−4 < kτR < 1 for Γ∥τR = 0.5. For completeness, we include the branch cut
evaluated at kτR = 1. There is a collision at kτR ≈ 0.39. Right: The dispersion relations of the
same correlator.

Figure 3. Left: same correlator as Fig. 2 as a function of 10−4 < ΓτR < 0.8 for kτR = 0.5. Other
parameters are set to unity. The poles collide at Γ∗τR ≈ 0.62. Right: Plots of the dispersion
relations of the poles.

6 Finite temperature and finite density results

In this section, we turn our attention to the full thermoelectric case with T ̸= 0 and µ ̸= 0,
still with momentum conservation (Γ = 0). We first point out that the analytic structure
of the ⟨TT ⟩ correlators is not affected by switching on the external electric field, which is
necessary for incorporating the effects of finite density. Hence, we will focus on the ⟨JJ⟩
and ⟨TJ⟩ correlators. The transport coefficients, with the exception of the thermoelectric
ones, remain unchanged from the uncoupled case. Furthermore, the correlators in the full
case inherit the branch cut structure discussed in Section 4. Moreover, we note that for
certain correlators, the analytic structure is factorizable into diffusive and sound modes,
arising from ⟨JJ⟩ and ⟨TT ⟩, respectively.

Additionally, we can compute the thermoelectric conductivities (2.46)–(2.49), which we
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find to be [69, 73]

σ = σQ − 1

iω

n2
0

ε0 + P0
, (6.1)

α = α̃ = − µ

T0
σQ − 1

iωT0

n0s0
ε0 + P0

, (6.2)

κ̃ =
µ2

T0
σQ − 1

iωT0

T0s
2
0

ε0 + P0
, (6.3)

where σQ is the DC finite part:

σQ(ω = 0) =
τR χ

d (d+ 1)
= τR

eµ0/T0

12

T d−1
0

πd−1
. (6.4)

Here, n0 is the equilibrium number density and s0 = (ε0+P0−µ0n0)/T0 is the equilibrium
entropy density. The Ward identities imply that the conductivities satisfy

(µ0σ + T0α)iω = −n0, (6.5)

(κ̃+ µ0α)iω = −s0. (6.6)

6.1 3 + 1 dimensions

• ⟨JJ⟩:

Spin 0. For the ⟨JJ⟩ correlator (3.18), we see that there are now three poles, which
correspond to the two sound poles (4.8) and the diffusive pole is given by (4.2). The
transport coefficients computed in the previous section are unchanged.

The analytic structure is presented in Figure 4. We note that the zeros of the corre-
lator collide with one another at k∗τR ∼ 0.9215, developing a non-zero real part post
collision. This is akin to the collision of poles in quasihydrodynamics [68, 81].

Spin 1. Additionally, there is the spin 1 ⟨JJ⟩ correlator (3.19) with a single diffusive
pole with the same behavior as (4.9).

• ⟨TJ⟩:

Spin 0. The correlators (3.20) and (3.21) have two sound poles as in the decoupled
case (4.8).

Spin 1. The correlator (3.22) has the spin 1 diffusive mode (4.9).

6.2 2 + 1 dimensions

We move onto the study of correlators and their analytic structure in 2 + 1 dimensions.

• ⟨JJ⟩:

Even. We expect no different factorization than the one we found in the 3 + 1

dimensional case. Indeed, the even channel exhibits the same quasihydrodynamic
poles (4.14), together with the 2 + 1 dimensional odd sound modes of (4.19).

Odd. Analogously, the odd channel is composed of the odd diffusive mode of (4.20).
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Figure 4. Left: The analytic structure of the G0,0
JJ correlator (3.18) for 0.15 < kτR < 1, with other

parameters set to unity. The position of the poles (4.2) and (4.8) are denoted with black dotted
lines. The branch cut is evaluated at the fixed value of kτR = 1. Right: Real and imaginary part
of the two zeros of the correlator, which collide in a manner similar to poles in quasihydrodynamic
collisions. The faint grey line is located at the collision of the zeros, k∗τR ≈ 0.9215.

• ⟨TJ⟩:

Even. We observe the even sound modes of (4.19).

Odd. This channel exhibits the diffusive pole of (4.20).

7 Finite temperature and finite density results with momentum dissipa-
tion

7.1 3 + 1 dimensions

Here we briefly reiterate the analytic structure from the above sections. Due to the presence
of the factorization of the analytic structure, we can already anticipate the analytic structure
and the dispersion relations for all the sectors in this fully coupled case. For the sake of
completeness we refer the reader to the relevant results in the previous sections. We consider
only the ⟨JJ⟩ and ⟨TJ⟩ as the ⟨TT ⟩ correlators remain unaffected by the coupling.

Furthermore, we point our that the conductivities in the presence of momentum break-
ing have a slightly different form [69, 73]

σ = σQ − 1

iω − Γ

n2
0

ε0 + P0
, (7.1)

where σQ was defined in (6.4). The Ward identities in the case of momentum breaking
satisfy:

(µ0σ + T0α)(iω − Γ) = −n0, (κ̄+ µ0α)(iω − Γ) = −s0, (7.2)

and the Onsager relations hold, i.e., α = α̃.

• ⟨JJ⟩ with Γ∥ ̸= 0:
Spin 0. The analytic structure of (3.28) is composed of the spin 0 sector of uncharged
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⟨JJ⟩ correlator discussed in Section 4.1 and the spin 0 sector with of ⟨TT ⟩Γ∥ ̸=0 dis-
cussed in Section 5.1. The diffusive mode is therefore given by (4.2), while the colliding
poles are described by (5.1).
Spin 1. This sector is unaffected by the momentum dissipation. Since spin 1 of
⟨JJ⟩ does not exhibit any poles, the only pole structure is therefore given by the spin
1 channel of ⟨TT ⟩, discussed in Section 4.1. The dispersion relation of the spin 1

diffusive mode is given by (4.9).

• ⟨TJ⟩ with Γ∥ ̸= 0:
Spin 0. Here the channel inherits the analytic structure of the spin 0 channel of
⟨TT ⟩Γ∥ ̸=0 discussed in Section 5.1. The pole structure here is composed of the collid-
ing poles with dispersion relation given by (5.1).
Spin 1. This sector is unaffected by the longitudinal momentum dissipation. The
only pole structure is therefore given by the spin 1 channel of ⟨TT ⟩, discussed in
Section 4.1. The dispersion relation of the spin 1 diffusive mode is given by (4.9).

• ⟨JJ⟩ with Γ⊥ ̸= 0:
Spin 0. The analytic structure here is again a product of the uncoupled ⟨JJ⟩ spin 0

channel and the spin 0 channel of ⟨TT ⟩ discussed in Section 4.1, since Γ⊥ ̸= 0 affects
only the spin 1 channel. Consequently, we have two diffusive modes; the charge dif-
fusion (4.2) and the spin 1 diffusion (4.9)
Spin 1. The pole structure of this sector is inherited by the spin 1 ⟨TT ⟩Γ⊥ ̸=0 dis-
cussed in Section 5.1. As such it exhibits the shifted diffusive-like mode of (5.2).

• ⟨TJ⟩ with Γ⊥ ̸= 0:
Spin 0. Setting Γ⊥ ̸= 0 does not affect the spin 0 channel. Therefore the analytic
structure the same as the analytic structure of spin 0 ⟨TT ⟩ discussed in Section 4.1
and the poles correspond to the two sound modes of (4.8).
Spin 1. The analytic structure here is inherited from the spin 1 sector of ⟨TT ⟩Γ⊥ ̸=0

discussed in Section 5.1. The pole structure is composed of the shifted diffusive-like
mode of (5.2).

Transport coefficients. Analogously to the longitudinal case, now the transverse coefficient
of the diagonal conductivity matrix σ obtains a Drude peak. The conductivity σ22 is of the
same form as (7.1) with Γ → Γ⊥.

7.2 2 + 1 dimensions

We now turn our attention to the correlators in 2 + 1 dimensions. As in the previous
subsection, much of the analytic structure is factorizable.

• ⟨JJ⟩ with Γ∥ ̸= 0:
Even. The spectrum has the structure that combines those of ⟨JJ⟩ discussed in

– 24 –



Section 4.2 and ⟨TT ⟩Γ∥ ̸=0 discussed in Section 5.2. The dispersion relations are given
by the quasihydrodynamic modes of (4.14), which collide at k ∼ 1/τR and the col-
liding poles of (5.3), which collide at k ∼ Γ∥. As can be seen in Figure 5, due to the
factorization we observe two independent collision of poles.
Odd. The structure here is unaffected by Γ∥ ̸= 0 and is therefore given by the odd
channel of ⟨TT ⟩ discussed in Section 4.2. The only present mode is the diffusive mode
given by (4.20)

• ⟨TJ⟩ with Γ∥ ̸= 0:
Even. This channel has the same quasihydrodynamic collision of poles as in (5.3),
see Section 5.2.
Odd. This channel is unaffected by Γ∥. See Section 6.2.

• ⟨JJ⟩ with Γ⊥ ̸= 0:
Even. This channel is unaffected by Γ⊥. We refer the reader to Section 6.2 for the
analysis of (3.23).
Odd. This channel exhibits a diffusive-like mode, given by (5.4).

• ⟨TJ⟩ with Γ⊥ ̸= 0:
Even. This channel is unaffected by Γ⊥. See Section 6.2. It retains its sound modes
(4.19).
⟨TJ⟩ Odd. This channel develops a gap, with its diffusive-like mode given by (5.4).

Transport coefficients. The conductivity matrix is now modified in the transverse component
with σ22 being of the form (7.1) with Γ → Γ⊥.

8 Conclusion

In this work, we studied the linear response of a system of massless particles to external elec-
tric and metric perturbations in the RTA approximation of the kinetic theory Boltzmann
equation. Owing to the theoretical elegance of the RTA, we were able to provide a com-
plete classification of the analytic structure of the correlators of the theory, extending the
computation of [22] to include momentum dissipation and the current-energy-momentum
coupling at finite temperature and chemical potential, both in 3 + 1 and 2 + 1 dimensions.
This is summarized in Tables 1 and 2. We would like to emphasize that although we
were considering linear response, the RTA includes non-linearities due to the non-trivial
matching conditions. Furthermore, we extended the usual framework of RTA to explicitly
include momentum dissipation. The analysis we provided shows that the RTA has a rich
analytic structure. Of particular note are branch points and hydrodynamic modes as well
as, in some cases, gapped modes that exhibit the quasihydrodynamic behavior in the ⟨JJ⟩
correlators even in the absence of momentum dissipation. Kinetic theory therefore confirms
this qualitative prediction previously observed in holography (see Ref. [42]).
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Figure 5. Top left: the analytic structure of the even ⟨JJ⟩T,µ,Γ∥ ̸=0 correlator, given explicitly
in (3.31), as a function of 10−4 < kτR < 0.8 for ΓτR = 3/4. The blue lines denote the first pair
of ‘quasihydrodynamic’ poles, while the black lines describe another pair of modes that exhibits a
crossover from damped (‘diffusive-like’) to propagating (‘sound-like’) behavior (also found in the
⟨TT ⟩ correlator, see e.g. Fig. 2). Dots represent the start of the k-dependent evolution and empty
circles depict the end of the evolution at kτR = 0.8, with each pair plotted in their respective color.
The branch cut is evaluated at fixed kτR = 1. Top right: The evolution of the same correlator from
0.8 < kτR < 1.2, where we observe the second collision. Note again that in both the left and right
plots, the empty circles denote kτR = 0.8. Bottom: Real and imaginary parts of the four poles’
dispersion relations. One collision of poles occurs at kτR ∼ 0.64 and the second at kτR = 1.
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There is a number of directions to explore from here. It would be interesting to im-
plement the numerical methods of [17] to numerically explore the nonlinear structure of
thermoelectric RTA. It would be interesting to see which features of the correlators persist
moving away from the RTA limit by considering in greater detail, e.g. a 2 → 2 scattering
collision kernel.

The thermoelectric effect has physical applications in high energy systems, such as the
quark gluon plasma (QGP) [82–84] and in condensed matter systems, such as cuprates and
graphene [69]. In stochastic hydrodynamic descriptions of the QGP, quasihydrodynamic
modes are seen in models of the chiral phase transition [81, 85–88], indicating the presence of
a phase transition from diffusive quark-like modes to propagating pion modes. Furthermore,
the QGP has been recently observed generating a large magnetic field [89], clearly indicating
that such fields are important to understand. One limitation of the current work is the
absence of magnetic fields, which are necessary to generate, e.g. the Hall conductivity [90].
As such, it would be instructive to see how the correlators change with the inclusion of
fermionic degrees of freedom and other species, phase transitions and external magnetic
fields. How this discussion would inform the kinetic correlators of magnetohydrodynamics
remains to be seen.

It would also be worthwhile to understand how such correlation functions behave in
expanding systems, especially in the context of hydrodynamic attractors [91]. Such attrac-
tors are characterized by the decay of non-hydrodynamic modes, leading to the system’s
approach to universal hydrodynamic behavior. The hope is that this would ultimately shed
light on the underlying analytic structure of the quark gluon plasma [47].

Finally, our intrinsically weakly coupled results (due to assumptions used in the con-
struction of kinetic theory) also serve as a benchmark for comparison with strongly coupled
holographic computations and allow for a further discussions of how qualitative and quan-
titative properties of spectra in quantum field theories transition from weak to strong cou-
pling. Thereby, we hope this may serve as further motivation and encouragement for new
detailed explorations of the analytic structures present in spectra of thermal field theories,
for example in the style of Refs. [19, 22, 38–43, 46, 92–94].
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A Hydrodynamic correlators

In this appendix, we compute all correlators analyzed in this work within the hydrodynamic
approximation at T ̸= 0, µ ̸= 0 and with momentum dissipation. We do this using the
so-called canonical approach (see Refs. [48, 95]).

We start by perturbing the hydrodynamic fields in constitutive relations for the energy-
momentum tensor and the current expanded to first order in the gradient expansion. In
particular, we perturb the energy density ε, velocity field ui and charge density n around
their equilibrium values ε0, ui0 = 0 and n0 respectively. To the first order in perturbations,
in the Landau frame and in d spatial dimensions [48]:

δTµν = δεuµuν + (ε0 + P0)(δu
µuν + uµδuν) + δP∆µν

− η∆µα∆νβ

(
∇αδuβ +∇βδuα − 2

d
gαβ∇σδu

σ

)
− ζ∆µν∇σδu

σ, (A.1)

δJµ = δnuµ + n0δu
µ − σT0∆

µν∇ν

(
δµ

T0
− µ0

T0

δT

T0

)
, (A.2)

where η, ζ and σ are shear viscosity, bulk viscosity and conductivity, respectively, and

∆µν = gµν + uµuν . (A.3)

Next we write down the equations of motion for the hydrodynamic variables δε, δπi

and δn arising from the conservation equations (1.1) and (1.2). We restrict our discussion
to flat spacetime and Fourier transform the spatial components choosing the wavevector k

to align with the x axis direction as in the main text:

∂tδε+ ikδπx = 0, (A.4)

∂tδπ
î + ikδT xî = −Γîδπ

î, (A.5)

∂tδn+ ikδJx = 0, (A.6)

where the hatted indices are not summed over. Note that the perpendicular channel de-
couples and satisfies a (damped) diffusion equation

∂tδπ
⊥ +

η

ε0 + P0
k2δπ⊥ = −Γ⊥δπ

⊥. (A.7)

Due to this decoupling we focus only on the coupled equations governing the evolution of
δε, δπ∥ and δn and return to the perpendicular sector at a later time.

Introducing φa = (δε, δπ∥, δn), we may write (A.4) in a compact form:

∂tφa +Mab(k)φb = 0. (A.8)

The system (A.8) describes an initial value problem for which we provide the initial con-
dition in the form φa(t = 0,k → 0) = χabλb(k → 0), where χab is the static susceptibility
matrix and λb are the sources. For our particular case, the susceptibility matrix, relating
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the hydrodynamic variables φa to their sources λa = ( δTT0
, δux, δµ− µ0

T0
δT ), is given by

χab =
∂φa

∂λb
=

T0
∂ε
∂T + µ0

∂ε
∂µ 0 ∂ε

∂µ

0 ε0 + P0 0

T0
∂n
∂T + µ0

∂n
∂µ 0 ∂n

∂µ

 . (A.9)

Solving the initial value problem (A.8) and transforming the solution via Laplace trans-
form,4 we obtain

φa(z,k) = (K−1)abχbcλ
0
c , (A.10)

where

Kab ≡ −izδab +Mab. (A.11)

The matrix Kab is of the form

Kab =

 −iz ik 0

iβ1k Γ + γsk
2 − iz iβ2k

α1k
2σ ik n0

ε0+P0
α2k

2σ − iz

 , (A.12)

where we defined

γs =
1

ε0 + P0

(
2d− 2

d
η + ζ

)
, (A.13)

α1 =

(
∂µ

∂ε

)
n

− µ0

T0

(
∂T

∂ε

)
n

, α2 =

(
∂µ

∂n

)
ε

− µ0

T0

(
∂T

∂n

)
ε

, (A.14)

β1 =

(
∂P

∂ε

)
n

, β2 =

(
∂P

∂n

)
ε

. (A.15)

The solution to the initial value problem (A.10) is connected to the (canonical) retarded
correlator via

φa(z, k) = − 1

iz

(
G

(can)
ab (z, k)−G

(can)
ab (z = 0, k)

)
λb. (A.16)

Comparing (A.10) and (A.16) we compute the expression for the canonical retarded corre-
lator:

G
(can)
ab (z,k) = −

(
δac + iz(K−1)ac

)
χcb. (A.17)

We note that the Gab matrix is symmetric. The decoupled perpendicular δπ⊥ correlators
are obtained following the same procedure. In this way we gain access to the retarded
correlators for conserved quantities5 δε, δπi and δn.

4Our convention for the Laplace transform is A(z,k) =
∫∞
0

dteiztA(t,k).
5Even though δπi are not strictly speaking conserved we nevertheless have access to the δπi correlators

due to the fact that δπi possess a well-defined initial value problem given in (A.8).
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Using the general expressions of the correlators obtained above, namely, inserting
(A.11) and (A.9) into (A.17), we obtain the following expressions for the correlators in
general d:

Gεε =
(ε0 + P0)k

2

D(ω, k)

(
ω + iα2σk

2
)
, (A.18)

Gεπ∥ =
ω

k
Gεε, (A.19)

Gεn =
k2

D(ω, k)

(
n0ω − iα1σ(ε0 + P0) k

4
)
, (A.20)

Gπ∥π∥ =
k2ω

(
−iγsω + α2Γ∥σ + v2s

)
− iΓ∥ω

2 − ik4σ(α1β2 − α2β1)

D(ω, k)
, (A.21)

Gπ∥n =
ω

k
Gεn, (A.22)

Gnn =
1

(ε0 + P0)β2D(ω, k)

×
[
k2ω

(
α2n0σ(ε0 + P0)(Γ∥ − iω) + α1σ(ε0 + P0)

2(Γ∥ − iω) + β2n
2
0

)
(A.23)

+ k4σ(ε0 + P0)(n0(−iα1β2 + iα2β1 + α2γsω) + α1(ε0 + P0)(γsω + iβ1))
]
,

where

D(ω, k) = ω3 + iω2
[
Γ∥ + (α2σ + γs) k

2
]

− ik4σ (α2β1 − α1β2)− k2ω
(
v2s + α2σΓ∥

)
+O(k4ω) (A.24)

and v2s ≡ β1 + β2n0/(ε0 + P0). For the transverse channel, we obtain the damped diffusive
correlator [61]

Gπ⊥π⊥ =
−(ε0 + P0)

(
η

ε0+P0
k2 + Γ⊥

)
−iω + η

ε0+P0
k2 + Γ⊥

. (A.25)

Using the correlators (A.18)–(A.23), one can then calculate the longitudinal thermo-
electric conductivities as described in the main text. Indeed, using the Ward identities, this
approach additionally yields only GJ∥J∥ and Gπ∥J∥ . This is one of the main advantages of
the variational approach over the canonical setup. For the longitudinal conductivities we
obtain:

σ(hydro)
xx = σ

(hydro)
Q +

n2
0

ε0 + P0

i

ω + iΓ
, (A.26)

α(hydro)
xx = −µ0

T0
σ
(hydro)
Q − s0n0

ε0 + P0

i

ω + iΓ
, (A.27)

κ̄(hydro)xx =
µ2
0

T0
σ
(hydro)
Q +

s20T0

ε0 + P0

i

ω + iΓ
, (A.28)

where

σ
(hydro)
Q =

α2n0 + α1 (ε0 + P0)

β2
σ. (A.29)
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Notably, the Onsager relations hold as well as equations (7.2).
The same procedure can be executed using the δJµ and δTµν obtained by taking

first and second moments of the solution to the linearized Boltzmann equation (2.21),
respectively. We note that the canonical kinetic theory correlators obtained this way agree
with the ones in the main text up to contact terms.

We highlight that in the massless kinetic case presented in the main text, β1 = 1/d

and β2 = 0.6 Crucially, this means that the denominator structure factorizes, leading to a
cancellation of the diffusion pole in the energy-energy correlator at finite density7:

Gεε =
−d(ε0 + P0)ik

2

d(Γ∥ − iω)ω + (dγsω + i)k2
. (A.30)

Furthermore, the ⟨TT ⟩ correlators are unaffected by the non-zero µ0, as they agree identi-
cally with the µ0 = 0 calculation (cf. Ref. [61]). This again agrees with the kinetic theory
results presented in the main text. Repeating the above reasoning we again conclude that
this is a consequence of the form of our equation of state.

We note that the denominator of the Gnn correlator factorizes into a structure with
diffusion and sound modes:8

Gnn =
d
(
α1n0 − α2σ(Γ∥ − iω)

)
k2ω − iα2

1d(ε0 + P0)σk
4 − α2σ(2γsω + i)k4

α2 (α2σk2 − iω)
(
d(Γ∥ − iω)ω + (2γsω + i)k2

) . (A.31)

This is analogous to our results in kinetic theory, as noted in the main text. Since these
two properties are not present generally (see (A.18)–(A.23)), we conclude that they are a
consequence of our particular equation of state that arises from the kinetic theory setup.

Also, we note that only difference in conductivities (A.26)–(A.28) is in the term σQ
(A.29) which is now simply σQ = σ.

B Contact terms

Here, we provide further technical details on the the relevant contact terms that enter the
kinetic theory calculation. We begin by analyzing the current conservation law which is in
the first order of the form

∂µδJ
µ =

∫
ddp

(2π)dp0
pµ∂µδf

=

∫
ddp

(2π)dp0
f0
T0

(
−Γ0

αβp
αpβ + Eipi

)
= −Γ0

αβ

Tαβ
0

T0
, (B.1)

where we used the Boltzmann equation (2.1) and assumed the matching conditions (2.9)
hold. Taking the functional derivative with respect to δAµ and δgµν , we obtain the following
relations in the Fourier space:

ikµG
µ,ν
JJ = 0, ikµG

µ,αβ
JT = 2

Tµν
eq

T0

δΓ0
µν

δgαβ
. (B.2)

6Since α1 and α2 do not play a significant role in this discussion we leave them in a general form. One
can show that our equation of state corresponds to α1 = −1/n0 and α2 = (d+ 1)/χ.

7We thank Blaise Goutéraux for discussions on this point.
8The µ0 = 0 results can be found in [48].
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We can proceed analogously for the energy-momentum conservation:

∂µδT
µν =

∫
ddp

(2π)dp0
pνpµ∂µδf

=

∫
ddp

(2π)dp0
f
(0)
eq

T0
pν
(
−Γ0

αβp
αpβ + Eipi − p0pjΓij

(
δui − δg0kδ

ki
))

= d (ε0 + P0)
[
−Γ0

αβI
αβν − Iν0jΓij

(
δui − δg0kδ

ki
)]

+
1

T0
EiT

iν
0 , (B.3)

where we defined

Iαβν ≡
∫

dΩ(d)

Ω(d)
vαvβvν (B.4)

and used the definitions of (2.13). Note that the index symmetry implies Iαβν = δ
(α
0 δβν)

and, in particular, that I0ij = δij/d. Consequently, we obtain the Ward identities for the
⟨TT ⟩ and ⟨TJ⟩ correlators:

ikµG
µν̂,α
TJ + Γν̂G

0ν̂,α
TJ = − 1

T0
T jν̂
0

δEj

δAα
, (B.5)

ikµG
µν̂,αβ
TT + Γν̂G

0ν̂,αβ
TT = 2d (ε0 + P0)

(
Iρσν̂

δΓ0
ρσ

δgαβ
− 1

d
Γν̂δ

ν̂k δg0k
δgαβ

)
, (B.6)

where the parameters Γν are the diagonal components of the object Γµν defined in the main
text and the hatted indices are not summed over. We note that the first identity (B.5) could
equivalently be obtained by considering ∂µδT

µν = F ναJα.
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