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Abstract—Integrated sensing and communications (ISAC) has
been deemed as a key technology for the sixth generation (6G)
wireless communications systems. In this paper, we explore the
inherent clustered nature of wireless users and design a multi-
user based environment reconstruction scheme. Specifically, we
first select users based on the estimation precision of channel’s
multipath, including the line-of-sight (LOS) and the non-line-
of-sight (NLOS) paths, to enhance the accuracy of environment
reconstruction. Then, we develop a fusion strategy that merges
communications signalling with camera image to increase the
accuracy and robustness of environment reconstruction. The
simulation results demonstrate that the proposed algorithm can
achieve a remarkable sensing accuracy of centimeter level, which
is about 17 times better than the scheme without user selection.
Meanwhile, the fusion of communications data and vision data
leads to a threefold accuracy improvement over the image only
method, especially under challenging weather conditions like
raining and snowing.

Index Terms—ISAC, environment reconstruction, multi-user
selection, multi-modal fusion

I. INTRODUCTION

The swift progress in artificial intelligence (AI) has notably
propelled the development of sensing-assisted communications
technology [1]–[6]. Various studies have employed sensing
data, such as vision and radar, to improve the efficiency
and quality of wireless communications. Reversely, wireless
communications systems can fulfill the dual role of sensing
the surrounding environment and data transmission [7]. The
transmitted signals complexly interact with the environment
during their journey to the receivers. Thus, the ultimately
received signals carry a rich range of critical environment
information or data. In fact, the expansion of communication
frequency and bandwidth in the coming 6G is opening new
opportunities for communication-assisted sensing.

Recently, integrated sensing and communications [8]
(ISAC) has been proposed to facilitate concurrent high-speed

B. Lin and F. Gao are with the Department of Automation, Ts-
inghua University, State Key Lab of Intelligent Technologies and Sys-
tems, Tsinghua University, State Key for Information Science and Tech-
nology (TNList), Beijing 100084, P. R. China (e-mail: feifeigao@ieee.org;
linb20@mails.tsinghua.edu.cn).

C. Zhao is with the State Key Laboratory of Intelligent Technologies
and Systems, Beijing National Research Center for Information Science and
Technology (BNRist), Department of Automation, Institute for Artificial Intel-
ligence Tsinghua University (THUAI), Tsinghua University, Beijing 100084,
China, and also with the Senior Engineer China Telecom Corporation Sichuan
Branch, Chengdu 610000, China (e-mail: zcb23@mails.tsinghua.edu.cn).

Geoffrey Ye Li is with the Department of Electrical and Electronic
Engineering, Imperial College London, SW7 2BU London, U.K. (e-
mail:Geoffrey.Li@imperial.ac.uk).

data transmission and high-precision sensing. The develop-
ment of ISAC gradually converges into two categories: moving
target sensing [9]–[12] and static environment reconstruction
[13]–[16]. In [10], a simultaneous beam training and target
sensing scheme has been proposed. In [11], a root-MUSIC-
based algorithm has been developed to estimate the kinematic
parameters of identified moving targets in a cluttered envi-
ronment. The ESPRIT-based moving target sensing method in
[12] can achieve super-resolution and low-complexity estima-
tion of the targets’ parameters. On the aspect of environment
reconstruction, the concept of simultaneous localization and
mapping (SLAM) can construct a comprehensive radio map
based on the multipath channel state information (CSI). The
belief propagation (BP) based SLAM algorithm in [13] utilizes
the association of specular multipath components (MPCs) with
geometric features to reconstruct the environment. In [14],
a Bayesian approach has been designed for communication-
driven SLAM by extracting the soft information of channel
parameters. The angle-based SLAM algorithm in [15] extends
the classic BP SLAM algorithm. The multiple-model proba-
bility hypothesis density filter and map fusion routine in [16]
can effectively map the radio environment.

However, existing works on reconstructing the environment
are merely based on one single user, resulting in limited
sensing information, sparse reconstruction results, and low
reliability. Actually, the advantage of communications-sensing
over radar-sensing lies in the fact that the former can utilize in-
formation from the massive users in communications systems.
Therefore, it has been demonstrated in [17] that multi-user
sensing can enhance the sensing performance. A centralized
multi-user collaborative mapping and positioning approach
has been proposed in [18]. The robust SLAM algorithm in
[19] extends the classic BP-based SLAM algorithm to multi-
user scenarios. However, due to variations in user positions
and user orientations, the degree of alignment between the
beam scanning direction and the angle of reflection paths
varies among different users, resulting in different accuracies
in environment reconstruction when only one user is used for
sensing.

Nevertheless, the constructed environment point clouds are
sparse due to the sparsity of the mmWave propagation paths.
Traditional method utilizes visual sensors, which can capture
rich information to reconstruct the environment. However,
visual sensors have a limited detection range and therefore
are highly influenced by weather conditions.

Some studies have focused on the fusion of radar data
and vision data for environment reconstruction and depth
estimation. The fusion of radar and vision has been proposed
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in [20] for 3D object detection. The modified encoder-decoder
deep convolutional neural network (CNN) in [21] can fuse the
camera’s and radar’s measurements for depth reconstruction.
The geometric method in [22] performs 3D reconstruction
using a panoramic microwave radar and a camera. The point
cloud reconstruction approach in [23] fuses millimeter wave
radar data and vision data. In [24], the authors explored the
possibility of achieving a more accurate depth estimation by
fusing monocular images and radar points using a deep neural
network (DNN).

Due to the high similarity between radar systems and
communications systems [25], it is possible to fuse the com-
munications signals in ISAC with vision data for environment
reconstruction. However, there are still several challenges
when fusing ISAC and vision:
(i) The sensing information obtained from communications

is sparser compared to radar.
(ii) Radar sensing operates in a self-transmit and self-receive

manner, capturing only reflection information while com-
munication sensing involves both direction and reflection
information, which requires extra effort to identify the
reflection paths.

(iii) The sensing angle range of radar sensing is well-defined
while the sensing angle range of communication sensing
is random.

(iv) The fusion mechanism of communications data with
vision data is not yet clearly defined.

In this paper, we reconstruct environment based on multi-
user selection and multi-sensor fusion. The main contributions
of this paper are as follows:

• We propose a criterion to select users to enhance the
accuracy of environment reconstruction.

• We leverages the clustered nature of wireless users to
enable rich sensing information.

• We fuse the information from ISAC and vision, and
design a multi-modal fusion network (MMFN) to obtain
accurate and robust environment reconstruction.

• We adopt the meta-learning strategy to train the MMFN
to guarantee the effectiveness of the MMFN across dif-
ferent user quantities.

The rest of this paper is organized as follows. Section II in-
troduces the multi-user selection and multi-sensor fusion based
system model. Section III presents the evaluation criterion for
assessing the sensing capabilities of users and proposes the
user selection algorithms. Section IV designs the multi-modal
fusion network for environment reconstruction. Section V
provides the dataset generation and simulation results and
Section VI draws the conclusion.

II. SYSTEM MODEL

We consider an orthogonal frequency-division multiplexing
(OFDM) mmWave communications system with one BS and
N users. The BS is equipped with a uniform planar array
(UPA) of Nt antennas, and the user is equipped with a
UPA of Nr antennas. Denote the set of users as U =
{u1, u2, · · · , uN}. Considering the cost of hardware deploy-
ment, both the BS and the users adopt a fully analog architec-
ture with only one radio frequency (RF) chain. Assume that

Fig. 1: The multi-user, multi-sensor fusion system for environment
reconstruction.

there are Lc multipath components (MPC) between the user
and the BS. The wireless parameters of the l-th MPC provided
by the wideband mmWave geometric channel model [26]
are: complex path gain αl, time delay τl, azimuth angle of
departure (AoD) ϕt,l, elevation AoD θt,l, azimuth angle of
arrival (AoA) ϕr,l, and elevation AoA θr,l. The channel for
the n-th OFDM symbol is

H[n] =
√
NrNt

Lc−1∑
l=0

αlg(nT − τl)a(ϕr,l, θr,l)a
∗(ϕt,l, θt,l),

(1)
where g(·) is the shaping pulse, T = 1

B is the symbol period,
B is the bandwidth, a(ϕr,l, θr,l) is the array steering vector
at the receiver, and a(ϕt,l, θt,l) is the array steering vector
at the transmitter. Denote K as the total number of OFDM
subcarriers. The frequency domain channel at subcarrier k is

H[k] =

L−1∑
n=0

H[n]e−j 2πk
K n, (2)

where L is the maximum discrete-time delay of the channel.
Analog beamforming is employed at both the

transmitter and the receiver based on fixed beam
codebooks. Denote the transmit beam codebook as
Ft = {a(ϕb

t,i, θ
b
t,j)|ϕb

t,i ∈ Φb
t , θ

b
t,j ∈ Θb

t} and the receive
beam codebook as Fr = {a(ϕb

r,p, θ
b
r,q)|ϕb

r,p ∈ Φb
r, θ

b
r,q ∈ Θb

r},
where Φb

t is the candidate set of transmit azimuth angle,
Θb

t is the candidate set of transmit elevation angle, Φb
r

is the candidate set of receive azimuth angle, and Θb
r is

the candidate set of receive elevation angle1. At the beam
management phase [27] of each user, the BS and the user
perform exhaustive beam sweeping among all directions in
the transmit and the receive codebooks. To simplify notation,
we use quad (i, j, p, q) to represent performing beamforming
with beam pair {a(ϕb

t,i, θ
b
t,j),a(ϕ

b
r,p, θ

b
r,q)}. Given a quad

(i, j, p, q), the received signal power is

y(i,j,p,q) =

K−1∑
k=0

|aH(ϕb
r,p, θ

b
r,q)H[k]a(ϕb

t,i, θ
b
t,j)|2. (3)

1The angles in Φb
t and Θb

t are uniformly distributed.
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Profitable paths: the LOS paths and the 

first-order NLOS paths.

Propagation paths: the LOS paths, the first-order 

NLOS paths, and the high-order NLOS paths.

Paths of superior users: useful propagation 

paths that can be accurately estimated.

Fig. 2: The inclusion relationship between paths.

After exhaustive beam sweeping, the user recodes the sig-
nal powers in a four dimension power map (PM) tensor
Pu ∈ R|Φb

t |·|Θ
b
t |·|Φ

b
r|·|Θ

b
r|, where Pu[i, j, p, q] = y(i,j,p,q), and

then feeds back the PM tensor to the BS.

III. USER SELECTION BASED ENVIRONMENT
RECONSTRUCTION

The environment reconstruction is generally realized by
collecting the reflection points of the first-order non-line-of-
sight (NLOS) paths to a point set P [28]. Specifically, we use
the line-of-sight (LOS) path to calculate the location of the
user, and then utilize the user’s location as well as the first-
order NLOS paths to calculate the reflection points. Hence, in
order to obtain accurate points, we have to precisely estimate
the angles of the LOS and the first-order NLOS paths from the
PM tensor, which includes the powers of the LOS path, the
powers of the first-order NLOS paths, the powers of the high-
order NLOS paths, and the powers of the noise. We define the
profitable paths as the LOS paths and the NLOS paths that are
beneficial for environment reconstruction as shown in Fig. 2.
Subsequently, we define the superior users as the ones whose
LOS and first-order NLOS paths can be precisely estimated
from the PM tensor. We divide all user set U into two sets, Us

and Un, according to whether they are superior users or not.
The steps of inferring whether a user is a superior user are:
(i) to extract the profitable paths that include the LOS paths

and the first-order NLOS paths;
(ii) to distinguish whether the profitable paths are LOS paths

or first-order NLOS paths;
(iii) to judge whether the LOS paths and the first-order NLOS

paths can be accurately estimated.
The above steps will be elaborated subsequently.

A. Identify The Profitable Paths

Among the PM tensors, the powers in the directions of
the propagation paths are large while the noise powers in
other directions are small. Then, we can use power as a
threshold Tu to distinguish the propagation paths and the noise.
Specifically, element Pu[i, j, p, q] ≥ Tu is regarding as the
propagation path while Pu[i, j, p, q]<Tu is regarding as the
noise. A good threshold value Tu should make the inter-class
variance between the propagation path and the noise large [29].
The steps to calculate the inter-class variance are as follows:
• Discretizing the values in the Pu into K values2 to reduce

computational complexity.

2K is a customizable parameter. When K is large, the discrete value is
close to the continuous value. Then the calculated threshold will be accurate
but complexity will be high.

noise

LOS

First-Order NLOS

High-Order NLOS

(a) Original power map.

noise LOS First-Order NLOS

High-Order NLOS Connected Domain

(b) Binarized power map.

Fig. 3: An example of power map.

• Counting the number of occurrences for each discrete
power, represented as nk.

• Calculating the average power of the propagation paths as

m1 =

Tu∑
k=1

nk ·
Tu∑
k=1

knk∑K
j=1 nj

. (4)

• Calculating the average power of noise as

m2 =

K∑
k=Tu+1

nk ·
K∑

k=Tu+1

knk∑K
j=1 nj

. (5)

• Calculating the average power of fully Pu as

mG =

K∑
k=1

knk∑K
j=1 nj

. (6)

• Calculating the inter-class variance as

σ2(Tu) =
(m1 −mG)

2∑Tu

k=1 nk

+
(m2 −mG)

2∑K
k=Tu+1 nk

. (7)

Then, the optimal Tu should maximize the inter-class variance
as

T ∗
u = argmax

1≤Tu≤K
σ2(Tu). (8)

Next, we mark the propagation paths by setting the elements
in Pu that are greater than or equal to T ∗

u as “1”; otherwise,
setting the elements in Pu as “0”, that is,

Pb
u[i, j, p, q] = binarize(Pu[i, j, p, q], T

∗
u )

=

{
0, Pu[i, j, p, q] < T ∗

u ,

1, Pu[i, j, p, q] ≥ T ∗
u .

(9)

Define the area among Pb
u whose elements are all “1”

and are adjacent to each other as a connected domain as
shown in Fig. 3(b). Denote nu connected domains of Pb

u as
Cu
1 , Cu

2 , · · · , Cu
nu

. Each Cu
k encompasses the angular coordi-

nates of the k-th connected domain. The presence of a con-
nected domain suggests the possible existence of a propagation
path. Denote the angles (AoA and AoD) of a propagation path
as (̂i, ĵ, p̂, q̂). Since the angles close to that of the propagation
path also yield high powers, a valid propagation path will
yield high values for multiple adjacent elements in Pu as
shown in Fig. 3(a). Then one propagation path would yield
multiple elements among the connected domain as shown in
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Fig. 4: The AoA and AoD of the NLOS path may not align precisely
with the angles in the codebook.

Fig. 3(b). Conversely, a connected domain consisting of only
one or a few elements may indicate a false alarm without
a propagation path. Moreover, among the propagation paths,
the angle spreads of the high-order NLOS paths are generally
larger than that of the profitable paths [30]. Hence, as shown
in Fig. 3(b), a connected domain consisting of relatively more
elements may indicate a higher-order NLOS path. Then, we
define a connectivity factor to indicate the profitable path as

cku = sign
(
|Ck

u| − thrc
)
· sign

(
thrh − |Ck

u|
)
+ 1, (10)

where |Ck
u| represents the size of Ck

u , sign(·) represents the
signum function, thrc and thrh represent the minimum size
required for a connected domain to be considered as having
a propagation path and having a high-order NLOS path,
respectively. If size |Ck

u| of a connected domain is greater than
thrc but less than thrh, then we set cku = 2, which implies
the connected domain Ck

u encompassing a useful propagation
path; otherwise, we set cku = 0, which implies the connected
domain Ck

u not encompassing a profitable path. Moreover, if Ck
u

encompasses a profitable path, then the angles of the highest
received signal power in Ck

u are the elevation AoD, azimuth
AoD, elevation AoA, and azimuth AoA of this path.

B. Distinguish The LOS Path and The First-Order NLOS path

After obtaining the connected domain with a profitable path,
we need to recognize whether this path is a LOS path or
a first-order NLOS path. Denote θu,kt , ϕu,k

t , θu,kr , and ϕu,k
r

as the elevation AoD, azimuth AoD, elevation AoA, and
azimuth AoA of the path in Ck

u , respectively. Note that if the
AoA and AoD of a path are complementary angles satisfying
tan(θu,kt ) = tan(π−θu,kr ) and tan(ϕu,k

t ) = tan(π−ϕu,k
r ), then

this path is deemed as a LOS path; otherwise, it is deemed as
a first-order NLOS path. Hence we design the reflection factor
as

rku = sign
[
thrtan − |tan(θu,kt )− tan(π − θu,kr )|

−|tan(ϕu,k
t )− tan(π − ϕu,k

r )|
]
+ 1,

(11)

where thrtan is the maximum LOS tolerance of the tangent val-
ues’ difference between the AoA and AoD. In other words, if
|tan(θu,kt )−tan(π−θu,kr )|+|tan(ϕu,k

t )−tan(π−ϕu,k
r )| ≤ thrtan,

then we deem the path among Ck
u as a LOS path; otherwise,

we deem this path as a first-order NLOS path.3

C. Determine Whether A Path Can Be Accurately Estimated

We determine whether the angles of a path can be accurately
estimated based on whether the angles of the path matches
the angles in the codebook. As shown in Fig. 4, the AoA and
AoD of a path may not align precisely with the angles in the
codebook, resulting in angle estimation error. We then define
paths with AoA and AoD aligning precisely with the angles
in the codebook as A-Class paths, and paths with either AoA
or AoD not aligning precisely with the angles in the codebook
as B-Class paths. From Fig. 4, the AoA and AoD estimations
of A-Class paths are more accurate compared to those of B-
Class paths. Hence, we believe that a path can be accurately
estimated only if it is an A-Class path.

Assume qduk = (iuk , j
u
k , p

u
k , q

u
k ) is the coordinate of the

angles with the highest power among Cu
k , and denote the

adjacent set of qduk as Du
k , i.e.

Du
k = {(iuk − 1, juk , p

u
k , q

u
k ), (i

u
k + 1, juk , p

u
k , q

u
k ),

(iuk , j
u
k − 1, puk , q

u
k ), (i

u
k , j

u
k + 1, puk , q

u
k ),

(iuk , j
u
k , p

u
k − 1, quk ), (i

u
k , j

u
k , p

u
k + 1, quk ),

(iuk , j
u
k , p

u
k , q

u
k − 1), (iuk , j

u
k , p

u
k , q

u
k + 1)}.

(12)

Denote q̂duk and }qduk as the coordinates of the angles with the
highest and the lowest powers among Du

k . In the connected
domain of an A-Class path, the highest power is obviously
higher than the powers of adjacent angles. Consequently, the
power difference among the angles in the adjacent set is mini-
mal, leading to a small value of the ratio Pu[q̂d

u

k ]

Pu[|qd
u

k ]
. Conversely,

in the connected domain of a B-Class path, there may be one
or more angles in the adjacent set with considerably higher
powers, resulting in a large value of the ratio Pu[q̂d

u

k ]

Pu[|qd
u

k ]
. Hence,

we design a power factor to indicate the existence of the A-
Class path as

pku = sign

[
thrpow − Pu[q̂d

u

k ]

Pu[|qd
u

k ]

]
+ 1, (13)

where thrpow refers to the maximum value of Pu[q̂d
u

k ]

Pu[|qd
u

k ]
for

a connected domain to be considered as having an A-Class
path. For multi-user environment reconstruction, excluding
the B-Class paths may make point set P sparser but more
accurate. Conversely, incorporating the B-Class paths will
bring numerous unacceptable error points. Therefore, we only
utilize the A-Class paths to calculate the reflection points.

Based on the connectivity factor, the reflection factor, and

3The introduction of thrtan aims to enhance the robustness of NLOS path
detection. For instance, when the AoA and AoD of a LOS path are not
centered on the grid, their estimations become imperfect, resulting in non-
zero values of |tan(θu,kt )− tan(π− θu,kr )| and |tan(ϕu,k

t )− tan(π−ϕu,k
r )|.

Then the path will be mistakenly identified as an NLOS path, leading to an
erroneous point calculated from this path.



5

the power factor, we can calculate the user selection factor as

su = (

nu∑
k=1

sku,los) · (
nu∑
k=1

sku,nlos)

=

[
nu∑
k=1

1

8
cku · (2− rku) · pku

]
·

[
nu∑
k=1

1

8
cku · rku · pku

]
,

(14)

where
∑nu

k=1
1
8c

k
u · (2 − rku) · pku and

∑nu

k=1
1
8c

k
u · rku · pku

represent the number of LOS paths and NLOS paths that can
be accurately calculated from Pu. Moreover, su represents the
number of reflection points that can be accurately calculated
from Pu. Hence, su ≥ 1 indicates that the user u is a superior
user; otherwise su = 0.

D. Calculate The Reflection Points

For a superior user, we first use OFDM ranging to calculate
the length of the LOS path [31], [32].

In an OFDM system, signals are modulated onto subcarriers
with different frequencies to facilitate transmission. For the
same distance, the received signals of different subcarriers
exhibit different phase shifts. During the beam sweeping stage,
the received phase of the m-th subcarrier is 2πfmd

c when
beamforming is performed on the LOS direction, where d is
the length of the LOS path, fm is the frequency of the m-th
subcarrier, and c is the speed of light. Hence, the length of
the LOS path can be estimated by

d⋆ = argmax
d

∣∣∣∣∣
M∑

m=1

exp

(
j

(
φm − 2πfmd

c

))∣∣∣∣∣ , (15)

where φm is the phase of the m-th subcarrier measured at
the receiver. Denote the location of the BS as (xb, yb, zb), the
elevation AoA of the LOS path as θlos, and the azimuth AoA
of the LOS path as ϕlos. Then, location (xu, yu, zu) of the
user can be calculated by

yu − yb
xu − xb

= tan(ϕlos),

zu − zb√
(xu − xb)

2
+ (yu − yb)

2
= tan

(π
2
− θlos

)
,

∥∥∥[xu, yu, zu]
T − [xb, yb, zb]

T
∥∥∥
2
+∥∥∥[xu, yu, zu]

T − [xb, yb, zb]
T
∥∥∥
2
= d⋆.

(16)

After obtaining the location of the user, we utilize azimuth
AoD ϕt,nlos, elevation AoD θt,nlos, azimuth AoA ϕr,nlos, and
elevation AoA θr,nlos of the first-order NLOS path to calculate
the reflection point (xp

u, y
p
u, z

p
u) as

ypu − yb
xp
u − xb

= tan(ϕt,nlos),

zpu − zb√
(xp

u − xb)
2
+ (ypu − yb)

2
= tan

(π
2
− θt,nlos

)
,

ypu − yu
xp
u − xu

= tan(ϕr,nlos),

zpu − zu√
(xp

u − xu)
2
+ (ypu − yu)

2
= tan

(π
2
− θr,nlos

)
.

(17)

By recording the reflection points of the superior users, we
obtain the point set P .

E. Surface Fitting from The Points

However, the point set is a discrete approximation of envi-
ronment reconstruction. We then smoothen the environment
reconstruction result by generating statistical surfaces that
approximate the points in P . Specifically, we use the K-Means
algorithm in [33] to cluster the points in P and then fit a
surface to the points in each cluster. We propose to represent
each surface by a high-order polynomial,

z =c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2+

c6x
3 + c7x

2y + c8xy
2 + c9y

3,
(18)

where c0, c1, · · · , c9 are the coefficients of the polynomial and
(x, y, z) is the coordinate of the point in the surface. Next, we
calculate c0, c1, · · · , c9 by the following steps.

• Denote z1(x, y) = c0+c1x+c2y. We employ multivariate
linear regression (MLR) [34] to fit the plane z1 and
obtain proper c0, c1, and c3 that ensures a high degree of
proximity between the points in P and the plane z1(x, y).

• Denote z2(x, y) = c3w1+c4w2+c5w3+z1(x, y), where
w1 = x2, w2 = xy, and w3 = y2. We utilize MLR to fit
z2(x, y) and obtain proper c3, c4, and c5.

• Denote z(x, y) = c6w4+ c7w5+ c8w6+ c9w7+z1(x, y),
where w4 = x3, w5 = x2y, w6 = xy2, and w7 = y3. We
utilize MLR to fit z(x, y) and obtain proper c6, c7, c8,
and c9.

IV. MULTI-MODAL FUSION BASED ENVIRONMENT
RECONSTRUCTION

Although the environment reconstruction based on multi-
user communications has denser points than that based on
single-user communications, it still cannot support complex
sensing tasks, such as autonomous driving. Assume that the
users are equipped with both communications devices and
cameras. We will leverage both the vision sensing and ISAC
to obtain more comprehensive environment reconstruction.
As shown in Fig. 5, the user first downloads the point set
P from the BS, and then resorts to a multi-modal fusion
network (MMFN) to fuse P and the image for depth esti-
mation. The MMFN consists of a sensing-with-vision (SWV)
module to extract the features from the image, a sensing-with-
communications (SWC) module to extract the features from
point set P , and a fusion and prediction (FP) module to fuse
the features and predict the depth map.

A. Sensing-with-Vision Module

We adopt the state-of-the-art Mixing Datasets for Zero-shot
Cross-dataset Transfer (MiDaS) [35] as the SWV module,
which has been pretrained on 10 distinct datasets to ensure
high quality and great generalization.
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Fig. 5: The structure of the multi-modal fusion network.

B. Sensing-with-Communications Module

Note that, point set P provided by the BS is based on
the world coordinate system while the image is based on
the camera coordinate system [36]. In order to achieve better
fusion results, the point set P and the image should be in
the same coordinate system. Hence, we first convert P to the
camera coordinate system.

Denote the rotation angles of the camera along each axis as
(ϕx, ϕy, ϕz). Then the rotation matrices along each axis are

Rx =

cosϕx −sinϕx 0
sinϕx cosϕx 0
0 0 1

 ,

Ry =

1 0 0
0 cosϕy sinϕy

0 −sinϕy cosϕy

 ,

Rz =

cosϕz 0 −sinϕz

0 1 0
sinϕz 0 cosϕz

 .

(19)

The rotation matrix of the camera can be calculated by R =
Rx ·Ry ·Rz .

Denote the homogeneous coordinate4 of the reflection point
in the world coordinate system as (xp

u, y
p
u, z

p
u, 1), and denote

the relative displacement of the camera and the user as T =
[tx, ty, tz]

T . Then the coordinate of the point in the camera

4Homogeneous coordinates use N+1 dimensions to represent N-dimensional
coordinates to deal with geometric problems in perspective space [37]. In
perspective space, two parallel lines can meet at infinity. Using homogeneous
coordinates, the translation of an object can be conveniently represented by a
linear transformation.

coordinate system will be
xp
u,c

ypu,c
zpu,c
1

 =

[
R T
0 1

]
xp
u

ypu
zpu
1

 . (20)

After converting all points in P to the camera coordinate
system, we record them in a new set Pu

c = {x1, . . . ,xn} and
input Pu

c into the SWV module. However, the point set Pu
c

is unordered, which means that changing the order of points
in Pu

c does not alter the information it contains. Hence, we
introduce specific symmetrizations to ensure that the output
features of the SWV module remain consistent regardless of
the input points’ order. The symmetrical function of the SWC
module is designed as

f ({x1, . . . ,xn}) = γ(g (h (x1) , . . . , h (xn))), (21)

where h(·) represents the function of the multi-layer percep-
tron (MLP) shared by all points, g(·) represents the max
pooling function, which is a symmetric function, and γ(·)
represents the function of the MLP for feature extraction.

The SWC module is shown in Fig. 5. In order to enhance
the network’s adaptability to different input point sets, we
let the points in Pu

c undergo an input transform process
[38], which mainly relies on a T-net. The T-net generates an
affine transformation matrix, which is then applied directly to
the input points. Next, a shared fully-connected (FC) layer
is employed to extract features for each individual point.
Following the FC, a “feature transform” module is utilized
to transform the extracted features into a suitable domain
using another T-net. The transformed features are subsequently
passed through an FC to obtain deep features. The deep
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Fig. 6: The mask method for the input of the communications sensing
module.

features are passed into a max pooling function to generate
the global features. Then the global features are fed into four
1D CNN layers. The output of the final CNN is reshaped to
Fcs ∈ RW×H .

C. Fusion and Prediction Module

The structure of the FP module is shown in Fig. 5. Denote
the output the SWV module as Dp ∈ RW×H . We combine Dp

and Fcs as F = cat(Fcs,Dp). Then F is input into several
CNNs with skip connections. The final output of the fusion
module is the predicted depth map D̂.

We utilize the root mean-squared error (RMSE) of the
predicted depth for all pixels as the loss function

L =
1

N

√√√√ 1

W ×H

∑
di∈D,d̂i∈D̂

∣∣∣di − d̂i

∣∣∣2, (22)

where D is the ground truth of the depth map and N is the
size of the dataset.

D. Meta-Learning based Training Strategy for Any User
Quantity

For MMFN, if the quantity of input points changes, then
we have to train a new network; otherwise, the performance
of MMFN may suffer significant degradation. To generalize
the network across different user quantities, we design a meta-
learning-based5 training strategy. Specifically, we denote the
depth estimation through the fusion of images and Nu

m users’
points as task-m, where Nu

m ∈ {Nu
1 , N

u
2 , · · · , Nu

M} is the
possible user quantity. Then we train MMFN for these tasks
sequentially, where the initial parameters of task-(m + 1) is
the trained parameters of task-m.

However, when the quantity of input points varies, the
input dimension of the communications-sensing module also
changes. We then design an input masking method illustrated
in Fig. 6 to ensure the immutability of the input dimension.
Assume that the maximum number of users is Nmax. Then
we generate a matrix Pm ∈ RNmax×3 as the input for task-m

5Meta-learning [39] is a machine learning approach that focuses on devel-
oping algorithms or models capable of learning and adapting to new tasks
or environments quickly. The training methodology of meta-learning involves
training a model for a specific number of epochs on a given task and utilizing
the parameters of that model as the initial values for training another task.

Algorithm 1 Meta Learning Based Training Strategy for
Depth Estimation

Require: Training dataset D, number of iterations niter,
number of iterations of each task nm, initialized trainable
parameters of the SWC module Θc, initialized trainable
parameters of the FP module Θf , trained parameters of
MiDaS ΘM , and the maximum number of users Nmax.

Ensure: Trained parameters of SWC module Θc and trained
parameters of the FP module Θf .
for k = 1 to niter do

for n = 1 to nm do
- Draw mini-batch Dk: a random subset of Dm

- Prepare the input of MiDaS I
- Generate the input of the SWC module Pm

c by
masking (Nmax−m) rows
- Estimate the dense depth Di by MiDaS and the
image I
- Estimate the domain map Fdm by the SWC module
and the point cloud Pm

c

- Calculate the output depth by fusing Di and Fdm

based on fusion module
- Compute the loss: L
Back-propagation Phase:
- Use Adam optimizer to update Θc and Θf

end for
end for

whose first m rows is the m points’ coordinates in the camera
coordinate system and the last (Nmax −m) rows are masked
as −1. The meta-learning based training strategy is illustrated
in Algorithm 1.

E. Evaluation Metrics of Depth Estimation

The evaluation metrics of depth estimation includes the
following.

• Root Mean-Squared Error (RMSE):

RMSE =

√√√√ 1

N

∑
di∈D,d̂i∈D̂

∣∣∣di − d̂i

∣∣∣2.
• Root Mean-Squared Error logscale (RMSElog):

RMSElog =

√√√√ 1

N

∑
di∈D,d̂i∈D̂

∣∣∣log di − log d̂i

∣∣∣2.
• Mean-Absolute Error (MAE):

MAE =

√√√√ 1

N

∑
di∈D,d̂i∈D̂

∣∣∣di − d̂i

∣∣∣.
• Root Mean-Squared Error logscale (MAElog):

MAElog =

√√√√ 1

N

∑
di∈D,d̂i∈D̂

∣∣∣log di − log d̂i

∣∣∣.
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TABLE I: Environment Reconstruction under Different User Selection Factors

Factor Without
Selection Connectivity Reflection Power Connectivity

+ Reflection
Connectivity

+ Power
Reflection +

Power ALL

RMSE 0.9233 0.8535 0.5141 0.4351 0.2266 0.1584 0.4026 0.0556

Fig. 7: The calculated points without sensing user selection

• Absolute Relative Error (AbsRel):

AbsRel =
1

N

∑
di∈D,d̂i∈D̂

∣∣∣di − d̂i

∣∣∣
di

.

• Square-Relative Error (SqRel):

SqRel =
1

N

∑
di∈D,d̂i∈D̂

∣∣∣di − d̂i

∣∣∣2
di

.

• δn threshold:

δn =

∣∣∣∣∣
{
d̂i : max

di∈D,d̂i∈D̂

(
d̂i
di
,
di

d̂i

)
< 1.25n

}∣∣∣∣∣ /|D|.

V. SIMULATION RESULTS

In this section, we generate the dataset and evaluate the
performance of the proposed multi-user selection and multi-
modal fusion based environment reconstruction.

A. Dataset Generation

We consider a communications scenario involving numerous
pedestrians equipped with communications devices as well as
cars equipped with both communications devices and cameras.
We use CARLA [40] to build the simulation scenario and
utilize the cameras in the scenario to capture the images.6

Next, we use the 3D ray-tracing package “propagationModel”
of MATLAB [41] to calculate the wireless parameters. The

6CARLA has been meticulously designed to streamline the development,
training, and validation of autonomous driving systems. In addition to provid-
ing open-source code and protocols, CARLA offers a wealth of freely acces-
sible open digital assets, including urban layouts, buildings, and vehicles, all
tailored to this domain. CARLA empowers users with the ability to customize
sensor suites and environmental conditions to suit their specific needs, while
also enabling full control over both static and dynamic actors. Furthermore,
CARLA boasts functionalities such as map generation, facilitating extensive
experimentation and thorough testing of autonomous driving systems.
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Fig. 8: The environment reconstruction based on the connectivity
factor.
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Fig. 9: The environment reconstruction based on the reflection factor.

communication frequency is set to 28 GHz and the bandwidth
is set to 40 MHz. The BS is equipped with a uniform planar
array (UPA) of 8× 8 antennas and the user is equipped with
a UPA of 4× 4 antennas.

Without user selection, the points are calculated and pre-
sented in Fig. 7, which are plagued by numerous errors. Then
we test the impact of the connectivity factor, the reflection
factor, and the power factor on environment reconstruction. By
separately incorporating these three factors, the environment
reconstruction results are shown in Fig. 8, Fig. 9, and Fig.
10 respectively. Note that the goal of the connectivity factor
is to eliminate noise and high-order NLOS paths. From
Fig. 8, many irregular noise points in circle ① of Fig. 7
can be eliminated after introducing the connectivity factor.
The purpose of the reflection factor is to avoid misidentifying
the LOS path as a first-order NLOS path. From Fig. 9,
a large number of erroneous points between the BS and
the user as shown in circle ② of Fig. 7 can be eliminated
after introducing the reflection factor. The objective of the
power factor is to ensure that the selected user has an A-
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TABLE II: Depth estimation metrics under different weather conditions

Weather Method RMSE ↓ RMSElog ↓ MAE ↓ MAElog ↓ AbsRel ↓ SqRel ↓ δ1 ↑ δ2 ↑ δ3 ↑

Sunny image 5.281 0.226 1.289 0.413 0.173 12.828 0.692 0.960 0.996
fusion 1.874 0.091 0.895 0.243 0.062 0.187 0.976 0.996 0.998

Rainy image 10.315 0.437 2.054 0.538 0.281 15.557 0.554 0.815 0.906
fusion 3.564 0.176 1.355 0.362 0.126 0.524 0.812 0.977 0.994

Snowy image 18.339 0.981 3.160 0.892 0.675 26.220 0.150 0.337 0.497
fusion 4.802 0.230 1.508 0.403 0.178 1.244 0.751 0.937 0.978
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Fig. 10: The environment reconstruction based on the power factor.

BS

Fig. 11: The environment reconstruction based on the proposed user
selection algorithm.

class path, which can potentially result in highly accurate
environment reconstruction. As depicted in Fig. 10, the power
factor effectively eliminates numerous error points near the
ground truth points in circle ③ of Fig. 7.

The environment reconstruction result based on all three
factors is shown in Fig. 11. An interesting phenomenon is that
the calculated points all fall in the directions of the transmit
beams and are clustered in distribution. This is because that the
points lie between these two clusters belong to the first-order
NLOS paths whose angles do not align with the angles of
the transmit beams, and the user selection algorithm excludes
the first-order NLOS paths. The RMSE under different user
selection factors is shown in Tabel I. It can be seen that the
RMSE of environment reconstruction without user selection
is 0.9233. However, by employing the proposed user selec-

BS

Blind Spots

Fig. 12: The environment reconstruction of irregular walls based on
the proposed user selection algorithm.

BS1 BS2

Fig. 13: The environment reconstruction of irregular walls based on
two BSs.

tion method, the RMSE decreases to 0.0556, resulting in a
significant improvement in sensing accuracy.

In addition to the reconstruction of regular walls, as pro-
posed in [14], [42], we next attempt to reconstruct irregular
walls. However, in the environment with irregular walls, there
may be blind spots when using one single BS for sensing. As
shown in Fig. 12, the wall in the bottom right corner cannot
be sensed because there is no first-order NLOS paths with
reflection points located in the blind spots. To eliminate the
blind spots and obtain a complete environment reconstruction
result, we utilize two BSs that are placed on the left and right
sides respectively for the sensing of the irregular walls. Each
BS first utilizes the proposed multi-user selection algorithm
to select the superior users and generate the point set. Since
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Fig. 14: Testing loss of the proposed MMFN and the image only
method.

Fig. 15: The ground truth of the depth map.

the point set obtained from each BS is relatively accurate, we
then directly take the union of the two point sets from the two
BSs and fit the curves as shown in Fig. 13. It can be seen
that the multi-user selection based environment reconstruction
can effectively reconstruct irregular walls as well. Moreover,
the calculated points from each BS all fall in the directions
of the transmit beams from the BS, which is similar to the
phenomenon in Fig. 11.

Next, we evaluate the performance of the proposed multi-
modal fusion based environment reconstruction under different
weather conditions. Specifically, we consider fusing the image
with the BS’s point set by the proposed MMFN to accurately
estimate the depth of each pixel within the image. We train
the MMFN on the sunny dataset. The testing RMSE during
the training process is shown in Fig. 14. The image-only
method yields an RMSE of 5.281, while the integration
of communications sensing information and visual sensing
information achieves an RMSE of 1.874. We further examine
the robustness of the MMFN under rainy and snowy weather
conditions. The ground truth of the depth map is presented in
Fig. 15. In the depth map, the varying shades of color represent
the proximity of objects, where darker colors indicate closer
distances and lighter colors represent farther distances. For
the image-only method, the predicted depth map in a sunny
environment is displayed in Fig. 16(d), the predicted depth
map in a rainy environment is displayed in Fig. 16(e), and the

predicted depth map in a snowy environment is displayed in
Fig. 16(f). With the proposed MMFN, the predicted depth map
in a sunny environment is displayed in Fig. 16(g), the predicted
depth map in a rainy environment is displayed in Fig. 16(h),
and the predicted depth map in a snowy environment is dis-
played in Fig. 16(i). It can be seen that the image-only method
is comparable to the MMFN in sunny conditions. However, in
rainy and snowy conditions, the depth estimation performance
of the image-only method is relatively poor, whereas the
proposed MMFN still maintains a high accuracy. Therefore,
the performance of the image-only method and the proposed
MMFN across different evaluation metrics is presented in
TABLE II, where a downward arrow indicates smaller values
are better while an upward arrow indicates larger values are
better. In rainy conditions, the proposed MMFN achieves a
depth estimation RMSE of 3.564, which is approximately 2.9
times better than the image-only method. Similarly, in snowy
conditions, the proposed MMFN achieves an RMSE of 4.802,
which is approximately 3.8 times better than the image only
method. The proposed MMFN demonstrates strong robustness
to different weather conditions.

To answer how many communications users are required for
environment reconstruction, we next test the accuracy of depth
estimation with different numbers of users. In Fig. 17, the
dashed line represents the MMFN trained using the traditional
training strategy while the solid line represents the MMFN
trained using the proposed meta-learning based strategy. For
the traditional training approach, the maximum user number
is set to Nmax = 80. During the training process, the input
of the MMFN consists of the sensing data from Nmax com-
munications users. However, during testing, when ut users’
sensing data is used, the remaining (Nmax − ut) rows of the
input are filled with (0, 0, 1)7. It can be seen from Fig. 17
that the depth estimation error gradually decreases with the
increasing of user number, which also demonstrates that the
clustering characteristics of the communication system can
bring significant benefits to ISAC. Moreover, the traditional
training approach requires an increase in the number of users
to 50 before the performance reaches a satisfactory level.
However, with the proposed meta-learning based training
strategy, the performance converges to a satisfactory level after
the number of users reaches 10. The proposed meta-learning
based training strategy facilitates the activation of performance
leaps, making it easier to trigger significant improvements as
the number of users increases.

VI. CONCLUSIONS

In this paper, we propose a multi-user based environment
reconstruction scheme, where the BS collects the beam scan-
ning information of the ubiquitous users to compute the
environment point set. Moreover, we propose an evaluation
criterion for sensing users and use this criterion to select users
who can yield accurate reflection points. The point set is then

7The filled row is (0, 0, 1), where (0, 0) represent the coordinate of the
input image and the value 1 represents the depth of the coordinate (0, 0) is the
farthest. In other words, the filled (0, 0, 1) represents the depth information
of the top-left corner of the image, indicating the farthest distance (sky)
information.
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(a) Image of a sunny day (b) Image of a rainy day (c) Image of a snowy day

(d) Depth estimation by the image-
only at a sunny day

(e) Depth estimation by the image-
only at a rainy day

(f) Depth estimation by the image-
only at a snowy day

(g) Depth estimation by the pro-
posed MMFN at a sunny day

(h) Depth estimation by the pro-
posed MMFN at a rainy day

(i) Depth estimation by the pro-
posed MMFN at a snowy day

Fig. 16: The depth estimation under different weather conditions.
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Fig. 17: The RMSE when different users participate in the sensing
task.

distributed to users with sensing requests. Each user fuses the
received point set with their own images by the proposed
MMFN to achieve a more dense and comprehensive depth
map. Based on the user selection, we attained an impressive
16-fold enhancement in the precision of point set estimation.

Additionally, The proposed MMFN significantly enhances
the accuracy of environment reconstruction under challenging
weather conditions like raining and snowing. Moreover, we
propose a meta-learning-based training approach that enables
the network to be effective under any number of users, which
greatly improves the deployability and feasibility of MMFN.
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