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Abstract—In the past few years, text-to-audio models have
emerged as a significant advancement in automatic audio gener-
ation. Although they represent impressive technological progress,
the effectiveness of their use in the development of audio
applications remains uncertain. This paper aims to investigate
these aspects, specifically focusing on the task of classification
of environmental sounds. This study analyzes the performance
of two different environmental classification systems when data
generated from text-to-audio models is used for training. Two
cases are considered: a) when the training dataset is augmented
by data coming from two different text-to-audio models; and
b) when the training dataset consists solely of synthetic audio
generated. In both cases, the performance of the classification
task is tested on real data. Results indicate that text-to-audio
models are effective for dataset augmentation, whereas the
performance of the models drops when relying on only generated
audio.

Index Terms—audio generation, machine learning, data aug-
mentation, text-to-audio generative models

I. INTRODUCTION

In recent years, the research field related to sound synthesis
has seen the introduction of Text-to-Audio (TTA) models. TTA
models are sound generative systems that use natural language
prompts to guide the generation of the desired audio samples
[1]–[4]. They offer greater flexibility compared to alternative
sound synthesis approaches that use one-hot encoding to
condition the generation of sound samples according to the
desired sound class [5].

TTA systems represent a significant advancement in the
automatic audio generation and several models have been
presented with the ability to generate considerably high-quality
general audio [1]–[4]. Kreuk et al. proposed AudioGen [2],
which learns a discrete latent representation from raw wave-
forms, while an attention-based autoregressive decoder is used
to generate a discrete latent stream. Yang et al. introduced
DiffSound [1], a text-to-sound generative model based on a
non-autoregressive token-decoder based on a discrete diffusion
model. Liu et al. proposed AudioLDM [3], which is based
on a latent diffusion model [6] that allows the extension
from learning discrete representations, as previously done in
TTA approaches, to continuous latent representations. The
same authors proposed AudioLDM2 [4], a more sophisticated
version of AudioLDM. Other examples of TTA systems are
Tango [7], Make-an-Audio [8], and Audiobox [9].

TTA models can find applications in different domains,
such as augmented or virtual reality [10], and foley sound
generation [11], among others. Thanks to their versatility in
generating audio signals across a broad range of content types,
they also offer significant potential for dataset synthesis or
augmentation across different tasks. Their ability to generate
high-quality general sounds, together with their flexibility and
ease of utilization, make them interesting tools for generating
datasets that could be directly integrated into the training
pipeline of deep learning systems. Nevertheless, to the best
of our knowledge, limited literature is available regarding
the utilization of TTA-generated datasets for training deep
learning models tailored to specific tasks. In [12], Kroher
et al. trained a music genre classifier on a fully artificial
music dataset generated with MusicGen [13], a text-to-music
generation model. In [14], the authors fine-tune a TTA model
for generating anomalous sounds for the Anomalous Sound
Detection task.

Motivated by positive preliminary findings from [12]
and [14], this paper aims to investigate how to leverage TTA
systems in the field of Detection and Classification of Acoustic
Scenes and Events (DCASE) [15]. The main goal of the
DCASE field is the automatic recognition of sound events
and scenes and it can be divided into different tasks: Sound
Event Detection [16], Sound Event Localization [17], Acoustic
Scene Classification [18], among others. This domain presents
itself as an ideal application area to investigate the possibility
of using training datasets generated via TTAs, which have
the ability to reproduce sounds present in most DCASE-
related datasets. To analyze how to exploit the TTA models
in the DCASE domain, we selected the Environmental Sound
Classification (ESC) task [19]. ESC is a well-known task in
the DCASE community and different approaches have been
proposed in the literature [19]. In [20], Salamon and Bello
proposed a deep learning method, using the UrbanSound8K
(US8K) [21] dataset. US8K became a popular dataset for ESC
and, nowadays, it is a state-of-the-art benchmark for sound
classification tasks. ESC can be considered one of the base
case scenarios for DCASE. As such, we choose it in this study
to follow a bottom-up approach in terms of complexity. We
first analyze a simpler problem, to then generalize the analysis
and techniques to more complex tasks in future works. The
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same reasoning applies to the choice of the US8K dataset.
To the best of our knowledge, this is the first paper to

analyze how to leverage TTA-generated datasets into the train-
ing pipeline of ESC systems. We considered two scenarios:
a) TTA-augmented training dataset: the training dataset is
augmented with data generated with TTA models; b) TTA-
generated training dataset: the training dataset is composed
of only synthetic audio generated through TTA models. We
selected two TTA models. With each of them, we generate
two versions of the US8K dataset. For one version we used a
single-instruction text prompt, and for the the other one we
used a text prompt proposed by a Large Language Model
(LLM) [22]. We then selected two deep-learning ESC models
of differing architectural complexity, and trained them using
datasets augmented or generated through TTA, depending on
the scenario. We then evaluated how the accuracy performance
of both ESC models was influenced by testing them on real-
world data. Audio samples and the code used to obtain the
results are available at https://ronfrancesca.github.io/Text-to-
Audio-ESC/.

II. RELATED BACKGROUND

A. Synthetic Data in Environmental Sound Classification

Synthetic data are beneficial for ESC applications. In fact,
one limitation of deep learning solutions for ESC is the
need of large amounts of labeled training data to reach good
performances, and labeling a dataset is both time-consuming
and biases-prone [23]. Different studies have demonstrated
that incorporating synthetic data alongside real-world record-
ings during the training phase enhances system generalization
and leads to improved performances [24]–[26]. The synthetic
data considered in [24]–[26] were generated using available
tools for synthesizing soundscapes. A notable example of
these is Scaper [24], an open-source Python library, which
is among the main libraries used for soundscape synthesis
and augmentation in classification tasks. It allows the creation
of new soundscapes or the integration of sound events into
pre-existing ones, managing different parameters (number of
sound events, types, etc. ) [24]. Nevertheless, these param-
eters need to be specified beforehand, and a pre-organized
and available sound collection is necessary for soundscape
creation. The TTA models considered in this paper could be a
potential solution to these limitations. They provide the ability
to customize and specify the context of the desired audio
output using natural language, enabling precise control with
text prompts over the generated sounds in an easy and user-
friendly way. Additionally, given that collecting real data is
an expensive operation, employing TTA models for training
allows to preserve real data for testing purposes, especially in
cases where there is scarcity of them.

B. Text-to-Audio generative models

This section briefly introduces the two TTA models used
to generate synthetic data for this study. AudioGen [2] is
an auto-regressive model for TTA based on two steps: 1)
Learning a discrete representation of the raw audio through
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Fig. 1: US8K dataset classes distribution per each fold. Colors
represent the different sound classes, specified in the legend.

an auto-encoding procedure; 2) Generating the audio through
a transformer model applied over the learned codes and
conditioned through textual features. The audio tokenization
procedure is performed via an auto-encoder model trained
using a GAN-like objective and a multi-scale STFT discrimi-
nator. The decoding procedure is performed via a transformer
model where text embeddings are used for conditioning.
AudioLDM [3] is a TTA system based on a continuous latent-
diffusion model conditioned via CLAP [27]. This removes
the need of paired audio-text data during the training process.
AudioLDM2 [4] extends this approach introducing a general
audio representation denoted as Language of Audio (LOA)
used to extract conditioning embeddings by training an Audio
Masked AutoEncoder (AudioMAE) [28]. This enables the
generation of any audio with greater control and flexibility.

III. EXPERIMENTAL SETUP

A. Text-to-Audio models

Both AudioGen [2] and AudioLDM2 [4] are open-source
and the authors released pre-trained models that can be readily
used to generate audio. For AudioGen, we used the available
API for the pre-trained model audiogen-medium, composed of
1.5 B of parameters. For AudioLDM2, we used the audioldm
checkpoint, whose model size is 1.1 B parameters. We focused
on the smaller version of the model, which is faster in terms of
generation. For each class, we considered 200 inference steps
and a seed = 20. This is valid only for the AudioLDM2 since
it is based on a diffusion model. For both models, the audio
length is of 4 s (the maximum length of audio files in US8K).

B. Datasets generation

US8K [21] is the reference dataset selected for this study.
It contains 8732 labeled sounds of 4 s maximum duration
of urban sounds from 10 classes (reported in Fig. 1). The
dataset is divided into 10 folds, used for leave-one-out cross-
validation at evaluation time. The distribution of the sounds
in the different folds is reported in Fig. 1.

We generated four versions of the US8K dataset: two with
AudioLDM2 and two with AudioGen. For each TTA model,
we used two different prompt templates (better described in
Section III-C). For each dataset version, we first generated the
total amount of data following the class distributions of US8K.

https://ronfrancesca.github.io/Text-to-Audio-ESC/
https://ronfrancesca.github.io/Text-to-Audio-ESC/


We then divided the generated dataset into 10 folds, following
the same partition proposed for US8K.

C. Prompt templates

We use two different prompt templates for each TTA model.
The first consists of a single-instruction sentence containing
the instruction of a clear sound generation in a urban context,
specifying the desired audio class. The template is: ”A clear
sound of a <class to generate> in a urban context”. (E.g.
for the dog bark class the template is ”A clear sound of a
dog barking”). For AudioLDM2, as suggested by the authors
on the available guideline, we used a negative prompt to reach
a better quality of the output. In this case the negative prompt
is: ”Low quality”. AudioGen does not involve the use of a
negative prompt.

The second template has been generated using a Large
Language Model (LLM), ChatGPT 3.5. The LLM has been
asked to generate a single and clear sentence that would have
been used as input for a TTA model to generate an audio
sample of a sound class in a urban context. The prompt
template suggested by ChatGPT is: ”Generate a realistic
audio representation of the sound of a <class to generate>
in a urban environment”. For AudioLDM2, also the negative
prompt has been asked to ChatGPT. Depending on the sound
class, the templates have been adapted to have repetitive
sounds to be consistent with the padding strategy implemented
in the study (e.g dog bark or car horn), or to better specify a
sound coming from a class which might induct confusion on
the generation of its sound (e.g. siren).

D. Baselines and configuration

To better generalize the results, we implemented two ESC
models. The first classifier is a CNN implemented following
the same parameters and similar structure of the one in [20].
Our implementation is slightly different so, as is common in
practice, results will not be exactly the same as the original
paper. The CNN implemented for this study is composed of
three convolutional layers, each followed by a max-pooling
operation, except the last layer. The kernel size is 5 and the
max pooling operation implies a stride of 4 for the time
dimension and 2 for the frequency dimension, respectively.
The last two layers are fully connected layers, each preceded
by a dropout of 0.5. The second classifier is a state-of-the-art
CRNN. We followed a similar structure of the CRNN proposed
in [29], inspired by [30]. The network is composed of seven
convolutional blocks followed by a bidirectional GRU layer
and a dense layer that generates the final output. We used the
same parameters and configuration proposed in [29].

For both networks, the input are TF patches of 3 s taken
from the log mel-spectrogram computed from the audio input,
as in [20]. All the sounds of US8K have been resampled to
16 kHz, being this the frequency at which the TTA models
selected for the study generate sounds. We computed the
STFT considering a Hann window of 1024 samples, and 2048
frequency points. We considered 64 mel-bands for the log
mel-spectrogram with a frequency range between 0 Hz and

TABLE I: Data augmentation comparison

Data aug. method Accuracy (CNN) Accuracy (CRNN)

US8K-PS 66.49 (0.60) 65.01 (0.95)
US8K-TS 64.14 (0.80) 62.63 (1.80)
US8K-AudioGen 68.42 (0.71) 65.18 (0.87)
US8K-AudioGengpt 68.88 (0.50) 65.39 (0.63)
US8K-AudioLDM2 68.04 (0.63) 63.41 (0.99)
US8K-AudioLDM2gpt 69.64 (0.91) 64.69 (0.53)

US8K (Baseline) 64.68 (0.82) 62.70 (0.65)

8000 Hz. Both networks have been trained for 100 epochs,
with batch size of 128 and an early stop condition with
patience on the validation loss of 15 epochs. We considered
Adam optimizer with a learning rate of 0.001. Samples shorter
than 4 s have been padded by repeating the sample until
reaching the desired time length.

E. Experiments definition

To understand the impact of the TTA-generated dataset
during the training of ESC learning-based models, we con-
sider two cases: TTA-augmented training dataset and TTA-
generated training dataset.

For the TTA-augmented training dataset case, we trained
the two networks with the US8K dataset by augmenting it
with one version of the TTA-generated datasets. The TTA-
generate datasets and US8K have the same distributions, so
this can be considered as a data augmentation technique where
the original dataset is incremented by 100 %. We compared
the results with two signal processing data augmentation
techniques proposed in [20]: Time Stretching (TS) and Pitch
Shifting (PS). TS is the process of changing the speed of
an audio signal without affecting its pitch, while PS is the
process of changing the pitch without affecting the speed of
the audio sample. We focused on PS1 (as proposed in [20]),
here referred as PS. In [20], the authors augmented each audio
file four times, using four values both for TS and PS. In
contrast, for each file we randomly select only one value
to double the USK8 size. Encouraged by the outcomes of
this experiment, we focus on TTA-augmented techniques and
investigate whether proportionally expanding the dataset size
will reflect the improvement in model accuracy.

For the TTA-generated training dataset case, we trained
the ESC models only with TTA-generated versions of US8K,
one by one, and analyzed the impact on the model’s accuracy.
In both scenarios, we compared the results of the experiments
with the ESC models trained with only the original US8K. In
all cases, we evaluated the systems using leave-one-out cross-
validation [20]. We used 9 folds for training (8 for training and
1 for validation), and 1 fold for testing. The testing fold was
always selected from US8K, to evaluate the ESC models on
real-world data and make the comparison as fair as possible.

IV. EXPERIMENTS RESULTS

This section reports the results of the two experiments
described in Sec. III-E. In both scenarios, AudioGen and Audi-
oLDM2 indicate the dataset versions generated with AudioGen
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Fig. 2: Classification accuracy when varying the size of the
TTA-generated augmentation dataset. Error bars represent 95%
confidence intervals over 5 repetitions of the experiment.

and AudioDM2, respectively. In case of a US8K- prefix, it
means they have been added to the US8K dataset at training.
The gpt subscript indicates that the text prompts for the TTA
models have been generated using ChatGPT, otherwise with
the single-instruction prompt. The results report the accuracy
average over 5 runs of the experiments, with the related 95%
confidence interval (in parenthesis).

A. TTA-augmented training dataset case

In this scenario, we aim to answer the question: Does the
integration of TTA-generated audio samples as a data augmen-
tation technique affect the accuracy of ESC systems? Table I
reports the accuracy results for the different data augmentation
techniques considered for both the ESC approaches. USK-PS
and USK-TS indicate that PS and TS data augmentation has
been applied to the US8K dataset, respectively. The last row
reports the accuracy for the CNN and CRNN trained only with
the original US8K dataset.

From the results, it is possible to observe that almost all
the TTA-based augmentation techniques reach higher per-
formances compared to the signal processing ones. Training
models using GPT-based dataset versions evidentiates this,
especially in the case of the CNN model, which yields its
optimal performance when augmented with AudioLDM2gpt,
achieving nearly a 5% increase in accuracy over the baseline.
For the CRNN model, the most favorable results are obtained
using AudioGengpt, exhibiting a 3% enhancement compared to
the baseline. Data augmentation techniques based on signal
processing consistently yield inferior performance for the
CNN architecture, while getting comparable performances in
the case of CRNN. These findings suggest that incorporating
TTA-generated audio samples as a data augmentation tech-
nique enhances the performance of the ESC system.

TABLE II: Text-to-Audio dataset comparison

Training dataset Accuracy (CNN) Accuracy (CRNN)

AudioGen 40.32 (0.29) 38.79 (1.24)
AudioGengpt 46.04 (0.71) 43.96 (1.36)
AudioLDM2 38.81 (0.56) 36.11 (1.11)
AudioLDM2gpt 38.49 (1.21) 32.86 (1.01)

US8K (Baseline) 64.68 (0.82) 62.70 (0.65)

Motivated by these results we perform a further experiment
to understand if increasing the size of the TTA-generated
dataset corresponds to an equivalent increase in performance.
Specifically, we consecutively double the size of the data used
for augmentation, up to 400% the original size. We increased
the size of the dataset always following the same distribution
of US8K. The case of 100% corresponds to the previous
experiment. The accuracy when varying the size of the TTA-
generated dataset is reported in Fig. 2(a) for the CNN, and
in Fig. 2(b) for the CRNN. No clear trend is observed for
both models. Only for the CRNN it is possible to notice an
improvement on the performances when the US8K dataset is
augmented with up to 200% - 300% of data coming from either
one of the two AudioGen generated versions of it. However,
these results underscore the necessity for further investigation
to understand the implications of the observed patterns.

B. TTA-generated training dataset

This case focuses on answering the question Can we rely
on only TTA-generated data to train an ESC system? Table
II reports the accuracy of the two ESC models when trained
with one of the TTA-generated versions of the US8K dataset.

The results show that neither one of the two ESC models
trained with only TTA-generated datasets reaches the baselines
performances. However, the highest accuracy for both models
is reached when trained with GPT-based dataset versions
generated with AudioGen. This confirms that AudioGen is
preferable as TTA model and allows to get higher perfor-
mances when used as dataset generator for ESC. On the
contrary, when using AudioLDM2 performances worsen. At
any rate, the results reveal that is not possible to rely on
only TTA-generated dataset yet. Our intuition is that domain
adaptation between the TTA-data used during training and
the USK8 real data used for testing has an impact on the
performances. As for the previous scenario, we wondered if
the threshold for achieving baseline performance might be
influenced by the quantity of data used at training. Therefore,
we incrementally increased the dataset size incrementally
doubling it, extending it to train models with up to 400%
of synthetic data. Fig. 3(a) shows the performances for the
CNN model; Fig. 3(b) reports the performances for the CRNN
model. As we can observe, increasing the number of audio data
is useful up to 2-3 times the original dataset size, confirming
the results of the previous case experiments. Also in this case,
both networks achieve higher performances when trained with
AudioGen dataset versions. This underscores the AudioGen
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Fig. 3: Classification accuracy when varying the size of the
training dataset composed of only TTA-generated data. Error
bars: 95% confidence intervals over 5 experiment repetitions.

ability to generate more realistic sounds, enabling the ESC
models to better generalize on real-world data.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we analyzed the impact of including Text-To-
Audio-generated datasets in the training process of learning-
based models for ESC. We examined two ESC models and
two TTA models across two scenarios: a) augmenting the
training dataset with data generated using TTA models; b) the
training dataset solely consists of synthetic audio generated
by TTA models. From the results, we can conclude that
TTA-generated datasets are beneficial when used as data
augmentation techniques, but are not ready to be used as
the only source of data during training. We believe that the
obtained results motivate further investigations on the topic.
Future works will include the exploration of more advanced
prompt engineering strategies and the investigation of fine-
tuning methods to improve generation capabilities of TTA
models. We will further investigate with training the models
with simultaneously artificial data and real-world data, to find a
balance between them which allows to overcome the expensive
operation of collecting and labeling real-world data.
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