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The simultaneous breaking of time-reversal and inversion symmetry can lead to peculiar effects in Josephson junctions,
such as the anomalous Josephson effect or supercurrent rectification, which is a dissipationless analog of the diode
effect. Due to their impact in new quantum technologies, it is important to find robust platforms and external means to
manipulate the above effects in a controlled way. Here, we theoretically consider a quantum spin Hall-based Josephson
junction subjected to a magnetic field in the direction defined by spin-momentum locking, and in presence of a local
tip in close proximity to the normal region. We consider different local perturbations, model normal and magnetic tips,
and study how they affect the Josephson response of the device. In particular, we argue that magnetic tips are a useful
tool that allows for tunability of both φ0 response and supercurrent rectification.

During the last years, there has been a widespread interest
in the physics of low-dimensional semiconductors featuring
strong spin-orbit coupling (SOC). Indeed, these systems of-
fer an ideal platform to develop new architectures able to co-
herently control electron spin, with great impact in spintron-
ics and topological quantum computing1–6. Thanks to their
strong SOC, quantum spin Hall systems, such as HgTe/CdTe
heterostructures7–9, are widely studied platforms presenting,
among all, a non-trivial topological phase with conducting
helical edge channels10–17. Furthermore, great interest has
been recently dedicated to the interplay between strong SOC
and superconducting correlations6,18–24, leading for instance
to several theoretical and experimental studies on topologi-
cal Josephson junctions (JJs)4,9,25–32. These consist of SNS
devices, where the normal (N) part, in between two supercon-
ducting (S) contacts, resides in the topological phase. These
junctions can display fascinating physics, ranging from the
emergence of Majorana bound states6,11 to anomalous dc and
ac Josephson responses9,15,26,30,33. In particular, it has been
predicted that, in presence of a small magnetic field, a topo-
logical JJ can sustain a finite supercurrent at zero phase bias,
the so-called φ0 effect26. At the heart of this phenomenon is
the simultaneous breaking of time-reversal and inversion sym-
metry. Notably, it is well known that these two ingredients can
lead to non-reciprocal charge transport and form the theoreti-
cal basis behind the diode effect.

Very recently34–44, it has been realized that a supercon-
ducting analog of the diode is possible, on the basis of the
same arguments, leading to dissipationless supercurrent rec-
tification. The supercurrent diode effect (SDE), can greatly
impact low temperature (superconducting) technology. The
first experimental reports on SDE relied on magnetic or lay-
ered bulk materials38,45–51, but recent measurements on JJs,
based for instance on III-V semiconductors, have been also re-
ported24,52–56. Still, several questions on dissipationless non-
reciprocal transport are open, including its microscopic ori-
gin39,57–62 and its tunability by external means.

In the context of quantum spin Hall systems, in Ref.26 it has
been shown by scattering matrix formalism that a bare topo-
logical JJ, subjected to a longitudinal (parallel to the direction
defined by spin-momentum locking) magnetic field, can give
rise to the anomalous Josephson effect. Moreover, finite su-
percurrent rectification is present along a single helical edge,
while the effect disappears when considering the whole sam-
ple26.

Inspired by the success in the field of Wigner crystalliza-
tion63–65, in this work we consider a model of a quantum
spin Hall-based topological JJ in the presence of a closely
spaced local tip. We model different tips that act as local
perturbations on the normal region. First, we show that a
tip capacitively coupled to the edge states does not alter at
all the supercurrent. Then, we demonstrate that a magnetic
tip66–68 with magnetization parallel to the spin axis defined
by spin-momentum locking (here in the z-axis) only shifts the
current-phase relation (CPR), thus influencing the current at
zero phase bias but not the SDE. Finally, a magnetic tip with
magnetization perpendicular to the previous one (hence along
any direction in the xy plane) influences both the current at
zero phase bias and the SDE.

The system is modeled as two one-dimensional channels,
located at the opposite sides of the structure. Each channel
is helical, and the helicity of the two channels is opposite.
Moreover, the system is partially proximitized by a supercon-
ductor so to define a JJ26, subjected to a magnetic field. We
also assume that only one of the edges (say the upper one)
is perturbed by the tip. Quantitatively, the model we use is
represented by the Bogoliubov-de Gennes Hamiltonian69–71

H =
1
2

[(
∑

λ=±
Hλ

)
+Ht

]
. (1)

Here, Hλ is the Hamiltonian of the unperturbed edges, with
λ =± for the upper/lower edge, respectively, and Ht describes
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the interaction with the tip. We have

Hλ =
∫ ∞

−∞
dxΨ†

λ (x)Hλ (x)Ψλ (x), (2)

with the Hamiltonian density (hereafter we set h̄ = 1)

Hλ (x) =−λvF i∂xτzσz +∆(x)τxσ0 +Uzτ0σz, (3)

with basis Ψλ (x) =
(

ψλ ,↑(x),ψλ ,↓(x),ψ
†
λ ,↓(x),−ψ†

λ ,↑(x)
)T

,
where ψλ ,↑/↓(x) are the Fermi field operators for electrons
in the edge λ and with spin projection ↑ / ↓. Here, vF is
the Fermi velocity, τi and σi (i = 0,x,y,z) are the identity
and the Pauli matrices in particle-hole and spin space respec-
tively and ∆(x) = ∆0[θ(−x− L/2)eiϕ/2 + θ(x− L/2)e−iϕ/2]
is the superconducting pairing, with L and ϕ the distance and
the phase difference between the two superconducting sec-
tions. The parameter ∆0 represents the effective amplitude
of the proximitized superconducting pairing seen by the edge
states. Finally, Uz = gµBBz is the energy associated to a fi-
nite magnetic field Bz via the usual Zeeman coupling, where
µB = 5.788×10−5 eVT−1 is the Bohr magneton and g the ef-
fective gyromagnetic factor for the helical edges. Both orbital
effects and inter-edge interactions are neglected in our analy-
sis.

The Hamiltonian related to the tip, which only perturbs the
upper edge (λ =+), is given by

Ht =
∫ x0+d/2

x0−d/2
dx

3

∑
ζ=1

Ψ†
+(x)H

(ζ )
t (x)Ψ+(x), (4)

where we have imposed that the tip only influences the system
for x0−d/2< x< x0+d/2, with d > 0 representing the width
of the tip, x0 −d/2 >−L/2, x0 +d/2 < L/2, and

H
(1)

t (x) = δ µτzσ0, (5)

H
(2)

t (x) = δUzτ0σz, (6)

H
(3)

t (x) = δUxτzσx. (7)

Here, δ µ represents a local capacitive coupling, and δUz/x =
gµBδBz/x Zeeman energies related to local magnetic fields
parallel or perpendicular to the axis defined by spin-
momentum locking, respectively. In the following, the per-
turbations H

(ζ )
t will be addressed separately. Notably, none

of our results will bear any explicit dependence on the tip po-
sition x0. A schematic of the system is presented in Fig. 1.

The quantity under investigation is the supercurrent I(ϕ)
as a function of the phase difference between the two super-
conducting regions, which are kept at the same voltage. The
supercurrent is the sum of the supercurrents Iλ (ϕ) carried by
the single edges. The current Iλ (ϕ) is evaluated by means
of the scattering matrix formalism69–71, and in particular by
using the relation72

Iλ (ϕ) =−4eT
∂

∂ϕ

∞

∑
ν =0

ℜ
[

1
2

ln[Dλ (iων ;ϕ)]
]
. (8)

x

y

z

Ht

d

L
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FIG. 1. Schematic of the system under study, consisting of a Joseph-
son junction lying in the xy plane, with a topological insulator as the
normal part. A tip of size d along the channel axis (x-axis) perturbs
the upper helical edge states with an Hamiltonian Ht . The direction
defined by the spin-momentum locking in assumed parallel to the z-
axis.

Here ων = (2ν + 1)πT are the thermal fermionic Matsub-
ara frequencies and Dλ (z;ϕ) is the analytic continuation of
Det[I− Sboundλ (E,ϕ)] in the upper complex plane. Sboundλ is
the full scattering matrix related to the Andreev bound states.
These are subject to the bound state condition ΨOut

λ = ΨIn
λ ,

where ΨIn
λ describes the in states and ΨOut

λ the out states for
the edge λ .73

For the problem at hand, the scattering matrix Sboundλ is
given by Sbound+ = SA+Sprop+ for the upper (perturbed) edge.
In addition, one has Sbound− = SA−Sfree

prop− for the lower (un-
perturbed) edge. In the above expressions, SAλ represents the
scattering matrix associated to Andreev processes70,71. The
explicit form of Sboundλ for the different cases is given in the
Supplementary Material (SM).

As discussed in Ref.26, in the absence of the tip, one finds
that Iλ (ϕ = 0) ̸= 0, that is, the single edge shows a φ0 effect.
Moreover, one has that |Maxϕ {Iλ (ϕ)}| ̸= |Minϕ {Iλ (ϕ)}|,
i.e., one has a finite SDE as well. However, one also finds
that Iλ (ϕ) = −I−λ (−ϕ), so that both the φ0 effect and the
SDE vanish for the full system of two edges. Since the recti-
fication in the system without perturbation manifests in the
short-junction regime26, in the following we consider this
regime, taking L/ξ = 0.1, with ξ = vF/∆0 the supercon-
ducting coherence length. For the present work we consider
∆0 = 10µeV9,18 and vF = 4.6× 104 ms−1, yielding a coher-
ence length of ξ ∼ 3µm18,74. Furthermore, we choose an ef-
fective gyromagnetic factor g= 11.5 that is a reasonable value
for helical edge states74. These values are compatible with
those reported for InAs/GaSb18,74. Hereafter we also take the
tip width d/L = 0.2 which corresponds to a reasonable tip
physical dimension63,66–68. It is worth anticipating that our
results refer to an overall magnetic field Uz applied in the z
direction which is typically considered to be much smaller
than the magnetic field induced by the tip. Furthermore,
we focus on the low temperature regime with T ≪ ∆0, i.e.,
T ≪ 0.1K.

A first result of the present article is that for finite δ µ , the
Josephson current remains identical to the one obtained in the
absence of the tip. This fact closely resembles the Klein tun-
neling5,6. Interestingly, this effect does not rely on the precise
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FIG. 2. (a) Comparison of the current-phase relation for the lower edge (I−), upper edge without the tip (Ifree
+ ), and upper edge in presence of

the tip (I+), with Uz/∆0 = 0.5. (b) Comparison of the current-phase relation for the full system (both edges) in absence (Ifree) and presence (I)
of the tip, with Uz/∆0 = 0.5. The dashed gray lines emphasize the lack of SDE in the total current. (c) Anomalous supercurrent Iφ0 = I(ϕ = 0)
as a function of Uz/∆0. In all plots, the field of the tip (when present) is set to δUz = 5.4×10−4 eV which, assuming g = 11.5, corresponds
to a magnetic field of 0.83T. The temperature is T = 10mK.

form chosen for δ µ , but it holds true for any spatially varying
profile. Our result hence implies that the results of Ref.26 are
robust with respect to chemical potential fluctuations. From
a mathematical point of view, the phenomenon emerges from
the analytical form of Sbound+ , which reduces to

Sbound+ = SA+Sδ µ
prop+ . (9)

The Andreev scattering matrix SA+ has the form

SA+ =

(
0 σA+

σA+ 0

)
, (10)

while Sδ µ
prop+ factorizes as

Sδ µ
prop+ =

(
eiδ µ d/vF I2×2 0

0 e−iδ µ d/vF I2×2

)
Sfree

prop+ , (11)

with Sfree
prop+ a diagonal matrix, describing the propagation

along the upper edge in the absence of the tip. Using the fold-
ing identity for block matrices69,70, one can show that the con-
tributions due to δ µ cancel out in the computation of D+(z;ϕ)
of Eq. (8), thus leaving the current unchanged with respect to
the unperturbed case.

The effect related to a finite δUz, i.e., a magnetic tip with
magnetization parallel to the edge spin polarization, is differ-
ent with respect to the case just discussed. It turns out that the
perturbation is again a modification of the propagation matrix
Sprop+

SδUz
prop+ =




eiδUz d/vF 0 0 0
0 e−iδUz d/vF 0 0
0 0 eiδUz d/vF 0
0 0 0 e−iδUz d/vF


Sfree

prop+ ,

(12)

but in a way that maintains the presence of the perturbation in
Eq. (8), where it manifests itself as a current-phase shift. Ana-
lytically, the phase shift is described by the following relation

I+(ϕ)≡ Ifree
+ (ϕ −2δUzd/vF) =−I−(2δUzd/vF −ϕ), (13)

where Ifree
+ (ϕ) is the CPR that one would obtain for the upper

edge in absence of the tip. This fact is shown in Fig. 2(a),
where the dashed curve represents the CPR in absence of the
tip and the solid blue curve its translation due to the presence
of the local δUz. For the parameters chosen (Uz/∆0 = 0.5)
the shift in the CPR is such that the anomalous current in the
upper edge almost vanishes.

From the point of view of non-reciprocal transport, a fi-
nite δUz surprisingly does not result in any rectification, al-
though the critical current is affected. Indeed, this is visible
in Fig. 2(b): the maximum and minimum supercurrent ampli-
tudes are equal, and thus no rectification is expected. Finally,
from Eq. (13) one can see that the perturbation shifts the CPR
of the perturbed edge, hence producing a finite anomalous su-
percurrent in the full structure, as shown in Fig. 2(c). This fact
is remarkable, since it allows to manipulate the anomalous su-
percurrent by means of local perturbations.

In the case of finite δUx, i.e., a magnetic tip with perpen-
dicular magnetization with respect to the edge spin polariza-
tion, the scenario is more complex. Indeed, such term acts
as a barrier to the supercurrent, so that the critical current in
the perturbed edge decreases. This fact implies, for the full
system, both the presence of SDE and of anomalous super-
current. This phenomenology arises from the fact that in the
case of a transverse magnetic field, the perturbation does not
commute with the free Hamiltonian. Therefore, in the per-
turbed region an energy gap is opened in the linear dispersion
relations, causing the energy eigenstates in this magnetic gap
to be exponentially suppressed. For this reason, these states
contribute to the supercurrent in a minor way. Moreover, the
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FIG. 3. (a) Comparison of the current-phase relation for the lower edge (I−), upper edge without the tip (Ifree
+ ), and upper edge in presence of

the tip (I+), with Uz/∆0 = 0.5. (b) Comparison of the current-phase relations for the full system in presence of the tip, for different values of
Uz/∆0, indicated by the subscripts in the legend. (c) Anomalous supercurrent Iφ0 as a function of Uz/∆0. In all plots, the field of the tip (when
present) is set to δUx = 4.5×10−4 eV which, assuming g = 11.5, corresponds to a magnetic field of 0.69T. The temperature is T = 10mK.

transfer matrix SδUx
prop+ presents off-diagonal terms, that con-

tain the spin-flip amplitudes (see the SM). The consequence
of these effects is a change of the CPR and in particular a sup-
pression in the magnitude (Fig. 3(a)). This leads to an imbal-
ance between the maximum and minimum value of the CPR
in the two edges and, consequently, to a rectification that de-
pends on the two magnetic scales present (Uz and δUx). In
particular, if Uz is increased over ∆0, the diode effect vanishes
(cf. Fig. 3(b)). The amplitude imbalance manifests also at
ϕ = 0 and so in the total anomalous supercurrent. This is rep-
resented in Fig. 3(c), where the anomalous supercurrent Iφ0
is plotted as a function of Uz/∆0: this quantity vanishes both
for Uz ≪ ∆0 and Uz ≫ ∆0, reaching the maximum amplitude
around Uz ∼ ∆0.

In order to quantify the rectification effect, we compute the
rectification coefficient47,52,53, which is defined as

η [I] =
∣∣∣∣
|Maxϕ {I(ϕ)}|− |Minϕ {I(ϕ)}|
|Maxϕ {I(ϕ)}|+ |Minϕ {I(ϕ)}|

∣∣∣∣ . (14)

In Fig. 4(a) we plot the rectification coefficient for the total
current (η [I] ≡ η), and for the upper edge current (η [I+] ≡
η+), as a function of the tip strength δUx. By increasing δUx,
we find that η reaches a (sharp) maximum and then decreases
to a plateau. Looking at the rectification of the single upper
edge, it presents a simpler (monotonous) structure, with a van-
ishing η+ at large δUx.

To understand the physical origin of the peak in the rectifi-
cation coefficient, in Fig. 4(b) we plot the CPRs for the lower
edge, upper edge (in presence of the tip) and for the full sys-
tem, with δUx set to the value for which η reaches its maxi-
mum (≡ δU peak

x ). By comparing the three curves, one can see
that the minimum of I almost coincides with the minimum of
I−, since I+ has a node close to where the minimum of I− oc-
curs. On the other hand, due to the fact that I+ is suppressed
by the transverse magnetic field of the tip, the maximum of I
(which for δUx = 0 coincides with the maximum of I+) moves

in the direction of the maximum of I− as δUx is increased. In
addition, for intermediate values of δUx (i.e., as long as I+ is
not completely suppressed) the maximum value of I decreases
in magnitude. For this reason there is an increasing unbalance
between the maximum and minimum value of I. For higher
values of δU peak

x , the suppression of I+ causes the maximum
value of I− to be increasingly influential in the CPR, and con-
sequently the maximum of I begins to increase its value until,
when I+ is fully suppressed, it reaches the maximum of I−.
This explains the presence of a peak in η as well as the suc-
cessive plateau. Indeed, for δUx ≫ δU peak

x the supercurrent
in the upper edge is fully suppressed (I+ ≈ 0) and therefore
I ≈ I−. Thus, η(δUx → ∞) ≈ η [I−] = η+(0), meaning that
the plateau in η corresponds to the value of the rectification
for a single (unperturbed) edge.

Given the mechanism leading to the non-monotonous be-
haviour in the rectification just described, one may wonder if
by varying the field Uz (and so shifting the CPRs of both the
upper and lower edge in opposite directions in phase space)
it is possible to reach the peak at lower (experimentally more
accessible75) values of δUx. It turns out that this is indeed the
case. In Fig. 4(c) we report plots of η as a function of δUx for
different values of Uz: one can clearly see that for values of
Uz higher then ∆0/2 (but still lower than ∆0), the peak moves
to significantly smaller values of δUx, while maintaining size-
able (even larger) height.

In conclusion, we have considered the effects of local per-
turbations provided by a tip on the anomalous supercurrent
and on the SDE in Josephson junctions based on a two di-
mensional topological insulator. We have shown that a capac-
itive coupling modelled as a chemical potential step has no ef-
fect on the transport properties, providing a generalization of
the Klein paradox. Subsequently, we have shown that a mag-
netic coupling in the direction of the spin-momentum locking
rigidly shifts, at the level of the single edge, the current-phase
relation. It hence enables the manipulation of the anomalous
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FIG. 4. (a) Comparison between the rectification coefficient associated to the total current (η(I) ≡ η) and the one associated to the upper
edge current (η(I+) ≡ η+) as a function of the tip field strength δUx, for Uz/∆0 = 0.5. η presents a sharp peak around δUx/∆0 ∼ 80. (b)
Comparison of the current-phase relation for the lower edge (I−), upper edge (I+), and full system (I) in presence of the tip with δUx/∆0 = 80,
obtained for Uz/∆0 = 0.5. (c) Comparison of the full system rectification coefficient η for different values of the magnetic field Uz. The
subscript of η in the curve labels denotes the value of Uz/∆0.

supercurrent at the level of the full structure with two edges.
However, it does not generate any SDE, although it influences
the critical current. Finally, we have shown that a magnetic
coupling perpendicular to the direction of spin-momentum
locking is able to generate both anomalous supercurrent and
SDE at the level of the full structure.

We argue that our results could be observable in InAs/GaSb
quantum wells in the helical regime. Indeed, the numer-
ical values considered for vF , g, ∆0 are compatible with
those actually measured in the proposed material18,74, and
magnetic fields of the tip below 1T are now experimentally
achievable.66–68 Even more favorable conditions in terms of
g-factor and Fermi velocity are met in 2D spin-orbit coupled
quantum gases, for which single edge theory could be effec-
tively employed. Our work could hence provide a theoretical
support to experiments aiming at the design of manipulable
anomalous supercurrents and SDE.
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M. Ilyn, C. Rogero, F. S. Bergeret, J. S. Moodera, P. Virtanen, T. T.
Heikkilä, and F. Giazotto, Nature Communications 13, 2431 (2022).

48J. Yun, S. Son, J. Shin, G. Park, K. Zhang, Y. J. Shin, J.-G. Park, and
D. Kim, Phys. Rev. Res. 5, L022064 (2023).

49H. Wu, Y. Wang, Y. Xu, P. K. Sivakumar, C. Pasco, U. Filippozzi, S. S. P.
Parkin, Y.-J. Zeng, T. McQueen, and M. N. Ali, Nature 604, 653 (2022).

50A. Sundaresh, J. I. Väyrynen, Y. Lyanda-Geller, and L. P. Rokhinson, Na-
ture Communications 14, 1628 (2023).

51Y. Hou, F. Nichele, H. Chi, A. Lodesani, Y. Wu, M. F. Ritter, D. Z. Haxell,
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58S. Ilić and F. S. Bergeret, Phys. Rev. Lett. 128, 177001 (2022).
59Y. Zhang, Y. Gu, P. Li, J. Hu, and K. Jiang, Phys. Rev. X 12, 041013 (2022).
60A. Costa, J. Fabian, and D. Kochan, Phys. Rev. B 108, 054522 (2023).
61J. F. Steiner, L. Melischek, M. Trahms, K. J. Franke, and F. von Oppen,

Phys. Rev. Lett. 130, 177002 (2023).
62M. Coraiola, A. E. Svetogorov, D. Z. Haxell, D. Sabonis, M. Hinderling,

S. C. ten Kate, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, J. C.
Cuevas, W. Belzig, and F. Nichele, ACS Nano 18, 9221 (2024), pMID:
38488287, https://doi.org/10.1021/acsnano.4c01642.

63J. Qian, B. I. Halperin, and E. J. Heller, Phys. Rev. B 81, 125323 (2010).
64N. T. Ziani, F. Cavaliere, and M. Sassetti, Europhysics Letters 102, 47006

(2013).
65I. Shapir, A. Hamo, S. Pecker, C. P. Moca, O. Legeza, G. Zarand, and

S. Ilani, Science 364, 870 (2019).
66T. Michlmayr, N. Saratz, A. Vaterlaus, D. Pescia, and U. Ramsperger, Jour-

nal of Applied Physics 99, 08N502 (2006).
67S.-h. Phark and D. Sander, Nano Convergence 4, 8 (2017).
68M. Haze, H.-H. Yang, K. Asakawa, N. Watanabe, R. Yamamoto,

Y. Yoshida, and Y. Hasegawa, Review of Scientific Instruments 90, 013704
(2019).

69C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
70C. W. J. Beenakker and H. van Houten, in Nanostructures and Mesoscopic

Systems, edited by W. P. Kirk and M. A. Reed (Academic Press, 1992) pp.
481–497.

71C. W. J. Beenakker, in Transport Phenomena in Mesoscopic Systems, edited
by H. Fukuyama and T. Ando (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1992) pp. 235–253.

72F. Dolcini and F. Giazotto, Phys. Rev. B 75, 140511 (2007).
73The 1/2 in front of the logarithm is necessary in order not to take into

account the negative energy states that arise from particle-hole symmetry.
74X. Mu, G. Sullivan, and R.-R. Du, Applied Physics Letters 108, 012101

(2016).
75Notice that for the value Uz = 0.5∆0 chosen in Fig. 4(a-b) the magnetic

field at the peak position δUx ∼ 80∆0 is of the order of ∼ 1.25T.



Supplementary material for

“Anomalous supercurrent and diode effect in locally perturbed topological

Josephson junctions”

Samuele Fracassi,1 Simone Traverso,1 Niccolo Traverso Ziani,1, 2 Matteo Carrega,2

Stefan Heun,3 and Maura Sassetti1, 2

1)Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova,

Italy
2)CNR-SPIN, Via Dodecaneso 33, 16146, Genova, Italy
3)NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore,

Piazza San Silvestro 12, 56127 Pisa, Italy

(Dated: 27 March 2024)

1

ar
X

iv
:2

40
3.

17
89

4v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  2
6 

M
ar

 2
02

4



I. OMITTED ANALYTICAL EXPRESSIONS

Here we report some explicit analytical expression omitted in the main text.

The scattering matrix describing the propagation on the upper edge in absence of the tip Sfree
prop+

(Eq. 11) has the following form

Sfree
prop+ = diag[eike↑L,e−ike↓L,e−ikh↓L,eikh↑L], (1)

where

ke↑ = E +µ +Uz, (2)

ke↓ =−E −µ +Uz, (3)

kh↓ =−E +µ −Uz, (4)

kh↑ = E −µ −Uz. (5)

The block matrices entering in the scattering expression describing Andreev process (Eq. 10) are

σA+ =




0 e
iϕ/2−iarctan

[√
∆2

0−(E+Uz)2

E+Uz

]

e
−iϕ/2−iarctan

[√
∆2

0−(E−Uz)2

E−Uz

]

0


 (6)

The folding identity is

Det


a b

c d


= Det(ad −aca−1b), (7)

which holds for generic 2× 2 matrices a,b,c,d with deta ̸= 0. For the δUx perturbation, SδUx
prop+

has this form

SδUx
prop+ = SP2+SM+SP1+, (8)

where SP1+ and SP2+ are the free propagation matrices from the superconductors to the perturba-

tion and from the perturbation to the superconductors, respectively.

2



The two propagation matrix are

SP1+ =




eike↑(x0−d/2+L/2) 0 0 0

0 eike↓(x0+d/2−L/2) 0 0

0 0 eikh↓(x0+d/2−L/2) 0

0 0 0 eikh↑(x0−d/2+L/2)




SP2+ =




eike↑(−x0−d/2+L/2) 0 0 0

0 eike↓(−x0+d/2−L/2) 0 0

0 0 eikh↓(−x0+d/2−L/2) 0

0 0 0 eikh↑(−x0−d/2+L/2)




Finally SM+ is the magnetic scattering matrix.

SM+ =


σe+ 0

0 σh+


 (9)

where

σe+ =




eiUzd
√

(E+µ)2−δU 2
x

De
− iδUx sin [d

√
(E+µ)2−δU 2

x ]
De

− iδUx sin [d
√

(E+µ)2−δU 2
x ]

De

e−iUzd
√

(E+µ)2−δU 2
x

De
,


 (10)

σh+ =




eiUzd
√

(E−µ)2−δU 2
x

Dh
− iδUx sin [d

√
(E−µ)2−δU 2

x ]
Dh

− iδUx sin [d
√

(E−µ)2−δU 2
x ]

Dh

e−iUzd
√

(E−µ)2−δU 2
x

Dh


 (11)

with

De =
√
(E +µ)2 −δU 2

x cos [d
√
(E +µ)2 −δU 2

x ]− i(E +µ)sin [d
√

(E +µ)2 −δU 2
x ]

Dh =
√
(E −µ)2 −δU 2

x cos [d
√
(E −µ)2 −δU 2

x ]− i(E −µ)sin [d
√

(E −µ)2 −δU 2
x ]

In order to get the scattering matrices of the lower edge it is necessary to perform the substitu-

tion Uz → −Uz. This is a consequence of the fact that the Zeeman term is the only one that

distinguishes the chirality of the edges.
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