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Abstract

We consider an n × n system of ODEs on P1 with a simple pole A at z = 0 and a double pole u =
diag(u1, . . . , un) at z = ∞. This is the simplest situation in which the monodromy data of the system are
described by upper and lower triangular Stokes matrices S±, and we impose reality conditions which imply
S− = S†

+. We study leading WKB exponents of Stokes matrices in parametrizations given by generalized
minors and by spectral coordinates, and we show that for u on the caterpillar line (which corresponds to the limit
(uj+1 − uj)/(uj − uj−1) → ∞ for j = 2, · · · , n− 1), the real parts of these exponents are given by periods of
certain cycles on the degenerate spectral curve Γ(ucat(t), A).

These cycles admit unique deformations for u near the caterpillar line. Using the spectral network theory, we
give for n = 2, and n = 3 exact WKB predictions for asymptotics of generalized minors in terms of periods of
these cycles. Boalch’s theorem from Poisson geometry implies that real parts of leading WKB exponents satisfy
the rhombus (or interlacing) inequalities. We show that these inequalities are in correspondence with finite webs
of the canonical foliation on the root curve Γr(u,A), and that they follow from the positivity of the corresponding
periods. We conjecture that a similar mechanism applies for n > 3.

We also outline the relation of the spectral coordinates with the cluster structures considered by Goncharov-
Shen, and with N = 2 supersymmetric quantum field theories in dimension four associated to some simple
quivers.
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1 Introduction

1.1 Meromorphic ODEs, Stokes matrices, and WKB expansion

In this section we briefly introduce the background material of our study: Stokes matrices for meromorphic ODEs,
their WKB asymptotics, and their relation to Poisson geometry and spectral curves.

1.1.1 Meromorphic ODEs

The main object of study in this paper is the following system of ODEs on P1\{0,∞}:

ε
dF

dz
=
(

iu− 1
2πi

A

z

)
F . (1.1.1)

Here ε is a parameter, u ∈ hreg(C) is an n× n diagonal matrix with distinct diagonal entries and A ∈ gln(C) is an
n× n matrix. Alternatively, we can view (1.1.1) as coming from the meromorphic flat connection

∇(u,A,ε) = d− 1
ε

(
iu− 1

2πi
A

z

)
dz

on the trivial rank n vector bundle over P1. This class of Poincaré rank 1 ODEs naturally appears in various contexts
in geometry and representation theory, e.g. the study of Frobenius manifolds [18] and in particular the quantum
cohomology of Fano manifolds [24], linearization in Poisson geometry [11], quantum Weyl group actions on Poisson
groups [12], stability conditions [14, 15], Yang-Baxter equations [50] etc. These ODEs also provide simple local
models for the wild non-abelian Hodge correspondence on curves [10].
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In most of the paper, we impose the following reality conditions:

ε ∈ R+, u ∈ hreg(R), A ∈ Herm(n), (1.1.2)

where Herm(n) is the space of n× n Hermitian matrices. We will see that these conditions are natural from the
point of view of tropicalization of dual Poisson-Lie groups [2, 3].

1.1.2 Stokes matrices and WKB

The ODE (1.1.1) has a first-order pole at z = 0 and a second-order pole at z = ∞. Hence, its monodromy data
is encoded in Stokes matrices. Under reality conditions (1.1.2), there are two Stokes supersectors with canonical
solutions F±(z, ε) specified by a prescribed asymptotic behavior at z → ∞. The Stokes matrices S±(u,A, ε) are
transition matrices between these two canonical solutions. Up to permutations of indices, S+ and S− are upper and
lower triangular matrices, respectively. The reality conditions imply that they are Hermitian conjugates of each
other:

S−(u,A, ε) = S+(u,A, ε)†. (1.1.3)

We will be interested in the asymptotic behavior of S± in the limit of ε → 0. In order to describe these
asymptotics, we use several parametrizations of Stokes matrices. One such parametrization is given by the
generalized minors (see e.g. [2, 3]): for 1 ≤ i ≤ k ≤ n, define ∆(k)

i (S+) to be the determinant of the i× i submatrix
formed by taking the first i rows and (k − i+ 1)th to kth columns of the upper-triangular matrix S+. Other possible
parametrizations include matrix entries (S+)i,j and spectral coordinates Xγ to be defined later. For any of these
parametrizations, if (u,A) are generic, one expects an asymptotic expansion as ε → 0:

logX(u,A, ε) ∼ ε−1x(u,A) + x0(u,A) + εx1(u,A) + · · · (1.1.4)

Here X(u,A, ε) is one of the parameters (a generalized minor, a spectral coordinate, etc), x(u,A) is the leading
WKB exponent, and xi(u,A) are higher-order coefficients in the WKB expansion.

In this paper, we will be mostly concerned with the leading WKB exponents, so we often truncate (1.1.4) to the
leading term

logX(u,A, ε) ∼ ε−1x(u,A) .

In the case of a generalized minor X = ∆(k)
i we denote the leading WKB exponent by δ(k)

i , and its real part by

l
(k)
i = Re δ(k)

i . (1.1.5)

1.1.3 Poisson structures and inequalities

Next let us discuss some constraints on WKB asymptotics, which arise from Poisson geometry.
Equip the set of data (u,A) with the linear Kirillov-Kostant-Souriau (KKS) Poisson structure on A and the

vanishing Poisson structure on u. Then, by a theorem of Boalch [11], the Stokes matrices S±(u,A, ε) satisfy the
Poisson brackets of the dual Poisson-Lie group U(n)∗, rescaled by ε−1. These brackets are polynomial in the matrix
entries, and Laurent polynomial in the generalized minors.

These facts alone already imply an interesting corollary for WKB asymptotics, as follows. Suppose we have two
parameters X1, X2, either matrix entries or generalized minors, which have the WKB behavior logX1 ∼ ε−1x1,
logX2 ∼ ε−1x2. Then, we have

e
1
ε

(x1+x2)+···
( 1
ε2 {x1, x2} + · · ·

)
= {e

1
ε

x1+..., e
1
ε

x2+...} = {X1, X2} = 1
ε

∑
a

e
1
ε

xa+..., (1.1.6)

where the xa are the leading WKB exponents of the terms Xa appearing in {X1, X2}. In (1.1.6), the right-hand side
stands for the Laurent polynomial expression for the Poisson bracket {X1, X2}, and the left-hand side stands for the
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KKS bracket of the WKB expansions of X1 and X2. We observe that the left and right sides of (1.1.6) can match
only if

Re (x1 + x2) ≥ Rexa for all a. (1.1.7)

The inequalities (1.1.7) play an important role in this paper. For the generalized minors, they read (see [1] for details)

l
(k+1)
i + l

(k)
i−1 ≥ l

(k+1)
i+1 + l

(k)
i , l

(k+1)
i + l

(k)
i ≥ l

(k+1)
i+1 + l

(k)
i−1, (1.1.8)

and we refer to them as rhombus inequalities.
It is sometimes convenient to introduce a linear change of variables, defining λ(k)

j for 1 ≤ j ≤ k ≤ n by

λ
(k)
j = l

(k)
k−j+1 − l

(k)
k−j (where we let l(k)

0 = 0). Then l(k)
i =

∑k
j=k−i+1 λ

(k)
j . After this change of variables, the

rhombus inequalities become the interlacing inequalities:

λ
(k+1)
j ≤ λ

(k)
j ≤ λ

(k+1)
j+1 . (1.1.9)

1.1.4 Spectral curves

The general philosophy of the WKB method predicts that the asymptotic series (1.1.4) should be determined by
computations on the spectral curve.

Definition 1.1. The spectral curve Γ(u,A) is given by the characteristic polynomial

det
[
µ · In −

(
iu− 1

2πi
A

z

)]
= 0. (1.1.10)

The spectral curve Γ(u,A) is an n-to-1 cover of P1 \ {0,∞} with punctures over 0 and ∞. The period of the
canonical 1-form ω = µ(z) dz on a 1-cycle γ is

Z(γ) =
∮

γ
ω . (1.1.11)

1.2 The main conjecture

The leading-order WKB prediction takes the following form:

Conjecture 1.2. For generic u and A, there exist cycles
{
L

(k)
i

}
1≤i≤k≤n

on Γ(u,A) such that the asymptotic

expansion (1.1.4) holds, with leading coefficient

l
(k)
i = −1

2Z
(
L

(k)
i

)
. (1.2.1)

Moreover, the quantities −1
2Z
(
L

(k)
i

)
satisfy the rhombus inequalities (1.1.8).

In (1.2.1), the minus sign is a consequence of our conventions, with no essential significance. The factor 1
2 arises

because we consider l(k)
i = 1

2

(
δ

(k)
i + δ

(k)
i

)
instead of δ(k)

i .

To address Conjecture 1.2, we need a method of identifying the cycles L(k)
i . We approach this by looking at

a region in parameter space where we have a detailed understanding of the spectral curves Γ(u,A). Namely, we
consider the following limit in the space of parameters u:

u2 − u1 = t ∈ R+,
uj+1 − uj

uj − uj−1
→ +∞ for j = 2, . . . , n− 1. (1.2.2)

This limit makes sense in the De Concini-Procesi space [16] ĥreg(R). We refer to configurations (1.2.2) as lying on
the caterpillar line and denote them ucat(t).1 We refer readers to Appendix A for a more detailed description of the
De Concini-Procesi space and the stratifications of its boundary.

1This terminology is inspired by the term caterpillar point in the existing literature (e.g. [30, 44]) which refers to the point t = 0; when
we refer to ucat(t) in this paper, though, we always mean t > 0.
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1.3 The proof on the caterpillar line

We first investigate the WKB behavior of Stokes matrices on the caterpillar line. Fortunately, we have simple explicit
formulas for the behavior of S+(u,A, ε) as u → ucat(t) (see Subsection 2.4 and Appendix B for more details).
These formulas imply in particular (see Theorem 2.14 for the precise statement):

Theorem 1.3. The real parts of WKB exponents of minor coordinates, l(k)
i (u,A), have a limit as u → ucat(t), given

by

l
(k)
i (ucat(t), A) =

k∑
j=k−i+1

λ
(k)
j (1.3.1)

where λ(k)
j are the eigenvalues of the k × k upper left corner submatrix A(k) of A, ordered by λ(k)

1 < λ
(k)
2 < · · · <

λ
(k)
k .

We remark that in this limit the interlacing inequalities (1.1.9) become familiar: they are the Cauchy interlacing
inequalities obeyed by the eigenvalues of submatrices of the Hermitian matrix A. From this point of view, the
interlacing inequalities obeyed by the WKB exponents at general u are some interesting deformation of the usual
Cauchy interlacing inequalities.

Moreover, the spectral curve degenerates in this limit:

Theorem 1.4. (Theorem 3.12, Corollary 3.14) The family of curves Γ(u,A) can be extended to include a curve
Γ(ucat(t), A) over ucat(t), which is reducible, with components Γ(2), . . . ,Γ(n). For A in the generic locus as in
Definition 3.8, each component Γ(k) is isomorphic to P1 with 2k punctures. In this case, there are loops V (k)

j

(ucat(t), A) (1 ≤ j ≤ k ≤ n) around punctures of Γ(ucat(t), A) such that

Z
(
V

(k)
j (ucat(t), A)

)
= −λ(k)

j . (1.3.2)

Equation (1.3.2) motivates the following: define the distinguished cycles by

C
(k)
i (ucat(t), A) =

k∑
j=k−i+1

V
(k)

j (ucat(t), A) . (1.3.3)

Then combining Theorem 1.3 and Theorem 1.4 we obtain a proof of Conjecture 1.2 at u = ucat(t), with the cycles
given by L(k)

i = C
(k)
i .

1.4 Exact WKB and spectral networks

Next, we investigate Conjecture 1.2 near the caterpillar line. Then, the spectral curve admits the following description:

Theorem 1.5. (Corollary 3.14) Let Uid be the connected component of hreg(R) labeled by the identity element in
the symmetric group Sn as in (2.1.1). Fix A in the generic locus as in Definition 3.8. Then, there exists a punctured
open neighborhood B(ucat(t), A) of ucat(t) in Uid such that for u ∈ B(ucat(t), A), Γ(u,A) is smooth and there
are vanishing cycles V (k)

j (u,A) (1 ≤ j ≤ k ≤ n) on Γ(u,A) that become V (k)
j (ucat(t), A) as u → ucat(t).

As before, we will denote

C
(k)
i (u,A) =

k∑
j=k−i+1

V
(k)

i (u,A). (1.4.1)

We study Conjecture 1.2 using the exact WKB method. Generally, given a family of ODEs of the form

ε∂zψ = a(ε)ψ, a(ε) = a0 + εa1 + · · · , (1.4.2)
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exact WKB predicts that the ε → 0 asymptotics of the monodromy/Stokes data will be determined by computations
that take place on the spectral curve of a0. In particular, there are distinguished spectral coordinates Xγ on the
moduli space of monodromy/Stokes data, labeled by cycles and open paths γ on the spectral curve. Exact WKB
predicts that each spectral coordinate Xγ has leading WKB exponent given by a corresponding period Z(γ). The
construction of the spectral coordinates which we employ uses the spectral networks W(u,A, ϑ = 0) as described
in [22, 31] and briefly reviewed in Appendix C.

The linear system (1.1.1) clearly fits into the framework of (1.4.2), with

a0 = iu− 1
2πi

A

z

and the spectral curve Γ(u,A). We prove the following:

Theorem 1.6. For n = 2, 3, and for u near the caterpillar line and A near diagonal, the exact WKB prediction
implies Conjecture 1.2, with the cycles L(k)

i given by the C(k)
i of (1.4.1).

Our proof requires us to describe the spectral networks W(u,A, ϑ = 0). For n = 2 we do this analytically, but
our proof for n = 3 involves some computer assistance. The obstacle to dealing with n > 3 has to do with the
combinatorics of the spectral networks: some correction terms interfere with the translation from spectral coordinates
to minor coordinates, and one needs to show that these correction terms do not affect the leading asymptotics. The
precise desired statement is formulated in Conjecture 4.24. Modulo this obstacle, the extension of Theorem 1.6 to
arbitrary rank is given in Theorem 4.25.

We remark that the exact WKB prediction is stronger than Conjecture 1.2: it predicts the full leading WKB
exponent for generalized minors, both real and imaginary parts. We verify this prediction directly in the case n = 2,
while for n > 2 it is a conjecture.

The exact WKB picture also gives a new geometric way of understanding the rhombus inequalities. Indeed,
given the spectral network W(u,A, ϑ = 0) one has the notion of finite web: this is a certain network of trajectories
in W(u,A, ϑ = 0). Each finite web determines a 1-cycle γ on Γ(u,A), the charge of the web. Whenever γ arises in
this way, the corresponding period is negative Z(γ) < 0. We show:

Theorem 1.7. For n = 2 and n = 3, and for u near the caterpillar line and A near diagonal, each rhombus inequality
obeyed by the WKB exponents corresponds to a finite web in W(u,A, ϑ), with a charge γ; the rhombus inequality
is the fact that Z(γ(u,A)) < 0.

The exact WKB story which we develop here connects the equation (1.1.1) to various other areas of mathematics
and physics. For instance, there is a known connection between exact WKB and cluster algebras as described
in e.g. [21, 34]: the spectral coordinates Xγ are often identified with cluster coordinates on the moduli space of
monodromy/Stokes data. The spectral networks that appear most directly in our WKB analysis are of a degenerate
kind (ultimately because of the reality condition we impose on u,A and ε), so they don’t directly give cluster
coordinates; but, by perturbing ε to be complex, we can reach more generic spectral networks, which do give cluster
coordinates. In the case n = 2 we work out the details, and show that the cluster structure which arises is the one
considered by Goncharov-Shen in [27].

In another direction, there is a relation [21, 22] between exact WKB analysis of ODEs and N = 2 supersymmetric
field theories in four dimensions. In the particular example of (1.1.1), the relevant supersymmetric field theory is
relatively simple: it is a Lagrangian gauge theory given by a certain quiver as described in [23]. We explain this
briefly in Subsection 4.4.

1.5 Future directions

• In our discussion of spectral networks we left one important problem unsolved: how to prove Conjecture 4.24,
and thus extend Theorem 1.6 beyond the cases n = 2 and n = 3? It seems possible that this will require some
new insight into the structure of spectral networks for higher rank.
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• We explored the connection between WKB for complex ε and the Goncharov-Shen cluster structure in detail
for n = 2, and briefly for n = 3. It would be interesting to develop that connection in more detail in the n ≥ 3
case.

• The connection between the ODE (1.1.1) and supersymmetric quantum field theory, briefly discussed in
Subsection 4.4, has various consequences which would be interesting to explore. For example, it implies that
one should be able to give an explicit representation of a τ function governing the isomonodromy deformations
of (1.1.1), building it out of Nekrasov’s partition function for the gauge theory [39]. This would be an analogue
of the celebrated “Kiev formula” [25, 32] for rank 2 systems with regular singularities.

• The data of periods and Donaldson-Thomas invariants which we describe in Section 4 determines a Riemann-
Hilbert problem in the ε-plane as explained in [21, 20, 14]. The solution of this Riemann-Hilbert problem
should give the exact Stokes matrices.

• In this paper we focus mainly on the situation where u is a real diagonal matrix and A is Hermitian. For fixed
u, the map that takes A to its WKB exponents (or equivalently the real parts of periods) is an example of a
real integrable system, whose base is the Gelfand-Zeitlin cone cut out by the rhombus inequalities. If we also
fix the conjugacy class of A then we again have a real integrable system M, now with total space the flag
manifold of SL(n), and base a (compact) Gelfand-Zeitlin polytope.

If we instead allow A to be complex, then we obtain a complex integrable system MC containing M. We
expect that MC can be described as a moduli space of framed wild Higgs bundles over P1. Such moduli
spaces are expected to admit hyperkähler metrics at least in some open subsets, though the only example
which is well understood so far is the “Ooguri-Vafa manifold” [41, 21, 45]. We expect that MC carries a
hyperkähler metric in an open neighborhood of M, and this metric should be a deformation of Kronheimer’s
hyperkähler metric on the cotangent bundle to the flag manifold. This can be confirmed directly in the case
n = 2, where the relevant metric is of Gibbons-Hawking type, rather similar to Ooguri-Vafa; it should be
interesting to explore it for n > 2.

1.6 Outline of the paper

In Section 2, we state the relation between Poisson brackets and WKB asymptotics, and we show that Conjecture 1.2
holds on the caterpillar line. In Section 3, we study the structure of the spectral curve. In particular, we show that
it degenerates on the caterpillar line, and we use this degeneration pattern to construct cycles C(k)

i . In Section 4,
we use the spectral network theory to show that its predictions imply Conjecture 1.2 for the case of n = 2, 3. We
also outline the relation to cluster coordinates of Goncharov-Shen, and to supersymmetric quantum gauge theory.
In Appendix A, we collect information on the De Concini-Procesi compactification needed in the definition of the
caterpillar line. In Appendix B, we give a detailed calculation of WKB asymptotics of the Stokes matrices on the
caterpillar line for n = 3. In Appendix C, we recall some basic facts and conjectures about spectral networks.
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2 Stokes matrices, Poisson brackets and WKB

In Subsection 2.1, we recall the definitions of Stokes matrices and canonical solutions in Stokes supersectors. In
Subsection 2.2, we recall Poisson geometry properties of Stokes matrices. In Subsection 2.3, we conjecture that
Stokes matrices admit a WKB expansion, and under this assumption, we prove rhombus inequalities on leading
WKB exponents. In Subsection 2.4, we define regularized Stokes matrices on the caterpillar line, give their explicit
formulas in terms of Γ-functions following [49], study their WKB asymptotics, and give an algebraic interpretation
of the corresponding rhombus inequalities.

2.1 Canonical solutions and Stokes matrices

The system (1.1.1) has a second-order pole at ∞ and (if A ̸= 0) a first-order pole at 0, and it admits a unique formal
power series solution of the form

F̂ (z;u, ε) = (Idn + F1z
−1 + F2z

−2 + · · · )e
iuz
ε z

[A]
2πiε ,

where Idn is the rank n identity matrix, and [A] is the diagonal part of A. The formal power series Idn + F1z
−1 +

F2z
−2 + · · · is in general divergent. Thus, F̂ (z, u, ε) is only a formal solution. However, the Borel resummation

method gives rise to actual solutions with prescribed asymptotics defined in Stokes supersectors. In our case, there
are two Stokes supersectors of (1.1.1), and they are given by

Ŝect+ = {z ∈ C | − π < arg(z) < π},
Ŝect− = {z ∈ C | − 2π < arg(z) < 0}.

Choose the branch of log(z) which is real on the positive real axis and which has a branch cut along the nonnegative
imaginary axis iR≥0. Then, log(z) has imaginary part −π on the negative real axis in Ŝect−. The following result is
standard (see e.g., [8, 37, 48, 49]):

Theorem 2.1. For any u ∈ hreg(R), there are unique fundamental solutions F± : Ŝect± → GLn(C) of (1.1.1) such
that

F+(z;u, ε) · e− iuz
ε · z

[A]
2πiε ∼ Idn, as z → 0 within Ŝect+,

F−(z;u, ε) · e− iuz
ε · z

[A]
2πiε ∼ Idn, as z → 0 within Ŝect−.

The solutions F± are called canonical solutions in Sect±.

The set hreg(R) consists of connected components labeled by elements of the permutation group. In more detail,

hreg(R) = ∪σ∈SnUσ, Uσ = {(u1, . . . , un) ∈ Rn;uσ(1) < uσ(2) < · · · < uσ(n)}. (2.1.1)

We denote by Pσ ∈ GL(n) the n× n matrix implementing the permutation σ ∈ Sn.

Definition 2.2. For any u ∈ Uσ, the Stokes matrices of the system (1.1.1) (with respect to Ŝect+ and the branch of
log(z)) are the elements S±(u,A, ε) ∈ GL(n) determined by

F+(z;u, ε) = F−(z;u, ε) · e− [A]
2ε PσS+(u,A, ε)P−1

σ , (2.1.2)

F−(ze−2πi;u, ε) = F+(z;u, ε) · PσS−(u,A, ε)P−1
σ e

[A]
2ε , (2.1.3)

where the first (resp. second) identity is understood to hold in Sect− (resp. Sect+) after F+ (resp. F−) has been
analytically continued clockwise.

The prescribed asymptotics of F±(z;u, ε) at z = ∞ and the identities in Definition 2.2 ensure that the Stokes
matrices S+(u,A, ε) and S−(u,A, ε) are upper and lower triangular, respectively (see e.g. [7, Chapter 9.1] or [11,
Lemma 17]). The reality conditions (1.1.2) imply that if F (z) is a solution of (1.1.1), then so is the inverse of the
conjugate transpose (F (z̄)−1)† (see [11]). Thus, we have the following:
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Lemma 2.3. S−(u,A, ε) = S+(u,A, ε)†.

Lemma 2.3 implies that the product

S(u,A, ε) = S−(u,A, ε) · S+(u,A, ε) (2.1.4)

is a positive definite Hermitian matrix. Also, note that S uniquely determines S+ and S− (under the condition that
their diagonal entries are positive reals).

2.2 Poisson structure of Stokes matrices

Poisson geometry turns out to be a very useful tool in the study of the Stokes phenomenon. In more detail, we equip
the set of data (u,A) ∈ hreg(R) × Herm(n) with the product Poisson structure π, where π vanishes on hreg(R),
and coincides with the linear Kirillov-Kostant-Souriau (KKS) Poisson structure on Herm(n). In particular, we have

{Aij , Akl} = δjkAil − δilAkj . (2.2.1)

Note that equation (2.2.1) implies

{ε−1Aij , ε
−1Akl} = ε−1

(
δjkε

−1Ail − δilε
−1Akj

)
.

In other words, (ε−1u, ε−1A) ∈ hreg(R) × Herm(n) carry the Poisson bracket ε−1π.
The results of Guillemin-Sternberg [28] show that eigenvalues λ(k)

i (A) = λi(A(k)) of submatrices A(k) Poisson
commute with each other: {

λ
(k)
i , λ

(l)
j

}
= 0.

Furthermore, they satisfy Cauchy’s interlacing inequalities

λ
(k)
i ≤ λ

(k+1)
i ≤ λ

(k)
i+1, (2.2.2)

and they serve as action variables of the Gelfand-Tsetlin integrable system. Their Hamiltonian flows generate an
action of the Thimm torus on the set Herm0(n) where all the inequalities (2.2.2) are strict. This action preserves the
action variables λ(k)

i .
It is natural to ask whether the Stokes matrices S±(u,A, ε) carry a compatible Poisson structure which would

make the map (u,A) 7→ S±(u,A, ε) into a Poisson map. To explain the answer to this question, recall that the set
of upper triangular matrices with positive reals on the diagonal is a Poisson Lie group U(n)∗ (over R) dual under
Poisson-Lie duality to the compact Poisson-Lie group U(n) with the standard Poisson structure (see [38, 43]). That
is, U(n)∗ carries a canonical Poisson structure π∗ such that the multiplication map is a Poisson map. In terms of
minor coordinates ∆(k)

i , the Poisson structure π∗ is Laurent polynomial (see e.g. [1]).
The Poisson-Lie group U(n)∗ carries the Flaschka-Ratiu completely integrable system (see [19]). Let S+ ∈

U(n)∗ and denote S− = S†
+. Then, the matrix S = S−S+ ∈ Herm(n) is positive definite, and so are all

S(k) = S
(k)
− S

(k)
+ ∈ Herm(k). The action variables of the Flaschka-Ratiu system are log λ(k)

i (S). They satisfy the
interlacing inequalities, and they generate the Thimm torus action which preserves log λ(k)

i (S).

Example 2.4. For n = 2, we have minor coordinates ∆(1)
1 ,∆(2)

2 ∈ R+,∆(2)
1 ,∆(2)

1 ∈ C. For simplicity, we put
∆(2)

2 = 1 (this corresponds to considering SU(2)∗ instead of U(2)∗). Then, the Poisson bracket π∗ has the form{
∆(1)

1 ,∆(2)
1

}∗
= − i

2∆(1)
1 ∆(2)

1 ,
{

∆(2)
1 ,∆(2)

1

}∗
= i

((
∆(1)

1

)−2
−
(
∆(1)

1

)2
)
.

The following statement is one of the main results in [11]:
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Theorem 2.5. For each u ∈ hreg(R) and ε ∈ R+ the map

(Herm(n), π) → (U(n)∗, ε−1π∗), A 7→ S+(u,A, ε)

is a Poisson map.

Proof. In more detail, Theorem 1 in [11] is the statement above for ε = 1. Since pairs (ε−1u, ε−1A) carry the
Poisson bracket ε−1π, the Poisson bracket π∗ also gets rescaled by ε−1.

2.3 WKB behavior

It is a common belief that in the limit of ε → 0 the Stokes matrices admit a WKB behavior. In more detail, we will
assume the following:

Conjecture 2.6. For A generic, the minor coordinates ∆(k)
i (S+(u,A, ε)) admit an asymptotic expansion

log ∆(k)
i (S+(u,A, ε)) ∼ ε−1δ

(k)
i (u,A) +

(
δ

(k)
i

)
0

+ ε
(
δ

(k)
i

)
1

+ . . . (2.3.1)

The corresponding expansion of the eigenvalues λ(k)
i (S(u,A, ε)),

log λ(k)
i (S(u,A, ε)) ∼ ε−1 η

(k)
i (u,A) + . . . , (2.3.2)

is uniform as u approaches the caterpillar line, u → ucat(t).

We refer to the coefficients δ(k)
i (u,A) in (2.3.1) as leading WKB exponents. It is convenient to introduce a

special notation for their real parts:
l
(k)
i (u,A) = Re δ(k)

i (u,A).

In contrast to ∆(k)
i (S+), the eigenvalues λ(k)

i (S) are real, and so are the leading exponents η(k)
i (u,A) in (2.3.2).

Theorem 2.5 and Conjecture 2.6 imply the following interesting result:

Theorem 2.7. Assuming Conjecture 2.6, the real parts of leading WKB exponents l(k)
i (u,A) verify the rhombus

inequalities
l
(k+1)
i + l

(k)
i−1 ≥ l

(k+1)
i+1 + l

(k)
i , l

(k+1)
i + l

(k)
i ≥ l

(k+1)
i+1 + l

(k)
i−1, (2.3.3)

where l(k)
0 ≡ 0. Furthermore, all Poisson brackets between δ(k)

i , δ
(k)
i vanish:{

δ
(k)
i , δ

(l)
j

}
= 0,

{
δ

(k)
i , δ

(l)
j

}
= 0,

{
δ

(k)
i , δ

(l)
j

}
= 0. (2.3.4)

Proof. We first consider the case of n = 2. We compute,{
∆(2)

1 ,∆(2)
1

}∗
= ε

{
eε−1δ

(2)
1 +..., eε−1δ

(2)
1 +...

}
= e2ε−1l

(2)
1
(
ε−1{δ(2)

1 , δ
(2)
1 } + . . .

)
, (2.3.5)

where in the first equality we used Theorem 2.5 to pass from π∗ to π. Next, we compute{
∆(2)

1 ,∆(2)
1

}∗
= i

((
∆(1)

1

)−2
−
(
∆(1)

1

)2
)

= i
(
e−2ε−1l

(1)
1 +... − e2ε−1l

(1)
1 +...

)
, (2.3.6)

where we have used the fact that ∆(1)
1 ∈ R+ and δ(1)

1 = l
(1)
1 . We observe that the right hand sides of (2.3.5) and

(2.3.6) can only match if
l
(2)
1 ≥ l

(1)
1 , l

(2)
1 ≥ −l(1)

1 ,
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and that these are exactly the rhombus inequalities in the case of n = 2 (under the simplifying assumption of
l
(2)
2 = 0). The analysis for arbitrary n is done in Theorem 5 in [1]. Note that in that paper one assumes

log ∆(k)
i = ε−1l

(k)
i + iφ(k)

i ,

and the resulting Poisson bracket on (l(k)
i , φ

(k)
i ) depends on ε. However, the n = 2 argument above shows that only

the real part of the leading WKB exponent is relevant for the proof of rhombus inequalities. Hence, the proof of [1]
applies verbatim.

To establish the vanishing of Poisson brackets of the leading WKB exponents, we re-examine the equality of the
right-hand sides of (2.3.5) and (2.3.6). We observe that even if the exponential factors match, one has an extra ε−1

factor in front of {δ(2)
1 , δ

(2)
1 } in (2.3.5) which is absent in (2.3.6). Hence,

{δ(2)
1 , δ

(2)
1 } = 0.

The same argument applies to the Poisson bracket of any two minor coordinates which in turn implies (2.3.4).

For S± generic, there is a simple linear relation between the leading WKB exponents l(k)
i and η(k)

i :

Proposition 2.8. Assume that S± admits a WKB expansion and that all the rhombus inequalities for l(k)
i are strict.

Then, we have

l
(k)
i = 1

2

k∑
j=k−i+1

η
(k)
j . (2.3.7)

Proof. This fact follows from Proposition 2 in [4] (see also Proposition 5.1 in [3]). For the convenience of the reader,
we illustrate the proof in the case of n = 2. Consider a matrix S+ which admits a WKB behavior:

S+ =
(
e

1
ε

α+... e
1
ε

β+...

0 e− 1
ε

α+...

)
.

Then, ∆(2)
1 (S+) = (S+)12 = e

1
ε

β+... and δ(2)
1 = β, l

(2)
1 = Reβ. We also have

λ
(2)
1 (S) + λ

(2)
2 (S) = TrS = Tr(S†

+S+) = e
2
ε

Re β+... + e
2
ε

α+... + e− 2
ε

α+....

Hence,
η

(2)
2 = 2 max(Reβ, α,−α) = 2 Reβ = 2 l(2)

1 ,

as required. Here we have used the strict rhombus inequalities Reβ > α,−α.

Remark 2.9. Under the linear change of variables l(k)
i = 1

2
∑k

j=k−i+1 η
(k)
i , the rhombus inequalities for parameters

l
(k)
i are equivalent to the interlacing inequalities for parameters η(k)

i . In this paper, we will see several instances of
such a change of variables.

2.4 Stokes matrices on the caterpillar line

Determining Stokes matrices for n ≥ 3 is a formidable task. However, there is a limit in which explicit formulas are
available. In more detail, one considers the situation for u ∈ Uid (here id ∈ Sn is the identity element) when

u2 − u1 = t,
uj+1 − uj

uj − uj−1
→ +∞ for j = 2, . . . , n− 1. (2.4.1)

Such configurations no longer belong to hreg(R), but they make sense in its De Concini - Procesi compactification
(see [16] and Appendix A for details). We say that configurations (2.4.1) belong to the caterpillar line and denote
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them by ucat(t). The De Concini-Procesi compactification of hreg(R) can also be identified with the tautological
line bundle M̃0,n+1(R) → M0,n+1(R) over (the real locus of) the Deigne-Mumford compactification of the moduli
space of rational curves with n+ 1 marked points.

The results described in this Section were established in [49] by the method of isomonodromy deformation. We
will need the following notation: for a matrix A ∈ Matn(C), we denote

δk(A)ij =
{
Aij , if 1 ≤ i, j ≤ k or i = j;
0, otherwise. (2.4.2)

Note that if A ∈ Herm(n), then so is δk(A). For a matrix B ∈ Matn(C), we denote by ∆I
J(B) its minor formed by

the rows I = {i1, . . . , ik} and by the columns J = {j1, . . . , jk}.
While the Stokes matrices S±(u,A, ε) don’t have a limit when u → ucat(t), one can separate their divergent

and convergent parts in the following way. Define the unitary matrix

V (u,A, ε) =
−−−−−−→∏
k=2,...,n−1

(
uk − uk−1
uk+1 − uk

) log(δk(S−)δk(S+))
2πiε

,

and denote
Sreg(u,A, ε) = V (u,A, ε) · S(u,A, ε) · V (u,A, ε)−1, (2.4.3)

where S is given by equation (2.1.4). This expression uniquely defines the lower and upper triangular matrices
Sreg

− = (Sreg
+ )† with the property Sreg = Sreg

− Sreg
+ .

Proposition 2.10. The map S± 7→ Sreg
± is a Poisson map under the bracket ε−1π∗. It preserves the eigenvalues

λ
(k)
i (Sreg) = λ

(k)
i (S).

Proof. The transformation (2.4.3) is a particular instance of the Thimm torus action, and hence it preserves all
Gelfand-Tsetlin functions λ(k)

i (S). Furthermore, the parameters of that Thimm action depend only on action
variables, and hence it is a canonical transformation: it preserves action variables, and it shifts the conjugate angle
variables by a function of action variables.

The following result will be of importance to us:

Theorem 2.11. [49, Theorem 1.5] For fixed ε > 0 and for any A ∈ Herm(n), the expressions Sreg
± (u,A, ε) have a

well defined limit for u → ucat(t). Furthermore, at u = ucat(t) one has

(Sreg
+ )k,k+1 =2πi ·

(
u2 − u1

ε

)Ak+1,k+1−Akk
2πiε

e
Akk+Ak+1,k+1

4ε ·

k∑
i=1

∏k
l=1,l ̸=i Γ

(
1 + λ

(k)
l

−λ
(k)
i

2πiε

)
∏k+1

l=1 Γ
(

1 + λ
(k+1)
l

−λ
(k)
i

2πiε

)
∏k

l=1,l ̸=i Γ
(

λ
(k)
l

−λ
(k)
i

2πiε

)
∏k−1

l=1 Γ
(

1 + λ
(k−1)
l

−λ
(k)
i

2πiε

) · ∆1,...,k−1,k
1,...,k−1,k+1

(
A− λ

(k)
i

2πiε

)
.

Other entries of Sreg
± (ucat(t), A, ε) are also given by explicit formulas.

Remark 2.12. We can further consider the limit t = u2 − u1 → 0. In more detail, one can put

Sreg
± (ucat, A, ε) = t

δ1(A)
2πiε · Sreg

± (ucat(t), A, ε) · t
−δ1(A)

2πiε , (2.4.4)

where the right-hand side turns out to be independent of t.
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Example 2.13. Consider the case of n = 2:

ε
dF

dz
=
((

iu1 0
0 iu2

)
− 1

2πiz

(
t1 a
ā t2

))
· F.

Following Proposition 8 in [8], the Stokes matrices (with respect to the chosen branch of log(z)) are

S−(u,A, ε) =

 e
t1
2ε 0

ā
ε

·e
t2+t1

4ε
(
u2−u1
ε

) t1−t2
2πiε

Γ
(

1−λ1−t1
2πiε

)
Γ
(

1−λ2−t1
2πiε

) e
t2
2ε

 , S+(u,A, ε) =

 e
t1
2ε

a
ε

·e
t2+t1

4ε
(
u2−u1
ε

) t2−t1
2πiε

Γ
(

1+λ1−t1
2πiε

)
Γ
(

1+λ2−t1
2πiε

)
0 e

t2
2ε

 .
By definition, for t = u2 − u1 > 0 we have S±(ucat(t), A, ε) = S±(u,A, ε). Furthermore, we have

t
δ1(A)

2πi = diag
(
(u2 − u1)

t1
2πiε , (u2 − u1)

t2
2πiε
)
,

and we obtain

Sreg
− (ucat, A, ε)† = Sreg

+ (ucat, A, ε) =

 e
t1
2ε a

ε ·
1
ε

t2−t1
2πiε e

t1+t2
4ε

Γ
(

1+λ1−t1
2πiε

)
Γ
(

1+λ2−t1
2πiε

)
0 e

t2
2ε

 .
One can use Theorem 2.11 to obtain information on the WKB expansion of regularized Stokes matrices on the

caterpillar line:

Theorem 2.14. For all A ∈ Herm0(n), the regularized Stokes matrices Sreg
± (ucat(t), A, ε) verify Conjecture 2.6,

and one has

l
(k)
i (ucat(t), A) = 1

2

k∑
j=k−i+1

λ
(k)
j (A), (2.4.5)

where λ(k)
j (A) are eigenvalues of the Hermitian matrices A(k) ordered from bottom to top.

Proof. Since elements of Sreg
± (ucat(t), A, ε) are given by explicit formulas, one can check the statements of the

theorem by a direct (albeit tedious) computation. We illustrate this strategy for n = 2. Recall that r ∈ R we have the
following asymptotic expansion of the Γ-function with repect to the parameter ε → 0:

log Γ
(

1 + r

2πiε

)
= − r

2πiε log(ε) + r

2πiε log
( |r|

2π

)
− |r|

4ε − r

2πiε + 1
2 log

(
r

iε

)
+O(ε). (2.4.6)

Following Example 2.13 and equation (2.4.6), consider the n = 2 case with

A =
(
t1 a
ā t2

)

and eigenvalues λ1 < λ2. Then, the asymptotics of the entry Sreg
± (ucat(t), A, ε)12 = S+(ucat(t), A, ε)12 is given by

(S+)12 =
a
ε · e

t2+t1
4ε

(u2−u1
ε

) t2−t1
2πiε

Γ
(
1 + λ1−t1

2πiε

)
Γ
(
1 + λ2−t1

2πiε

) ∼ eε−1
(
λ2
2 +iφ

) ( a√
(λ1 − t1)(t1 − λ2)

+O(ε)
)
.

This matches (2.4.5) since in this case ∆(2)
1 = (S+)12 and l(2)

1 = λ2/2, as required. Observe that the coefficients in
front of the terms ε−1 log(ε) an log(ε) vanish confirming the WKB behavior: the actual leading term is proportional
to ε−1. Also, observe that the condition of A ∈ Herm0(n) is necessary: in our example, a = 0 implies (S+)12 = 0
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and the WKB expansion does not apply. For completeness, we give an explicit formula for the imaginary part φ of
the leading WKB exponent:

φ = (t1 − t2)
2π log(u2 − u1) + t1 − t2

2π + (λ1 − t1)
2π log

(
t1 − λ1

2π

)
+ (λ2 − t1)

2π log
(
λ2 − t1

2π

)
.

For n = 3, we collect detailed calculations in Appendix B. For n > 3, the calculations are similar but more tedious.
We prove equation (2.4.5) using a combination of the following two results. First, Proposition 4.1 in [49] shows

that the map A 7→ Sreg
+ (ucat, A, ε) intertwines (up to the factor of ε−1) the Gelfand-Tsetlin and the Flaschka-Ratiu

integrable systems. That is, for any t = u2 − u1 > 0

log λ(k)
i (ucat(t), A, ε) = ε−1λ

(k)
i (A). (2.4.7)

Hence,
η

(k)
i (ucat(t), A) = λ

(k)
i (A).

And by Proposition 2.8 we have

l
(k)
i (ucat(t), A) = 1

2

k∑
j=k−i+1

ν
(k)
j (ucat(t), A) = 1

2

k∑
j=k−1+i

λ
(k)
j (A),

as required.

We conclude this section with the following observation:

Proposition 2.15. Under Conjecture 2.6, the leading WKB exponents of S+(u,A, ε) admit a limit forA ∈ Herm0(n)
and u → ucat(t), and

l
(k)
i (u,A) →u→ucat(t) l

(k)
i (ucat(t), A) = 1

2

k∑
j=k−i+1

λ
(k)
j (A).

Proof. By Proposition 2.10, λ(k)
i (Sreg) = λ

(k)
i (S). Hence, they have the same leading WKB exponents η(k)

i (u,A).
Under Conjecture 2.6, the WKB expansion of λ(k)

i (S) is uniform for u → ucat(t). Therefore,

limu→ucat(t)η
(k)
i (u,A) = η

(k)
i (ucat(t), A).

By Proposition 2.8, the WKB exponent l(k)
i ’s are related to η(k)

i by a linear transformation if the rhombus inequalities
are strict. By assumption, A ∈ Herm0(n) and the rhombus inequalities are strict on the caterpillar line. By
continuity, they are also strict on a small open neighborhood of the caterpillar line which implies the desired result.

One of the goals of this paper is to understand the rhombus inequalities away from the caterpillar line. To address
this question, in the next sections, we use more powerful geometric tools of spectral curves and spectral networks.

3 Spectral curves

In this section, we study the degeneration of the spectral curves as u approaches a point on the caterpillar line. The
main results are Theorem 3.12, Corollary 3.14, and Theorem 3.16. In Subsection 3.1, we consider generic values
of parameters (u,A) and compute the genus of smooth spectral curves. In Subsection 3.2, we consider spectral
curves for the case when u = En (the elementary matrix with (En)nn = 1). In Subsection 3.3, we consider spectral
curves as u approaches a point on the caterpillar line and define vanishing cycles on these curves. In Subsection 3.4,
we introduce distinguished cycles as linear combinations of vanishing cycles, and in Theorem 3.16 we show that
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Conjecture 1.2 holds on the caterpillar line. Finally, in Subsection 3.5 we discuss the situation of A being close to a
diagonal matrix which will be our main playground in the next section.

Even though in this paper we impose a reality condition on the u- and A-parameters, most proofs in this section
are in the complex setting for more generality. The reality condition induces a Z2-symmetry as we discuss in
Proposition 3.17.

3.1 Spectral curves: generic case

Let g = gln(C), and h ⊂ g the Cartan Lie subalgebra of diagonal matrices. We start by considering u ∈ hreg(C)
and A ∈ g∗ = gln(C)∗ ≃ gln(C).

We denote by Γ(u,A) the spectral curve of the equation (1.1.1) living in T ∗
P1 and defined by

det
[(

iu− A

2πiz

)
dz − ωIn

]
= 0 . (3.1.1)

Here ω = µ(z)dz, and µ(z) is a meromorphic function on P1. The 1-form ω is the pull-back to the spectral curve
Γ(u,A) of the tautological 1-form of T ∗

P1 . For this reason, one refers to ω as to the canonical 1-form. Equation
(3.1.1) shows that ω has poles at points lying over z = 0 and z = ∞. We call such points punctures. In conclusion,
Γ(u,A) is an open curve with punctures lying over z = 0 and z = ∞.

One can reformulate equation (3.1.1) as a polynomial equation for a meromorphic function µ(z):

P (µ, z−1) = det
(

iu− 1
2πi

A

z
− µIn

)
= 0 (3.1.2)

This equation provides an embedding of Γ(u,A) into C2. For i = 1, . . . , n, we denote by ui the ith entry on the
diagonal of u, and by ti = Aii the ith diagonal entry of A.

This subsection aims to show that for u and A generic the spectral curve Γ(u,A) is smooth, and to compute its
genus. First, we prove the following two lemmas.

Lemma 3.1. Let g(y) be a polynomial of degree n with coefficients b0, . . . , bn−1:

g(y) = yn + bn−1y
n−1 + · · · + b1y + b0.

Then, its discriminant can be represented in the form

∆ = b0 · h1(b0, b1, · · · , bn−1) + b2
1 · h2(b1, · · · , bn−1).

Proof. Recall that the discriminant ∆(b0, . . . , bn−1) can be written as

∆(b0, · · · , bn) = (−1)
n(n−1)

2
∏
i ̸=j

(ri − rj),

where ri’s are the roots of the polynomial g(y). Set b0 = 0 and let rn = 0. Then, we have b1 = (−1)n−1∏n−1
i=1 ri

and

∆ = (−1)
n(n−1)

2

n−1∏
i=1

(ri − rn)
n−1∏
i=1

(rn − ri)
∏
i ̸=j

i,j≤n−1

(ri − rj) (3.1.3)

= (−1)
n(n−1)

2 (−1)n−1b2
1

∏
i ̸=j

i,j≤n−1

(ri − rj). (3.1.4)

Then, the statement follows from the fact that
∏

i ̸=j
i,j≤n−1

(ri − rj) is a polynomial in b1, · · · , bn−1.
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Lemma 3.2. Let C be a plane curve, and suppose that on an analytic neighborhood of (0, 0) it is defined by equation

g(y, z) = yn + f1(z)yn−1 + f2(z)yn−2 + · · · + fn−1(z)y + fn(z) = 0,

where f1(z), · · · , fn(z) are polynomials, and fn−1(z) and fn(z) vanish at z = 0. Then, C is smooth at (0, 0) if the
discriminant of g(y, z) viewed as a polynomial in y has a simple zero at z = 0.

Proof. Denote by ∆(z) the discriminant of g(y, z) viewed as a polynomial in y. Note that vanishing of fn−1(z) at
z = 0 implies that ∆(z) also vanishes at z = 0. By Lemma 3.1, we can write ∆(z) as

∆(z) = fn(z) · h1(f1, · · · , fn−1, fn) + f2
n−1(z) · h2(f1, · · · , fn−1) .

If ∆ has a simple zero at z = 0, then

∆′(0) = f ′
n(0)h1(f1(0), . . . , fn(0)) ̸= 0.

Thus, we must have f ′
n(0) ̸= 0, and

∂g

∂z
(0, 0) = f ′

n(0) ̸= 0.

This implies that the curve C is smooth at (0, 0), as required.

The following proposition describes the structure of the spectral curve Γ(u,A) for (u,A) generic.

Proposition 3.3. For u ∈ hreg(C) and A ∈ gln(C) satisfying the following genericity condition:

i) eigenvalues of A are distinct,

ii) the discriminant of the equation P (µ, z−1) viewed as a polynomial in µ, has only simple zeroes for z ∈ C\{0},

the spectral curve Γ(u,A) is isomorphic to a smooth curve of genus (n−1)(n−2)
2 with 2n punctures.

Proof. By condition ii), it follows from Lemma 3.2 that the spectral curve Γ(u,A) is smooth.
Next, we consider the punctures of Γ(u,A). Over z = ∞, there are n distinct punctures (µ = ui, z = ∞) for

i = 1, . . . , n. Near z = 0, µ has n branches

µi(z) = −λ
(n)
i

2πi
1
z

+ · · · , for i = 1, . . . , n, (3.1.5)

where λ(n)
i are the eigenvalues of A. These branches are distinct since A has n distinct eigenvalues. Therefore,

after blowing up P1
µ × P1

z at (µ = ∞, z = 0), the closure Γ(u,A) of Γ(u,A) inside the blowup will be a smooth
compactification of Γ(u,A). Moreover, Γ̄(u,A) → P1 will be unramified at punctures over z = ∞ and z = 0.

By the Riemann-Hurwitz formula, we have

2g(Γ) − 2 = n · (2g(P1) − 2) +
∑
p∈Γ

(ep − 1) , (3.1.6)

where ep is the ramification index at p ∈ Γ.
Since ∂µP (µ, z−1) has only simple zeroes for z ∈ C \ {0} as dictated by condition ii) and Γ̄(u,A) → P1

are unramified at punctures over z = 0 and z = ∞, all ramification points in Γ have ramification index 2, and
the number of ramification points is the number of zeroes of ∂µP (µ, z−1). Since ∂µP (µ, z−1) is a meromorphic
function on Γ, the number of zeroes and poles (counted with multiplicity) are the same. Therefore, it suffices to
compute the number of poles, which only occur over z = 0. On the ith branch (3.1.5), we have

∂µP (µ, z−1) |µ=µi=
∏

j|j ̸=i

(µi − µj) =
∏

j|j ̸=i

−
λ

(n)
i − λ

(n)
j

2πi
1
z

+O(1)


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Therefore, ∂µP (µ, z−1) has a pole of order (n − 1) on each branch over z = 0, and the total pole order of
∂µP (µ, z−1) is n(n− 1). The, equation (3.1.6) yields

2g(Γ) − 2 = n(−2) + n(n− 1) ⇒ g(Γ) = (n− 1)(n− 2)
2 ,

as desired.

In the next proposition, we collect information on the residues of the canonical 1-form ω at punctures of Γ(u,A)
lying over z = 0 and z = ∞:

Proposition 3.4. For u ∈ hreg(C) and A ∈ gln(C) with distinct eigenvalues, the canonical 1-form ω has residues

−λ
(n)
i

2πi (1 ≤ i ≤ n) at punctures lying over z = 0 and residues ti
2πi(1 ≤ i ≤ n) at punctures lying over z = ∞.

Proof. For punctures lying over z = 0, equation (3.1.5) directly gives the values −λ
(n)
i

2πi of residues corresponding to
n branches.

Near z = ∞, µ(z) also has n branches of the form

µi(z) = iui − 1
2πi

ti
z

+O

( 1
z2

)
, 1 ≤ i ≤ n, (3.1.7)

where ti = Aii is the ith diagonal entry of A. Indeed, let µ(z) = Σ∞
k=0ckz

−k and substitute this power series into
the defining equation of Γ(u,A) to obtain

det
(

iu− A

2πiz − µIn

)
=

n∏
i=1

(
iui − ti

2πiz − c0 − c1
z

)
+ h(z−1) = 0.

Here h(z−1) is a power series in z−1 with the lowest degree ≥ 2. Thus, for the constant term in z−1 to vanish, c0
has to be equal to iui for i = 1, . . . , n. By putting c0 = iui (for some i), comparison of coefficients in front of z−1

yields

c1 = − ti
2πi

giving the value of the residue at ith branch.

3.2 Degeneration: u = En

In this subsection, we study the spectral curve Γ(u,A) in a degenerate case of u = En(n ≥ 3), where En is the
diagonal matrix with (En)nn = 1, and all other matrix entries equal to zero. It turns out that in this case Γ(u,A) is a
rational curve.

Proposition 3.5. For u = En(n ≥ 3) and A ∈ gln(C) satisfying the two genericity conditions in Proposition 3.3
together with the third condition that all eigenvalues of A(n−1) are distinct, the spectral curve Γ(u,A) is isomorphic
to P1 with 2n punctures.

Proof. We continue to follow the notations used in the proof of Proposition 3.3. We have

P (µ, z−1) =
(

i − 1
2πi

tn
z

− µ

)
· det

(
− 1

2πi
A(n−1)

z
− µIn−1

)
+ h(µ, z−1) (3.2.1)

where h(µ, z−1) has degree ≤ n− 2 in the µ variable. And if h(µ, z−1) ̸= 0, it is a homogeneous polynomial in µ
and z−1 of degree n.
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Note that for n ≥ 3, En /∈ hreg(C). In this case, ∂µP (µ, z−1) will have non-simple zeros at z = ∞. Let us fist
compute the order of zero of ∂µP (µ, z−1) at z = ∞. We claim that near z = ∞,

P (µ, z−1) = (−1)n ·
n−1∏
i=1

(
µ+ λ

(n−1)
i

2πiz +O(z−2)
)

·
(
µ− i + tn

2πiz +O(z−2)
)
. (3.2.2)

Indeed, let µ(z−1) be one of n branches of solutions of the equation

P
(
µ(z−1), z−1

)
= 0 (3.2.3)

in a neighborhood of z = ∞. Expand µ(z−1) =
∑∞

k=m ckz
−k with cm ̸= 0 (m ≥ 0).

• If µ(z−1) does not vanish at z = ∞, using (3.2.1), the constant coefficient of P
(
µ(z−1), z−1) is equal to

i(−1)n−1cn−1
0 +(−1)ncn

0 . Requiring this expression to vanish yields c0 = i. Next, the coefficient of the z−1

term is equal to (− tn
2πi − c1)(−1)n−1cn−1

0 , and requiring it in turn to vanish gives c1 = − tn
2πi .

• If µ(z−1) has a zero at z = ∞, then c0 = 0. Using (3.2.1), the coefficient of z−(n−1)in P
(
µ(z−1), z−1)

is i det
(
− 1

2πiA
(n−1) − c1In−1

)
. Requiring it to vanish shows that c1 is an eigenvalue of A(n−1) scaled by

− 1
2πi .

This finishes the proof of the claim (3.2.2). Let µi(z−1) (1 ≤ i ≤ n − 1) be the branch near z = ∞ such that

µi(z−1) = −λ
(n−1)
i
2πiz + O(z−2). Let µn(z−1) be the branch near z = ∞ such that µn(z−1) = i − tn

2πiz + O(z−2).
Then, for 1 ≤ i ≤ n− 1,

∂µP
(
µ(z−1), z−1

)
|µ=µi = (−1)n

∏
j|j ̸=i

(
µi(z−1) − µj(z−1)

)

= (−1)n
∏

j|j ̸=i,n

−
λ

(n−1)
i − λ

(n−1)
j

2πiz +O(z−2)

 ·
(

−i + tn − λ
(n−1)
i

2πiz +O(z−2)
)
,

and for i = n,

∂µP
(
µ(z−1), z−1

)
|µ=µn = (−1)n

∏
j|j ̸=n

(
µn(z−1) − µj(z−1)

)

= (−1)n
∏

j|j ̸=i,n

i +
λ

(n−1)
j − tn

2πiz +O(z−2)


By our assumption that A(n−1) has distinct eigenvalues, we conclude that ∂µP

(
µ, z−1) has a zero of order

(n− 1)(n− 2) at z = ∞.
Now, it follows from computations we have already done in Proposition 3.3 that the number of zeros of

∂µP (µ, z−1) for z ∈ C \ {0}, is equal to the order of poles at z = 0 minus the order of zeros at z = ∞, i.e.,

n(n− 1) − (n− 1)(n− 2) = 2(n− 1).

All these zeros are simple by the genericity condition ii), so Γ(u,A) is still smooth by Lemma 3.1. However, the
compactification Γ̄(u,A) defined in the proof of Proposition 3.3 now has singularity at (µ = 0, z = ∞). To resolve
the singularity at (µ = 0, z = ∞), we blow up the ambient P1

µ × P1
z at (µ = 0, z = ∞).

Let Γ̃(u,A) be the closure of Γ(u,A) after blowing up P1
µ × P1

z at (µ = 0, z = ∞) and (µ = ∞, z = 0).
In particular, Γ̃(u,A) is smooth and unramified over z = 0 and z = ∞. Moreover, the ramification points of
Γ̃(u,A) → P1 are the same as those of Γ(u,A) → P1. They are all of index 2 by the genericity condition ii) and
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their number is equal to the number of zeros of ∂µP (µ, z−1) for z ∈ C\ {0}. Now we can use the Riemann-Hurwitz
formula again, giving

2g(Γ̃) − 2 = n(−2) + 2n− 2 ⇒ g(Γ̃) = 0,

i.e., Γ̃ is a rational curve.

The following proposition gives values of residues of ω at punctures of the spectral curve:

Proposition 3.6. For u = En(n ≥ 3) andA such that eigenvalues ofA(k) are distinct for k = n−1, n, the canonical
1-form ω has residues

i) λ
(n−1)
i
2πi for i = 1, . . . , n− 1 for (n− 1) punctures lying over z = ∞;

ii) tn
2πi at the nth puncture lying over z = ∞;

iii) −λ
(n)
i

2πi for i = 1, . . . , n at punctures lying over z = 0.

Proof. For punctures lying over z = ∞, the statement follows from equations (3.2.2). For punctures lying over
z = 0, the result and the proof follow verbatim the result and the proof of Proposition 3.4.

3.3 Degeneration: u = ucat(t)

For the rest of this Section, we assume that n ≥ 3. Notice that we also have the translation symmetry on the level
of spectral curves, not only on the level of Stokes matrices (c.f. Appendix A): Γ(u,A) and Γ(u − cIn, A) are
isomorphic for any c ∈ C and their periods are the same. So, throughout the rest of this section, we just fix u1 to be
0, and only vary parameters u2, u3, · · · , un, as a concrete way to parametrize the space hreg(C)/C or hreg(R)/R.
Under this parametrization, the caterpillar line limit u → ucat(t) acquires the form

u2 = t,
uj+1
uj

→ +∞ for j = 2, . . . , n− 1,

where t > 0 is a fixed constant that determines the position on the caterpillar line.
Since most of our proofs work in the complex setting, it will be more convenient to consider the complex De

Concini-Procesi space (c.f. Appendix A) ĥreg(C) in this subsection. The real De Concini-Procesi space and the
caterpillar line are just the restriction of ĥreg(C) to the real locus.

Proposition 3.7. Consider the 1-parameter family of spectral curves Γ(u,A) (u ∈ hreg(C)) we get by fixing u2,
· · · , un−1 and varying un. Then, for a generic fixed A ∈ gln(C), at un = ∞, the spectral curve degenerates into
two irreducible components Γn−1 and Γ(n); Γn−1 is a smooth curve of genus (n−2)(n−3)

2 with 2(n− 1) punctures,
and Γ(n) is isomorphic to P1 with 2n punctures.

Proof. By fixing u2, . . . , un−1 and allowing un to vary in C, we view (3.1.2) as defining a 1-parameter family of
spectral curves parametrized by Cun in P1

µ × P1
z × Cun . We denote this 1-parameter family by X .

Next, let µ′ = 1
µ and u′

n = 1
un

. Let V = P1
µ × P1

z × P1
u′
n

. Let Ṽ be the blowup of V at µ = ∞, z = 0, un = ∞.
Then, Ṽ is a closed subscheme of V × P2. Let y1, y2, y3 be homogeneous coordinates on P2 satisfying

µ′y3 = u′
ny1, zy3 = u′

ny2.

Set y3 = 1 and let w = µ
un

= u′
n

µ′ = 1
y1

and v = zun = y2.
Now, to take the limit un → ∞, we need to consider the strict transform of X in Ṽ and then take its closure X̄

in Ṽ when un = ∞. Given un ∈ C, on the P2 component of V ×P2, the spectral curve needs to satisfy the equation

det
( 1
un

· iu− A

2πi
1
zun

− µ

un
· In

)
= det

( 1
un

· iu− A

2πiv − wIn

)
= 0 . (3.3.1)
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On the chart where z−1, µ ∈ C, V and Ṽ are isomorphic, (3.1.2) reads(
iun − tn

2πiz − µ

)
· det

(
iu(n−1) − A(n−1)

2πiz − µIn−1

)
+ f = 0 ,

where f is a polynomial in the variables z−1 and µ whose coefficients do not involve un. For z−1, µ ∈ C and
un ̸= 0, we divide both sides of the above equation by iun and get

det
(

iu(n−1) − A(n−1)

2πiz − µIn−1

)[
1 + 1

iun
(− tn

2πiz − µ)
]

+ f

iun
= 0 .

When un = ∞, the above equation goes to the limit

det
(

iu(n−1) − A(n−1)

2πiz − µIn−1

)
= 0 . (3.3.2)

By Proposition 3.3, for a generic A ∈ gln(C), (3.3.2) defines a spectral curve Γn−1 of genus (n−2)(n−3)
2 with n− 1

punctures above z = 0 and n− 1 punctures above z = ∞. We denote by si the puncture above z = ∞ on Γn−1
where the canonical differential ω = µdz has residue ti

2πi , and by ri the puncture above z = 0 where ω has residue

−λ
(n−1)
i
2πi .
If z−1 = µ = ∞, then, when un = ∞, we get an extra component in X̄ \ X , given by the limit of (3.3.1),

which is

P (w, v−1) = det
(

iEn − A

2πiv − wIn

)
= 0 , (3.3.3)

which defines a spectral curve Γ(n). Notice that on Γ(n) the canonical differential is

ω = µdz = unw · dv
un

= w · dv . (3.3.4)

By Proposition 3.5, for a generic A ∈ gln(C), Γ(n) is isomorphic to P1 with 2n punctures. There are n punctures
above v = ∞. (n− 1) of them are the punctures ri (1 ≤ i ≤ n− 1) that Γ(n) shares with Γn−1. We label the last
puncture over v = ∞ by sn. The canonical differential has residue tn

2πi at sn. There are n punctures on Γ(n) above

v = 0. We label by qi (1 ≤ i ≤ n) the puncture above v = 0 where the canonical differential has residue −λ
(n)
i

2πi .

For future use, we introduce the following notation. For 2 ≤ k ≤ n, let Γ(k) be the spectral curve defined by
(3.3.3) with En replaced with Ek and A with A(k), i.e., given by the equation

Pk(µ, z−1) = det
(

iEk − A(k)

2πiz − µIk

)
= 0 . (3.3.5)

We emphasize that we still view Γ(k) as a punctured curve with punctures over z = 0 and over z = ∞.
From now on, it will be convenient for us to restrict A to Herm0(n). However, to consider algebraic families of

spectral curves, we still want to allow the u-parameters to vary in ĥreg(C).

Definition 3.8. Denote by B ⊂ Herm0(n) the locus where for each 3 ≤ k ≤ n the discriminant of the polynomial
Pk(µ, z−1) has only simple zeroes as a polynomial in µ for z ∈ C \ {0}. We call B the generic locus of Herm(n).

Remark 3.9. Here is the reason why we define B to be contained in Herm0(n) in the first place. If the spectral
curve defined by (3.3.5) is smooth for each k, A has to be in Herm0(n). For otherwise, (3.3.5) will split for some k.
Then, the corresponding spectral curve Γ(k) will be reducible.
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Lemma 3.10. Fix a A ∈ B. For any u1, u2 ∈ C such that u1 ̸= u2, the spectral curve defined by

det
(

iu(2) − A(2)

2πiz − µI2

)
= 0

is isomorphic to Γ(2)(A). Here, u(2) is the diagonal matrix whose first diagonal entry is u1 and the second one is u2.

Proof. It suffices to consider the case where u1 = 0. The map z 7→ z · (u2 − u1), µ 7→ µ/(u2 − u1) gives the
isomorphism to Γ(2)(A).

Lemma 3.11. For a fixed A ∈ B, Γ(k)(A) is isomorphic to P1 with 2k punctures for 2 ≤ k ≤ n.

Proof. For 3 ≤ k ≤ n, sinceA(k) satisfies the genericity conditions in Proposition 3.5 forA ∈ B, Γ(k) is isomorphic
to P1 with 2k punctures for 3 ≤ k ≤ n by Proposition 3.5.

For k = 2, it is a straightforward computation that P2(µ, z−1) has only simple zeroes as a polynomial in µ for
z ∈ C \ {0} if A12 · A21 ̸= 0. But this condition is automatically satisfied for A ∈ B. Then, the case of k = 2
follows from Proposition 3.3.

Now, we are ready to describe the degeneration of the spectral curves at a point on the caterpillar line:

Theorem 3.12. Fix A ∈ Herm(n) and vary u ∈ ĥreg(C). Let ucat(t) (t > 0) be a point on the caterpillar line. The
family of spectral curves can be extended over ucat(t), and the fiber over ucat(t) has (n− 1) components isomorphic
to Γ(k)(A)(2 ≤ k ≤ n). Moreover, if A ∈ B, the (n− 1) components in the fiber over ucat(t) are irreducible and
isomorphic to P1 with 2k punctures (2 ≤ k ≤ n) and there exists an open neighborhood U ⊂ ĥreg(C) around
ucat(t) such that for any u ∈ U ∩ hreg(C), the spectral curve Γ(u,A) is smooth.

Proof. The limit u → ucat(t) can be achieved iteratively. First, we fix u2, . . . , un−1 and let un → +∞; then we fix
u2, . . . , un−2 and let un−1 → +∞; and so on until we reach the point ucat(t) by letting u3 → +∞ while fixing
u2. Thus, we are iterating the degeneration process in Proposition 3.7, and the spectral curve degenerates into
(n− 1) components at ucat(t). These components are isomorphic to Γ(k)(A)(2 ≤ k ≤ n) by Proposition 3.7 and
Lemma 3.10. If A ∈ B, it follows from Lemma 3.11 these components are smooth, irreducible, and isomorphic to
P1 with 2k punctures.

Again, for A ∈ B, for u ∈ hreg(C) close enough to ucat(t), (3.1.2) has only simple zeroes; thus, by Lemma 3.1
and Lemma 3.2, Γ(u,A) is smooth. In particular, there exists a neighborhood U ⊂ ĥreg(C) around ucat(t) such that
for any u ∈ U ∩ hreg, the discriminant of (3.1.2) has only simple zeroes. The existence of such a U follows from
the fact that Herm0(n) \ B is cut out by polynomial conditions. Then, by Lemma 3.1 and Lemma 3.2, the spectral
curve Γ(u,A) is smooth for any u ∈ U ∩ hreg(C).

We also give an alternative proof for the first claim of the proposition, so that readers can see all the degenerations
in one step rather than iteratively. Fixing u2, we view (3.1.2) as defining a family of spectral curves X in
V = P1

µ × P1
z × P1

u3 × P1
d4

× · · · × P1
dn

where di = ui
ui−1

for 4 ≤ i ≤ n.
After dividing both sides by (iu3) · · · (iun), (3.1.2) reads

det
(

iu(2) − A(2)

2πiz − µI2

)[
1 + 1

iu3
(− t3

2πiz − µ)
]

· · ·
[
1 + 1

iun
(− tn

2πiz − µ)
]

+ h (3.3.6)

where h is a polynomial in z−1 and µ, whose coefficients all contain some negative powers of u3, . . . , un. For
z−1 ∈ C, as we go to the limit uj+1−uj

uj−uj−1
→ ∞, or equivalently uj+1

uj
→ ∞, for all j = 2, . . . , n − 1, we have

u3, . . . , un → ∞. Then, (3.3.6) goes to the limit

det
(

iu(2) − A(2)

2πiz − µI2

)
= 0, (3.3.7)

which defines a spectral curve Γ(2) isomorphic to 4-punctured P1 for generic A.
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Let νk = zuk and wk = µ
uk

for 3 ≤ k ≤ n. We do a sequence of blowups of V as follows. First, we blow up the
subscheme of V defined by z−1 = µ = u3 = ∞ and get the scheme V3. Inductively, we blow up the subscheme of
Vi defined by v−1

k = wk = dk+1 = ∞ and get the scheme Vk+1 for 3 ≤ k ≤ n− 1.
We claim that as uj+1−uj

uj−uj−1
→ ∞ for all j = 2, . . . , n− 1, for each 3 ≤ k ≤ n, we get a component Γ(k) of the

closure of X inside Vn, given by

det
(

iEk − A(k)

2πiνk
− wkIk

)
= 0 (3 ≤ k ≤ n) = 0, (3.3.8)

which defines a (2k)-punctured P1 for generic A. The proof of this claim uses analysis similar to what we did in the
proof of Proposition 3.7. Consider the case k = 3. Let d′

4 = d4, d′
5 = d4d5, . . . , d′

n = d4d5 · · · dn. Now (3.1.2),
after dividing both sides by un

3 (id′
4)(id′

5) · · · (id′
n), reads

det
(

iu
(3)

u3
− A(3)

2πiν3
− w3I3

)
n∏

i=4

[
1 + 1

id′
i

(
− ti

2πiν3
− w3

)]
+ h3 , (3.3.9)

where h3 is a polynomial in ν−1
3 and w3 whose coefficients all contain some negative power of d′

4, d
′
5, · · · d′

n. In the
limit u3, d4, · · · , dn → ∞, for ν3 ̸= 0, (3.3.9) becomes

det
(

iE3 − A(3)

2πiν3
− w3I3

)
= 0 . (3.3.10)

The proof for 4 ≤ k ≤ n is similar.

Definition 3.13. (Spectral curves at points on the caterpillar line) Fix a point ucat(t) (t > 0) on the caterpillar line.
It follows from Theorem 3.12 that for any A ∈ Herm(n), taking the limit u → ucat(t), the family of spectral curves
degenerates into n− 1 (not necessarily irreducible or smooth) components, each of which is defined by (3.3.8) for
3 ≤ k ≤ n and by (3.3.7) for k = 2. We call the degeneration at ucat(t) the spectral curve at ucat(t) and denote it
by Γ(ucat(t), A).

Corollary 3.14. Fix A ∈ B and a point ucat(t) (t > 0) on the caterpillar line. There exists a punctured open
neighborhoodB(ucat(t), A) ⊂ Uid around ucat(t) such that for all u ∈ B(ucat(t), A), Γ(u,A) is smooth. Moreover,
for any u ∈ B(ucat(t), A), there exists vanishing cycles V (k)

j (u,A)(1 ≤ j ≤ k ≤ n), such that V (k)
j (u,A) that

becomes a small loop V (k)
j (ucat(t), A) on Γ(ucat(t), A) as u → ucat(t). For 2 ≤ k ≤ n, V (k)

j (ucat(t), A) (1 ≤

j ≤ k) is on Γ(k), oriented clockwise around the puncture where the canonical 1-form ω has residue −λ
(k)
j

2πi . For

k = 1, V (1)
1 (ucat(t), A) is on Γ(2), oriented counterclockwise around the puncture where ω has residue λ(1)

1 = t1
2πi .

Here, t1 is the first diagonal entry of A.

Proof. Let U be a neighborhood of ucat(t) in ĥreg(C) as in Theorem 3.12. Let B(ucat(t), A) = U ∩ Uid. Then, the
first statement of this corollary follows from Theorem 3.12.

It remains to prove statements about vanishing cycles. For k = 1 and k = n, these vanishing cycles are just
cycles around corresponding punctures with the prescribed residue by Proposition 3.4 and Proposition 3.6. For

2 ≤ k ≤ n − 1, it follows from Proposition 3.6 that the punctures where ω has the residue −λ
(k)
j

2πi are the nodes
of the (compactified) spectral curve Γ(ucat(t), A). Let ∆ ↪→ U be an analytic disc such that ∆ \ {0} is contained
in U ∩ hreg(C) and 0 is mapped to ucat(t). Let C → ∆ be the family of (fiberwise compactified) spectral curves
Γ(u,A)(u ∈ ∆). Since Γ(u,A) is smooth for u ∈ ∆ \ {0} and Γ(ucat(t), A) has only nodal singularities, C is
smooth and C → ∆ is holomorphic Morse. Then, the existence of vanishing cycles follows from the standard
holomorphic Morse theory, e.g., Chapter II of [46].

Remark 3.15. The irregularity in the definition of vanishing cycles in the case of k = 1 came from the fact that in
this paper we use the caterpillar line rather than going to the caterpillar point as in the existing literature [30, 44]).
We made this choice because the formulas for Stokes matrices are already exact on the caterpillar line: from this
point of view, there is no need to make the last degeneration to the caterpillar point.
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3.4 Distinguished cycles on Γ(u, A)

FixA ∈ B and a point ucat(t) (t > 0) on the caterpillar line. LetB(ucat(t), A) ⊂ Uid be an open neighborhood as in
Corollary 3.14. For u ∈ B(ucat(t), A), we define distinguished cycles C(k)

i (u,A) on Γ(u,A) as linear combinations
of vanishing cycles

C
(k)
i (u,A) =

k∑
j=k−i+1

V
(k)

j (u,A). (3.4.1)

For u = ucat(t), we define distinguished cycles

C
(k)
i (ucat(t), A) =

k∑
j=k−i+1

V
(k)

j (ucat(t), A) (3.4.2)

on Γ (ucat(t), A) where V (k)
j (ucat(t), A) are as in Corollary 3.14.

Theorem 3.16. For u ∈ B(ucat(t), A) ⊂ Uid, we have

1
2 limu→ucat(t)Z

(
C

(k)
i (u,A)

)
= 1

2Z
(
C

(k)
i (ucat(t), A)

)
= −l(k)

i (ucat, A). (3.4.3)

In particular, Conjecture 1.2 holds on the caterpillar line.

Proof. By Corollary 3.14,

limu→ucat(t)Z
(
V

(k)
j (u,A)

)
=
∫

V
(k)
j (ucat(t),A)

ω = −λ(k)
j .

Next, we compute

1
2 limu→ucat(t)Z

(
C

(k)
j (u,A)

)
= 1

2Z
(
C

(k)
i (ucat(t), A)

)
= −1

2

k∑
j=k−i+1

λ
(k)
j = −l(k)

i (ucat, A),

where in the last equality we have used Theorem 2.14.

Under Conjecture 2.6, Theorem 3.16 combined with Proposition 2.15 suggests that near the caterpillar line, the
distinguished cycles C(k)

i ’s may be suitable for the WKB analysis of the asymptotic behavior of minor coordinates.
We will further explore this via the theory of spectral networks in the next section.

Finally, we note that the periods of the canonical form over the vanishing cycles are real:

Proposition 3.17. Let u ∈ B(ucat(t), A) and A ∈ B. Then, the periods of the canonical 1-form ω over vanishing
cycles V (k)

j (u,A) are real:

Z
(
V

(k)
j

)
∈ R.

Proof. Under the reality conditions (1.1.2) on (u,A), the spectral curve Γ(u,A) has an involution ι(z, µ) = (z̄,−µ̄).
Since ω = µdz we have ι∗ω = −ω̄. At u = ucat(t), the punctures are fixed under ι, which implies that
ι∗V

(k)
i = −V (k)

i . Indeed, since ι reverses the orientation of Γ(u,A), it exchanges positive and negative orientations
of small loops around the punctures. By continuity, this is still true for u ∈ B(ucat(t), A). Thus, for any
V = V

(k)
j (u,A) we have

Z(V ) =
∫

V
ω = −

∫
ι∗V

ι∗ω =
∫

−V
(−ω̄) =

∫
V
ω̄ =

∫
V
ω = Z(V ), (3.4.4)

as desired.
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3.5 Spectral curves for A nearly diagonal

In this section, we consider the special case when u is near the caterpillar line, and A is nearly diagonal (that is,
close to a diagonal matrix). In that case, we can explicitly see the degeneration phenomena described in the previous
sections. This is also a preparation for the spectral network analysis of the next section.

Throughout this section, we assume the reality conditions (1.1.2).

3.5.1 The diagonal case

Recall that we denote by ti = Aii the diagonal entries of A. If A is diagonal, then the eigenvalues of the operator
i
(
u+ A

2πz

)
are

µi(z) = i
(
ui + ti

2πz

)
. (3.5.1)

These are also the sheets of the spectral curve Γ(u,A).
Note that µi(z) = −µi(z), so in particular µi(z) ∈ iR for z ∈ R. The eigenvalues µi(z) are all distinct as long

as z /∈ {zij} where

zij = − ti − tj
2π(ui − uj) . (3.5.2)

At z = zij , we have µi(z) = µj(z). If all zij with i > j are distinct and nonzero, then they are nodal singularities
of Γ(u,A), and Γ(u,A) is smooth away from these n(n−1)

2 singular points.
We will generally be interested in the situation where all ui are distinct; then we may as well assume

u1 < · · · < un, (3.5.3)

and we do so from now on. We also often assume u is close to the caterpillar line, as in the next proposition.

Proposition 3.18. Let Λ = maxj ̸=k,j′ ̸=k′

∣∣∣ tj−tk
tj′ −tk′

∣∣∣. Suppose ui+1−ui
ui−ui−1

> Λ for all i. Then, if j < j′, |zij | >
∣∣zij′

∣∣.
Said otherwise, if we divide the set of branch points zij with i < j into n − 1 subsets {z12}, {z13, z23}, . . . ,

{z1,n, z2,n, . . . , zn−1,n}, these subsets are arranged in order of decreasing distance from the origin. Within each
subset, the ordering of the zij matches the ordering of the ti.

We often further assume t1 < · · · < tn; this assumption is not essential, but it will simplify the exposition and
the pictures below. Then all zij < 0, and Proposition 3.18 says

z12 < z13 < z23 < · · · < z1,n < z2,n < · · · < zn−1,n . (3.5.4)

See Figure 1 for the n = 4 case.

z12 z13 z23 z14 z24 z34 0

Figure 1: The schematic arrangement of the points zij ∈ C in case n = 4, with A diagonal, when t1 < t2 < t3 < t4
and u is sufficiently close to the caterpillar line.

3.5.2 The near-diagonal case

For u close to the caterpillar line, the effect of the off-diagonal entries of A is to broaden the singular points of
Γ(u,A) into vertical branch cuts, as described in the next proposition.

Here and below, we will be considering some open subset of hreg(R) × Herm(n), whose closure contains the
locus where u is on the caterpillar line and A is diagonal. When (u,A) belongs to this open subset we say “u is
sufficiently close to the caterpillar line and A is sufficiently close to diagonal.”
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Proposition 3.19. For u sufficiently close to the caterpillar line, and A sufficiently close to diagonal, with all
off-diagonal entries of A nonzero, and t1 < · · · < tn:

1. For large |z|, the operator i
(
u+ A

2πz

)
has eigenvalues µi(z) obeying limz→∞ µi(z) = iui. Each µi can be

continued to an analytic function on C \ ∪j ̸=iBij , where each Bij is a vertical segment Bij = [z+
ij , z

−
ij ] ⊂ C,

and the ordering of the Re z±
ij is the same as the ordering of the zij .

2. Continuation across Bij exchanges µi(z) with µj(z), while all other µk(z) extend holomorphically across
Bij .

3. The n(n− 1) endpoints z±
ij are simple ramification points of Γ(u,A).

4. Γ(u,A) is smooth.

5. Each µi obeys the reality condition
µi(z) = −µi(z) . (3.5.5)

z−
12

z+
12

(12)

z−
13

z+
13

(13)

z−
23

z+
23

(23)

z−
14

z+
14

(14)

z−
24

z+
24

(24)

z−
34

z+
34

(34)
0

Figure 2: The arrangement of the branch points z±
ij and branch cuts Bij in case n = 4, when the conditions of

Proposition 3.19 are satisfied. Each branch cut is labeled with the induced transposition (ij) of the sheets.

See Figure 2 for a schematic picture of the cuts when n = 4.

Proof. Fix a pair (i, j) and choose any neighborhood Uij which contains zij and excludes neighborhoods of all
other zkl. When A is diagonal, the eigenvalues µk(z) are given by (3.5.1), so they are all distinct in Uij , except
that µi(zij) = µj(zij). It follows that, when A is near diagonal, M(z) = i

(
u+ A

2πz

)
has n− 2 eigenvalues µk(z)

(k /∈ {i, j}) which vary analytically with z on Uij ; the other two eigenvalues µi(z), µj(z) vary analytically with z
only on some U ′

ij obtained by deleting a small disc around zij . Still, the local discriminant

∆ij(z) = −(µi(z) − µj(z))2 (3.5.6)

extends analytically to the whole Uij .
When A is diagonal, ∆ij has a double zero at zij and vanishes nowhere else on Uij . For A near diagonal,

there are two possibilities: either the zero of ∆ij remains double or it splits into a pair of simple zeroes. We have
∆ij(z) = ∆ij(z), and moreover ∆ij(z) ≥ 0 for z ∈ R. It follows that ∆ij(z) cannot have a simple zero on the real
line, so if the double zero splits into a pair of simple zeroes, these two simple zeroes must be complex conjugate to
one another.

Now fix a loop cij ⊂ U ′
ij which encircles zij . The period

pij =
∮

cij

√
∆ij(z) dz = i

∮
cij

(µi(z) − µj(z)) dz (3.5.7)

can be nonvanishing only if ∆ij(z) has two simple zeroes inside cij (as opposed to one double zero). The quantity
pij varies smoothly with A, and we can compute it directly to quadratic order in the expansion around Adiag, as
follows. Applying second-order perturbation theory for the eigenvalues of M(z) [36] gives

µi(z) = µdiag
i (z) +

∑
k ̸=i

|Aik|2

4π2z2(µdiag
i (z) − µdiag

k (z))
+O((A−Adiag)3) (3.5.8)
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All terms on the right side are regular in Uij , except for the k = j term in the sum, which has a pole at z = zij . Thus
we obtain residues

pij = i
∮

cij

(µi(z) − µj(z)) dz = 2i
∮

cij

|Aij |2

4π2z2(µdiag
i (z) − µdiag

j (z))
dz +O((A−Adiag)3) (3.5.9)

= 2i |Aij |2

ti − tj
+O((A−Adiag)3) . (3.5.10)

For A close enough to diagonal, with all off-diagonal entries Aij ̸= 0, we conclude that all pij ̸= 0. Thus all the
double zeroes are split. Once we know this, the remaining assertions are straightforward.

3.5.3 Distinguished cycles

We now discuss the vanishing cycles V (k)
j in the nearly diagonal case. We draw n concentric loops V (k), oriented

counterclockwise, such that the annulus between V (k) and V (k−1) contains the branch cuts Bjk for j = 1, . . . , k.
The preimage of this annulus in Γ(u,A) consists of one 2k-holed sphere and n− k cylinders. See Figure 3.

V (4) V (3) V (2) V (1)

Figure 3: Dividing the base C into annuli, each containing one group of branch cuts. We show the example n = 4.

Proposition 3.20. The vanishing cycle V (k)
j is the lift of V (k) to the jth sheet of Γ(u,A).

Proof. We consider the degeneration process from the previous sections, applied to the n-fold coverings described
above. Taking un → ∞ sends all of the zin → 0; said otherwise, in that limit, the group of branch cuts closest to
z = 0 disappears, and so V (n−1) can be contracted to a small loop around z = 0. This continues to be true after
blowing up as in Proposition 3.7: in the fiber over un = ∞, the lift of V (n−1) to sheet j can be contracted to the
puncture over z = 0 on that sheet. This matches the description of V (n−1)

j given above. Iterating the degeneration

process we get the same statement for the other V (k)
j .

4 WKB predictions via spectral networks

In this section, we consider Conjecture 1.2 from another point of view, as an example of the general program of
exact WKB. This program has a long history; see e.g. the pioneering works [47, 42, 17], and [9, 5, 6] which discuss
the new features of the higher-order case (n > 2 in our notation). Recently exact WKB has been reinterpreted in
more geometric language, and also connected to various other areas of mathematics and physics, e.g. [22, 20, 40, 31,
33, 35, 26]. We quickly review here the features which will be important for us.
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Suppose given a pencil of flat connections on a Riemann surface C, of the form

∇(ε) = ε−1φ+D + · · · (4.0.1)

where φ is a Higgs field on C and D is a connection. Then the exact WKB program predicts the following picture.
The monodromy and/or Stokes data of ∇(ε) can be expressed in terms of distinguished “spectral coordinates” Xγ on
the moduli space of flat connections, and these distinguished coordinates have exponential asymptotics of the form

Xγ(ε) ∼ exp(Z(γ)/ε+ iϕγ) . (4.0.2)

The leading coefficients Z(γ) appearing in (4.0.2) are period integrals on cycles γ in the spectral curve determined
by φ. The mapping between cycles γ and coordinate functions Xγ can be given by a general algorithm described in
[22, 31], involving the technology of spectral networks.

The formula (4.0.2) evidently resembles Conjecture 1.2. In this section we make that resemblance precise, by
applying the method of [22, 31] to the particular family of ODEs (1.1.1), when u is near the caterpillar point and
the matrix A is close to diagonal. We find that the Xγ’s are not exactly equal to the minor coordinates ∆(k)

i which
appear in Conjecture 1.2. Nevertheless, at least for n = 2 and n = 3, we show that (4.0.2) indeed leads to predicted
asymptotics for

∣∣∣∆(k)
i

∣∣∣ in the form of Conjecture 1.2, and gives a rule for determining the cycles L(k)
i appearing there.

As expected, we find that L(k)
i matches with the cycle C(k)

i we defined in (3.4.1). (The obstacle to extending these
statements to larger n has to do with the complexity of spectral networks in this case; see Conjecture 4.24 below.)

In fact, exact WKB leads to an extension of Conjecture 1.2: it predicts asymptotics for the full ∆(k)
i , including

its phase. To get the full asymptotics, though, we need to consider periods along open paths as well as closed ones.
We formulate these predictions for n = 2 and n = 3 below, and verify them directly in the case n = 2.

4.1 Periods and inequalities

Recall the definition of periods,

Definition 4.1. For γ ∈ H1(Γ(u,A)), the period is

Z(γ) =
∮

γ
ω. (4.1.1)

Definition 4.2. Let
ξ

(j)
i = −Z

(
V

(j)
i

)
. (4.1.2)

The symmetry (3.5.5) implies that ξ(j)
i ∈ R. Also, ξ(n)

i and ξ(1)
i are residues of ω over z = 0 and z = ∞

respectively, which gives simple formulas:

ξ
(n)
i = λ

(n)
i = λi, ξ

(1)
i = ti . (4.1.3)

The intermediate ξ(j)
i for j = 2, . . . , n− 1 are not in general expressed in terms of eigenvalues, but as u approaches

the caterpillar line, things are simpler:

Proposition 4.3. As u approaches the caterpillar line,

ξ
(j)
i →

{
λ

(j)
i for i ≤ j ,

ti for i > j .
(4.1.4)

In particular, at the caterpillar line the ξ(j)
i for i ≤ j obey the Cauchy interlacing inequalities. It follows

by continuity that they also obey these inequalities sufficiently close to the caterpillar line. One spin-off of our
description of the spectral networks is a direct geometric reproof of these inequalities, for n = 2 or n = 3. This
involves the following homology classes:
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Definition 4.4. Let
hij = V

(j−1)
i − V

(j)
i , h̃ij = V

(j)
i+1 − V

(j−1)
i . (4.1.5)

The class hij ∈ H1(Γ(u,A)) is represented by the 1-cycle which lies on sheet i and goes counterclockwise
around the cut Bij , i < j.

Again using the symmetry (3.5.5), we have Z(hij), Z(h̃ij) ∈ R. Below we will use spectral networks to prove
the following:

Theorem 4.5. For n = 2 or n = 3, for all 1 ≤ i < j ≤ n, Z(hij) < 0 and Z(h̃ij) < 0.

Then we obtain as a consequence:

Corollary 4.6. For u sufficiently close to the caterpillar line, and A sufficiently close to diagonal, the ξ(j)
i for i ≤ j

obey the (strict) interlacing inequalities.

See Figure 4 for the n = 3 example.

ξ
(3)
1 ξ

(3)
2 ξ

(3)
3

ξ
(2)
1 ξ

(2)
2

ξ
(1)
1

h13 h̃ 13
h23 h̃ 23

h12 h̃ 12

Figure 4: The coordinates ξ(j)
i which enter the interlacing inequalities in the case n = 3. The larger coordinates are

to the right, e.g. ξ(3)
1 < ξ

(2)
1 . For each pair of coordinates that are involved in an interlacing inequality, we indicate

the corresponding h, e.g. Z(h13) = −ξ(2)
1 + ξ

(3)
1 .

4.2 Spectral networks for near-diagonal matrices and Stokes asymptotics

4.2.1 General setup

The conjectures of [21, 22] give a description of the ε → 0 asymptotics of the Stokes matrices (S±)(u,A, ε) along
any ray in the ε-plane. To write this description explicitly one needs a technical device, the spectral network
W(u,A, ϑ), where ϑ = arg ε. We briefly review the definition of W(u,A, ϑ) in Appendix C.

We also need to introduce a relative homology group H(u,A, ϑ) defined as follows.

Definition 4.7. Consider the real oriented blow-up Γ̂(u,A) of Γ(u,A) at the n preimages of z = ∞. Then Γ̂(u,A)
has boundary consisting of n circles. On each of these n circles we mark two points ∞+

i , ∞−
i , lying over the two

anti-Stokes rays at arguments ϑ, ϑ+ π. Let L(ϑ) = {∞+
1 ,∞

−
1 ,∞

+
2 ,∞

−
2 , . . . ,∞+

n ,∞−
n }, and define

H(u,A, ϑ) = H1(Γ̂(u,A);L(ϑ)) . (4.2.1)

H(u,A, ϑ) contains the subgroup H1(Γ(u,A)) of closed paths, as a sublattice of index 2n− 1.
There are some subtle minus signs in the spectral coordinates, which need to be incorporated into our bookkeep-

ing. For this purpose, it is convenient to pass to a Z2 extension of H(u,A, ϑ), as follows. (These signs are probably
best ignored at first; we emphasize that they are not related to the signs of periods or interlacing inequalities.)

Definition 4.8. Let Γ̃(u,A) be the surface obtained by puncturing Γ̂(u,A) at each branch point. Then

H̃(u,A, ϑ) = (H1(Γ̃(u,A);L(ϑ)) × Z2)/I , (4.2.2)

where I is the subgroup generated by elements (ℓ, 1) with ℓ a small loop around a branch point.

The projection H̃(u,A, ϑ) → H(u,A, ϑ) given by (γ, y) 7→ γ is the Z2 extension.
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Proposition 4.9.

1. The network W(u,A, ϑ) determines spectral coordinates Xϑ
γ (u,A, ε) ∈ C×, indexed by γ ∈ H̃(u,A, ϑ).

They are algebraic functions of the Stokes matrix entries (S±)ij(u,A, ε), obeying the relations Xϑ
γX

ϑ
γ′ =

Xϑ
γ+γ′ (and thus Xϑ

(0,0) = 1), and Xϑ
(0,1) = −1.

2. Each Stokes matrix entry can be expressed as a linear combination of spectral coordinates, of the general form

(S±)ij(u,A, ε) =
∑

γ∈H̃(u,A,ϑ)

cϑ,±
γ,ij(u,A)Xϑ

γ (u,A, ε) (4.2.3)

where the coefficients cϑ,±
γ,ij(u,A) ∈ Q, and the sum may be infinite.

The cϑ,±
γ,ij(u,A) are determined by the path-lifting rule, which we review in Appendix C. Now we recall the

main conjecture about WKB asymptotics and spectral networks, specialized to our case (see Appendix C for a more
general discussion):

Conjecture 4.10. As ε → 0 with arg ε ∈ (ϑ− π
2 , ϑ+ π

2 ), we have the asymptotics

Xϑ
γ (u,A, ε) ∼ exp(Z(γ)/ε+ iϕγ) , (4.2.4)

where
Z(γ) =

∫ reg

γ
ω , (4.2.5)

and ϕγ are some constants depending on (u,A).

If γ is closed, then the symbol
∫ reg in (4.2.5) means the ordinary integral. If γ is open, then the ordinary integral

would be divergent, and
∫ reg instead means a regularized integral, as follows. Suppose γ is a path running from ∞ε

i

to ∞ε′
i′ . We can define a regularization γreg of γ, by perturbing the endpoints slightly off the boundary circle; call

the perturbed initial and final points zi, z′
i′ respectively. Then

Z(γ) = lim
zi→∞ε

i

lim
z′
i′ →∞ε′

i′

(
−P (z′

i′) + P (zi) +
∫

γreg
ω

)
(4.2.6)

where we define the function P in a neighborhood of the boundary as follows: let zi be the preimage of z ∈ C on
sheet i; then

P (zi) = iuiz − ti
2πi

(1
2 log(z) + 1

2 log(−z) + iπ
)
, (4.2.7)

where log on the right side means the branch we fixed in Section 2, with its cut along the positive imaginary axis.
Loosely speaking, (4.2.4) says that the spectral coordinates Xϑ

γ are especially well adapted for studying the
asymptotics of the Stokes matrices as ε → 0 with arg ε ∈ (ϑ− π

2 , ϑ+ π
2 ). For instance, using (4.2.3) and (4.2.4)

we can predict the leading asymptotics of (S±)ij . In the expansion (4.2.3), the dominant term will be the one with
the largest value of ReZ(γ)/ε (assuming that there is a unique largest value), and then we predict

(S±)ij(u,A, ε) ∼ cϑ,±
γ,ij exp(Z(γ)/ε+ iϕγ) . (4.2.8)

4.2.2 The case n = 2

First, we discuss the case n = 2. This case is exceptional in that we can calculate the Stokes matrix exactly, so we
can directly check that the predictions of exact WKB indeed hold.

Write

A =
(
t1 a
a t2

)
. (4.2.9)
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1 < 2

2 < 1

1 < 2

2 < 1

2a211

1 a12 2

i

ci

i

i

di

i

1 < 2

2 < 1

1

h12

2

h̃12

Figure 5: A spectral network W(u,A, ϑ = 0) in the n = 2 case. Left: the bare spectral network. Middle: the
spectral network with paths representing classes in H̃(u,A, ϑ). Numbers 1, 2 next to paths indicate the sheet
on which the path travels. Right: the spectral network with the saddle connections highlighted in purple, and
representatives of their charges in H̃(u,A, ϑ) marked.

The branch points of the spectral curve Γ(u,A) are

z±
12 = t1 − t2 ± 2i |a|

2π(u2 − u1) . (4.2.10)

From (4.2.10) we see directly that, when t1 < t2 and a ̸= 0, the two branch points are simple. It follows that
Γ(u,A) is smooth of genus g = 0 with 4 punctures. The lattice H(u,A, ϑ) has rank 6, generated by the 6 open paths
a12, a21, ci, di (i = 1, 2) shown in Figure 5. The sublattice H1(Γ(u,A)) of closed paths has rank 3; it is spanned by
c1 + d1, c2 + d2, and a12 + a21. On this sublattice, all periods are real, and the intersection pairing is trivial.

Proposition 4.11. For u1 < u2, t1 < t2 and a ̸= 0, the spectral network W(u,A, ϑ = 0) has the topology shown in
Figure 5.

Proof. W(u,A, ϑ = 0) is the critical graph of the quadratic differential

ϕ2 = (t1 − t2 + 2π(u1 − u2)z)2 + 4 |a|2

16π2z2 dz2 . (4.2.11)

We can determine its topology with computer assistance, or more synthetically, using the following general
constraints. Each branch point emits three trajectories, which must end up either at a Stokes ray or at the other
branch point. Moreover, no two trajectories can cross, the picture has to be symmetric under reflection in the real
axis, and no two trajectories can be homotopic to one another. This information is enough to determine the picture
uniquely.

W(u,A, ϑ = 0) is degenerate: there are two saddle connections connecting the two branch points. Their charges
are the classes h12 and h̃12 defined in Definition 4.4, and shown in the right of Figure 5. They can be written
alternatively as

h12 = c2 + d2 − a12 − a21, h̃12 = c1 + d1 − a12 − a21 . (4.2.12)

The fact that saddle connections with charges h12 and h̃12 exist proves Theorem 4.5 in this case, using Proposi-
tion C.6.

Stokes matrix asymptotics

Now we discuss the ε → 0 asymptotics of the Stokes matrix entries. Since S− = S∗
+ for real ε, we will just discuss

S+. The first step is to expand the entries of S+ in terms of spectral coordinates:
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Proposition 4.12. The coordinate expansion (4.2.3) of S+ has the form

(S+)ii = X0
ci , (4.2.13)

(S+)12 = X0
a21 + · · · (4.2.14)

where · · · is a (infinite, convergent) sum of terms cγX
0
γ , with each Z(γ) − Z(a21) ∈ R−.

1 < 2

2 < 1

P

Figure 6: A spectral network W(u,A, ϑ = 0) in the n = 2 case, with the path P marked.

Proof. Let P be the arc shown in Figure 6. Let Lift be the path-lifting functor induced by W(u,A, ϑ = 0). The
expansion of the entries of S+ in spectral coordinates is given by Lift(P). According to Proposition C.12, we have

Lift(P) = c1 + c2 + a21 + · · · (4.2.15)

where all terms γ appearing in the · · · go from sheet 2 to sheet 1, and have Z(γ) −Z(a21) < 0. The entry (S+)ij is
the sum of spectral coordinates for the terms that begin on sheet j and end on sheet i; this gives the desired results.

As ε → 0 with arg ε ∈ (−π/2, π/2), the · · · terms in (4.2.14) are exponentially suppressed; thus the asymptotic
we predict using (4.10) comes from the X0

a21 term, and is

(S+)12 ∼ exp(Z(a21)/ε) . (4.2.16)

For the diagonal entries we just have a single term in (4.2.13), and thus the asymptotic is

(S+)ii ∼ exp(Z(ci)/ε) . (4.2.17)

Thus we are predicting altogether

ε log(S+)ij →
(
Z(c1) Z(a21)

Z(c2)

)
. (4.2.18)

To understand this prediction more explicitly, we need to study the regularized open periods Z(γ), which we do
next.

Real parts of periods

The real parts of the periods are relatively simple to obtain. Indeed, we have

ReZ(γ) = 1
2Z(γ − ι(γ)) , (4.2.19)

31



and γ− ι(γ) is always a closed cycle, which we can identify directly. Moreover, since Γ has genus zero, the resulting
closed periods are just sums of residues. We obtain:

ReZ(a21) = 1
2(Z(a21) + Z(a12)) = −1

2Z(V (2)
2 ) = −1

2ξ
(2)
2 = −1

2λ2 , (4.2.20)

ReZ(ci) = 1
2Z(ci + di) = −1

2Z(V (1)
i ) = 1

2ξ
(1)
i = 1

2 ti . (4.2.21)

Thus we can summarize the predicted leading asymptotic magnitudes as

ε log |(S+)ij | → 1
2

(
t1 λ2

t2

)
. (4.2.22)

Moreover, this structure is in accordance with the general Conjecture 1.2. Indeed, the minor coordinates are
∆(1)

1 = (S+)11, ∆(2)
1 = (S+)12, ∆(2)

2 = (S+)11(S+)22, and we have just seen that each entry (S+)ij is controlled
by a corresponding period; this matches Conjecture 1.2, with the cycles

L
(1)
1 = V

(1)
1 , L

(2)
1 = V

(2)
2 , L

(2)
2 = V

(1)
1 + V

(1)
2 . (4.2.23)

Comparing this with (3.4.1), we see that Conjecture 1.2 holds with L(k)
i = C

(k)
i , as we expected.

Imaginary parts of periods

The imaginary parts of the periods are subtler than the real parts; they require us to use the detailed formula (4.2.6)
defining the regularization of open paths.

The paths ci can be isotoped into a small neighborhood of z = ∞ and computed explicitly from the series
expansion of ω there, with the result:

Proposition 4.13. The regularized period on the path ci is

Z(ci) = 1
2 ti . (4.2.24)

For a21 the computation is more interesting, since this path cannot be isotoped to a small neighborhood of
z = ∞. One can still compute the integral in (4.2.6) directly: indeed, since Γ has genus zero, the 1-form ω must
have an elementary antiderivative, just involving square roots and logarithms. Using this antiderivative in (4.2.6)
gives the following result:

Proposition 4.14. The regularized period on the path a21 is

Z(a21) = λ2
2 − i

2π

(
(t2 − t1) log 2πe(u2 − u1)

|a|
+ 1

2(λ2 − λ1) (log(t1 − λ1) − log(λ2 − t1))
)
. (4.2.25)

A comparison

Now we can confront our asymptotic predictions with ground truth; indeed we know the exact form of S+, given in
Example 2.13. Comparing it to (4.2.24) and (4.2.25) gives:

Corollary 4.15. As ε → 0 with arg ε ∈ (−π/2, π/2), we have ε logS+
12 → Z(a21) and ε logS+

ii = Z(ci).

In particular, it follows that Conjecture 4.10 is indeed true in this case.
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4.2.3 The case n = 3

Next, let us consider the case n = 3.
By Proposition 3.19, for u sufficiently close to the caterpillar line and A sufficiently close to diagonal, the

spectral curve Γ(u,A) is smooth, with genus g = 1 and m = 6 punctures. It follows that the lattice H(u,A, ϑ)
has rank 2g + 2m − 2 = 12, and the closed sublattice H1(Γ(u,A)) has rank 2g + m − 1 = 7. Inside the closed
sublattice we can consider the kernel of the intersection pairing, K(u,A) ⊂ H1(Γ(u,A)), of rank m− 1 = 5. On
K(u,A) all periods are sums of residues, and in particular, they are real.

We begin by describing the spectral networks:

Proposition 4.16. For u1 < u2 < u3, t1 < t2 < t3, u sufficiently close to the caterpillar line, and A sufficiently
close to diagonal, W(u,A, ϑ = 0) is equivalent to the spectral network shown in Figure 7.

21

12

32

23

31

13

Figure 7: A spectral network W(u,A, ϑ = 0) in the n = 3 case. We compress the notation for the wall labels by
writing ij instead of i < j.

Proof. Using the code included with the arXiv version of this paper, we can check that, for one specific example of
(u,A), the spectral network W(u,A, ϑ = 0) is indeed of the form shown in Figure 7.2

Next, we consider what happens when we vary (u,A). It follows from Proposition C.22 that the lifting maps
for the spectral network W(u,A, ϑ = 0) vary by equivalences, except when (u,A) cross a locus where some
γ /∈ K(u,A) has real period. Because K(u,A) has index 2, the only way this can happen is if every period becomes
real; in particular, Z(∆) would have to be real, where ∆ is shown in Figure 8.

2To be explicit, consider the case

u =
(

0, 1
4 , 1
)
, A =

(0 1
6 1

1
6 3 1

3
1 1

3 4

)
. (4.2.26)

A computer-generated approximation of the resulting spectral network at ϑ = 0.0005 is shown below.
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z−
12

z+
12

(12)

z−
13

z+
13

(13)

z−
23

z+
23

(23)
0∆

2

Figure 8: The cycle ∆ on Γ(u,A).

21

12

32

23

31

13

h̃12h̃23

h̃13

h12 h13 h23

21

12

32

23

31

13

Figure 9: The 6 finite webs in the spectral network W(u,A, ϑ = 0) responsible for the interlacing inequalities in the
n = 3 case. 5 of them are saddle connections (3 green, 2 purple) and 1 is a 5-string tree (blue). Each finite web is
labeled with its corresponding charge. Other walls of the network are shown in gray.

But we can compute Z(∆) in the limit of diagonal A: using the explicit formulas (3.5.1), (3.5.2) we get

Z(∆) → − i
2π

(
(t2 − t1) log (t3 − t1)(u2 − u1)

(t2 − t1)(u3 − u1) + (t3 − t2) log (t3 − t2)(u3 − u1)
(t3 − t1)(u3 − u2)

)
. (4.2.27)

Near the caterpillar line u3 − u2 ≫ u2 − u1, this becomes

Z(∆) ∼ i
2π (t2 − t1) log u3 − u1

u2 − u1
, (4.2.28)

and thus the imaginary part does not vanish for u sufficiently close to the caterpillar line and A sufficiently close to
diagonal. It follows that, as we vary (u,A) while maintaining this condition, W(u,A, ϑ = 0) varies by equivalences.

Let us discuss the spectral network in Figure 7. Looking first at the region near z = ∞, we see a structure
which resembles the n = 2 case in Figure 5: two branch points, connected by two saddle connections, and emitting
two walls to infinity, labeled 1 < 2 and 2 < 1. One of the two saddle connections looks like a large ring, almost
encircling the singularity at z = 0.

Near z = 0 there is some more complicated fine structure, with two walls of types 1 < 3 and 2 < 3 emitted out
to the large-z region. Along the way from small z to large z, these walls scatter off the ring, creating extra walls of
type 1 < 3 and 2 < 3. Thus the Stokes matrix entries (S+)13 and (S+)23 ultimately involve a mixture between the
structure of the small-z and large-z regions. In contrast, (S+)12 comes only from the large-z region.

Another important feature of W(u,A, ϑ = 0) is that it contains finite webs. In Figure 9 we indicate 6 finite
webs whose charges are the classes hij and h̃ij . 5 of these 6 finite webs are saddle connections, similar to the ones
that we had in the n = 2 case. The last one, with charge h̃13, is a five-string tree. The existence of these finite webs
proves Theorem 4.5 in case n = 3, using Proposition C.6.
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(12) (13) (23)

ci

di

a21

a12

a31

a13

a32

a23

Figure 10: Open paths aij (i ̸= j), ci, di, generating H(u,A, ϑ = 0). Each aij begins on sheet i and ends on sheet
j; each ci or di begins and ends on sheet i.

Stokes matrix entry asymptotics

Now suppose that we are interested in studying the ε → 0 asymptotics of the Stokes matrix entries (S+)ij . In
Figure 10 we show 12 open paths aij (i ̸= j), ci, di, generating H(u,A, ϑ = 0). The Stokes matrix entries can be
expanded in terms of spectral coordinates associated to these paths:

Proposition 4.17. The expansion (4.2.3) of Stokes matrix entries in spectral coordinates is:

(S+)ii = X0
ci , (4.2.29)

(S+)12 = X0
a21 + · · · , (4.2.30)

(S+)13 = X0
a32−c2+a21 + · · · , (4.2.31)

(S+)23 = X0
a32 +X0

a31−a21+c1 + · · · , (4.2.32)

where · · · represents a sum of terms Xγ with ReZ(γ) smaller than that for the leading term. In (4.2.32), the leading
term can be either of the two terms shown.

Proof. All these formulas are obtained using Proposition C.12. (For the reader who is interested in reproducing
them, we note one tricky point: the leading term indicated in (S+)13 arises from a term with two detours; there are
two other terms in (S+)13 which naively appear to have larger ReZ(γ), but those two terms cancel one another.)

To get from these formulas to the ε → 0+ asymptotics for |(S+)ij |, we need to compute the real parts of the
relevant periods. This can be done using the involution ι as we did in the n = 2 case. In particular, for the classes
appearing in Proposition 4.17 we have

ReZ(ci) = −1
2Z(V (1)

i ) = 1
2 ti , (4.2.33)

ReZ(a21) = −1
2Z(V (2)

2 ) = 1
2ξ

(2)
2 , (4.2.34)

ReZ(a32 − c2 + a21) = −1
2Z(V (3)

3 ) = 1
2ξ

(3)
3 , (4.2.35)

ReZ(a32) = −1
2Z(V (3)

3 − h12) = 1
2(ξ(3)

3 − ξ
(1)
1 + ξ

(2)
1 ) , (4.2.36)

ReZ(a31 − a21 + c1) = −1
2Z(V (3)

3 − h23) = 1
2(ξ(3)

3 − ξ
(2)
2 + ξ

(3)
2 ) . (4.2.37)

The resulting asymptotics are:
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Proposition 4.18. For u sufficiently close to the caterpillar line and A near diagonal, if Conjecture 4.10 holds, the
leading ε → 0+ asymptotics of the norms of entries of S+ are

ε log |(S+)ij | ∼ 1
2

t1 ξ
(2)
2 λ3

t2 max(λ3 − ξ
(2)
2 + t2, λ3 − ξ

(2)
2 + λ2)

t3

 . (4.2.38)

Factorization coordinates

In (4.2.38) we see that the leading asymptotic of the Stokes matrix entry (S+)23 is controlled by a piecewise linear
function of periods, rather than by a single period. This contrasts with the statement of Conjecture 1.2, which says
that the minor coordinates of S+ each should be controlled by a single period. How do we see from the point of
view of the spectral network that the minor coordinates should behave better than the entry coordinates?

In this section, we will answer this question, by giving a spectral-network interpretation of the factorization
coordinates: these are two related coordinate systems, defined on two double Bruhat cells B+ ∩ B−w0B

−

associated to reduced words for the permutation w0 = (123). The factorization coordinates are related by a
monomial transformation to the minor coordinates, so asymptotic formulas for one easily translate to asymptotic
formulas for the other.

Let us briefly recall what the factorization coordinates are. We consider the reduced word w0 = (23)(12)(23),
which corresponds to a coordinate system on the subset

U = {Y ∈ B+ | Y12 ̸= 0 or Y13 = 0} ⊂ B+ . (4.2.39)

Namely, any Y ∈ U admits a unique factorization

Y =

δ1 0 0
0 δ2 0
0 0 δ3


1 0 0

0 1 α
0 0 1


1 β 0

0 1 0
0 0 1


1 0 0

0 1 γ
0 0 1

 =

δ1 δ1β δ1βγ
0 δ2 δ2(α+ γ)
0 0 δ3

 , (4.2.40)

and this factorization defines the coordinates (δ1, δ2, δ3, α, β, γ) of Y .
To study the asymptotics of the factorization coordinates of S+, we apply an equivalence of spectral networks

in the sense of [22], illustrated in Figure 11. Beginning from W(u,A, ϑ = 0) we first slide the branch points z±
12

21

12

32

23

31

13 12 13 23 13 23

21 31 32 31 32

121323 13 23

213132 31 32

Figure 11: Spectral networks reached from W(u,A, ϑ = 0) of Figure 7 by a sequence of equivalences. The figure
should be read from left to right. The configuration on the right is the one we use for the study of the factorization
coordinates of S+. We highlight the relevant primary walls in red.

to a position near z±
13 and z±

23. In this process z−
12 crosses a line of type 1 < 3, and the configuration of walls is

transformed as indicated in [22] (section 10.6); this change does not affect the topology near infinity. Similarly z+
12

36



crosses a line of type 3 < 1. Next we move the branch cut B12 across the cut B13; this has the effect of conjugating
the transposition on B13, changing it from (13) to (23). The resulting configuration is shown in the middle of
Figure 11. Finally, we simplify the configuration by moving the primary wall of type 1 < 2 across the primary wall
of type 2 < 3. The final configuration is indicated on the right of Figure 11.

Because this process is an equivalence, it does not change the spectral coordinates associated to closed paths.
Moreover, because in this equivalence no walls cross the anti-Stokes rays, the equivalence also does not change
the spectral coordinates or their relation to the Stokes matrix elements. Still, this equivalence makes manifest
cancellations which would otherwise require computations to check, and makes the relation to the factorization
coordinates easier to see.

(12)

z−
12

z+
12

(23)

z−
13

z+
13

(23)

z−
23

z+
23

(12)(23) (23)

b11

b22

b21

Figure 12: Left: the arrangement of the branch cuts after applying the equivalence of spectral networks described in
the main text. Right: paths bij which correspond to the factorization coordinates.

Computing the Stokes matrix S+ from this picture gives a factorization of the form

S+ = D(δ)M23(α̃)M13(η1)M12(β̃)M13(η2)M23(γ̃) (4.2.41)

whereMij(x) is a unipotent matrix with ij entry x, andD(δ) is a diagonal matrix with ii entry δi. The five unipotent
factors in (4.2.41) correspond to the five walls visible on the bottom of the right side of Figure 11, in order (left to
right in (4.2.41) corresponds to left to right in the figure).

The coefficients α̃, β̃, γ̃, η1, η2 are given by the path-lifting rule as linear combinations of spectral coordinates:

Proposition 4.19. For u sufficiently close to the caterpillar line and A near diagonal, we have

δi = X0
ci , α̃ = X0

b21 + · · · , β̃ = X0
b11 + · · · , γ̃ = X0

b22 + · · · , (4.2.42)

and
η1 = X0

(b11+b21)+h12
+ · · · , η2 = X0

(b22+b11)+h̃12
+ · · · , (4.2.43)

where in each expression · · · means a sum of terms X0
γ , with ReZ(γ) smaller than that of the leading term.

Because of the extra matrices M13(η1) and M13(η2) in the factorization (4.2.41), the factorization coordinates
(α, β, γ) are not precisely equal to (α̃, β̃, γ̃). Nevertheless, these extra matrices are negligible, in the sense that they
do not affect the asymptotics of the factorization coordinates:

Proposition 4.20. For u sufficiently close to the caterpillar line and A near diagonal, the factorization coordinates of
S+ are

δi = X0
ci , (α, β, γ) = (X0

b21 + · · · , X0
b11 + · · · , X0

b22 + · · · ) (4.2.44)

where in each expression · · · means a sum of terms X0
γ , with ReZ(γ) smaller than that of the leading term.

Proof. Directly multiplying matrices gives the relations

β = β̃, α+ γ = α̃+ γ̃, βγ = β̃γ̃ + η1 + η2 . (4.2.45)

Moreover, from (4.2.42) and (4.2.43) it follows that both η1 and η2 are subleading compared to β̃γ̃, using the facts
that ReZ(h12 + b21 − b22) = 1

2(Z(h12) + Z(h23)) < 0 (for η1) and Z(h̃12) < 0 (for η2). Thus βγ and β̃γ̃ differ
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only by subleading terms. From there, using (4.2.45) it is straightforward to show that α, γ, β have the same leading
terms as α̃, γ̃, β̃ respectively. The latter were given in (4.2.42).

Using the involution ι again, we compute the real parts of the periods:

ReZ(b11) = −1
2Z(h̃12) = 1

2(ξ(2)
2 − t1), (4.2.46)

ReZ(b21) = −1
2Z(h̃23 + h12 − h23) = 1

2(λ3 − ξ
(2)
2 + λ2 − t2), (4.2.47)

ReZ(b22) = −1
2Z(h̃23) = 1

2(λ3 − ξ
(2)
2 ). (4.2.48)

Then we can make an explicit prediction for the asymptotics of the norms of factorization coordinates:

Proposition 4.21. For u sufficiently close to the caterpillar line and A near diagonal, if Conjecture 4.10 holds, the
leading ε → 0+ asymptotics of the norms of the factorization coordinates of S+ are

ε log δi = 1
2 ti, (4.2.49)

ε log |α| ∼ 1
2(λ3 − ξ

(2)
2 + λ2 − t2), ε log |β| ∼ 1

2(ξ(2)
2 − t1), ε log |γ| ∼ 1

2(λ3 − ξ
(2)
2 ) . (4.2.50)

To compare this with Conjecture 1.2, we note that the minor coordinates are

∆(2)
1 = βδ1, ∆(3)

1 = βγδ1, ∆(3)
2 = βαδ1δ2 . (4.2.51)

This leads to:

Corollary 4.22. For u sufficiently close to the caterpillar line and A near diagonal, if Conjecture 4.10 holds, the
leading ε → 0+ asymptotics of the norms of the minor coordinates of S+ are

ε log
∣∣∣∆(2)

1

∣∣∣ ∼ 1
2ξ

(2)
2 , ε log

∣∣∣∆(3)
1

∣∣∣ ∼ 1
2λ3, ε log

∣∣∣∆(3)
2

∣∣∣ ∼ 1
2(λ2 + λ3) (4.2.52)

This matches with Conjecture 1.2, if we take L(i)
j = C

(i)
j .

Dual factorization coordinates

Another system of factorization coordinates (δ1, δ2, δ3, α
′, β′, γ′) on U ′ ⊂ B+, associated to the reduced word

w0 = (12)(23)(12), is defined by

M =

δ1 0 0
0 δ2 0
0 0 δ3


1 α′ 0

0 1 0
0 0 1


1 0 0

0 1 β′

0 0 1


1 γ′ 0

0 1 0
0 0 1

 =

δ1 δ1(α′ + γ′) δ1α
′β′

0 δ2 δ2β
′

0 0 δ3

 . (4.2.53)

This system also fits into our story, as follows. So far we have mainly considered the regime where u3−u2 ≫ u2−u1.
We could also consider the opposite situation, where u2 −u1 ≫ u3 −u2 (still with u1 < u2 < u3 and t1 < t2 < t3.)
In that case, all of our discussion goes through, with various sign flips and index reversals. In particular, we obtain
spectral coordinate expansions indexed by the paths in Figure 13:

Proposition 4.23. For u sufficiently close to the dual caterpillar line, the dual factorization coordinates of S+ are

δi = X0
ci , (α′, β′, γ′) = (X0

b′
21

+ · · · , X0
b′

11
+ · · · , X0

b′
22

+ · · · ) . (4.2.54)

where in each expression · · · means a sum of terms X0
γ , with ReZ(γ) smaller than that of the leading term.
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Figure 13: The analogues of the paths in Figure 12, arising near the dual caterpillar line, where u2 − u1 is much
larger than u3 − u2.

4.2.4 The case of general n

Finally we discuss general n, with u1 < · · · < un and t1 < · · · < tn, and A near-diagonal. The spectral curve
Γ(u,A) has genus g = (n−2)(n−1)

2 and 2n punctures; the lattice H(u,A, ϑ) has rank n2 + n.
We will not attempt a complete description of W(u,A, ϑ = 0), but note some general features. The structure in

the upper half-plane is the mirror-reflection of the structure in the lower half-plane, so we only describe the lower
half-plane. The network is divided into n− 1 domains A(k), corresponding to the annuli in Figure 3:

• The domain A(n−1), bounded by V (n) and V (n−1), contains n− 1 branch cuts and emits n− 1 walls to the
south, of types i < n.

• The domain A(n−2), bounded by V (n−1) and V (n−2), contains n− 2 branch cuts which emit walls of types
i < (n− 1). The walls of type i < n emerging from A(n−1) also pass through A(n−2), and their intersections
with walls of type i′ < i generate additional walls of type i′ < n. Altogether, then, A(n−2) emits walls of type
i < (n− 1) and i < n to the south.

• Continuing inductively, the domain A(j−1) emits walls of type i < k, for each (i, k) such that i < k and
k ≥ j, to the south.

The spectral network W(u,A, ϑ = 0) contains finite webs. There are short saddle connections with charges hij

for all i < j. There are also saddle connections with charge h̃ij for i = j − 1, and five-string trees with charge h̃ij

for i < j − 1.
By an equivalence we can adjust the spectral network in the lower half-plane to a configuration where the branch

points are arranged in a triangle. (This equivalence involves moving each group of branch points to a row of the
triangle, one row at a time, starting from the top.) The j-th row from the bottom consists of j branch points, each
emitting a branch cut of type (j, j+ 1) due north, and a wall of type j < j+ 1 due south (as well as two other walls).
When n > 3 there are some branch points which are due north of others, so that the cuts overlap, and similarly the
walls overlap; however, this overlap is harmless, since any two overlapping cuts always involve disjoint pairs ij, kl.
For convenience, we sometimes displace the branch points slightly horizontally to eliminate these overlaps. See
Figure 14 for the n = 5 case.

We number the branch points starting from the bottom: the bottom row is b11, the second-bottom row b21, b22,
and so on until the top row bn−1,1, . . . , bn−1,n−1. Then for each branch point bij we define a corresponding path bij ,
which begins from ∞+

i+1, follows the boundary arc clockwise on sheet i+ 1 to the point directly south of bij , then
follows the wall up to bij , then follows the wall back down to the boundary arc on sheet i, and returns along the
boundary arc to ∞+

i . In the case n = 3 these paths are homologous to the ones shown in Figure 12.
We expect that the asymptotics of the factorization coordinates are determined by the periods Z(ci) = ti

2 and
Z(bij):

Conjecture 4.24. The factorization coordinates of S+ are of the form

αij = Xbij + · · · (4.2.55)
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Figure 14: The configuration of branch points in the bottom half-plane, after applying an equivalence as described
in the text, in the case n = 5. We also show the walls emanating south from each branch point. The full spectral
network contains various additional walls, not shown here.

where · · · denotes a sum of terms Xγ with ReZ(γ) < ReZ(bij).

Conjecture 4.24 is a purely geometric/combinatorial statement about the shape of the spectral network. Note that
if the lines shown in Figure 14 were the only lines of the spectral network, then we would have simply αij = Xbij ;
thus Conjecture 4.24 amounts to the claim that all the other lines of the spectral network contribute to αij only
through correction terms with smaller ReZ. We saw explicitly above that Conjecture 4.24 is true in the n = 2 and
n = 3 cases.

Now we want to work out the concrete asymptotics of the factorization coordinates; for this we need to know
ReZbij . By following the curves through the isotopy, we get

bij = ai+1,j − ai,j (4.2.56)

where we extend the definition of ai,j to the case i = j by setting aj,j = cj . Then using the real symmetry we can
show that

ReZ(bij) = −1
2

−ti+1 + ti +
j∑

k=1
(ξ(i+1)

k − ξ
(i)
k ) +

j−1∑
k=1

(ξ(i−1)
k − ξ

(i)
k )

 . (4.2.57)

Finally, translating from factorization coordinates to minor coordinates, we obtain the desired asymptotics:

Theorem 4.25. For u near the caterpillar line and A near diagonal, Conjecture 1.2 follows from Conjecture 4.10 and
Conjecture 4.24, with L(i)

j = C
(i)
j as defined in (3.4.1).

4.3 Spectral coordinates for nondegenerate networks

In this section we digress a bit, to explain how the usual connection between spectral networks, cluster algebras, and
Donaldson-Thomas invariants (finite web counts) play out in this example.

4.3.1 The case n = 2

The spectral network W(u,A, ϑ = 0) which we have discussed up to now is degenerate. These degenerate networks
are often useful — in particular, here they preserve the natural symmetries of the problem at ε ∈ R — but they have
the drawback that they obscure the connection to the cluster structure on moduli spaces of complex flat connections
discussed in [28]. Thus in this section, we make a perturbation to reach the nondegenerate case, by varying the phase
ϑ.

In the n = 2 example, the spectral networks for all ϑ ∈ (0, π) are isotopic, as are the spectral networks for
ϑ ∈ (−π, 0). See Figure 15 for examples. At ϑ = 0 we meet the degenerate network from Figure 5; this degeneration
separates W(ϑ−) from W(ϑ+), so they are not necessarily isotopic, and indeed they are not isotopic.

Now we describe the spectral coordinate functions at ϑ±, following the recipe of [22, 31]. For convenience, we
introduce a branch cut on the positive z-axis. Then we consider the 2-dimensional vector space Sol of solutions of
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Figure 15: Spectral networks W(u,A, ϑ) in the n = 2 case, with ϑ = −π
2 ,−

1
10 ,+

1
10 ,+

π
2 . (The case ϑ = 0 was

shown in Figure 5 above.)

(1.1.1) in the cut plane. There is an endomorphism M : Sol → Sol given by counterclockwise monodromy around
z = 0. In Sol we consider 5 distinguished vectors:

• Ψ+
i is the continuation of the i-th column of F+ from the positive z-axis below the cut,

• Ψ−
i is the continuation of the i-th column of F− exp(−1

2 [A]) from the negative z-axis,

• Ψ0 is an eigenvector of monodromy around z = 0, determined up to overall scale by the condition that Ψ0(z)
decays as z → 0.

Note that Ψ−
1 is a scalar multiple of Ψ+

1 since both obey the same exponential decay condition in the half-plane
containing the ray labeled 1 < 2, and similarly, Ψ−

2 is a scalar multiple of MΨ+
2 since both obey the same

exponential decay condition in the half-plane containing the ray labeled 2 < 1. The definition of the Stokes matrix
S+ (Definition 2.2) gives

Ψ+
2 = (S+)12Ψ−

1 + (S+)22Ψ−
2 . (4.3.1)

Thus, if we let (· ∧ ·) denote any nondegenerate skew pairing on Sol,3 we have

(S+)12 = (Ψ+
2 ∧ Ψ−

2 )
(Ψ−

1 ∧ Ψ−
2 )

. (4.3.2)

Now consider ϑ = ϑ− ∈ (−π, 0). The rules of [31] give formulas for the spectral coordinates in this case:

Xϑ−
c1 = Ψ+

1
Ψ−

1
, X

ϑ−
d2

= Ψ−
2

MΨ+
2
, Xϑ−

c2 = (Ψ+
2 ∧ Ψ+

1 )
(Ψ−

2 ∧ Ψ+
1 )
, X

ϑ−
d1

= (Ψ−
1 ∧ Ψ−

2 )
(MΨ+

1 ∧ Ψ−
2 )

, (4.3.3)

Xϑ−
a21 = (Ψ+

2 ∧ Ψ0)
(Ψ−

1 ∧ Ψ0)
, Xϑ−

a12 = (Ψ−
1 ∧ Ψ0)

(MΨ+
2 ,Ψ0)

. (4.3.4)

Combining these formulas with (4.3.2) we find that the Stokes matrix entry is a sum of two spectral coordinates:

(S+)12 = Xϑ−
a21(1 −X

ϑ−
h12

) . (4.3.5)

We can make similar computations for ϑ = ϑ+ ∈ (0, π). There is one important subtlety: at ϑ = 0 the behavior
of the eigenvectors of monodromy as z → 0 reverses. We use Ψ0 to indicate the eigenvector which decays as z → 0,
irrespective of the value of ϑ; in consequence, Ψ0 jumps discontinuously as ϑ crosses 0. At any rate, applying again
the rules of [31] leads to

Xϑ+
c1 = Ψ+

1
Ψ−

1
, X

ϑ+
d2

= Ψ−
2

MΨ+
2
, Xϑ+

c2 = (Ψ+
2 ∧ Ψ+

1 )
(Ψ−

2 ∧ Ψ+
1 )
, X

ϑ+
d1

= (Ψ−
1 ∧ Ψ−

2 )
(MΨ+

1 ∧ Ψ−
2 )

, (4.3.6)

3For instance, we could fix some z and then take (ψ ∧ ψ′) to be the determinant of a matrix with columns ψ(z), ψ′(z). Changing the
choice of z then changes (· ∧ ·) only by an overall factor, thanks to (1.1.1).
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Xϑ+
a21 = (Ψ+

2 ∧ Ψ+
1 )(Ψ0 ∧ Ψ−

2 )
(Ψ0 ∧ Ψ+

1 )(Ψ−
1 ∧ Ψ−

2 )
, Xϑ+

a12 = (Ψ−
1 ∧ Ψ−

2 )(Ψ0 ∧ Ψ+
1 )

(MΨ0 ∧ Ψ−
2 )(Ψ+

2 ∧ Ψ+
1 )

(4.3.7)

from which it follows that
(S+)12 = Xϑ+

a21(1 −X
ϑ+
h̃12

) . (4.3.8)

Now we have computed all of the Xϑ±
γ , and in particular we can compare Xϑ+

γ to Xϑ−
γ . When γ = ci or γ = di

we find simply that Xϑ+
γ = X

ϑ−
γ . For γ = a12 or γ = a21 the relation is more nontrivial; for instance, comparing

(4.3.8) to (4.3.5) we get4

Xϑ−
a21(1 −Xh12) = Xϑ+

a21(1 −Xh̃12
) . (4.3.9)

Altogether, the transformation relating Xϑ+
γ to Xϑ−

γ can be summarized as

Xϑ+
γ = Xϑ−

γ ·
[
(1 −Xh12)⟨γ,h12⟩(1 −Xh̃12

)⟨γ,h̃12⟩
]

(4.3.10)

As expected, this matches with the transformation law (C.0.13), in the case of two saddle connections with charges
h12 and h̃12.

4.3.2 Comparing to the Goncharov-Shen cluster structure on G∗

We are ready to compare the spectral coordinates to the cluster coordinates in [27]. Let D(ϑ) denote a punctured
disc with two marked points on the boundary, at arguments ϑ and ϑ+ π. (These marked points will correspond to
the anti-Stokes directions.) The marked points divide the boundary into two arcs.

Definition 4.26. A framed PGL2-local system with pinning over D(ϑ) is:

1. A PGL2-local system L over D(ϑ),

2. A flag in L (section of L/B) around the puncture and along each boundary arc,

3. A decoration of the flag (lift from L/B to L/U ) along each boundary arc.

Let X(PGL2, D(ϑ)) be the moduli space parameterizing framed PGL2-local systems with pinning over D(ϑ).

Assume that ϑ /∈ {0, π}. Consider the flat GL2-connection (1.1.1) determined by the data (u,A, ε), with
arg ε = ϑ, and u2 > u1 as usual. The covariantly constant sections make up a GL2-local system over D(ϑ),
and reducing by the center gives a PGL2-local system L(u,A, ε). As z → ∞ in a non-anti-Stokes direction, the
line of exponentially decaying sections gives a flag in L(u,A, ε) on each boundary arc.5 Choosing moreover the
particular exponentially decaying sections Ψ± determines a decoration of the flag. Finally, choosing the monodromy
eigenline which decays as z → 0 gives a flag in L(u,A, ε) around the puncture. (This is what requires us to have
ϑ /∈ {0, π}; under this condition there is one decaying eigenline and one growing one.) Thus we obtain a point of
X(PGL2, D(ϑ)).6

Now we can discuss cluster coordinates. Each spectral network W(u,A, ϑ) with ϑ /∈ {0, π} induces an ideal
triangulation of D(ϑ), as follows. Each of the three walls emanating from each branch point ends up either at a
Stokes ray or at z = 0; these three ends are the vertices of a triangle containing the branch point. See Figure 16 for
the picture in one triangle. Now, for a given triangle and a choice of an edge, we consider the arc γ on Γ shown in

4Here we simplify the notation by dropping the superscript on Xh12 and Xh̃12 , since those have Xϑ+
γ = X

ϑ−
γ .

5This structure is sometimes called the “Stokes filtration”, e.g. in the terminology of [13].
6The reader might be puzzled about the matching of dimensions: we might have expected that, for each fixed choice of u, the map from

the space of matrices A ∈ pgl2 = sl2 to the cluster variety should be a local diffeomorphism. This is not quite true, since sl2 has dimension
3, while the cluster variety has dimension 4. The resolution is that the points of the cluster variety which we obtain are special: they obey the
“outer monodromy condition” of [27], explicitly x2

1x2x3x
2
4 = 1, which reduces the dimension by 1. This condition is an expression of our

choice of the relative normalizations of Ψ± so that the Stokes matrices S± have the same diagonal entries. Explicitly, at ϑ = ϑ− it follows
from the relation x2

1x2x3x
2
4 = X−c1+c2+d1−d2 and the normalization conditions Xci = Xdi , and similarly at ϑ = ϑ+.
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a b

c

γ

Figure 16: Left: the triangle containing one branch point of Γ. Right: an arc γ on Γ, determined by the choice of a
triangle and an edge thereon. Recall that each vertex has a corresponding distinguished sheet of Γ; the arc γ begins
on the sheet corresponding to vertex a, and ends on the sheet corresponding to vertex b.

Figure 16. The corresponding spectral coordinate is

Xϑ
γ = (ψa, ψc)

(ψb, ψc)
(4.3.11)

where ψa is a covariantly constant section over the triangle, associated with vertex a. (If a is a Stokes ray, then
ψa is the corresponding normalized decaying solution at that ray; if a is the puncture, then ψa is the monodromy
eigensection which decays going into the puncture.) On the other hand, [27] defines a coordinate system on
X(PGL2, D(ϑ)), with cluster coordinates x1, . . . , x4 associated to the four edges. For an edge on the boundary, the
cluster coordinate is Xϑ

−γ ; for an edge in the interior, the cluster coordinate is the product of Xϑ
−γ over the two faces

abutting this edge.
Now we apply this to the spectral networks in Figure 15. The corresponding triangulations of D(ϑ) are indicated

in Figure 17 below. At ϑ = ϑ− ∈ (−π, 0) we obtain the following formula for the cluster coordinates xi:

32

1

4

3

2

1
4

2

3
1

4 32

4

1

Figure 17: Triangulated discs D(ϑ) with ϑ = −π
2 ,−

1
10 ,+

1
10 ,+

π
2 . The blue points are the vertices of the triangula-

tion; the red points on the boundary are the marked points of D(ϑ) (corresponding to anti-Stokes lines). Each edge
of the triangulation is labeled with an index i = 1, . . . , 4; each corresponds to a cluster coordinate xi. Note that the
labeling of the internal edges jumps as ϑ crosses 0. These four triangulated discs are induced by the four spectral
networks in Figure 15.

x1 = X
ϑ−
a12−d2

, x2 = X
ϑ−
h12
, x3 = X

ϑ−
h̃12
, x4 = −Xϑ−

a21−c1 . (4.3.12)

In short, the cluster coordinates are equal to the spectral coordinates.
At ϑ = ϑ+ ∈ (0, π), we get similar formulas for the cluster coordinates x′

i,

x′
1 = −Xϑ+

−a21+c2 , x′
2 = X

ϑ+
−h12

, x′
3 = X

ϑ+
−h̃12

, x′
4 = X

ϑ+
−a12+d1

, (4.3.13)

so again the cluster coordinates are equal to the spectral coordinates.
Finally, the spectral transformation law (4.3.10) translates to the relations

x′
1 = x1(1 − x3)(1 − x−1

2 )−1, x′
2 = x−1

2 , x′
3 = x−1

3 , x′
4 = x4(1 − x2)(1 − x−1

3 )−1 . (4.3.14)

The relations (4.3.14) can be described as the action of two cluster X-mutations, at the variables x2 and x3.
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4.3.3 The case n = 3

In the n = 2 case above, we connected the spectral coordinates with the cluster structure of [27] on G∗ by considering
spectral networks for phases other than ϑ = 0.

In the n = 3 case, we can try to do the same thing, but we will meet a much more intricate story, because the
networks for different ϑ ∈ (−π, 0) are not all isotopic: there are closed cycles γ with Z(γ) /∈ R, and these cycles
can be the charges of finite webs. The network W(u,A, ϑ) jumps when ϑ crosses the phase of any finite web.

We can still make some predictions. For u near the caterpillar line, there may be countably many distinct finite
webs whose phases approach 0 from either direction, so that W(u,A, ϑ) jumps countably many times as ϑ → 0±.
Nevertheless, we expect that each spectral coordinate Xϑ

γ has a limit as ϑ → 0±; we call these limits X0±
γ . These

two limits should differ by the usual transformation law (C.0.13). That transformation law depends on some BPS
invariants Ω(γ); in principle they can be computed from the spectral network following the algorithm of [21], but
here we guess them instead using the physical picture sketched in Subsection 4.4 below. That leads to the following
prediction:

X0+
γ = X0−

γ ·
(∏

h

(1 −Xh)⟨γ,h⟩
)

· (1 +Xv)−2⟨γ,v⟩ (4.3.15)

Here v = V
(2)

2 −V
(2)

1 , and h runs over 8 values, the differences V (2)
i −V

(3)
j , V (1)

i −V
(2)

j for i ≥ j and V (3)
j −V

(2)
i ,

V
(2)

j − V
(1)

i for i < j. This is the n = 3 analogue of the formula (4.3.10) which holds in the n = 2 case.

4.4 Relation to quantum field theory

The story we have been discussing is related to an N = 2 supersymmetric quantum field theory in four dimensions,
as recently discussed in [23].

On the one hand, we may think of it as a class S theory of type gln built using a twice-punctured sphere, with a
regular singularity at z = 0 and an irregular one at z = ∞. This theory has a U(n) flavor symmetry associated to
the singularity at z = 0. In the pure class S theory there is also a U(1)n−1 flavor symmetry at the irregular puncture;
the precise theory we want to consider is obtained by gauging that symmetry.

We can also describe the same theory concretely by a Lagrangian, determined by the quiver diagram shown in
Figure 18.

n n− 1 · · · 2 1

Figure 18: A linear quiver, describing the field content of a Lagrangian N = 2 supersymmetric quantum field theory
in four dimensions. The circular (gauge) nodes correspond to U(k) gauge groups with 1 ≤ k ≤ n− 1. The leftmost
node corresponds to a U(n) flavor symmetry. Each link corresponds to a bifundamental hypermultiplet.

The SU(n) parts of the gauge symmetry are conformal, but the U(1) parts are not conformal or asymptotically
free. Nevertheless, we can consider this theory as an effective theory. For n = 2, it is a U(1) gauge theory coupled
to 2 charged hypermultiplets; the fact that the gauge group is abelian is reflected in the fact that the Stokes matrices
can be computed exactly in this case, as we already noted above. For n > 2, on the other hand, it is a nonabelian
gauge theory.

The decomposition of the spectral curve shown in Figure 3 reflects the quiver description of the theory: the loop
V (k) corresponds to the quiver node labeled k, and the annulus between V (k) and V (k+1) corresponds to a link in
the quiver. Going to the caterpillar line ui − ui−1 ≪ ui+1 − ui corresponds to the weak-coupling limit in which the
gauge couplings are sent to zero.

From this description of the theory we see that at weak coupling the BPS spectrum should include k(k − 1)
hypermultiplets in the bifundamental of U(k) × U(k − 1), for k = 2, . . . , n, and W -bosons in the adjoint of su(k)
for k = 2, . . . , n− 1. This spectrum should then appear in the Stokes behavior of the ε → 0 asymptotics at weak
coupling. Concretely, this is reflected in the arguments of the gamma functions appearing in Appendix B: indeed
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the λ(k)
l − λ

(k)
i which appear with multiplicity −2 are the masses of the W -bosons, while the λ(k+1)

l − λ
(k)
i and

λ
(k−1)
l − λ

(k)
i which appear with multiplicity 1 are the masses of the hypermultiplets.

We saw part of the BPS spectrum explicitly above for n = 2 and n = 3. For n = 2 we just expect the
bifundamental of U(2) × U(1), and indeed in Figure 5 we found 2 saddle connections with charges h12 and h̃12.
For n = 3 we expect bifundamentals of U(3) × U(2) and U(2) × U(1). Looking at Figure 9, we see that the saddle
connections with charges h12 and h̃12 give the expected bifundamental of U(2) × U(1), while the webs with charges
h13, h23, h̃13, h̃23 give 4 of the 6 expected in the bifundamental of U(3) × U(2). The remaining two charges in the
bifundamental are h13 + h̃13 + h23 and h̃13 + h23 + h̃23, which do not arise as indecomposable webs in Figure 9;
rather they should be understood as composites.

A The De Concini-Procesi space

Recall that we denote by hreg(R) the space of n× n diagonal matrices with distinct real eigenvalues, and in this
paper we consider the meromorphic linear system

dF

dz
=
(

iu− 1
2πi

A

z

)
· F,

with u ∈ hreg(R) and A ∈ Herm(n). By definition, the Stokes matrices S±(u,A) are invariant under the translation
action of R on hreg(R) given by u 7→ u + c · Idn(c ∈ R). Then, for any fixed A, S±(u,A) are parameterized by
treg(R) ∼= hreg(R)/R. Here, treg(R) is the space of n× n diagonal matrices u = diag(u1, ..., un) with distinct real
eigenvalues and such that

∑n
k=1 uk = 0.

Before we introduce the De Concini-Procesi space ˜treg(R) of treg(R), we first work over the field of complex

numbers and introduce ˜treg(C). Let g be the simple Lie algebra sln, t ⊂ g the Cartan subalgebra, Π ⊂ t∗ the set of
roots, Π+ the set of positive roots and {αi : i ∈ I} the set of simple roots where I is the index set of vertices of the
Dynkin diagram of g.

Denote by G the minimal building set associated with the set of roots. To define G, let G′ denote the set of all
non-zero subspaces of t∗ which are spanned by a subset of Π. Let V ∈ G′. We say that V = V1 ⊕ · · · ⊕ Vk is a
decomposition of V if V1, . . . , Vk ∈ G′, and if whenever α ∈ Π and α ∈ V , then α ∈ Vi for some i. From Section
2.1 of [16], every element of G′ admits a unique decomposition. Then we define G to be the set of indecomposable
elements of G′. This set can be described as follows. There is an action of the Weyl group W on t. This action
preserves Π. Thus, we get actions of W on G and G′. If J ⊆ I is a non-empty, connected subset of I , we can form
VJ = span(αj : j ∈ J). Then VJ ∈ G. Every V ∈ G is of the form w(VJ) for some w ∈ W and J as above.

Note that for any V ∈ G, we have a map treg → P(g/V ⊥).

Definition A.1. The De Concini-Procesi space t̃reg ⊂ t ×
∏

V ∈G P(t/V ⊥) is the closure of the image of the map
treg → t ×

∏
V ∈G P(t/V ⊥).

Let us consider its projective analog. Note that the multiplicative group C× acts on treg, and the regular morphism
treg ↪→

∏
V ∈G P(t/V ⊥) is constant on the C× orbits. Thus, we get a map treg/C× →

∏
V ∈G P(t/V ⊥).

Definition A.2. The De Concini-Procesi space treg ⊂
∏

V ∈G P(t/V ⊥) is the closure of the image of the map
treg/C× →

∏
V ∈G P(t/V ⊥).

Thus a point of treg consists of a collection (LV )V ∈G where LV ∈ t/V ⊥. We will think of LV as a subspace of
t containing V ⊥ as a hyperplane. Note that if χ ∈ treg, then χ /∈ V ⊥ for all V ∈ G and the image of χ in treg is the
collection LV = V ⊥ + Cχ.

By [16, Theorem 4.1], t̃reg is the total space of a tautological line bundle on treg. Furthermore, following [16,
Theorem 3.1 and 3.2], the boundary D of treg in t̃reg is a divisor with normal crossings, and is the union of smooth
irreducible divisors Dω(VJ ) indexed by the elements ω(VJ) in G. Then, by [16, Theorem 4.1], treg is isomorphic to
the boundary divisor Dω(VI).
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Since the root system Π is defined over R, the variety t̃reg is defined over R and we get the De Concini-Procesi

space ˜treg(R) of treg(R) by taking the set of real points.

A.1 The connection to moduli spaces of stable rational curves

The space treg can be identified with the Deligne-Mumford space M0,n+1 of stable rational curves with n + 1
marked points. Here, a rational curve with n+ 1 marked points is a finite union Σ of projective lines Σ1, ...,Σm

together with marked distinct points z1, ..., zn ∈ Σ such that

• Each marked point belongs to a unique Σj ;

• The intersection of projective lines Σi ∩ Σj is either empty or consists of one point, and in the latter case the
intersection is transversal;

• The graph of components (whose vertices are the lines Ci and whose edges correspond to pairs of intersecting
lines) is a tree;

• The total number of special points (i.e. marked points or intersection points) that belong to a given component
Σi is at least 3.

A point of M0,n+1 is then an isomorphism class of such stable curves. The space M0,n+1 contains a dense
open subset corresponding to curves with one component. This open subset is isomorphic to((

P1
)n+1

\ ∆
)
/PSL2(C

where ∆ is the fat diagonal

∆ = {(u1, ..., un) ∈ Cn | ui = uj , for some i ̸= j}

and PSL2(C) is the automorphism group of P1. Since the group PSL2(C) acts transitively on triples of distinct
points, we can fix the (n+ 1)-th marked point to be ∞ ∈ P1 and fix the sum of coordinates of other points to be
zero. Then the space M0,n+1 gets identified with the quotient treg/C×. That is we have((

P1
)n+1

\ ∆
)
/PSL2(C) ∼= (Cn \ ∆)/B ∼= hreg/B ∼= treg/C×

where B ⊂ PSL2 is the Borel subgroup, and B ∼= C× ⋉C acting on Cn by scaling and translation. It follows from
[16, Section 4.3] that the above isomorphism can be extended to an identification M0,n+1 ∼= treg. On the other hand,
the space M0,n+1 comes with the tautological bundles Li whose fiber is the line representing the point zi. Then
the total space M̃0,n+1 of the tautological line bundle Ln+1 is isomorphic to the total space of the tautological line
bundle t̃reg on treg.

Taking the real points, we have
M̃0,n+1(R) ∼= t̃reg(R).

A.2 Stratification indexed by planar rooted trees

We denote by T (u) a planar rooted tree T with n leaves colored by the components u1, . . . , un of u. We say that
T is compatible with σ ∈ Sn if all internal vertices of the tree are in the lower half plane, all leaves are on the
horizontal line y = 0 and are colored by uσ(1), . . . , uσ(n) from left to right.

To any planar binary rooted tree BT compatible with σ, one can assign a set of coordinates zI , indexed by
internal vertices I of BT , in an appropriate neighborhood UBTσ of the corresponding 0-dimensional stratum. The
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coordinate ring of the open chart UBTσ ⊂ t̃reg(R) is generated by the following set of coordinate functions zI on
UBTσ indexed by inner vertices I of the tree BT ,

zI =
{
ur(I) − ul(I), if I is the root vertex,
ur(I)−ul(I)

ur(I′)−ul(I′)
, if I is any other vertex, (A.2.1)

where I ′ is the preceding vertex of I in BT , i.e. I ′ := max{J ∈ BT | J < I} in the partial ordering < of the
vertices of BTσ with the root being the minimal element, and for any vertex I , l(I) ∈ [1, . . . , n] is such that σ(l(I))
is the maximal index of the ui’s in the left branch at I , and analogously, r(I) ∈ [1, . . . , n] is such that σ(r(I)) the
minimal index of the u′

is in the right branch at I .
The space t̃reg(R) has a stratification, with the strata indexed by rooted trees with n colored leaves. Let T be

such a tree, then the corresponding stratum MT is the product of M0,d(I) over all internal vertices I of T with
d(I) the index of I . In particular, 0-dimensional strata correspond to binary rooted trees with n ordered leaves,
while 1-dimensional strata correspond to almost binary trees (with exactly one 4-valent internal vertex). The stratum
corresponding to a tree T lies in the closure of the one corresponding to another tree T ′ if and only if T ′ is obtained
from T by contracting some edges. In the coordinate charts, the stratum MT corresponding to a rooted tree T in the
local coordinates determined by a binary rooted tree T ′ can be described as follows.

Proposition A.3. The stratum MT has a nonempty intersection with the coordinate chart UBTσ if and only if T is
obtained from BT by contracting some edges. In the latter case, MT is a subset of UBTσ defined as follows: zI ̸= 0
if the (unique) edge of BT which ends at I is contracted in T , and zI = 0 otherwise.

Let us take the following planar binary tree BTσ with coloring

uσ(n)uσ(1) uσ(2) uσ(3) · · · uσ(n−1)

Figure 19: A planar rooted tree with coloring

Let us denote the vertices of BTσ in the partial ordering by I1 > I2 > · · · > In. And let zI1 , ..., zIn be the
corresponding coordinates, then (following the definition in [44, Page 16])

Definition A.4. The point uσ
cat ∈ UBTσ with coordinates zIk = 0 for all k = 1, ..., n is called a caterpillar point.

And the line lσcat ∈ UBTσ consisting of the set of points in UBTσ with coordinates zIk = 0 for all k = 1, ..., n− 1 is
called a caterpillar line. For σ = id ∈ Sn, we simply denote uid

cat and lidcat by ucat and lcat respectively.

Note that a caterpillar point uσ
cat is in the 0-dimensional stratum of ĥreg(R), and lσcat is the tautological line

through uσ
cat. In particular, the limit of elements u = diag(u1, ..., un) in Uid such that u2 − u1 is equal to a fixed

real number t > 0 and uj+1−uj
uj−uj−1

→ +∞ for all j = 2, ..., n− 1, is a point, denoted by ucat(t) in the caterpillar line
lcat.
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B The WKB approximation of the 3 × 3 Stokes matrices on the caterpillar line

In this appendix, we show some explicit computation of the WKB approximation of the Stokes matrices on the
caterpillar line based on the formula in Theorem 2.11. Recall that for A = (Aij) ∈ Herm(n), we denote by
λ

(k)
1 ≤ · · · ≤ λ

(k)
k the ordered eigenvalues of its upper left k × k submatrix, and we use ti for the diagonal entry Aii.

Let us take the case n = 3. Then the explicit formula for the entries of the Stokes matrix Sreg
+ (ucat(t), A) is

(Sreg
+ )11 = e

t1
2ε , (Sreg

+ )22 = e
t2
2ε , (Sreg

+ )33 = e
t3
2ε ,

(Sreg
+ )12 = A12

ε
·

(u2−u1
ε

) t2−t1
2πiε e

t1+t2
4ε

Γ
(

1 + λ
(2)
1 −t1
2πiε

)
Γ
(

1 + λ
(2)
2 −t1
2πiε

) ,
(Sreg

+ )23 = (Sreg
+ )1

23 + (Sreg
+ )2

23,

(Sreg
+ )13 = (Sreg

+ )1
13 + (Sreg

+ )2
13,

where the components

(Sreg
+ )1

23 = 2πi ·
(
u2 − u1

ε

) t3−t2
2πiε

·
e
t2+t3

4ε Γ
(

1 + λ
(2)
2 −λ

(2)
1

2πiε

)
∏3

j=1 Γ
(

1 + λ
(3)
j −λ

(2)
1

2πiε

) Γ
(

λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(1)
1 −λ

(2)
1

2πiε

) · ∆1,2
1,3

(
A− λ

(2)
1

2πiε

)

(Sreg
+ )2

23 = 2πi ·
(
u2 − u1

ε

) t3−t2
2πiε

·
e
t2+t3

4ε Γ
(

1 + λ
(2)
1 −λ

(2)
2

2πiε

)
∏3

j=1 Γ
(

1 + λ
(3)
j −λ

(2)
2

2πiε

) Γ
(

λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

1 + λ
(1)
1 −λ

(2)
2

2πiε

) · ∆1,2
1,3

(
A− λ

(2)
2

2πiε

)
,

and

(Sreg
+ )1

13 = 2πi
(
u2 − u1

ε

) t3−t1
2πiε

e
−λ(1)

1 +2λ(2)
1 +t3

4ε Γ
(

1 + λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

λ
(2)
2 −λ

(2)
1

2πiε

)
∏3

j=1 Γ
(

1 + λ
(3)
j −λ

(2)
1

2πiε

)
· Γ
(

1 + λ
(2)
2 −λ

(1)
1

2πiε

) ·
A12∆1,2

1,3

(
A−λ

(2)
1

2πiε

)
(λ(1)

1 − λ
(2)
1 )

(Sreg
+ )2

13 = 2πi
(
u2 − u1

ε

) t3−t1
2πiε

e
−λ(1)

1 +2λ(2)
2 +t3

4ε Γ
(

1 + λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

λ
(2)
1 −λ

(2)
2

2πiε

)
∏3

j=1 Γ
(

1 + λ
(3)
j −λ

(2)
2

2πiε

)
· Γ
(

1 + λ
(2)
1 −λ

(1)
1

2πiε

) ·
A12∆1,2

1,3

(
A−λ

(2)
2

2πiε

)
(λ(1)

1 − λ
(2)
2 )

It follows from a direct computation of asymptotics of the gamma functions that

Proposition B.1. The entries of the Stokes matrices at ucat(t) have the following asymptotics as ε → 0+:

(Sreg
+ )11 = e

t1
2ε , (Sreg

+ )22 = e
t2
2ε , (Sreg

+ )33 = e
t3
2ε ,

(Sreg
+ )12 ∼ e

λ
(2)
2 +iθ12(A)

2ε (f12(A) +O(ε))

(Sreg
+ )23 ∼ e

λ
(3)
2 +λ(3)

3 −λ(2)
2 +iθ23(A)

2ε (f23(A) +O(ε)) + e
λ

(3)
2 +λ(3)

3 −t2+iψ23(A)
2ε (g23(A) +O(ε)),

(Sreg
+ )13 ∼ e

λ
(3)
3 +iθ13(A)

2ε (f13(A) +O(ε)) + e
λ

(3)
3 −λ(1)

1 −λ(2)
2 +λ(2)

1 +λ(3)
2 +iψ13(A)

2ε (g13(A) +O(ε)),

for some real valued functions fij , gij , θij and ψij of A.
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By the strict interlacing inequalities, we have λ(2)
1 + λ

(3)
2 < λ

(1)
1 + λ

(2)
2 , so the first term in the asymptotics

of (Sreg
+ )13 dominates. However, if some interlacing inequalities become non-strict, for example λ(2)

1 + λ
(3)
2 =

λ
(1)
1 + λ

(2)
2 , then, since in general θ13(A) ̸= ψ13(A), the WKB asymptotics of (Sreg

+ )13 may not exist.
We also remark that the interlacing inequalities do not impose any relation between λ(3)

2 + λ
(3)
3 − λ

(2)
2 and

λ
(3)
2 +λ

(3)
3 − t2. Thus depending on different choices of A, either term in the asymptotics of (Sreg

+ )23 may dominate.

Proposition B.2. Under the assumption that the interlacing inequalities are strict, the minors of the Stokes matrices
at ucat(t) have the following asymptotics as ε → 0+:

∆(1)
1 (Sreg

+ ) = e
t1
2ε , ∆(2)

2 (Sreg
+ )22 = e

t1+t2
2ε , ∆(3)

3 (Sreg
+ )33 = e

t1+t2+t3
2ε ,

∆(2)
1 (Sreg

+ ) ∼ e
λ

(2)
2 +iθ(2)

1 (A)
2ε (f (2)

1 (A) +O(ε))

∆(3)
1 (Sreg

+ ) ∼ e
λ

(3)
3 +iθ(3)

1 (A)
2ε (f (3)

1 (A) +O(ε)),

∆(3)
2 (Sreg

+ ) ∼ e
λ

(3)
2 +λ(3)

3 +iθ(3)
2 (A)

2ε (f (3)
2 (A) +O(ε)),

for some real valued functions f (k)
i and θ(k)

i of A.

Proof. The minors ∆(1)
1 , ∆(2)

1 , ∆(2)
2 , ∆(3)

1 and ∆(3)
3 are either entries or monomials in entries. So we only need

to compute ∆(3)
2 = (Sreg

+ )12(Sreg
+ )23 − (Sreg

+ )22(Sreg
+ )13. Let us compute (Sreg

+ )12(Sreg
+ )1

23 and (Sreg
+ )12(Sreg

+ )2
23

respectively. Along the way, we use the reflection formula of Γ-function to simplify the expressions. First, we have

(Sreg
+ )12(Sreg

+ )1
23

= A12
ε

2πi ·
(
u2 − u1

ε

) t3−t2
2πiε

(
u2 − u1

ε

) t2−t1
2πiε

e
t1+t2

4ε e
t2+t3

4ε

×
Γ
(

1 + λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(1)
1 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(2)
1 −λ

(1)
1

2πiε

)
Γ
(

1 + λ
(2)
2 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
1

2πiε

) · ∆1,2
1,3

(
A− λ

(2)
1

2πiε

)

= 2πi ·
(
u2 − u1

ε

) t3−t1
2πiε

e
t1+t2

4ε e
t2+t3

4ε

(
e
λ

(1)
1 −λ(2)

1
2ε − e−

λ
(1)
1 −λ(2)

1
2ε

)

×
Γ
(

1 + λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(2)
2 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
1

2πiε

)A12∆1,2
1,3

(
A−λ

(2)
1

2πiε

)
λ

(1)
1 − λ

(2)
1

= 2πi ·
(
u2 − u1

ε

) t3−t1
2πiε

e
3t1+2t2+t3−2λ(2)

1
4ε

Γ
(

1 + λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(2)
2 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
1

2πiε

)A12∆1,2
1,3

(
A−λ

(2)
1

2πiε

)
λ

(1)
1 − λ

(2)
1

+ 2πi ·
(
u2 − u1

ε

) t3−t1
2πiε

e
−t1+2t2+t3+2λ(2)

1
4ε

Γ
(

1 + λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(2)
2 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
1

2πiε

)A12∆1,2
1,3

(
A−λ

(2)
1

2πiε

)
λ

(1)
1 − λ

(2)
1
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Here in the second identity, we use the reflection formula of the gamma function to reduce

1

Γ
(

1 + λ
(1)
1 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(2)
1 −λ

(1)
1

2πiε

) =
2iε sin

(
λ

(1)
1 −λ

(2)
1

2iε

)
λ

(1)
1 − λ

(2)
1

= ε · e
λ

(1)
1 −λ(2)

1
2ε − e−

λ
(1)
1 −λ(2)

1
2ε

λ
(1)
1 − λ

(2)
1

.

Similarly, we have

(Sreg
+ )12(Sreg

+ )2
23

= 2πi ·
(
u2 − u1

ε

) t3−t1
2πiε

e
3t1+2t2+t3−2λ(2)

2
4ε

Γ
(

1 + λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

1 + λ
(2)
1 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
2

2πiε

)A12∆1,2
1,3

(
A−λ

(2)
2

2πiε

)
λ

(1)
1 − λ

(2)
2

+ 2πi ·
(
u2 − u1

ε

) t3−t1
2πiε

e
−t1+2t2+t3+2λ(2)

2
4ε

Γ
(

1 + λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

1 + λ
(2)
1 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
2

2πiε

)A12∆1,2
1,3

(
A−λ

(2)
2

2πiε

)
λ

(1)
1 − λ

(2)
2

.

Therefore, from the explicit expressions of the entries we get

(Sreg
+ )12(Sreg

+ )23 − (Sreg
+ )22(Sreg

+ )13

= 2πi ·
(
u2 − u1

ε

) t3−t1
2πiε

e
3t1+2t2+t3−2λ(2)

1
4ε

Γ
(

1 + λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

λ
(2)
2 −λ

(2)
1

2πiε

)
Γ
(

1 + λ
(2)
2 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
1

2πiε

)A12∆1,2
1,3

(
A−λ

(2)
1

2πiε

)
λ

(1)
1 − λ

(2)
1

+ 2πi ·
(
u2 − u1

ε

) t3−t1
2πiε

e
3t1+2t2+t3−2λ(2)

2
4ε

Γ
(

1 + λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

λ
(2)
1 −λ

(2)
2

2πiε

)
Γ
(

1 + λ
(2)
1 −λ

(1)
1

2πiε

)∏3
j=1 Γ

(
1 + λ

(3)
j −λ

(2)
2

2πiε

)A12∆1,2
1,3

(
A−λ

(2)
2

2πiε

)
λ

(1)
1 − λ

(2)
2

Using the ordering λ(3)
1 < λ

(3)
2 < λ

(3)
3 and λ(2)

1 < λ
(2)
2 , and the strict interlacing inequalities, we can compute the

leading asymptotics of the two summands to get

∆(3)
2 ∼ e

λ
(3)
2 +λ(3)

3 +iθ(3)
2 (A)

2ε (f (3)
2 (A) +O(ε)) + e

λ
(3)
3 +λ(1)

1 +λ(2)
1 −λ(2)

2 +iψ(3)
2 (A)

2ε (g(3)
2 (A) +O(ε))

for some real-valued functions θ(3)
2 , f (3)

2 and ψ(3)
2 , g(3)

2 of A.
By the strict interlacing inequalities, we have λ(3)

2 + λ
(3)
3 > λ

(3)
3 + λ

(1)
1 + λ

(2)
1 − λ

(2)
2 . Therefore the first term

dominates. This completes the proof.

Remark B.3. In the computation of the asymptotics of (Sreg
+ )12(Sreg

+ )23 − (Sreg
+ )22(Sreg

+ )13, by using the reflection
formula of the gamma function we decompose (Sreg

+ )12(Sreg
+ )23 into a summation of four terms. Two summands

then cancel with (Sreg
+ )22(Sreg

+ )13. This cancellation exhibits the leading asymptotics of the minor as a linear
combination of the λ(k)

i .

C A quick review of spectral networks

Here we recall the main facts and conjectures about spectral networks which we use in the main text. Most of this
material can be found in [22, 31].
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Basic definitions

Definition C.1 (Oriented foliation for a holomorphic 1-form). For a Riemann surface S equipped with a nowhere
vanishing holomorphic 1-form ρ, we have the distribution ker Im ρ, which integrates to give a foliation Fρ of S.
This foliation is oriented by Re ρ. For example, if S = C and ρ = dz, then Fρ is the foliation by horizontal lines
oriented to the right. More generally, for ϑ ∈ R/2πZ, we also define

F ϑ
ρ = Feiϑρ .

If ρ has isolated zeroes, we make the same definitions, now getting a singular foliation Fρ of S.

Fix a Riemann surface C and a complex curve Γ ⊂ T ∗C, such that the projection π : T ∗C → C makes Γ a
degree n branched covering of C. In our application, we will take C = C× and Γ = Γ(u,A).7 We always assume
that Γ has simple ramification, so in particular it is smooth.

Definition C.2 (Root curve). The root curve Γr is the closure of the fiber product with the diagonal removed,

Γr = {(y, y′) ∈ Γ × Γ : π(y) = π(y′), y ̸= y} ⊂ T ∗C × T ∗C. (C.0.1)

Γr is a smooth n(n− 1)-sheeted branched covering of C. We often think of a point of Γr as a point z ∈ C plus
a choice of an ordered pair ij of distinct sheets of Γ over z. Γr carries a holomorphic 1-form

ρ = p∗
1ω − p∗

2ω (C.0.2)

where ω is the Liouville 1-form and p1, p2 are the two projections T ∗C × T ∗C → T ∗C; ρ vanishes only at the
ramification points. Thus we have the foliations F ϑ

ρ on Γr, with isolated singularities at the branch points.
If c is a 1-chain on Γr, let p(c) be a 1-chain on Γ given by

p(c) = (p1)∗c− (p2)∗c . (C.0.3)

(So if c lies on the sheet of Γr corresponding to the pair ij, then p(c) consists of two components on Γ, one on sheet
i and one on sheet j, with the second one oppositely oriented.) Note it has∫

p(c)
ω =

∫
c
ρ. (C.0.4)

Definition C.3 (Topological solitons). Fix z ∈ C and y, y′ ∈ π−1(z). A topological soliton from y to y′ is a 1-chain
c on Γr, such that ∂(p(c)) = y′ − y.

The projection of a topological soliton from Γr to C looks like a graph (generically trivalent), with one leaf at z
and all other leaves at branch points. Each edge of the graph carries a label ij keeping track of which sheet of Γr it
came from. The labels are constrained: there is a balancing condition at each internal vertex, and also a condition at
each branch point.

Definition C.4 (WKB solitons). Fix z ∈ C and y, y′ ∈ π−1(z) ⊂ Γ. A WKB soliton from y to y′ with phase ϑ is a
topological soliton from y to y′ made up of positively oriented paths lying in leaves of the foliation F ϑ

ρ (permitting
turns at the singularities).

Definition C.5 (Finite web). A finite web on Γ with phase ϑ is a 1-chain c on Γr, made up of positively oriented
paths in leaves of the foliation F ϑ

ρ (permitting turns at the singularities), with ∂(p(c)) = 0. The charge of the finite
web c is the class [p(c)] ∈ H1(Γ).

Proposition C.6 (Phases of periods of finite webs). If γ is the charge of a finite web with phase ϑ, then
arg(−Z(γ)) = ϑ.

7We note a notational clash: in the literature on spectral networks Γ is usually the name of the charge lattice, but in this paper, we use Γ to
denote the spectral curve.
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Definition C.7 (WKB spectral network). The WKB spectral network W(Γ, ϑ) is the set of all (y, y′) ∈ Γr such
that there exists a WKB soliton from y to y′ with phase ϑ.

Each point of W(Γ, ϑ) thus carries the additional data of the set of such WKB solitons. There is an algorithm for
computing W(Γ, ϑ) described in [22] and implemented in a Mathematica notebook included with the arXiv version
of this paper. It realizes W(Γ, ϑ) as a collection of walls in Γr. The projection of W(Γ, ϑ) to C is a collection of
walls as well, with each wall carrying a label ij keeping track of a sheet in Γr. We sometimes write this label as
i < j. This notation keeps track of two facts: first, the arrow pointing from j to i reminds us that the WKB solitons
are paths beginning on sheet j and ending on sheet i [13]; second, in the application of spectral networks to exact
WKB, we have an ODE on the surface C, and a a basis of solutions ψ(k) indexed by the sheets; then along the wall
we have ψ(i) ≪ ψ(j) as ε → 0 with arg ε = ϑ.

Path lifting

Definition C.8 (Path categories). For Y ⊂ X:

• Let Path(X,Y ) be the category of paths in X with endpoints in Y , enriched over abelian groups (so the
objects are points y ∈ Y , and Hom(y, y′) is the abelian group of formal Q-linear combinations of paths from
y to y′ in X , with composition extended linearly).

• Given a map π : Z → X , let PathZ(X,Y ) be the category of paths in Z with endpoints in π−1(Y ) (so the
objects are points y ∈ Y , and Hom(y, y′) is the abelian group of formal Q-linear combinations of paths from
any z ∈ π−1(y) to any z′ ∈ π−1(y′) in Z, with composition extended linearly, and with the composition of
paths that do not concatenate taken to be zero).

Definition C.9 (Path-lifting functors). For W ⊂ Γr, a path-lifting functor off W is a map

Lift : Path(C,C \ π(W)) → PathΓ(C,C \ π(W)) (C.0.5)

which is almost-homotopy-invariant, i.e. if P ∼ P ′ then Lift(P) ∼al Lift(P ′), where ∼al means ordinary homotopy
except that if we move a path across a branch point we multiply by −1.

Proposition C.10 (WKB path-lifting functor). There exists a path-lifting functor off W(Γ, ϑ), LiftW(Γ,ϑ), with
the following property: all terms in LiftW(Γ,ϑ)(P) are obtained by splicing paths p(c), where c is a WKB soliton
with phase ϑ, into lifts of P .

P
i < j

P(i)

i

i
i < j

γ

j

i
i < j

Figure 20: Left: a path P crossing one primary wall on C. Middle, right: paths on Γ which arise as terms in Lift(P),
as indicated in Proposition C.11 and Proposition C.12.

Proposition C.11. Suppose that there are no finite webs on Γ with phase ϑ. Then the path-lifting functor LiftW(Γ,ϑ)
in Proposition C.10 is unique, and determined by an algorithm given in [21]. It has the following additional property.
Call a wall of W(Γ, ϑ) primary if it originates from a branch point. Suppose that P is a path crossing a single
primary wall of W(Γ, ϑ). Then

LiftW(Γ,ϑ)(P) =
n∑

i=1
P(i) + γ (C.0.6)

where P(i) and γ are shown in Figure 20.
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The extra term γ in Lift(P) is sometimes referred to as a “detour” path: it travels along P to the wall, then takes
a detour along the wall to the branch point and back, then resumes along P again.

Proposition C.12. If there are finite webs on Γ with phase ϑ, then the path-lifting functor in Proposition C.10 is not
unique, but there are two canonical choices LiftW(Γ,ϑ±), again described in [21]. They have the following additional
property. Call a wall of W(Γ, ϑ) primary one-way if it originates from a branch point and ends at a singularity.
Suppose that ℘ is a path crossing only one wall, and that wall is a primary one-way wall. Then

LiftW(Γ,ϑ±)(℘) =
n∑

i=1
P(i) + γ + · · · (C.0.7)

where P(i) and γ are shown in Figure 20, and all paths µ in the · · · terms have arg(Z(γ) − Z(µ)) = ϑ.

In the situation of this paper, we will be particularly interested in the phase ϑ = 0, where we do have finite
webs, and we will use either of the path-lifting functors LiftW(Γ,ϑ±) from Proposition C.12.8 Because LiftW(Γ,ϑ±)
is compatible with composition of paths, we can use Proposition C.12 to compute LiftW(Γ,ϑ±)(P) for any P which
crosses only primary one-way walls.

Nonabelianization of local systems

Definition C.13 (Almost-local systems). Given a branched covering map π : Z → X , an almost-local system Lab

over Z is a local system over the complement of the branch locus in Z, which has monodromy −1 around each
branch point.

Definition C.14 (Nonabelianization map). Fix a path-lifting functor Lift off W . Given an almost-local system Lab

over Γ, we define a local system
L = NabLift(Lab) (C.0.8)

over C \ π(W) as follows: for an open set U , L(U) = Lab(π−1(U)); for a path P from U to U ′, the map
L(P) : L(U) → L(U ′) is

L(P) = Lab(Lift(P)) . (C.0.9)

The local system L so defined extends over C.

The case n = 2

The case n = 2 is particularly simple. In this case Γr = Γ, and the oriented foliation Fϑ of Γr descends to an
unoriented foliation of C. Then the WKB spectral network W(Γ, ϑ) is the critical graph of a quadratic differential
on C, as described in [21]. The relevant quadratic differential is given in terms of the sheets y1, y2 of Γ by

φ2 = e−iϑ(y1 − y2)2 . (C.0.10)

The zeroes of φ2 are the branch points of Γ; Γ is smooth just if all these are simple. Then the critical graph consists
of three trajectories emerging from each branch point, characterized by the condition that

∫ √
φ2 is real along each

trajectory. Finite webs occur only when there is a trajectory which runs between branch points: such a trajectory is
called a saddle connection (if the two branch points are distinct) or a closed loop (if they are the same).

8There is also a more canonical choice, which is a kind of geometric mean of LiftW(Γ,ϑ±), used e.g. in [31]. That choice has better
symmetry properties; in the WKB context, it is related to using median summation instead of lateral summation. However, nothing we do in
this paper is sensitive to whether we take LiftW(Γ,ϑ+), LiftW(Γ,ϑ−) or the geometric mean; that choice only affects the · · · terms in (C.0.7).
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The WKB conjecture

Now suppose given a family of flat GL(n)-connections ∇(ε) in bundles E(ε) over C, such that as ε → 0 the
(E(ε), ε∇(ε)) limit to a Higgs bundle (E , φ) over C. Let Γ be the spectral curve of (E , φ). Then the exact WKB
method as employed in [22, 31] predicts:

Conjecture C.15 (Exact WKB conjecture for closed paths). There is a family ∇ab,ϑ(ε) of GL(1)-connections in
bundles Eab,ϑ(ε) over Γ, flat except for monodromy −1 around branch points. If there exist no finite webs on Γ of
phase ϑ, then:

1. the local systems associated to connections (E(ε),∇(ε)) and (Eab(ε),∇ab,ϑ(ε)) are related by the nonabelian-
ization map NabLiftW(Γ,ϑ) .

2. For any cycle γ ∈ H1(Γ), the holonomy Xϑ
γ (ε) of ∇ab,ϑ(ε) obeys Xϑ

γ (ε) ∼ exp(Z(γ)/ε+ iϕγ) as ε → 0 in
the half-plane centered on arg ε = ϑ.

If there exist finite webs on Γ of phase ϑ, then we similarly define two different holonomies Xϑ±
γ (ε) using parallel

transports of ∇ab,ϑ±(ε), and either of them obeys Xϑ±
γ (ε) ∼ exp(Z(γ)/ε+ iϕγ).

Open paths

In this paper, we need a small extension of the above story to include open paths. This extension was not written
in [22, 31] (though one special case appeared in [21]), so we formulate it here. We consider the situation where
the connections ∇(ε) have an irregular singularity at a point z∗ ∈ C, such that the leading term in the expansion
of φ is regular semisimple. We take the special case where the leading term is real. (This condition is satisfied in
our example, where z∗ = ∞, and the leading term is u.) As we discussed in Section 2, there are functions Pi, Qi

and ∇(ε)-flat sections ψi in neighborhoods of anti-Stokes rays, such that exp(−Pi(z)/ε+Qi(z))ψi(z) is finite as
z → z∗ along an anti-Stokes ray. The Stokes matrices can be understood as parallel transport matrices, relative to
the bases ψi, along arcs which stay in a small neighborhood of z∗ and run from one anti-Stokes ray to another.

In this case, the spectral curve Γ is unramified around z∗. Computing asymptotics of the Stokes data around
z∗ requires consideration of open paths, with endpoints among the n preimages z∗

i , and coming into z∗
i along

anti-Stokes rays. To define their periods requires regularization, since ω has a pole at z∗
i . Thus suppose γ is an

open path from z∗
i to z∗

i′ , coming in along anti-Stokes rays. We define a regularization γreg of γ, by perturbing the
endpoints z∗

i , z∗
i′ to nearby points zi, z′

i′ on the anti-Stokes rays, and then let

Z(γ) =
∫ reg

γ
ω = lim

zi→z∗
i

lim
z′
i′ →z∗

i′

(
−P (z′

i′) + P (zi) +
∫

γreg
ω

)
. (C.0.11)

Then we have an extension of Conjecture C.15, as follows:

Definition C.16 (Extended homology). Consider the real oriented blow-up Γ̂ of Γ at the n preimages of z∗. Then Γ̂
has boundary consisting of n circles. On each of these n circles, we mark points corresponding to the anti-Stokes
rays; let L(ϑ) be the set of marked points. Then define

H(Γ, ϑ) = H1(Γ̂;L(ϑ)) . (C.0.12)

Definition C.17 (Spectral coordinates). If Γ has no finite webs of phase ϑ, the spectral coordinates of the connection
∇(ε) are the parallel transports Xϑ

γ (ε) ∈ C× of ∇ab,ϑ(ε) on paths γ ∈ H(Γ, ϑ). When γ is an open path, the
parallel transport is taken relative to the basis vectors ψi at the two ends of the path. If Γ has finite webs of phase ϑ,
then we define two different spectral coordinates Xϑ±

γ (ε) using parallel transports of ∇ab,ϑ±(ε).

Conjecture C.18 (Exact WKB conjecture for open and closed paths). The spectral coordinates Xϑ
γ (ε) obey

Xϑ
γ (ε) ∼ exp(Z(γ)/ε+ iϕγ) as ε → 0 in the half-plane centered on arg ε = ϑ.
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DT-type invariants

As we have explained, when there are finite webs with phase ϑ0, the path-lifting functor at phase ϑ0 is not unique:
there are two canonical choices LiftW(Γ,ϑ±

0 ). These two can be understood as the limits of LiftW(Γ,ϑ) as ϑ → ϑ±
0 .

The limits Xϑ±
0

γ of the spectral coordinates need not agree: in general they differ by some coordinate transformation.
This coordinate transformation is one of the most important structural aspects of the spectral coordinates. In the
generic situation, it can be written in terms of “Donaldson-Thomas-type invariants” Ω(γ), as follows:

Definition C.19 (Mutually local phase). We say ϑ0 is a mutually local phase if, whenever γ and γ′ are charges of
finite webs with phase ϑ0, we have ⟨γ, γ′⟩ = 0.

Proposition C.20 (Transformation law for spectral coordinates). When ϑ is a mutually local phase, let Bϑ be the
set of charges of finite webs with phase ϑ; then there exists Ω : Bϑ → Q such that for all µ

Xϑ+
µ = Xϑ−

µ

∏
γ∈Bϑ

(1 ±Xγ)⟨µ,γ⟩Ω(γ) . (C.0.13)

An algorithm for computing the Ω(γ) is given in [21, 31]. Two important special cases, which we encounter
in this paper: first, if there are no finite webs with charge µ then Ω(µ) = 0; second, an isolated tree with charge µ
contributes 1 to Ω(µ).

Equivalences

Path-lifting maps admit a notion of equivalence:

Definition C.21. An equivalence between path-lifting maps Lift0, Lift1 to curves Γ0, Γ1 is a family of curves
Γt and path-lifting maps Liftt, such that for every p ∈ C and pair t1, t2 ∈ [0, 1] there exists R(p, t1, t2) ∈
PathΓ(C,C \ π(W)), such that for paths P from p to p′ we have

Liftt2(P) = R(p, t1, t2) Liftt1(P)R(p′, t1, t2)−1 . (C.0.14)

If Lift and Lift′ are equivalent, the corresponding nonabelianization maps NabLift and NabLift′ are also
equivalent, in the sense that for any Lab, NabLift(Lab) and NabLift′(Lab) are equivalent local systems.

Here is one important source of equivalences:

Proposition C.22. Fix some ϑ and consider a variation Γt such that there is no finite web whose phase crosses ϑ.
Then the path-lifting maps Liftt give an equivalence between Lift0 and Lift1.

Another way to get an equivalence is to start with the spectral network W(Γ, ϑ) and modify it by certain
topological moves, which include and generalize isotopies, as described in [21] section 10.6. After these moves, we
obtain a new path-lifting map Lift′ off a “topological spectral network” W ′. Lift′ is equivalent to Lift but sometimes
more convenient.

If no walls of the spectral network move across p or p′ between t1 and t2, then R(p, t1, t2) = R(p′, t1, t2) = 1,
and so for paths P from p to p′ we have just Lift(P) = Lift′(P). We use one such equivalence in the n = 3 example
in the main text, where p and p′ are points near infinity on the anti-Stokes lines.

References

[1] A. Alekseev and I. Davydenkova, Inequalities from Poisson brackets. Indag. Math. (N.S.) 25, 846–871 (2014).
[2] A. Alekseev, A. Berenstein, B. Hoffman and Y. Li, Langlands duality and Poisson-Lie duality via cluster theory

and tropicalization, Selecta Math. (N.S.) 27 (2021), no. 4, paper no. 69.
[3] A. Alekseev, J. Lane and Y. Li, The U(n) Gelfand-Tsetlin system as a tropical limit of Ginzburg-Weinstein

diffeomorphisms, Phil. Trans. R. Soc. A 376: 20170428 (2018).

55



[4] A. Alekseev, M. Podkopaeva, A. Szenes, A symplectic proof of the Horn inequalities, Adv. Math. 318 (2017)
711-736.

[5] T. Aoki, N. Honda, T. Kawai, T. Koike, Y. Nishikawa, S. Sasaki, A. Shudo and Y. Takei, Virtual turning
points—a gift of microlocal analysis to the exact WKB analysis, in Algebraic analysis of differential equations
from microlocal analysis to exponential asymptotics, pp. 29–43. Springer, Tokyo, 2008.

[6] T. Aoki, T. Kawai, and Y. Takei, New turning points in the exact WKB analysis for higher order ordinary
differential equations, Analyse algébrique des perturbations singulieres, I, Méthodes résurgentes, Hermann, 1994,
pp. 69-84.

[7] W. Balser, Formal power series and linear systems of meromorphic ordinary differential equations, Springer-
Verlag, New York, 2000.

[8] W. Balser, W.B. Jurkat, and D.A. Lutz, Birkhoff invariants and Stokes’ multipliers for meromorphic linear
differential equations, J. Math. Anal. Appl. 71 (1979), 48-94.

[9] H. L. Berk, W. M. Nevins and K. V. Roberts, New Stokes’ line in WKB theory, J. Math. Phys., 23 (1982), pp.
988-1002.

[10] O. Biquard and P. Boalch, Wild non-abelian Hodge theory on curves, Compositio Mathematica, 140(1),
179-204 (2004).

[11] P. Boalch, Stokes matrices, Poisson Lie groups and Frobenius manifolds, Invent. Math. 146 (2001), 479–506.
no. 3, 479-506.

[12] P. Boalch, G-bundles, isomonodromy and quantum Weyl groups, Int. Math. Res. Not. (2002), no. 22, 1129–1166.
[13] P. Boalch, Topology of the Stokes phenomenon. In Proc. Sympos. Pure Math. 103.1 (2021), American Mathe-

matical Society, 55-100.
[14] T. Bridgeland, Riemann-Hilbert problems from Donaldson-Thomas theory, Invent. Math. 216 (2019), 69-124.
[15] T. Bridgeland and V. Toledano Laredo, Stability conditions and Stokes factors, Invent. Math. 187 (2012), 61-98.
[16] C. De Concini and C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), no.

3, 459–494.
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