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The conventional wisdom suggests that transports of conserved quantities in non-integrable quan-
tum many-body systems at high temperatures are diffusive. However, we discover a counterexample
of this paradigm by uncovering anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law
couplings. This model, classified as non-integrable due to its Wigner-Dyson level-spacing statistics
in the random matrix theory, exhibits a surprising superdiffusive-ballistic-superdiffusive transport
transition by varying the power-law exponent of couplings for a fixed anisotropy. Our findings are
verified by multiple observables, including the spin-spin autocorrelator, mean-square displacement,
and spin conductivity. Interestingly, we further quantify the degree of quantum chaos using the
Kullback-Leibler divergence between the entanglement entropy distributions of the model’s eigen-
states and a random state. Remarkably, an observed local maximum in the divergence near the tran-
sition boundary suggests a link between anomalous hydrodynamics and a suppression of quantum
chaos. This work offers another deep understanding of emergent anomalous transport phenomena
in a wider range of non-integrable quantum many-body systems.

I. INTRODUCTION

Recently, probing the emergent hydrodynamics with a
few conserved quantities in quantum many-body systems
has attracted wide interest in both experimental and the-
oretical communities [1–12]. In general, ballistic trans-
port is considered to mostly occur in integrable quan-
tum many-body systems despite some counterexamples.
These systems have stable quasiparticles that propagate
without scattering, leading to ballistic transport, while
the standard diffusion is expected for non-integrable sys-
tems [12]. However, recent works have revealed that both
integrable and non-integrable models can exhibit unusual
late-time transports with different mechanisms [8, 12–21].
On the experimental side, associated with the great de-
velopment of various quantum simulators, in particular
such as cold atoms in optical lattice [3, 22–26], Rydberg
atoms [27–33], superconducting processor [34] and ion
trap [1, 35–38], a broad class of transport behavior has
been observed.

Among them, the Heisenberg spin system is an impor-
tant platform to study various quantum transport be-
haviors at infinite-temperature, such as in 1D spin-1/2
chains [2, 6, 17, 19, 39], ladders [40, 41] and 2D lat-
tices [3]. The coupling range and type of spin exchange
can govern integrability and transport in quantum many-
body systems. For example, in the paradigmatic spin-
1/2 XXZ chain, the isotropic point ∆ = 1.0 exhibits
Kardar-Parisi-Zhang (KPZ) superdiffusion. Standard
diffusion recovers at ∆ > 1.0, while ballistic transport
prevails for ∆ < 1.0, as expected for integrable mod-
els [3, 6, 9, 11, 12, 17, 18, 39]. On the other hand, long-
range interactions are ubiquitous in atomic and ion trap-
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ping systems, encompassing a diverse range of types [42–
46], and many recent works have focused on the prop-
erties of these interactions in long-range models, such
as localization [47–49], bound states [50, 51], nonlocality
and entanglement [52–60], etc. Interestingly, the spin-
1/2 XY chain with power-law couplings, despite being a
non-integrable model, exhibits anomalous hydrodynam-
ics. This behavior corresponds to classical Lévy flights,
distinguishing from the traditional diffusion [1–3, 9, 61].
Traditionally, studies of spin models have investigated
the independent effects of anisotropy and long-range cou-
plings, both of which can induce anomalous transport
behaviors. However, these anomalous transports arise
from distinct mechanisms and monotonically speed up or
slow down as relevant parameters change. Hence, a key
question remains: What kind of transport will emerge
from the interplay between anisotropy and long-range
couplings? One intriguing possibility is the appearance
of non-monotonic transitions. Previous work in Ref. [20]
explored spin transport in a long-range isotropic Heisen-
berg model with disorders, finding subdiffusion. How-
ever, the effects of anisotropy and long-range couplings
were suppressed due to the dominant disorder. More im-
portantly, what signatures characterize these anomalous
hydrodynamics, in particular in non-integrable models?

To address these questions, in this paper, we uti-
lize the spin-spin autocorrelation function to directly in-
vestigate the magnetization dynamics across the entire
Hilbert space at infinite temperature. In a long-range
clean spin-1/2 XXZ model, this approach allows us to
clearly study distinct transport regimes. The paper is or-
ganized as follows. The model and observables are first
introduced in Sec. II. In Sec. III, we describe in detail
the relevant numerical methods, i.e., dynamical quantum
typicality (DQT) and time-dependent variational princi-
ple (TDVP). The numerical results based on different
observables are presented and discussed in Sec. IV.
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II. MODELS AND OBSERVABLES

We investigate the magnetization dynamics of a one-
dimensional clean and undriven spin-1/2 XXZ chain with
power-law couplings. The system is subjected to a mag-
netic field applied along z-axis [62]. Under open bound-
ary conditions, the Hamiltonian of the system can be
written as

Ĥ =
1

N

L∑
i<j

−J
|i− j|α

(
σ̂x
i σ̂

x
j + σ̂y

i σ̂
y
j +∆σ̂z

i σ̂
z
j

)
+hz

L∑
i=1

σ̂z
i ,

(1)
where σ̂µ

i , µ ∈ {x, y, z} are the standard spin-1/2 Pauli
matrice of site i. L, J , and hz denote the system size,
the coupling strength, and the magnetic field, respec-
tively. ∆ > 0 is the ferromagnetic anisotropy along
the z direction, and the parameter α determines the
strength of the long-range couplings between arbitrary
sites in the chain. Here we introduce the Kac norm
N =

∑
i<j

|i− j|−α
/(L − 1) and it rescales the Hamilto-

nian to eliminate its dependence on the system size L and
the coupling parameter α. This ensures that the energy
density has the correct scaling behavior, independent of
system size [2, 62]. The anisotropy parameter ∆ breaks
a symmetry in the rotating frame. In the isotropic case,
∆ = 1 with both U(1) and SU(2) symmetries unbroken
as well as the total σ⃗ conserved; in the presence of axial
anisotropy along z-axis, ∆ ̸= 1 with U(1) symmetry un-
broken and the total σz magnetization conserved. These
conserved quantities determine the macroscopic late-time
hydrodynamics of the quantum system. In the rest of this
paper, we always keep J = 1 which sets the time unit, as
well as magnetic field at a fixed value hz = 3 [62].

In general, the transport property can be directly mea-
sured by observing how a single spin excitation scatters
against a background at an infinite temperature [1, 2].
In detail, we initiate a spin excitation at the center of
the chain at time t = 0 by applying σ̂z

0 . Then, we
track its propagation through space and time by obtain-
ing the unequal-time correlation function at infinite tem-
perature [1], which is given by

Cj(t) =
〈
σ̂z
j (t)σ̂

z
0(0)

〉
T=∞ , (2)

where σ̂z
j (t) = eiĤtσ̂z

j e
−iĤt is the time-dependent opera-

tor in the Heisenberg picture with an initial condition of
C0(0) = 1. In particular, the autocorrelator C0(t) deter-
mines the remaining excitation at the central site and it
is expected to exhibit anomalous hydrodynamics, as il-
lustrated in Fig. 1. We will explicitly discuss our results
in Sec. IV.

In an isolated quantum many-body system, preparing
a state with infinite temperature is challenging. Accord-
ing to the canonical thermal ensemble theory at finite
temperature, the equilibrium expectation value of an ob-
servable is equivalent to the trace of the product of the
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Figure 1. (a) Dynamical exponent γ extracted from the au-
tocorrelator C0(t) as a function of ∆ and α. The numerical
results are obtained by the DQT method with L = 21. The
ballistic transport (the darkest blue) corresponds to γ ∼ 1 and
the red region denotes subdiffusion (0 < γ < 1/2), while su-
perdiffusion (1/2 < γ < 1) dominates in the light blue region.
The red dashed line (lower left) marks the boundary between
superdiffusive and subdiffusive regimes. (b) The logarithm of
Kullback-Leibler (KL) divergence between the microcanoni-
cal distribution of eigenstate EE and the Bianchi-Dona (BD)
distribution. The system size for panel (b) is L = 14 with the
half-filling condition. The red dashed curve in (a) and (b) is
the exponential function ∆ ∼ e−α+2.

density operator and the observable [63]. Thus, we have

Cj(t) =
Tr

[
e−βĤ σ̂z

j (t)σ̂
z
0(0)

]
Z

, (3)

where Z = Tr[e−βĤ ] is the canonical partition function
with the reverse temperature β = 1/T . Then, we in-
troduce the spatial variance of Cj(t), also known as the
mean-square displacement (MSD), is given by [20]

Σ2(t) =

L/2∑
j=−L/2

j2Cj(t)−

 L/2∑
j=−L/2

jCj(t)

2

, (4)

which is directly related to the time-dependent diffusion
coefficient D(t) = dΣ2/2dt. In the diffusion scenario,
Σ(t) ∝ t1/2 and D(t) converge to a constant in the long
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time limit. Apart from this, the transport is considered
as superdiffusive for Σ(t) ∝ tγ with γ ∈ (1/2, 1), ballistic
for γ = 1, and subdiffusive for γ ∈ (0, 1/2) [9, 11, 12, 17,
18, 20]. Hence, we define a time-dependent dynamical
exponent γ(t) = dlogΣ2(t)/2dlogt to extract γ. In the
thermodynamic limit, the spin autocorrelator is expected
to decay following a power law [5], expressed as

lim
t,L→∞

C0(t) ∼ t−γ . (5)

In practice, Eq. (3) can be expressed as an equally
weighted trace over any sets of complete eigenstates, e.g.
product states in the σz basis [1]. However, it is hard
to calculate the trace exactly for a large system as the
Hilbert-space dimension is N = 2L. Hence two approxi-
mate numerical methods are exploited in Sec. III.

III. NUMERICAL APPROACHES

A. Dynamical quantum typicality

The dynamical quantum typicality (DQT) indicates
that a single pure quantum state can exhibit the same
properties of an entire statistical ensemble [6, 39, 63–65].
It is also effective even in the cases beyond the eigen-
state thermalization hypothesis (ETH) [66, 67], and is a
powerful tool in general for the accurate calculation of
real-time correlation functions [6, 63, 65, 68, 69].

The main idea amounts to replacing the trace Tr{•} =∑
i⟨i| • |i⟩ in Eq. (3) by a simple scalar product ⟨ψ| • |ψ⟩.

Here, |ψ⟩ is a reference pure state, which is randomly
drawn from the Hilbert space according to the unitary
invariant Haar measure [65, 70]. Then, it allows us to
rewrite the unequal-time correlation function in Eq. (3)
as [6, 68, 69, 71]

Cj(t) =
Re

〈
ψ|e−βĤ σ̂z

j (t)σ̂
z
0(0)|ψ

〉
〈
ψ|e−βĤ |ψ

〉 + ϵ(|ψ⟩). (6)

At T → ∞, the correlation function can be written as

Cj(t) =
Re

〈
ψ(t)|σ̂z

j |ϕ(t)
〉

⟨ψ(0)|ψ(0)⟩
+ ϵ(|ψ⟩), (7)

where two auxiliary pure states are given by [72]

|ψ(t)⟩ = e−iĤt|ψ⟩,

|ϕ(t)⟩ = e−iĤtσ̂z
0 |ψ⟩.

(8)

The reference pure state |ψ⟩ is randomly drawn in Hilbert
space, as follows: [6, 73]

|ψ⟩ =
d∑

k=1

(ak + ibk) |k⟩ , (9)

where the pure state |k⟩ denotes an arbitrary basis of the
Hilbert space and the coefficients ak and bk are random
real numbers, usually drawn from a Gaussian distribu-
tion with zero means (other types of randomness are also
available) [6]. Note that the distribution is invariant re-
gardless of any transformations within the Hilbert space.
Thus, |ψ⟩ is a good representative of a thermal statistical
ensemble and nearly maximally entangled [63, 70, 74].
In Eq. (7), the first term is an approximation of Cj(t),

and the second one ϵ(|ψ⟩) is the error which is natu-
rally random because of the random choice of typical
state |ψ⟩ [6]. This random error could be eliminated
by taking samples over multiple |ψ⟩ [6]. Notably, the
standard deviation of the statistical error ϵ = ϵ(|ψ⟩) has
an upper bound and scales as σ(ϵ) ∝ 1/

√
deff , where

deff = Tr[exp(−β(H −E0))] is the effective dimension of
the Hilbert space with E0 being the ground-state energy
of H [6, 70, 75, 76]. Also, deff is the number of thermally
occupied states and deff = d for β = 0 [63]. Therefore,
the error ϵ exponentially decays with the increase of the
system size L. Remarkably, for our case β → 0, DQT is
a good approximation [6, 63].
In this way, the trace operation in Eq. (3) is completely

transformed into the time evolution of two auxiliary pure
states |ψ⟩ and σ̂z

0 |ψ⟩. The full evolution can be subdi-
vided into a product of consecutive steps as [63]

|ψ(t)⟩ =
(
e−iĤδt

)N

|ψ⟩, (10)

where each step can be evaluated utilizing a Taylor ex-

pansion of the exponential e−iĤδt for sufficiently small δt
instead of diagonalization. In this paper, we take DQT as
a benchmark approach by using an open-source Python
package QuSpin [77]. Note that we always consider the
entire Hilbert space without any restriction in the context
of the DQT method. The number of typical states used
in DQT are 5, 2, 1, 1 for system sizes L = 17, 19, 21, 23,
respectively.

B. Time-dependent variational principle

In addition to the DQT approach, the transport
properties can also be investigated utilizing the time-
dependent variational principle in the manifold of ma-
trix product states (TDVP-MPS) [19, 20, 78–80]. The
matrix product state method allows us to deal with large
spin systems, far beyond the state-of-the-art limit of the
exact diagonalization (ED) techniques [81]. Moreover, a
few macroscopic quantities in the spin chains are explic-
itly conserved in this method, including the total energy,
total magnetization, and total number of particles. For
sufficiently large bond dimensions, the method is numer-
ically exact with limitations arising from the growth of
entanglement entropy with time, which requires numeri-
cal efforts exponentially [82]. Recent studies have shown
that it is possible to handle the time evolution problem of
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Figure 2. (a) The profile of unequal-time correlation func-
tion at early time t = 0.1 for different α values is well fitted by
power-law decay curves j−2α (dashed lines) predicted by the
perturbation theory. (b) Short-time dynamics of the auto-
correlator for different α values which are fitted by quadratic
curves t2 (dashed lines). The numerical results are obtained
by the TDVP simulation with a system size of L = 27.

long-range systems using TDVP applied to the manifold
of MPS [19, 20].

A tensor of order N with finite dimension can be ex-
pressed as the product of N matrices, and this represen-
tation is essentially a decomposition of tensors. Equiva-
lently, a many-body wave function in Hilbert space

|Ψ⟩ =
d∑

{in}=1

Ci1,i2,··· ,iN |i1i2 · · · iN ⟩ (11)

can be written as a matrix product state

|Ψ[A]⟩ =
d∑

{in}=1

Ai1(1)Ai2(2) · · ·AiN (N)|i1i2 · · · iN ⟩,

(12)
where d denotes the local Hilbert space dimension at
each site in (e.g., d = 2 in spin-1/2 case), Ain(n) is a
complex matrix with a dimension of Dn−1 ×Dn and the
equivalence of Eq. (11) and Eq. (12) naturally leads to
D0 = DL = 1. As the Hilbert space dimension grows ex-
ponentially with system size, the dimension (also known
as bond dimension) of the matrices Ain(n) also increases
exponentially. However, for many-body wave functions
with low entanglement, we can achieve a good approxi-
mation using a series of matrices with small dimensions.
This is done by truncating the dimension to a fixed size
feasible for computation. This approximation is consid-
ered accurate when it converges as we increase this trun-
cated dimension [20].

Since the typical pure state |ψ⟩ is nearly maximally
entangled, it cannot efficiently be represented as an MPS.
Instead, we approximate the trace in Eq. (3) as

Cj(t) ≈
1

Ns

Ns∑
i=1

⟨i|σ̂z
j (t)σ̂

z
0(0)|i⟩. (13)

To obtain an unbiased average of Cj(t), we sample the
product states |i⟩ based on σz from a probability distri-
bution where each configuration has an equal probability
of being chosen [1]. In practice, it suffices to sample a
reasonable number Ns ≈ 10 − 100 of product states to
evaluate Eq. (3). To further reduce the statistical noise
and improve the convergence of Eq. (13), the conjugate
configuration is prepared for each random state, in which
all spins except the central one are flipped [1].
The main idea of TDVP is to project the time evo-

lution onto the manifold M of the variational wave
function (precisely MPS). This is equivalent to solv-
ing the Shrödinger equation projected onto the tangent
space [20, 80]

i
d|Ψ[A]⟩
dt

= PMĤ|Ψ[A]⟩, (14)

where PM stands for a projector to the tangent spaceMχ

with fixed bond dimension χ. Since power-law couplings
can not be exactly described using the MPS method, we
approximate the Hamiltonian by a sum of exponential
terms as [62]

1

|i− j|α
=

Ne∑
n

fne
−λn|i−j|, (15)

which can be represented efficiently as a matrix product
operator (MPO). By default, we approximate power-law
couplings using a sum ofNe exponential functions. These
functions are fitted within a range of L−1 sites to ensure
the resulting approximated couplings deviate from the
exact values by less than 2% for any pair of sites [20].
We use max bond dimension χmax = 512 (we check its

convergence in Appendix A), sampling number Ns = 40,
and time step δt = 0.01 as typical parameters in TDVP
calculations. Equation (13) is evaluated completely using
the TDVP algorithm with the total magnetization con-
served in the open-source library TenPy [83]. In detail,
we use a hybrid variation of the TDVP scheme [84, 85],
where we first use a two-site version of TDVP to dynam-
ically grow the bond dimension to its maximum χmax

and then shift to the one-site version to avoid any errors
due to truncation in singular values that appears in the
two-site version [86].

IV. RESULTS AND DISCUSSIONS

A. Perturbative short-time dynamics

At infinite temperature, i.e. β = 0, the trace in Eq. (3)
can be expanded up to the second-order of t at short
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Figure 3. The autocorrelator C0(t) at ∆ = 1.0 (a-d) and 0.5 (e-h) for different α values in the log-log scale. The system sizes
are all L = 21 by using the DQT method. The red dashed lines denote the fitting function in Eq. (21).

times. In the Heisenberg picture, we have the expansion
of σz

j (t) as

σ̂z
j (t) = eiĤtσ̂z

j e
−iĤt

= σ̂z
j + it

[
Ĥ, σ̂z

j

]
+

(it)2

2!

[
Ĥ,

[
Ĥ, σ̂z

j

]]
+O(t3).

(16)

After evaluating the commutator, the second term in
Eq. (16) reads

[Ĥ, σ̂z
j ] = −i

∑
i̸=j

Jij(σ̂
x
i σ̂

y
j − σ̂y

i σ̂
x
j ), (17)

which is ∆-independent and acts as the spin-current op-
erator. The third term of Eq. (16) has the following com-
plicated form:[

Ĥ,
[
Ĥ, σ̂z

j

]]
=

∑
i ̸=j

∑
k ̸=j

JijJkj(σ̂
x
k σ̂

x
i σ̂

z
j + σ̂y

k σ̂
y
i σ̂

z
j )

−
∑
i ̸=k

∑
k ̸=j

JikJkj(σ̂
x
i σ̂

x
j σ̂

z
k + σ̂y

i σ̂
y
j σ̂

z
k)

−
∑
i<j

∑
k ̸=j

JijJkj∆(σ̂z
i σ̂

x
k σ̂

x
j + σ̂z

i σ̂
y
k σ̂

y
j )

+
∑
i<k

∑
k ̸=j

JikJkj∆(σ̂z
i σ̂

y
k σ̂

y
j + σ̂z

i σ̂
x
k σ̂

x
j )

−
∑
j<i

∑
k ̸=j

JjiJkj∆(σ̂x
k σ̂

x
j σ̂

z
i + σ̂y

k σ̂
y
j σ̂

z
i )

+
∑
k<i

∑
k ̸=j

JkiJkj∆(σ̂y
k σ̂

y
j σ̂

z
i + σ̂x

k σ̂
x
j σ̂

z
i ),

(18)

which explicitly depends on ∆. Furthermore, consider-

ing Tr[σ̂z
i σ̂

z
j ] = δij and Tr[· · · σ̂x(y)

i σ̂
x(y)
j · · · ]|i̸=j = 0, the

unequal-time correlation function reads

Cj(t) ≈


1− t2

∑
i ̸=j

J2
ij for j = 0,

t2J2
j0 for j ̸= 0.

(19)

where Jij = −NJ/|i− j|α denotes the rescaled hopping
strength.

The second-order perturbation theory yields a ∆-
independent result. Remarkably, the autocorrelator ex-
hibits quadratic decay early while the spatial correlation
function at a fixed time inherits the algebraic decay at
lattice distance j, falling off as j−2α. The short-time dy-
namics of the correlation function at ∆ = 1.0 for different
α are shown in Fig. 2, where the spatially algebraic de-
cay Fig. 2(a) and temporally quadratic decay Fig. 2(b) of
the correlation function are both well captured by fitting
lines.

B. Late-time hydrodynamics from autocorrelator

Beyond the perturbation theory, we now focus on the
emergence of late-time hydrodynamic tails, falling off
as t−γ . Expanding the trace in the energy eigenbasis
Ĥ|n⟩ = En|n⟩, we have

Cj(t) =
∑
n,m

⟨n|σ̂z
j |m⟩⟨m|σ̂z

0 |n⟩e−i(En−Em)t. (20)

The autocorrelator C0(t) consists of a superposition of
cos [(En − Em)t]. The weight of each cosine function is
determined by the matrix elements of σ̂z in the energy
basis. Such a form is reminiscent of the spectral form
factor defined by K(t) =

∑
n,m e−i(En−Em)t. One may

expect that C0(t) exhibits oscillations early, as seen in
other spin models [18].
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The autocorrelator C0(t) at ∆ = 1.0 and 0.5 for differ-
ent α are demonstrated in Fig. 3. Early, typically Jt < 1,
the autocorrelator presents rapid decay so that it reaches
a local equilibrium. Afterward, the autocorrelator sud-
denly increases and exhibits slow hydrodynamic trans-
port constrained by the conserved magnetization at an
intermediate time. Eventually, the system enters a global
equilibrium. More evidence of these multiple stages can
also be found in the inset of Fig. 8 (see in Appendix B).

As expected, the power-law decay exists but is hin-
dered by oscillations at late time (t > 1). This is sim-
ilar to the imbalance dynamics in the presence of dis-
order. To extract the dynamical exponent γ, we find a
proper fitting function to capture the relaxation at late
time (t > 1) [87]

C0(t) = ae−t/τcos(βt+ ϕ) + bt−γ [1 + ct−ηsin(ωt+ ϕ)].
(21)

The second term has a primary contribution and it con-
sists of a primary algebraic tail t−γ and damped oscil-
lation with specific frequency ω. For ∆ = 1.0, as α
increases from 1.5 up to 3.0, we find that the dynam-
ical exponent firstly increases until it reaches its max-
imum value of γ ≃ 1 at α = 2.0, and then it dra-
matically decreases (see Fig. 3(a-d)). Since γ is always
higher than 1/2, this non-monotonic behavior of γ could
be considered as a superdiffusive-ballistic-superdiffusive
transition. Similar non-monotonic behavior also exists at
∆ = 0.5 as shown in Fig. 3(e-h). What differs is that bal-
listic transport occurs at α = 2.75 for ∆ = 0.5, indicating
that this transition boundary is highly related to both ∆
and α. Also, we notice that subdiffusion (γ < 1/2) ap-
pears at α = 1.5.

Then, based on the fitting from Eq. (21), we have
the phase diagram of transport properties, i.e. the dy-
namical exponent γ as a function of ∆ and α as shown
in Fig. 1(a). There are three kinds of phase: subdif-
fusion (γ < 1/2), superdiffusion (1/2 < γ < 1) and
ballistic transport (γ ≃ 1). Remarkably, an anomalous
superdiffusive-ballistic-superdiffusive transition generally
exists at an arbitrary anisotropy ∆. We find the peak
value of such transitions can be greatly captured by an
exponential fitting curve ∆ ∼ e−α+2 (red dashed curve).
This anomalous hydrodynamics strongly violates the ex-
pected diffusion in a non-integrable system, which is one
of the highlights of our work.

Intuitively, such a non-monotonic behavior of γ is in-
duced by anisotropy ∆ against long-range exponent α. It
has been shown that strong anisotropy acts as an attrac-
tive potential to bound two spins with parallel polariza-
tion in ferromagnetic phase (∆ > 0), leading to bound
states at large ∆ [51, 88]. Thus, the anisotropy can slow
down the spreading of spins. On the contrary, long-range
couplings tend to rapidly relax spins away from initial
excitation. Then ballistic transport emerges when the
effects of them are balanced. Since ballistic transport
generally exists in integrable systems, our model at the
transition point might be linked to some integrable mod-
els. In particular, we note that at ∆ = 1.0 and α = 2.0,
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0 5 10
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17
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31

Figure 4. Diffusion coefficient D(t) for α = 3.0 (a), 2.5 (b),
2.0 (c), 1.5 (d) with different system sizes. Dynamical ex-
ponent γ(t) for α = 3.0 (e), 2.5 (f), 2.0 (g), 1.5 (h) with
different system sizes. We utilize the DQT method for L =
17, 19, 21, 23 and the TDVP technique for L = 25, 27, 29, 31.

Eq. (1) in the thermodynamic limit corresponds to the
well-known Haldane-Shastry integrable model [89, 90].

C. Emergent region against quantum chaos

Typically, a quantum integrable system possesses an
extensive set of conserved quantities, which prevent the
system from quantum chaos and its information loss.
These conserved quantities represent observables whose
expectation values remain constant as the system evolves.
As shown in the following section, the spin current op-
erator Ĵ exhibits near-constant behavior during ballistic
transport, indicating a corresponding conservation law
in the Hamiltonian. Utilizing the random matrix theory
(RMT), we find that the energy level-spacing statistics of
our Hamiltonian in the same parameter space (∆, α) in
Fig. 1(a) mostly obey the Wigner-Dyson (WD) distribu-
tion with a ratio ⟨r⟩ ≈ 0.53 (see in Fig. 10(b) and (d)).
This indicates that this long-range spin system is non-
integrable, contradicting our previous understanding.
To further quantify the quantum chaos beyond the

RMT, we investigate the microcanonical distributions of
eigenstate entanglement entropy (EE) by following re-
cent Ref. [91]. For a chosen eigenstate |ψ⟩, the von Neu-
mann entanglement entropy of a subsystem A is defined
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as SA = −Tr[ρAlogρA] with the reduced density matrix
ρA = TrB [|ψ⟩⟨ψ|]. For a Hamiltonian system, the central
idea amounts to comparing the subsystem’s EE distribu-
tion PE(SA) of eigenstates at the mid spectrum to the
reference distribution of a pure random state, i.e., the
Bianchi-Dona (BD) distribution PBD(SA). The distance
between distributions is characterized by the Kullback-
Leibler (KL) divergence DKL. If we assume that PE(SA)
and PBD(SA) are Gaussian distributions, the KL diver-
gence is given by

DKL =
(µE − µBD)

2

2σ2
BD

+
1

2

[(
σE
σBD

)2

− 1

]
− log

σE
σBD

,

(22)
where µ and σ are the mean value and the standard de-
viation of EE distribution P (SA), respectively.
Then, we choose the typical system sizes as L = 12 and

14 with the subsystem size LA = L/2 in the half-filling
sector

∑
i σ̂

z
i = 0. For L = 12, the mean and standard

deviation of the BD distribution is µBD ≈ 3.5745 and
σBD ≈ 0.0199, respectively. For L = 14, µBD ≈ 4.2652
and σBD ≈ 0.0103 [91]. We select 100 eigenstates (L =
12) and 300 eigenstates (L = 14), lying in a small en-
ergy window whose density of states (DOS) is the largest
to compute the half-chain EE and the corresponding µE

and σE. To further remove the fluctuations from sam-
pling eigenstates, we add a weak disorder hi

∑
i σ̂

z
i to

Eq. (1) with hi randomly drawn from [−0.1J, 0.1J ]. The
EE distribution is averaged over 100 disorder realizations
for both L = 12 and 14, respectively. The divergence
DKL as a function of (∆, α) is plotted in Fig. 1(b). Since
our model at α → ∞ reduces to the integrable Heisen-
berg model, the divergence increases monotonically with
increasing α. Surprisingly, for different values of ∆, a
narrow region consistently emerges (shown in dark pur-
ple) where DKL reaches a local maximum after resuming
its monotonic rise (see also in Appendix C). These unex-
pected local maxima defy the typical behavior associated
with quantum chaos, even though the model is considered
ergodic. Remarkably, the points (∆, α) at which these
maxima occur can all be described by the same exponen-
tial curve ∆ ≃ e−α+2 (red dashed curve) in Fig. 1(a).
This suggests that our model exhibits an emergent prop-
erty that resists quantum chaos at specific points (∆, α)
around this exponential fitting curve. This finding aligns
with the anomalous ballistic transport in Fig. 1(a), which
is the other highlight of our work.

D. Broadening of spin excitation

To further confirm this anomalous phenomenon, we
now investigate the mean-square displacement (MSD).
This quantity reflects the spread of spin excitation over
space and time. Here, we focus on the isotropic case
∆ = 1.0 to quantitatively investigate the non-monotonic
behavior of γ with varying α. We can extract the dif-
fusion coefficient D(t) ∝ t2γ−1 and dynamical exponent

1.5 2.0 2.5 3.0
0.5

1.0

DQT, L = 17
DQT, L = 19
DQT, L = 21
DQT, L = 23

TDVP, L = 25
TDVP, L = 27
TDVP, L = 29
TDVP, L = 31

Figure 5. Dynamical exponent γ as a function of α for
different system sizes. Dynamical exponent γ is obtained by
averaging γ(t) over the time window of Jt ∈ [3, 5]. The error
bars denote the standard deviation of γ. The dashed line
denotes the ballistic transport (γ = 1).

γ(t) from Eq. (4). Diffusion coefficients for different val-
ues of α with different system sizes are shown in Fig. 4(a-
d). Note that the results of DQT and TDVP methods
agree with each other for all α in Fig. 4(a-d). Increas-
ing the system size does not halt the growth of D(t)
for all the considered values of α. This excludes diffu-
sive transport since a diffusion process would exhibit a
size-independent plateau (constant D(t)) at large system
sizes. Moreover, we find that D(t) grows rapidly and
nearly linearly at α = 2.0, then slows down at α = 1.5.
This non-monotonic behavior of D(t) reflects the transi-
tion again from superdiffusive to ballistic and then back
to superdiffusive transport.
In Fig. 4(e-h), we extract the time-dependent dynam-

ical exponents γ(t) for various values of α and system
sizes. This allows us to quantitatively distinguish be-
tween different transports. In the ideal scenario, γ(t)
would converge at a finite value as time approaches in-
finity lim

t→∞
γ(t) ≈ γ. For a finite system, the plateau in

γ(t) is short-lived. However, as the system size increases,
γ(t) gradually converges to a stable curve for all the con-
sidered values of α. We also find that the dynamical
exponent in Fig. 4(e-h) is always larger than 1/2, indi-
cating the absence of diffusion. Remarkably, γ(t) is quite
close to 1 at α = 2.0 where we believe ballistic trans-
port occurs. The ballistic transport at α = 2.0 is further
verified by the spatial correlation function in Fig. 9 (see
in Appendix B). Interestingly, the density profile at the
central part of the chain is different from the Gaussian
fitting curves (dash curves in Fig. 9). This indicates
that the transport mechanism is beyond the diffusion.
The values of γ(t) for other α are smaller than 1 and
this implies a non-monotonic change in transport behav-
ior. Figure 5 summarizes the dynamical exponent γ as
a function of some typical values of α for different sys-
tem sizes. The stable dynamical exponents, represented
by γ are obtained by averaging over the stable plateaus
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Figure 6. The spin conductivity |Tσ(ω)| at ∆ = 1.0 for
different α values and different system sizes.

in Fig. 4(e-h). As expected, the non-monotonic behav-
ior of γ persists for various system sizes, with ballistic
transport occurring around α = 2.0.

E. Understanding from the Kubo formula

Linear response theory provides a universal framework
for understanding a system’s response to an external
force treated as a perturbation. It allows us to un-
derstand this superdiffusive-ballistic-superdiffusive tran-
sition in the frequency domain. Thus, the transport
behavior can be characterized by the spin conductivity
σ(ω), which reads [11, 12]

Tσ(ω) =
1

L

∫ ∞

0

dt
〈
Ĵ(t)Ĵ(0)

〉
eiωt, (23)

where the current operator Ĵ =
∑

l Ĵl is defined by the

lattice continuity equation ∂tσ̂
z
l = i[Ĥ, σ̂z

l ] = Ĵl−1 − Ĵl.
Note that Tσ(ω) has a finite value since σ(ω) → 0 at infi-
nite temperature limit T → ∞, implying that the system
does not respond to any perturbations. Its continuous
form leads to a generalized relation as [92, 93]

1

2

d2

dt2
Σ2(t) =

1

L

〈
Ĵ(t)Ĵ(0)

〉
. (24)

Then, substituting Eq. (24) into Eq. (23) and taking
Σ2(t) ∼ t2γ , we have

Tσ′(ω) ∼ ω1−2γ , (25)

where σ′(ω) is the real part of σ(ω). This means that
the static response diverges when transports are ballis-
tic or superdiffusive (i.e. 1/2 < γ ≤ 1). Then we can
decompose σ′(ω) into a singular and a regular part [11]

Tσ′(ω) = TDDrudeδ(ω) + Tσreg(ω) (26)

where the DDrude is the so-called Drude weight. Since
Drude weight trivially vanishes at T → ∞, one can ex-
pect TDDrude to be finite. Referring back to Eq. (23),
this result signifies that the injected currents do not com-
pletely decay, i.e., ballistic transport in an ideal conduc-
tor. Notably, for systems with a finite local Hilbert space,
the singularity in the conductivity cannot be stronger
than ω−1 [11]. Consequently, a non-zero Drude conduc-
tivity (TDDrude ̸= 0) only occurs when the ballistic trans-
port is present (i.e. γ = 1). In this case, this ω−1 term
is included in the δ-function of the Kubo formula, while
weaker singularities are retained in the part of σreg(ω).
Here we focus on the divergence of |Tσ(ω = 0)| in-

stead of giving the exact value of TDDrude. We show the
absolute value of conductivity for typical α values and
different system sizes in Fig. 6, where Tσ(ω) is obtained
from the Fourier transform of Eq. (24). As expected, all
conductivities become increasingly peaked around ω = 0,
indicating that γ > 1/2. Moreover, as α increases, the
peak becomes higher and it reaches a maximum value at
α = 2.0 followed by a decrease. This non-monotonic
behavior generally exists independent of system sizes.
Tσ(0) at α = 2.0 has the largest singularity, indicating
the existence of ballistic transport, and agrees with the
MSD analysis above. One can also find that, for γ = 1,
the current-current correlator ⟨Ĵ(t)Ĵ(0)⟩ is a constant,

implying that the current operator Ĵ commutes with the
Hamiltonian. This is manifested on the emergent local
maximum of DKL.

V. CONCLUSION

In summary, we have employed both DQT and TDVP
approaches to numerically study the unequal-time spin-
spin correlations at infinite temperature in a long-range
spin-1/2 XXZ model. By varying the long-range ex-
ponent α, we find an anomalous superdiffusive-ballistic-
superdiffusive transition for all anisotropy values in ∆ ∈
(0, 1.5]. This phenomenon is also supported by the static
spin conductivity Tσ(ω = 0), which exhibits the largest
singularity in the presence of ballistic transport. More-
over, the boundary of this transition can be well fitted
by an exponential curve ∆ ≃ e−α+2. This transition
is caused by the interplay between anisotropy and long-
range couplings. We further investigate the Kullback-
Leibler divergence between the entanglement entropy’s
microcanonical distribution of eigenstates and that of a
purely random state. This analysis suggests that the er-
godic long-range XXZ model exhibits resistance to quan-
tum chaos at the transition boundary. Interestingly, sim-
ilar signatures could be present in anomalous hydrody-
namic behaviors in other non-integrable quantum many-
body systems. Since these transports occur at high tem-
peratures, it would be useful to study the classical de-
scription of spin density relaxation in the long-range XXZ
model. However, understanding the mechanism behind
this ballistic transport and its connection to the emergent
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resistance to quantum chaos in non-integrable quantum
systems remains an open question.

We study the magnetization dynamics above in a re-
stricted range of anisotropy ∆ and long-range exponent
α. By expanding these parameter ranges, the system
can exhibit various types of transport behavior for spin
relaxation, including subdiffusive, diffusive, superdiffu-
sive, and ballistic. We expect there to be optimal points
where standard diffusion and KPZ superdiffusion become
dominant. While preparing this manuscript, we discov-
ered an independent study by M. Mierzejewski et al. [94].
Their work suggests the presence of quasi-ballistic trans-
port in a similar model. However, their approach us-
ing a single domain-wall state makes it hard to capture
the full picture of infinite-temperature spin transport.
In addition, their conductivity analysis is limited to the
specific case where the total magnetization is zero, i.e.∑

i Ŝ
z
i = 0. On the contrary, our work focuses on the

infinite-temperature limit, involving the entire Hilbert
space. This approach also allows us to measure the auto-
correlator by averaging over product states, which aligns
with how hydrodynamics are observed in experiments.
Although recent work has utilized quantum circuits to
directly measure the infinite-temperature autocorrelator
without needing to sample product states [34], our study
offers the advantage of being readily adaptable to fi-
nite temperature regimes, where spin relaxation might
be slower.
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Appendix A: Convergence of TDVP results with
bond dimension and random state samples

Here we briefly show that the dynamical exponent γ(t)
obtained by the TDVP method is converged with bond
dimension and samples. We focus on the isotropic case
∆ = 1.0. As shown in Fig. 7(a), despite different α, γ(t)
are all converged for a long time (Jt ≈ 8) with increas-
ing bond dimension. The flat part of γ(t) is reliable for
extracting a stable dynamical exponent γ. Besides, bal-
listic transport is expected to occur at α = 2.0, hence
we try different sampling numbers of random states to
check the result. With fixed χ and increasing samples up
to N = 100 in Fig. 7(b), γ(t) perfectly converges. We
have checked that γ(t) for other α is also converged with
sampling numbers, and Ns = 40 is enough for TDVP
calculation.
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Figure 7. (a) Time-dependent dynamical exponent γ(t)
for different α values and bond dimensions χ. The number
of random state samples is Ns = 40. (b) Time-dependent
dynamical exponent γ(t) at α = 2.0 for different samples
N = 20, 40, 60, 80, 100, respectively. The bond dimension is
χ = 512 and the system size in both (a) and (b) is L = 31 for
TDVP simulations.
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Figure 8. Autocorrelators C0(t) for α = 2.0 and ∆ = 1.0
with system sizes L = 17, 19, 21, 23 (DQT), 31 (TDVP) in the
log-log scale. The lightsteelbule dashed line indicates ballistic
transport ∝ t−1. The inset shows the same quantities but on
a linear scale.

Appendix B: Comparison of DQT and TDVP results

To verify the accuracy of the TDVP method, we briefly
compare the autocorrelator and broadening of spin den-
sity obtained from DQT and TDVP methods. Figure 8
shows the autocorrelators with different system sizes at
α = 2.0 and ∆ = 1.0 where ballistic transport is present.
One finds that as the system size increases, different au-
tocorrelators gradually converge to a stable curve. This
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curve roughly matches the ballistic decay. Besides, ben-
efiting from the large system size, the TDVP method ef-
ficiently improves the boundary effect (see Fig. 9(b-d)).
The density profiles obtained from the two methods are
also in good agreement at the intermediate time scale.

Appendix C: Level statistics and the KL divergence

By using exact diagonalization, we compute the con-
secutive energy gaps δk = Ek+1 − Ek of the Hamil-
tonian. The level statistics are characterized by their
ratio rk = min(δk+1, δk)/max(δk+1, δk). The averaged
value ⟨r⟩ allows one to distinguish between the Poisson

and Wigner-Dyson level statistics. The ergodic phase
is known to follow the Wigner-Dyson distribution with
⟨r⟩ ≈ 0.53. In Fig. 10(b) and (d), we illustrate the ratios
⟨r⟩ for all (∆, α) considered here, which is mostly fluctu-
ated around 0.53, indicating that the system is ergodic.
The Kullback-Leibler (KL) divergence between distri-

butions PE(SA) and PBD(SA) is defined as

DKL(PE, PBD) =

∫
dSAPE(SA)log

PE(SA)

PBD(SA)
. (C1)

The local maximum of DKL for different ∆ is shown in
Fig. 10(a) and (c). One finds that the emergent local
maximums are robust with increasing system size.
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