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A (¢,,$)-POINCARE INEQUALITY ON JOHN DOMAIN
SHANGYING FENG AND TIAN LIANG

ABsTrACT. Given a bounded domain Q C R" with n > 2, let ¢ is a Young function satisfying the
doubling condition with the constant K, < 2". If Q is a John domain, we show that Q supports a
(¢n, ¢)-Poincaré inequality. Conversely, assume additionally that Q is simply connected domain when
n = 2 or a bounded domain which is quasiconformally equivalent to some uniform domain when n > 3.
If Q supports a (¢,, ¢)-Poincaré inequality, we show that it is a John domain.

1. INTRODUCTION

Let Q be a bounded domain in R” with n > 2. Assume ¢ is a Young function in [0, c0), that is,
¢ € C[0, ) is convex and satisfies ¢(0) = 0,¢(r) > O for ¢+ > 0 and lim,_,., ¢(#) = oo. Recall the
Orlicz space L?(Q) as the collection of all measurable functions u in Q with the semi-norm

lletl| oy = inf{/l >0: f(ﬁ('u(x)l)dx < 1} < 0.
Q A

The classical Orlicz-Sobolev space W'?(Q) consists of all measurable functions u € L?(Q) and
Vu € L?(Q), whose norm is

lllwro) = llullo) + VUl

Sometimes we consider the homogeneous Orlicz-Sobolev space W'¢(Q) with its norm ullwroq) =
IVull ¢, Whose sharp embedding has been solved in [[11](see also for an alternate formulation
of the solution). The detailed description is as follows.

Theorem 1.1. Let Q is an open bounded domain in R" with finite measure and ¢ is a Young function
satisfying

PR
1 — d 00.
= fo (¢<r)) i

Define ¢, := ¢ o H!, where

1

f T =1
2 H(t) = — d
@ “ [fo (¢<r)) !

Then W'*(Q) C L(Q), that is, for any u € W'*(Q), one has u € L(Q) with ||lullzs @) < Cllully1sqy
where C is a constant independent of u.

n

Vi>0.

We are interested in bounded domains which supports the imbedding W'4(Q) c L#(Q) or (¢,, ¢)-
Poincaré inequality, that is, there exists a constant C > 1 such that

3) e — uallzen @y < Cllullyiroq),
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where uq = JC U = |_£12| fg udx denotes the average of u in the set of Q with [Q| > 0.

The primary goal of this paper is to effectively characterizes supports the imbedding W'4(Q) c
L?(Q) via John domains under certain doubling assumption in ¢; see Theorem 1.2 below. Recall
that a bounded domain Q c R” is called as a c-John domain with respect to some x, € Q for some
¢ > 0 if for any x € Q, there is a rectifiable curve y : [0, T] — € parameterized by arc-length such
that y(0) = x, ¥(T) = xo and d(y(¢), QC) > ct for all r > 0. We could refer to [6] 9,
and references therein for more study about c-John domains. Moreover, a Young function ¢ has the
doubling property (¢ € A,) if

6(21)
4 K, =
“) 6= S

It is well known that if a Young function ¢ € A, with K, < 2", then ¢ satisfies (1)), see Lemma[2.2]

< 00

Theorem 1.2. Let ¢ be a Young function and ¢ € A, with K, < 2" in @).

(1) If Q c R" is a c-John domain, then Q supports the (¢, ¢)-Poincaré inequality () with the
constant C depending on n, ¢ and K.

(i1) Assume that Q@ C R" is a bounded simply connected planar domain, or a bounded domain
which is a quasiconformally equivalent to some uniform domain when n > 3. If Q supports
the (¢,, ¢)- Poincaré inequality, then Q is a c-John domain, where the constant ¢ depend on
n,C, K, and Q.

Remark 1.1. (i) Putting ¢(r) = ” for some p € [1,n), we know L/(Q) = LP(Q) and ¢,(t) = Ct%,
namely, (¢,, ¢)-Poincaré inequality (3) equals to Sobolev W!”-imbedding or (%, p)-Poincaré in-
equality: for any u € W'P(Q), there exists a constant C > 0 such that

®) llu = ugllLwo-mey < Cllullir ),

where the constant C depends on n, p and c. Noted that c-John domain € supports (%, p)-Poincaré
inequality, details see Reshetnyak and Martio for 1 < p < n and Borjarski [3] (and also
Hajlasz [24]]) for p = 1. On the other hand, additionally assume that Q is a bounded simply connected
planar domain or a domain that is quasiconformally equaivalently to some uniform domain when
n > 3, Buckley and Koskela [[7]] proved that if (3) holds, then Q is a c-John domain.

The paper is organized as follows. The proof of Theorem [L.2(i) is proven in Section 2 using
Boman’s chain property, the embedding W'¢(Q) c L?(Q) for cube Q and the vector-valued inequal-
ity in Orlicz norms for the Hardy-Littlewood maximum operators. Section 2 also contains some
property of the doubling Young function. Conversely, together with the aid of some ideas from
25134, 1401 41]], we obtain the LLC(2) property of Q, and then prove Theorem [L.2(ii) by a capacity
argument; see Section 3 for details.

2. Proor or THEOREM 1.2(1)

First we give the embedding C2(Q) ¢ W'4(Q), which means that W'¢(Q) contains basic func-
tions. In some terms, W¢(Q) is useful.

Lemma 2.1. Let ¢ be a Young function. For any bounded domain Q C R", we have C>(Q2) € W*(Q).
Proof. Write L := ||Dul|;~q) and choose suppu C W C Q such that [Vu(x)| = 0 for x € Q\W.
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For any u € C!(Q), we know

H::fgqﬁ(lwil(x)')dxsfw¢(%)dx:¢(%)|Wl.

IfAi=(L+1) (¢‘1 (|1W|))_1’ we have H < 1. Hence u € W'¢(Q). Moreover, C¥(Q) c CL(Q), we get

the desired result. O

Now we give some lemmas of Young function ¢ with the doubling property.
Lemma 2.2. Let ¢ € A, be a Young function satisfying K, < 2", then ¢ satisfy (D).
Proof. Since ¢ € A, with ¢(21) < K,¢(t), we have

Lo\ S(oop \mT S(oor \m
— | dr=2 dr>?2 dr,
.£(¢hJ ! »ﬂ(¢aﬂ) i J;(KWWJ i

that is,
1 Ll Kﬁ 1 Ll
2 n— n—
f(i) dr < -2 f(i) dr.
« \ (1) 2#1 Js \p(7)
Therefore,
. i K el L Peh L 1
m—1 n— m—2 n— n—
fz (L) dr < =2 fz (L) dr <| =2 f(i) dr.
o 9@ 27 J o e 27| Ji e

m=1\ 2T

m—1
nld ’lld
fka) = ml[b} f}¢> = f}

On the other hand, because W is decreasing, we know

1 \m—1
Kﬁ
Using K < 2", there exists a constant C > 0 such that Z [ 7 ) < C. Hence

1

tT+1 %Tlioo
o) TS (w>) 2=

As t > 0 could be any positive number, we conclude
1
! T 1 % = 1
( )rtdt < ( ) — < 00,
fo ¢(7) ¢(3)] 2

Lemma 2.3. Let ¢ € A, be a Young function satisfying Ky < 2". Then there exists a constant C > 0
such that

O

H(A) C
(6) — < =
A gA)
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Proof. Applying Lemma[2.2]

t T ﬁ ! T ﬁ % %t
—_— dr < C —_— dr < -
f0(¢<r>) r= £(¢(7)) = ( )

o) 2
Together with K, < 2", we get

(B ()Y
A

A

C
S 1
H(A)"
as desired.

The Young function ¢ is in V, (¢ € V,) if there exists a constant @ > 1 such that for any x > 0
1
¢(x) < 2—¢(aX).
a
Lemma 2.4. If ¢ € A, be a Young function satisfying K, < 2", then ¢, € A, NV,
Proof. Write

n=1

20 o -+ T
2) = LI D
Heo [fo (¢<T>) T] §

fo2r \mT o
2d =
fo (K¢¢(T)) T]

K,
Letting 2y = H(2t), we know K "y > H(H (2”) Therefore
1 1\
Kq;“ Kn
H'(2y) <2H (K y)<22H (K; —y) < < mlgl (Kn 7 y).
1
Ky

Because of the range of K, we get —

1\m
< 1. Putting m big enough so that K (K'” )
H™'(2y) < CH '(y). Hence H™' € Az and ¢, = po H ' € A,
By the decreasing property of —— et

) ~ 2Ny - ﬁ 7 ) . 2nT ﬁ n n—
H(zx)‘fo (%) dT] _(fo (¢<2"r>) ZdT]
<\ (=] 2ac| =27"H.

< f(; (¢(T)) T] (%)

Hence 2"x < H™'(2""'H(x)), it means that 2"H~'(x) < H~'(2""'x). Moreover.

2"¢ o H'(x) < p2"H™'(x)) S ¢po H'(2" ')
Letting a = 2"" > 1, we have ¢,(x) < 3-¢,(ax) and ¢, € V,

< 1, we have

*|
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To prove Theorem [[.2(i), we also need the following result.

Lemma 2.5. Let ¢ be a Young function satisfying (). Then for any cube Q c R", u € W"“*(Q) and
A > Cil|IVullpsg), there exists a constant C; = Cy(n) > 0 such that

% f ¢n(—|”(x)_”9')dxs f ¢(—C1|Vu(x)|)dx
0 A 0 A

Proof. Letm =1,A = ¢ and Q = Q(O, 1), where
Q(a’ b) = {(Xl,Xz, cees -xn) € Rﬂ . |xi - ail < b’a = (al’aZ, XX an) € Rn’b > O} .
By theorem 4.3 in [14]], there exists constants C; and ¢ such that

f % wx -~ T|dx < ¢ (Vu(x)]) dx.
G (fQ(O,l) ¢(|Vu(x)|)dx)" 00.1)

In fact, the above inequality holds if ¢ = up(,1).
If a cube centered at a with sides of length 2/ paralleled to the axes, there exists an orthogonal

transformation T such that T(Q — a) = Q(0,[). For any u € W'¢(Q), put v(x) = w where
x € 0(0,1). Then v € W"*(Q(0, 1)). Hence

u(T~ " (Ix)+a)

f é = —d dx
n
0(0,1) ;

G [fQ(O 4 ( )V - l(lma)) )dx]n

1
Sf ¢(1’V(w))dx
000.1) Al

Using y = T~'(Ix) + a, we know

fio| s Lol ()
’V u(y) ’) ] 0

lu(y) — Alc| f (IVu(y)l)
" _dy < d
fQ¢ Vu(y)| " yE Q¢ A Y
Cia(fp o (752 )

A

that is,

Since ¢ = vg(.1), We get Alc = ug. By variable substitution u = Cyu, we have

|u(y) = ugl f (C1|VM(}’)|)
" |y < d
ff [ﬂ(fQ(ﬁ(@)dy)n] =0T )

If > Ci|[Vul|sg), then we get

f¢n (lu(y)/l_ uQ|) f ¢n |u(y) — uQ| 1 dy
: " aloEz)al
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S f¢(C1'Vﬂ“@)')dys1
0

as desired. O

Recalled the Fefferman-Stein type verct-valued inequality for Hardy-Littlewood maximum opera-
tor in Orlicz space. Denote by M the Hardy-Littlewood maximum operator,

M(g)(x) = sup f |gldx
xeQ Q

with the supremum taken over all cubes Q C R” containing x.

Lemma 2.6 ([16]]). Let y € Ay NV, be a Young function. For any 0 < g < oo, there exists a constant
C > 1 depending on n, q, K, and a such that for all sequences {f;} o , we have

»[Rn W ]dx <C(n,Ky,a) , w[[Z(fj)Z )dx.

JjEN
Lemma 2.7. For any constant k > 1, sequence {a } jen, and cubes {Q} jen with 3 ; x o, < k, we have

D lajlvig, < Clkom) Y [MUajtxo,)
J J

q

DM

JEN

Proof. By the definition of M, we know

Xko; < an()(Qj).
So

J

Z lajlxro, = Z(ldj|%XkQ,)2 <k Z[M(IajI%XQj)]z.
J J

Now we begin to prove Theorem [L.2)i).

Proof of Theorem[L2li). Let Q be a c-John domain. By Boman [6] and Buckley [9]], Q enjoys the
following chain property: for every integer k > 1, there exist a positive constant C(k, ) and a
collection F of the cubes such that

(1) QckQcQiorall Q€ F,Q=Ups0Q and

Z X«kQ < CK,CXQ'
QcF

(i1) Qo € F is a fixed cube. For any other Q € ¥, there exist a subsequence {Q j}?’: , C F, satisfying

that 0 = On C Cy0Qj, CplQjnil < 10)1 < Co @)1l and [Q; N Qjii| = Cp min{|Q)l, 10,11} for all
j=0,....N—-1.
Let k = 5n, by (i) Q € 5nQ c Q for each Q € F,
Sn—-1

d(Q,0Q) > d(Q,0(5nQ) > 2

I(Q) = 2nl(Q),
and hence 1 {
lx =yl < Vnl(Q) < nl(Q) < 5d(Q, o) < Ed(x, o), Vx,ye Qe F.

Let u € W'(Q). Up to approximating by min{max{u, —N}, N}, we may assume that u € L°(Q),
and by the boundedness of Q, u € L'(Q).
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Using the convexity of ¢,, we have

lu(z) - ugl)
= | ———— d
Jor (e
l 2u(z) = ug,| + 2lug — qul)] J
< fgqﬁn [2( 1 Z
1 2|u(z) — ug,| 20ug — ug,|
S AR e R e |

|Q|¢n( o~ ”Q") f ¢n(2'”(1)‘”90')dz.
Q

Since yo < Xl ger X0 as given (i) above,

I< f ¢"('2|M(Z)ﬂ_ ”Qo|)dz
<Zf (zlu(z)_uQ0|)

By Jensen inequality,

QcF
Au(z) — uo| 1 Auop — ug,|
R
OeF Qe \{Qo}
1
==L + I
2T

Then it suffices to show that

[Vu(x)| )
Il' < d f = 1,2
L¢(A/C(n, CK,C,K¢)) x dort

To bound I, for any Q € ¥, applying inequality (),

hey f (|Vu<x)|
Cy
Together with ) yo(x) < Ci xa(x) as in (i) above, by the convexity we know

QeF 4
IVu(x)| f [Vu(x)|
I <Cyp dx < ————|dx.
= f§z¢( = 7= ), \Weom o)
Cy 4
To estimate I, for each Q € ¥, applying the chain property given in (ii) above, for any Q € F
with Q # Qp, we obtain

N-1

g — gy < ) lug, — g,
=0

N—
< Z(|qu - qu+1ﬁQj| + |qu+1 - qu+1ﬁQj|)'
j=0
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For adjacent cubes Q;, Qj.1, one has |Q; N Q.| > C;j min{|Q;l,|Q;:1]} and C;i.le+1| < Q)| <
CiclQjs1l. This implies

|l/lQ. —UQ.NQ;, | <— |M(V) - l/lQ|dV
1100 =10 8 0l Jo, j

< CK,C
- min{leL |Qj+1|} (o]

2

K,C
1011 Jo,

and also similar estimate for [ug,,, — ug.ng,,, |- Therefore we get

N
lup — g, <2C2, ) { u(v) — ug,| dv.
i=1 9;

For each cube Q;, by Jessen inequality, one has

@) —ugl lu(v) — ug,|
{Qj—ﬂ dv = ¢, O¢n(fgj—/1 dv)

u(v) —ug.
sabn‘l(f m(—' ( )A Q’l)dv).
9
Using inequality (@),

) —ugl VuI\ Y
J(Q,.—A dv < ¢, (L,¢(ﬂ/cl )dv).—¢n (ijw)dv).

N

Mo Mol cgc.2y g, ( f ij(v)dv) .

J=0

lu(v) — qul dv

<

u(v) = ug | dv,

Therefore,

Since ¢, € Ay, we know ¢,(tx) > tX»~1¢, (x) for all £ € [1, 00) and x € R. Together with Lemma 2.4}

we get
N N
b (Sck,fzcﬁn‘l(f f(V)dV)] < C(Cres Kp)pn| D ™! (f f(v)dv)].
=0 Qj Q)

=0
Applying Q = Qy C C,.Q; given in (ii), one has

N
0l¢, (,Z; ¢n‘1(f ij(v)dv)] < fQ m(z ¢! (f Pf(v)dv)XcK,(,P] (Vdx.

PeF

By 2 0er X0 < 2oer Xxo < Crexa as given (i) above,

L < C(CoerKy) ) fQ b [Z m*({ Pf(v)dv)m&,p] (x)dx

QeF PeF

< C(Cre Ky) fg b (Z ¢! ({ Pf(V)dV)XcK,(,P] (0dx.

PeF
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Using Lemma 2.7, we know

1 2
12 < C(CKC7 K¢) f ¢n[ { (¢n_1({ f(V)dV)) XP } ](x)dx
PeF P

By Lemma 2.4, we know ¢, € A, N'V,. Then ¢,(t*) € A, NV, Applying Lemma 2.6 to g = 2 and
U(t) := ¢,(t*), we obtain

I, < CC(Cy, Ky, a) f ¢n[ (¢n_l( { f(V)dV))XP](x)dx
Q PeF

Letap = |P|§ JC »f(v)dv. For each x € €, by the increasing property of ¢, and the convexity of ¢,,
we have

b (Z (¢n-1(ap)))(p(x>] @i :2 Ex; D (e @) XP(x)]

PeF PeF

< ¢ (ZPE‘FXP( ) Z “ap) XP(X)]

PeF
xp(x)

= - . /. \¥n CKC n_1 .
e ZPe¢XP(X)¢ (Coctn™(ar)

Applying ¢,(1x) > t*»~1¢,(x) for all t € [1, ) and x € R. and yo < Y x as given in (i) above, one
gets

b [Z (¢,:1<ap)))(p(x>] <> Ao B, (6" @p)) xp(x)

= et X0l
< C(CrerKy) ) xp()ap.
PeF

Using » xo < Cicxq again, one gets

12 < C(CK,C’ K¢, a) f Z aPXP(X)d.x

Q peF
< C(Crer Ky @) Y aplPl = C(Coer Kp@) )| f FO)dv
PeF Pef
< C(Cyor Kpr ) fg ¢(|Z;‘(Cvl)|)dv.

By the convexity, one has

[Vu)|
b= L¢(1/C(n, Coos K¢,a))dv'

Combing the estimates /; and I,, we complete the proof. O
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3. Proor oF THEOREM 1.2 (11)

To prove Theorem (ii), we need the following estimates and Lemmas which would be prove
later.

Letz € Q, d(z,0Q0) < m < diam ). Denote Q,,, by a component of Q \ Bg(z,m). Fort > r > m
with Q_,, # @, define u,,, in Q as

0, y € Q\ [Q., \ Ba(z, )]
() =4 Z2EL yeQ,, N[BGE 1)\ Bz )]

1, y € Qz,m \ BQ(Z’ t)’

®)

where Bq(z,t) = B(z,t) N Q.
It’s not difficult to know that u,,, is Lipschitz with the Lipschitz constant ﬁ

Lemma 3.1. Let ¢ be a Young function. For any bounded domain  C R" and z € Q with d(z, 0Q2) <
m < diam Q. Fort > r > m, we have u,,, € Wh(Q) with

. -1 1 _ B
otz illro ) < [¢ (|Qz,m \BL. r)|)(t ”)] .

Proof. Noting that u,,, is Lipschitz with the Lipschitz constant i, then Vu,,, almost exists and
|Vu.,,| < -~. By the definition of u_.,, we know [Vu,.,| = 0in Q\ [Q.,, \ Ba(z, r)] and Q.,, \ Ba(z, 1).

Hence -
IVum(X)I) f 1
H::fqb(; dx < 1) dx.
Q /1 Q. \B(z,r) /l(t - r)

-1
Letting A > [qﬁ‘l (m) (r— r)] , we have H < 1 as desired. O

For xo,z € Q, let r > 0 such that d(z, 0Q) < r < |xo — z|. Define
1
wxo,z,r(y) = — inf 5(7 N B(z, 1)), Vy € Q,
r y(xo.y)

where the infimum is taken over all rectifiable curves 7y joining x, and y.
Lemma 3.2. Let ¢ be a Young function. For any bounded domain Q C R", xyp,z € Qand r > 0
satisfying d(z,0Q) < r < |xy — z|, we have wy, ., € Whe(Q) with
-1
g elliprog < C o7 () 7]

where C > 1 is depending only on n, w, and ¢.

Proof. Let vy, be the segment joining x,y. Noting that [(y,, N B(z,r)) < |x —y| for any x € Q and
y € Q, together with a curve y(xy, x) U y,, joining Xy, x, we have

1
wxg,z,r(}’) < wxo,z,r(x) + ;|X -yl

Similarly, wy, . (%) < Wy, (y) + }lx — y|. Therefore, we get |wy, . (V) — Wy, - (X)] < %lx —y|, that is,
Wy, -» 18 Lipschitz and Vo, ., exists with [Vw,, . .| < %

Noting that d(x, 0Q) < |x — 2| + d(z,0Q) < |x — z| + r for x € Q\ B(z, 6r),y € B(x, 1d(x, 0Q)), then
we know

1 1
Iy—zlle—zl—ly—xlle—zl—i(lx—zl+r):Elx—zl—%23r—§22r.
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thatis, B(x, 2d(x, 0Q))NB(z,2r) = @. Let v, is the segment joining x, y. Then y, , is in B(x, 2d(x, 0Q)).
Moreover, y,, C Q\ B(z, r). For any curve y(x, x), y(xo, x) U ¥, joining x, and y, we get
I((y(x0, X) U yxy) N B(z, 1)) = l(y(x0, x) N B(z, 7).

S0 Wy 2 (¥) < Wy ().

Similarly, w,, . -(x) < Wy, .-(y). Hence wy, . (X) = wy, . (y), Vx € Q\ B(z,6r),y € B(x, Ld(x, 0Q)).
Since wy, . (x) = Wy, .(y) for any x € Q\ B(z,6r),y € B(x, 1d(x,0Q)) then Vwy, . (x)| = 0 for any
x € Q\ B(z,6r). Hence

. f ¢(|Vwm,z,,<x>|) e f ¢(|wao,z,r<x>|) "
Q A QNB(z,6r) A

1 1
< —|dx < w,(6r)"'¢| —|.
meB(z,m)(p(/”) xs wnlon) ¢(/lr)
-1

If A= Mg~ ™) r|  with M = w,(6r)", then H < 1. O

Lemma 3.3. Let ¢ € A, be a Young function with K, < 2" in @) and a bounded domain Q c R"
supports the (¢,, ¢)- Poincaré inequality (). Fix a point xq so that ry := max{d(x,0Q) : x € Q} =
d(xo, 0Q). Assume that x, xo € Q\ B(z,r) for some z € Q and r € (0,2 diam Q), there exists a positive
constant by that x, xy are contained in the same component of Q \ B(z, byr).

Proof. Let

by, :=sup{c € (0, 1], x, xy are contained in the same component of Q \ B(z, cr)}.

To get by, it sufficient to prove b, ., has a positive lower bound independent of x, z, 7. We may assume

by.r < 1—10. Denote Q, as the component of Q \ B(z, 2b, ,,r) containing x. If exists a constant C > 1
independent of x, z, r such that

1
©) S5 = 2bua) <IN < b

we know b, ., > m as desired. Set ¢y = 2b,., < 1. Denote by Q,, the component of Q\ B(z, cor)
containing xy. Observing

6
ro < max |xo—y| <r+cor+d(xy, B(z,r)) < —r+d(xo, B(z,r))
yeB(z,cor) 5

and
1 1 4
d(X(), B(Z, COr)) > |X() - Z| - g = d(X(), B(Z? r)) +r— gr = d(X(), B(Z? r)) + gr’

we obtain d(xo, B(z, cor)) > 7, hence
(10) B(xo, %) cQ, cO\Q.

Define

1
w(y) = — inf {(y N B(z,cor)), Yy €L,
Col" y(x0.y)

where the infimum is taken over all rectifiable curves vy joining x, and y.

By Lemma[3.2]
L1 -
¢ ((cor)")cor] >

lwllyro) < C
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together with (¢,,, ¢)-Poincaré inequality (3), we know

1\ 1
llw — wallzsn@) < Cllwllyroq) < C [(15_1( )] —.

(cor)" cor

On the other hand, by (I0), y € B(xy, %ro), w(y) = 0. Since Q is bounded, ry > 0, we have M <C.

0

Using the convexity of ¢,,

()] 1 |w(x) = wal Q| (1@800.3r) — @l
L[] [ (1) g, 9, (rninn )

By the Jensen inequality,

lWB(x.1r) — Wal —
|Q|¢n[ oty )s |Q|f m(—""(x) . ‘“Q')dx
B(x0,170)
< IQI1 f¢n(lw(X)—wgl)dx
|B(Xo,§”o)| Q a

SZ"C"[({)n(M)dx.
Q ﬁ

lw(x)| lw(x) — wql
fg;gbn( ) )deCL¢n(—ﬂ )dx,

(11) llwllzen ) < Cllw — wallpon -

Hence

furthermore, we get
Since forany y € Q,, w(y) > 1,

lw(x)| 1
f¢n( 1 dx > ¢n(z |Qx|a

- 1 <_1
S .
llewl| o Q) »¢ (le|)_

then we know

Therefore,

_ 1
@ [(c >"](°)“”" [m]‘

By = a4 < C— in (@), letting A = ¢~ [ we have

(cor)" ]’

¢”_1 [ (Colr)” ]
¢! [ o ]

< C(C()r)’

that 1s,

ol < il
© Loyt T IR
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By Lemma 2.4 ¢, € A,, and the fact ¢,(tx) > t"»~1¢,(x) for all t € [1,00) and x € R, we have
L <cL and

(cor)™ — 7|4l
(12) Q,]" < C(cor).
For j > 0 with Q. \ B(z,¢;r) # @, define v; in Q as
0 y € Q\ [Q, \ Ba(z,cjs11)]
v ={ =y e QN [BG o)\ B ¢,
1 yGQx\BQ(Z’er)’

Let Q.. = Q,,r =cjrand t = cjr, then vi(y) = u e, /(v) Where u e, () is defined in @).
Applying Lemma[3.1] we have

] I B
s < |6™ i e omr =]

Applying @), we have v;(y) = 0 for y € B(x, 3ro). Similarly to (1), we get

(13) Villony < Cllvi = viglliom@)-

Andv;(y) = 1 fory € Q, \ Bq(z, c;r), then we have

1 -1
Vi n Z n_l .
Ivjllzon [d’ (IQx \BaCz. cjr)l)]
By the (¢,, ¢)-Poincaré inequality (3), we know

A A
¢" (|Qx \ BQ(Z’ le")l = ¢ |Qx \ B(Z, Cj}")|

H(A) 1 : — 4-1 1
By == < Cm in (@), letting A = ¢ (m), we get

)(Cj+1}"— le").

cjrir —c;r < ClQ, \ B(Z,er)ﬁ.

Hence ¢, — ¢jr < CIQ; \ B(z, ¢;r)|F < C277|Q,]7.
Now we prove that sup {c j} > 1. Otherwise, we have ¢; < 1 for all j. By x € Q\ B(x, r), then there
exists 0 > 0 such that
B(x,0) c Q\ B(x,r) Cc Q\ B(x, cor).
By the connectivity of the B(x, §), we have B(x, 9) C Q,. Then
B(x,0) € Q. \ B(x,r) C Q. \ B(x,cjr),
and
0 < |B(x,6)| < 1\ B(x, 1)| < Q. \ B(x, ¢;r)| = 27/|Q,.

Letting j — co we get a contradiction, hence sup {c j} > 1. So there exists ¢; such that ¢; > % Let

Jo = inf{j >1:¢; < %}, then
Jo—1 Jjo—1

1 _i 1 1
(3 = cor < (e = co)r = e —epr<C Y 2R <2C1Q,7.

j=0 J=0
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So £(1 - 2b,,,) < |Q.|7. By the (I2), we have
r 1 1
E(E =2by.,) <|Q." < C2b,.,r, C > 1.
Then b, ., > 4(C2+1), which implies b > 0. O

Lemma 3.4. Letr s € (0,1) and ¢ € A, be a Young function with Ky < 2" in @), a bounded domain
Q C R" supports the (¢,, $)- Poincaré inequality @), then the Q has the LLC(2) property, that is,
there exists a constant b € (0, 1) such that for all z € R" and r > 0, any pair of point in Q \ B(z,r)
can be joined in Q \ B(z, br).

Proof. Fix x, so that ry := max(d(x, 0Q) : x € Q) = d(xy, 9Q)) and b is the constant in Lemma[3.3]
Then we spilt into three cases to prove it.
Case 1. Forz¢ B (xo, Mi;%r), we consider the radius r.

Ifr > M , then Vy € B (

_To
< 16diamQr)’ we have

1o .
—xol > lz=x0| = |z = V| > ————r > diam Q.
ly — xol = [z — xol — |z — Yl TedamQ

By Q C B(xy, diam Q), we get Q N B( = @. Here, any pair of point in Q \ B(z, r) can be
joined in Q \ B(z, jgg—57) = Q.
Ifr < W and d(z, 0Q) > boro ;. When z ¢ Q), then any pair of point in Q \ B(z, r) can be

_To
2 16diamQr)

32 diam Q
joined in Q\ B(z, 522 r) = Q. When z € Q, then Bz, g227) € B(z, 502 57) € Q. Similar to
the process of proving b, ., > 0 in Lemma[(3.3] we know Q \ B (z, 641;’% ) is a connected set. Here,

any pair of point in Q \ B(z, r) can be joined in Q \ B (Z, 643?;&97’ )
Ifr< %ﬂoﬂl)z and d(z,0Q) < 20y, Lety € B( bory )ﬂQ. By B (y,(l g V) -

32 dia Z’ 16 diam ST s
_rn
B(Z’ SdiamQr) C B(z, r), we know

Vxe Q\ B 1), xxOGQ\B(y,(l—b—) 10 )

2 "8 diam Q
By Lemma[3.3] x, x, are in the same component of Q \ B (y, bo(1 — h0)8d1am9r) By
bo(1 = bo)ry
Y B\z, ———
we (Z 16 diam Q r)
we have
bo(1 — bo)ro bory bo) _ 1o
V[ <|w—-2+|z—- + =bo\l - e gama”
w=yl<lw-z+|z-yl < 16diamQ ' 16diamQ’ " 2 ) 8diamQ"
Then

b()(l - b())r() bO 1o
B(Z’ 16 diam Q F)CB(y’bO(l 2)8diamQr)’

and Q\ B (y, bo( ) - ) c Q) B( Boll—by)ry ) Here, any pair of point in Q \ B(z, r) can be

gdiam O %> 16 diam O

joinedin Q \ B (Z, —17106( Llaliﬁ)ff r )
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Case2.Ifz€ B (xo, Sdifﬁr), forany x € Q\ B(z, r),

ro .
r————r<|x—z =[x -2z <|x = x| < diamQ,
8 diam Q

SO diam O

iam .

r< Fp—— < 2 diam Q.

~ 8diamQ

Then

"o o o
Blz, ———— B 0 B ) p o
(Z’ 8 diamQr) “ (xo’ 4diamQr) < (xo’ > ) C B(xq.79) C
Similar to the process of proving b, ., > 0 in Lemma[3.3] we have Q \ B (Z, wiﬁ”) is a connected
set. And by

Q\BEN <\ B gna)

we know any pair of point in Q \ B(z, r) can be joined in Q \ B (z, Mfﬁr).
Combining above cases, we get the desired result with

b = mi { o bory bo(l—bo)i’o}
= min .

16diam Q’ 64 diam Q’ 16 diam Q
O

Proof of Theorem[L2Vii). Let Q C R" be a simply connected planar domain, or a bounded domain
that is quasiconformally equivalent to some uniform domain when n < 3. Assume Q supports the
(¢=, ¢)-Poincaré inequality.

By [7, 8], Q has a separation property with x, € Q and some constant Cy > 1, that is Yx € Q,
dacurve y : [0,1] — Q, with y(0) = x,y(1) = xo, and V¢ € [0, 1], either y([0,1]) C B =
B(y(1), Cod(y(t), QL)), or ¥y € ([0, 1]) \ B belongs to the different component of Q \ B . For any
x € Q, let y be a curve as above. By the arguments in [36]], It suffices to prove there exists a constant
C > 0 so that

(14) d(y(2), QC) > Cdiam ([0, ¢]), YVt € [0, 1].

Indeed, (I4) could modify y to get a John curve for x.
By Lemma[3.4] Q has the LLC(2) property. Leta = 2 + %, where b is the constant in Lemma[3.4

For t € [0, 1. (1) If d(y(t), QC) > 42 then

C
y([0,1) c Q C B (y(t), % diam Q) .
So .
diam y([0, t]) < % diam Q.
and
d(xp, QL)

diy(1), Q) » 2102
00,07 2 3 ama

@) If d(y(1), Q0) < 22090 \ye prove that

diam ([0, ).

Y(10.1]) € B(y(0). (a = Dd(y(0),QL)).
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Otherwise, there exists y € ([0, 1]) \ B (y(t), (a - Dd(y(t), QC)). By
o — Y(0)] > d(x0, QL) = d(y(1), Q%) > (a - 1)d(y(1), QL),

we know xp,y € Q\ B ()/(t), (a — 1)d(y(1), QC), by Lemma 3.4 x; and y are contained in the same

complement of Q \ B (y(t), b(a — 1)d(y(1), QC). Since b(a — 1) > Cy, then xy and y are contained

in the same complement of Q \ B (y(t), Cod(y(1), QC), which is in contradiction with the separation
property. Hence

Y(10.1]) € B((0). (a = Dd(y(0).Q0)),
then
diam ([0, ¢]) < 2(a — 1)d(y(?), QC).
So

d(y(), Q) > ﬁ diam ([0, 7).

Let C = min { dx.00) | }, then (I4) holds. The proof is completed.

2adiam Q° 2(a—1)

O
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