A (ϕ_n, ϕ) -POINCARÉ INEQUALITY ON JOHN DOMAIN

SHANGYING FENG AND TIAN LIANG

ABSTRACT. Given a bounded domain $\Omega \subset \mathbb{R}^n$ with $n \geq 2$, let ϕ is a Young function satisfying the doubling condition with the constant $K_{\phi} < 2^n$. If Ω is a John domain, we show that Ω supports a (ϕ_n, ϕ) -Poincaré inequality. Conversely, assume additionally that Ω is simply connected domain when n = 2 or a bounded domain which is quasiconformally equivalent to some uniform domain when $n \geq 3$. If Ω supports a (ϕ_n, ϕ) -Poincaré inequality, we show that it is a John domain.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n with $n \geq 2$. Assume ϕ is a Young function in $[0, \infty)$, that is, $\phi \in C[0, \infty)$ is convex and satisfies $\phi(0) = 0$, $\phi(t) > 0$ for t > 0 and $\lim_{t \to \infty} \phi(t) = \infty$. Recall the Orlicz space $L^{\phi}(\Omega)$ as the collection of all measurable functions u in Ω with the semi-norm

$$||u||_{L^{\phi}(\Omega)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \phi \left(\frac{|u(x)|}{\lambda} \right) dx \le 1 \right\} < \infty.$$

The classical Orlicz-Sobolev space $W^{1,\phi}(\Omega)$ consists of all measurable functions $u \in L^{\phi}(\Omega)$ and $\nabla u \in L^{\phi}(\Omega)$, whose norm is

$$||u||_{W^{1,\phi}(\Omega)} := ||u||_{L^{\phi}(\Omega)} + ||\nabla u||_{L^{\phi}(\Omega)}.$$

Sometimes we consider the homogeneous Orlicz-Sobolev space $\dot{W}^{1,\phi}(\Omega)$ with its norm $||u||_{W^{1,\phi}(\Omega)} := ||\nabla u||_{L^{\phi}(\Omega)}$, whose sharp embedding has been solved in [11](see also [3] for an alternate formulation of the solution). The detailed description is as follows.

Theorem 1.1. Let Ω is an open bounded domain in \mathbb{R}^n with finite measure and ϕ is a Young function satisfying

(1)
$$\int_0^t \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau < \infty.$$

Define $\phi_n := \phi \circ H^{-1}$, *where*

(2)
$$H(t) = \left[\int_0^t \left(\frac{\tau}{\phi(\tau)} \right)^{\frac{1}{n-1}} d\tau \right]^{\frac{n-1}{n}} \forall t \ge 0.$$

Then $\dot{W}^{1,\phi}(\Omega) \subset L^{\phi_n}(\Omega)$, that is, for any $u \in \dot{W}^{1,\phi}(\Omega)$, one has $u \in L^{\phi_n}(\Omega)$ with $||u||_{L^{\phi_n}(\Omega)} \leq C||u||_{\dot{W}^{1,\phi}(\Omega)}$, where C is a constant independent of u.

We are interested in bounded domains which supports the imbedding $\dot{W}^{1,\phi}(\Omega) \subset L^{\phi_n}(\Omega)$ or (ϕ_n,ϕ) -Poincaré inequality, that is, there exists a constant $C \geq 1$ such that

(3)
$$||u - u_{\Omega}||_{L^{\phi_n}(\Omega)} \le C||u||_{\dot{W}^{1,\phi}(\Omega)},$$

Date: March 28, 2024.

where $u_{\Omega} = \int_{\Omega} u = \frac{1}{|\Omega|} \int_{\Omega} u dx$ denotes the average of u in the set of Ω with $|\Omega| > 0$.

The primary goal of this paper is to effectively characterizes supports the imbedding $\dot{W}^{1,\phi}(\Omega) \subset L^{\phi_n}(\Omega)$ via John domains under certain doubling assumption in ϕ ; see Theorem 1.2 below. Recall that a bounded domain $\Omega \subset \mathbb{R}^n$ is called as a c-John domain with respect to some $x_0 \in \Omega$ for some c > 0 if for any $x \in \Omega$, there is a rectifiable curve $\gamma : [0, T] \to \Omega$ parameterized by arc-length such that $\gamma(0) = x$, $\gamma(T) = x_0$ and $d(\gamma(t), \Omega^{\complement}) > ct$ for all t > 0. We could refer to [6, 7, 8, 9, 36, 37, 38] and references therein for more study about c-John domains. Moreover, a Young function ϕ has the doubling property $(\phi \in \Delta_2)$ if

$$(4) K_{\phi} := \sup_{t \to 0} \frac{\phi(2t)}{\phi(t)} < \infty.$$

It is well known that if a Young function $\phi \in \Delta_2$ with $K_{\phi} < 2^n$, then ϕ satisfies (1), see Lemma 2.2.

Theorem 1.2. Let ϕ be a Young function and $\phi \in \Delta_2$ with $K_{\phi} < 2^n$ in (4).

- (i) If $\Omega \subset \mathbb{R}^n$ is a c-John domain, then Ω supports the (ϕ_n, ϕ) -Poincaré inequality (3) with the constant C depending on n, c and K_{ϕ} .
- (ii) Assume that $\Omega \subset \mathbb{R}^n$ is a bounded simply connected planar domain, or a bounded domain which is a quasiconformally equivalent to some uniform domain when $n \geq 3$. If Ω supports the (ϕ_n, ϕ) Poincaré inequality, then Ω is a c-John domain, where the constant c depend on c, c, c, c and c.

Remark 1.1. (i) Putting $\phi(t) = t^p$ for some $p \in [1, n)$, we know $L^{\phi}(\Omega) = L^p(\Omega)$ and $\phi_n(t) = Ct^{\frac{np}{n-p}}$, namely, (ϕ_n, ϕ) -Poincaré inequality (3) equals to Sobolev $\dot{W}^{1,p}$ -imbedding or $(\frac{np}{n-p}, p)$ -Poincaré inequality: for any $u \in \dot{W}^{1,p}(\Omega)$, there exists a constant C > 0 such that

(5)
$$||u - u_{\Omega}||_{L^{np/(n-p)}(\Omega)} \le C||u||_{\dot{W}^{1,p}(\Omega)},$$

where the constant C depends on n, p and c. Noted that c-John domain Ω supports $(\frac{np}{n-p}, p)$ -Poincaré inequality, details see Reshetnyak [38] and Martio [37] for 1 and Borjarski [5] (and also Hajlasz [24]) for <math>p = 1. On the other hand, additionally assume that Ω is a bounded simply connected planar domain or a domain that is quasiconformally equaivalently to some uniform domain when $n \ge 3$, Buckley and Koskela [7] proved that if (5) holds, then Ω is a c-John domain.

The paper is organized as follows. The proof of Theorem 1.2(i) is proven in Section 2 using Boman's chain property, the embedding $\dot{W}^{1,\phi}(Q) \subset L^{\phi_n}(Q)$ for cube Q and the vector-valued inequality in Orlicz norms for the Hardy-Littlewood maximum operators. Section 2 also contains some property of the doubling Young function. Conversely, together with the aid of some ideas from [7, 25, 34, 40, 41], we obtain the LLC(2) property of Ω , and then prove Theorem 1.2(ii) by a capacity argument; see Section 3 for details.

2. Proof of Theorem 1.2(i)

First we give the embedding $C_c^{\infty}(\Omega) \subset \dot{W}^{1,\phi}(\Omega)$, which means that $\dot{W}^{1,\phi}(\Omega)$ contains basic functions. In some terms, $\dot{W}^{1,\phi}(\Omega)$ is useful.

Lemma 2.1. Let ϕ be a Young function. For any bounded domain $\Omega \subset \mathbb{R}^n$, we have $C_c^{\infty}(\Omega) \subset \dot{W}^{1,\phi}(\Omega)$.

Proof. Write $L := ||Du||_{L^{\infty}(\Omega)}$ and choose supp $u \subset W \subset \Omega$ such that $|\nabla u(x)| = 0$ for $x \in \Omega \setminus W$.

For any $u \in C_c^1(\Omega)$, we know

$$H := \int_{\Omega} \phi\left(\frac{|\nabla u(x)|}{\lambda}\right) dx \le \int_{W} \phi\left(\frac{L}{\lambda}\right) dx = \phi\left(\frac{L}{\lambda}\right) |W|.$$

If $\lambda = (L+1) \left(\phi^{-1}\left(\frac{1}{|W|}\right)\right)^{-1}$, we have $H \leq 1$. Hence $u \in \dot{W}^{1,\phi}(\Omega)$. Moreover, $C_c^{\infty}(\Omega) \subset C_c^{1}(\Omega)$, we get the desired result.

Now we give some lemmas of Young function ϕ with the doubling property.

Lemma 2.2. Let $\phi \in \Delta_2$ be a Young function satisfying $K_{\phi} < 2^n$, then ϕ satisfy (1).

Proof. Since $\phi \in \Delta_2$ with $\phi(2t) \leq K_{\phi}\phi(t)$, we have

$$\int_{\frac{t}{2}}^{t} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau = 2 \int_{\frac{t}{4}}^{\frac{t}{2}} \left(\frac{2\tau}{\phi(2\tau)}\right)^{\frac{1}{n-1}} d\tau \ge 2 \int_{\frac{t}{4}}^{\frac{t}{2}} \left(\frac{2\tau}{K_{\phi}\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau,$$

that is,

$$\int_{\frac{t}{4}}^{\frac{t}{2}} \left(\frac{\tau}{\phi(\tau)} \right)^{\frac{1}{n-1}} d\tau \le \frac{K_{\phi}^{\frac{1}{n-1}}}{2^{\frac{n}{n-1}}} \int_{\frac{t}{4}}^{t} \left(\frac{\tau}{\phi(\tau)} \right)^{\frac{1}{n-1}} d\tau.$$

Therefore,

$$\int_{\frac{t}{2^{m}}}^{\frac{t}{2^{m-1}}} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau \leq \frac{K_{\phi}^{\frac{1}{n-1}}}{2^{\frac{n}{n-1}}} \int_{\frac{t}{2^{m-1}}}^{\frac{t}{2^{m-2}}} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau \leq \left(\frac{K_{\phi}^{\frac{1}{n-1}}}{2^{\frac{n}{n-1}}}\right)^{m-1} \int_{\frac{t}{2}}^{t} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau.$$

Using $K_{\phi} < 2^n$, there exists a constant C > 0 such that $\sum_{m=1}^{\infty} \left(\frac{K_{\phi}^{\frac{1}{n-1}}}{\frac{n}{2^{n-1}}} \right)^{m-1} \le C$. Hence

$$\int_0^t (\frac{\tau}{\phi(\tau)})^{\frac{1}{n-1}} d\tau \leq \sum_{m=1}^{\infty} \left(\frac{K_{\frac{1}{n-1}}^{\frac{1}{n-1}}}{2^{\frac{n}{n-1}}} \right)^{m-1} \int_{\frac{t}{2}}^t (\frac{\tau}{\phi(\tau)})^{\frac{1}{n-1}} d\tau \leq C \int_{\frac{t}{2}}^t (\frac{\tau}{\phi(\tau)})^{\frac{1}{n-1}} d\tau.$$

On the other hand, because $\frac{t}{\phi(t)}$ is decreasing, we know

$$\int_{\frac{t}{2}}^{t} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau \le \left(\frac{\frac{t}{2}}{\phi(\frac{t}{2})}\right)^{\frac{1}{n-1}} \frac{t}{2} < \infty.$$

As t > 0 could be any positive number, we conclude

$$\int_0^t \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau \le C \left(\frac{\frac{t}{2}}{\phi(\frac{t}{2})}\right)^{\frac{1}{n-1}} \frac{t}{2} < \infty.$$

Lemma 2.3. Let $\phi \in \Delta_2$ be a Young function satisfying $K_{\phi} < 2^n$. Then there exists a constant C > 0 such that

(6)
$$\frac{H(A)}{A} \le \frac{C}{\phi(A)^{\frac{1}{n}}}.$$

Proof. Applying Lemma 2.2,

$$\int_0^t \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau \le C \int_{\frac{t}{2}}^t \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau \le C \left(\frac{\frac{t}{2}}{\phi(\frac{t}{2})}\right)^{\frac{1}{n-1}} \frac{t}{2}.$$

Together with $K_{\phi} < 2^n$, we get

$$\frac{H(A)}{A} = \frac{\left(\int_{0}^{A} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau\right)^{\frac{n-1}{n}}}{A} \le \frac{\left(C\left(\frac{\frac{A}{2}}{\phi(\frac{A}{2})}\right)^{\frac{1}{n-1}} \frac{A}{2}\right)^{\frac{n-1}{n}}}{A}$$

$$\le \frac{\left(C\left(\frac{\frac{A}{2}}{\frac{1}{K_{\phi}}\phi(A)}\right)^{\frac{1}{n-1}} \frac{A}{2}\right)^{\frac{n-1}{n}}}{A} \le \frac{C}{\phi(A)^{\frac{1}{n}}}$$

as desired.

The Young function ϕ is in ∇_2 ($\phi \in \nabla_2$) if there exists a constant a > 1 such that for any $x \ge 0$,

$$\phi(x) \le \frac{1}{2a}\phi(ax).$$

Lemma 2.4. If $\phi \in \Delta_2$ be a Young function satisfying $K_{\phi} < 2^n$, then $\phi_n \in \Delta_2 \cap \nabla_2$.

Proof. Write

$$H(2t) = \left(\int_0^{2t} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau\right)^{\frac{n-1}{n}} \ge \left(\int_0^t \left(\frac{2\tau}{K_{\phi}\phi(\tau)}\right)^{\frac{1}{n-1}} 2d\tau\right)^{\frac{n-1}{n}} = \frac{2}{K_{\phi}^{\frac{1}{n}}} H(t).$$

Letting 2y = H(2t), we know $K_{\phi}^{\frac{1}{n}} y \ge H\left(\frac{H^{-1}(2y)}{2}\right)$. Therefore,

$$H^{-1}(2y) \leq 2H^{-1}(K_{\phi}^{\frac{1}{n}}y) \leq 2^{2}H^{-1}(K_{\phi}^{\frac{1}{n}}\frac{K_{\phi}^{\frac{1}{n}}}{2}y) \leq \dots \leq 2^{m+1}H^{-1}(K_{\phi}^{\frac{1}{n}}\left(\frac{K_{\phi}^{\frac{1}{n}}}{2}\right)^{m}y).$$

Because of the range of K, we get $\frac{K_{\phi}^{\frac{1}{n}}}{2} < 1$. Putting m big enough so that $K_{\phi}^{\frac{1}{n}} \left(\frac{K_{\phi}^{\frac{1}{n}}}{2} \right)^m < 1$, we have $H^{-1}(2y) < CH^{-1}(y)$. Hence $H^{-1} \in \Delta_2$ and $\phi_n = \phi \circ H^{-1} \in \Delta_2$.

By the decreasing property of $\frac{\tau}{\phi(\tau)}$,

$$H(2^{n}x) = \left(\int_{0}^{2^{n}x} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} d\tau\right)^{\frac{n-1}{n}} = \left(\int_{0}^{x} \left(\frac{2^{n}\tau}{\phi(2^{n}\tau)}\right)^{\frac{1}{n-1}} 2^{n} d\tau\right)^{\frac{n-1}{n}}$$

$$\leq \left(\int_{0}^{x} \left(\frac{\tau}{\phi(\tau)}\right)^{\frac{1}{n-1}} 2^{n} d\tau\right)^{\frac{n-1}{n}} = 2^{n-1}H(x).$$

Hence $2^n x \le H^{-1}(2^{n-1}H(x))$, it means that $2^n H^{-1}(x) \le H^{-1}(2^{n-1}x)$. Moreover,

$$2^n \phi \circ H^{-1}(x) \le \phi(2^n H^{-1}(x)) \le \phi \circ H^{-1}(2^{n-1} x).$$

Letting $a = 2^{n-1} > 1$, we have $\phi_n(x) \le \frac{1}{2a} \phi_n(ax)$ and $\phi_n \in \nabla_2$.

To prove Theorem 1.2(i), we also need the following result.

Lemma 2.5. Let ϕ be a Young function satisfying (1). Then for any cube $Q \subset \mathbb{R}^n$, $u \in \dot{W}^{1,\phi}(Q)$ and $\lambda \geq C_1 \|\nabla u\|_{L^{\phi}(Q)}$, there exists a constant $C_1 = C_1(n) > 0$ such that

(7)
$$\int_{O} \phi_{n} \left(\frac{|u(x) - u_{Q}|}{\lambda} \right) dx \leq \int_{O} \phi \left(\frac{C_{1} |\nabla u(x)|}{\lambda} \right) dx.$$

Proof. Let $m = 1, A = \phi$ and $\Omega = Q(O, 1)$, where

$$Q(a,b) = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : |x_i - a_i| < b, a = (a_1, a_2, ..., a_n) \in \mathbb{R}^n, b > 0\}.$$

By theorem 4.3 in [14], there exists constants C_1 and c such that

$$\int_{Q(0,1)} \phi_n \left(\frac{|u(x) - c|}{C_1 \left(\int_{Q(0,1)} \phi(|\nabla u(x)|) dx \right)^{\frac{1}{n}}} \right) dx \le \int_{Q(0,1)} \phi(|\nabla u(x)|) dx.$$

In fact, the above inequality holds if $c = u_{Q(0,1)}$.

If a cube centered at a with sides of length 2l paralleled to the axes, there exists an orthogonal transformation T such that T(Q - a) = Q(O, l). For any $u \in \dot{W}^{1,\phi}(Q)$, put $v(x) = \frac{u(T^{-1}(lx) + a)}{\lambda l}$ where $x \in Q(0, 1)$. Then $v \in \dot{W}^{1,\phi}(Q(0, 1))$. Hence

$$\int_{Q(0,1)} \phi_n \left(\frac{\left| \frac{u(T^{-1}(lx) + a)}{\lambda l} - c \right|}{C_1 \left[\int_{Q(0,1)} \phi \left(l \left| \nabla \left(\frac{u(T^{-1}(lx) + a)}{\lambda l} \right) \right| \right) dx \right]^{\frac{1}{n}}} \right) dx$$

$$\leq \int_{Q(0,1)} \phi \left(l \left| \nabla \left(\frac{u(T^{-1}(lx) + a)}{\lambda l} \right) \right| \right) dx.$$

Using $y = T^{-1}(lx) + a$, we know

$$\int_{Q} \phi_{n} \left(\frac{\left| \frac{u(y)}{\lambda l} - c \right|}{C_{1} \left[\int_{Q} \phi \left(l \left| \nabla \left(\frac{u(y)}{\lambda l} \right) \right| \right) \frac{dy}{l^{n}}} \right) \frac{dy}{l^{n}} \leq \int_{Q} \phi \left(l \left| \nabla \left(\frac{u(y)}{\lambda l} \right) \right| \right) \frac{dy}{l^{n}},$$

that is,

$$\int_{Q} \phi_{n} \left(\frac{|u(y) - \lambda lc|}{C_{1} \lambda \left(\int_{Q} \phi \left(\frac{|\nabla u(y)|}{\lambda} \right) dy \right)^{\frac{1}{n}}} \right) dy \leq \int_{Q} \phi \left(\frac{|\nabla u(y)|}{\lambda} \right) dy.$$

Since $c = v_{Q(Q,1)}$, we get $\lambda lc = u_Q$. By variable substitution $u = C_1 u$, we have

$$\int_{Q} \phi_{n} \left(\frac{|u(y) - u_{Q}|}{\lambda \left(\int_{Q} \phi\left(\frac{C_{1}|\nabla u(y)|}{\lambda} \right) dy \right)^{\frac{1}{n}}} \right) dy \leq \int_{Q} \phi\left(\frac{C_{1}|\nabla u(y)|}{\lambda} \right) dy.$$

If $\lambda \geq C_1 ||\nabla u||_{L^{\phi}(Q)}$, then we get

$$\int_{Q} \phi_{n} \left(\frac{|u(y) - u_{Q}|}{\lambda} \right) dy \leq \int_{Q} \phi_{n} \left(\frac{|u(y) - u_{Q}|}{\lambda \left[\int_{Q} \phi \left(\frac{C_{1} |\nabla u(y)|}{\lambda} \right) dy \right]^{\frac{1}{n}}} \right) dy$$

$$\leq \int_{Q} \phi(\frac{C_{1}|\nabla u(y)|}{\lambda})dy \leq 1$$

as desired.

Recalled the Fefferman-Stein type verct-valued inequality for Hardy-Littlewood maximum operator in Orlicz space. Denote by $\mathcal M$ the Hardy-Littlewood maximum operator,

$$\mathcal{M}(g)(x) = \sup_{x \in Q} \int_{Q} |g| dx$$

with the supremum taken over all cubes $Q \subset \mathbb{R}^n$ containing x.

Lemma 2.6 ([16]). Let $\psi \in \Delta_2 \cap \nabla_2$ be a Young function. For any $0 < q < \infty$, there exists a constant C > 1 depending on n, q, K_{ψ} and a such that for all sequences $\{f_i\}_{i \in \mathbb{N}}$, we have

$$\int_{\mathbb{R}^n} \psi \left[\left[\sum_{j \in \mathbb{N}} (\mathcal{M}(f_j))^2 \right]^{\frac{1}{q}} \right] dx \le C(n, K_{\psi}, a) \int_{\mathbb{R}^n} \psi \left[\left[\sum_{j \in \mathbb{N}} (f_j)^2 \right]^{\frac{1}{q}} \right] dx.$$

Lemma 2.7. For any constant $k \ge 1$, sequence $\{a_j\}_{j\in\mathbb{N}}$, and cubes $\{Q_j\}_{j\in\mathbb{N}}$ with $\sum_j \chi_{Q_j} \le k$, we have

$$\sum_{j} |a_j| \chi_{kQ_j} \leq C(k,n) \sum_{j} [\mathcal{M}(|a_j|^{\frac{1}{2}} \chi_{Q_j})]^2.$$

Proof. By the definition of \mathcal{M} , we know

$$\chi_{kO_i} \leq k^n \mathcal{M}(\chi_{O_i}).$$

So

$$\sum_{j} |a_{j}| \chi_{kQ_{j}} = \sum_{j} (|a_{j}|^{\frac{1}{2}} \chi_{kQ_{j}})^{2} \le k^{2n} \sum_{j} [\mathcal{M}(|a_{j}|^{\frac{1}{2}} \chi_{Q_{j}})]^{2}.$$

Now we begin to prove Theorem 1.2(i).

Proof of Theorem 1.2(i). Let Ω be a c-John domain. By Boman [6] and Buckley [9], Ω enjoys the following chain property: for every integer $\kappa > 1$, there exist a positive constant $C(\kappa, \Omega)$ and a collection \mathcal{F} of the cubes such that

(i) $Q \subset \kappa Q \subset \Omega$ for all $Q \in \mathcal{F}$, $\Omega = \bigcup_{Q \in \mathcal{F}} Q$ and

$$\sum_{Q\in\mathcal{F}}\chi_{\kappa Q}\leq C_{\kappa,c}\chi_{\Omega}.$$

(ii) $Q_0 \in \mathcal{F}$ is a fixed cube. For any other $Q \in \mathcal{F}$, there exist a subsequence $\{Q_j\}_{j=1}^N \subset \mathcal{F}$, satisfying that $Q = Q_N \subset C_{\kappa,c}Q_j$, $C_{\kappa,c}^{-1}|Q_{j+1}| \leq |Q_j| \leq C_{\kappa,c}|Q_{j+1}|$ and $|Q_j \cap Q_{j+1}| \geq C_{\kappa,c}^{-1} \min\{|Q_j|, |Q_{j+1}|\}$ for all $j = 0, \ldots, N-1$.

Let $\kappa = 5n$, by (i) $Q \subset 5nQ \subset \Omega$ for each $Q \in \mathcal{F}$,

$$d(Q,\partial\Omega)\geq d(Q,\partial(5nQ)\geq \frac{5n-1}{2}l(Q)\geq 2nl(Q),$$

and hence

$$|x-y| \leq \sqrt{n}l(Q) \leq nl(Q) \leq \frac{1}{2}d(Q,\partial\Omega) \leq \frac{1}{2}d(x,\partial\Omega), \ \forall x,y \in Q \in \mathcal{F}.$$

Let $u \in \dot{W}^{1,\phi}(\Omega)$. Up to approximating by $\min\{\max\{u, -N\}, N\}$, we may assume that $u \in L^{\infty}(\Omega)$, and by the boundedness of Ω , $u \in L^{1}(\Omega)$.

Using the convexity of ϕ_n , we have

$$\begin{split} I :&= \int_{\Omega} \phi_n \left(\frac{|u(z) - u_{\Omega}|}{\lambda} \right) dz \\ &\leq \int_{\Omega} \phi_n \left[\frac{1}{2} \left(\frac{2|u(z) - u_{Q_0}| + 2|u_{\Omega} - u_{Q_0}|}{\lambda} \right) \right] dz \\ &\leq \frac{1}{2} \left[\int_{\Omega} \phi_n \left(\frac{2|u(z) - u_{Q_0}|}{\lambda} \right) dz + |\Omega| \phi_n \left(\frac{2|u_{\Omega} - u_{Q_0}|}{\lambda} \right) \right]. \end{split}$$

By Jensen inequality,

$$|\Omega|\phi_n\left(\frac{2|u_{\Omega}-u_{Q_0}|}{\lambda}\right) \leq \int_{\Omega}\phi_n\left(\frac{2|u(z)-u_{Q_0}|}{\lambda}\right)dz.$$

Since $\chi_{\Omega} \leq \sum_{Q \in \mathcal{F}} \chi_Q$ as given (i) above,

$$\begin{split} I &\leq \int_{\Omega} \phi_n \left(\frac{2|u(z) - u_{Q_0}|}{\lambda} \right) dz \\ &\leq \sum_{Q \in \mathcal{F}} \int_{Q} \phi_n \left(\frac{2|u(z) - u_{Q_0}|}{\lambda} \right) dz \\ &\leq \frac{1}{2} \sum_{Q \in \mathcal{F}} \int_{Q} \phi_n \left(\frac{4|u(z) - u_{Q}|}{\lambda} \right) dz + \frac{1}{2} \sum_{Q \in \mathcal{F} \setminus \{Q_0\}} |Q| \phi_n \left(\frac{4|u_Q - u_{Q_0}|}{\lambda} \right) \\ &:= \frac{1}{2} I_1 + \frac{1}{2} I_2. \end{split}$$

Then it suffices to show that

$$I_i \le \int_{\Omega} \phi \left(\frac{|\nabla u(x)|}{\lambda / C(n, C_{\kappa, c}, K_{\phi})} \right) dx \quad \text{for } i = 1, 2.$$

To bound I_1 , for any $Q \in \mathcal{F}$, applying inequality (7),

$$I_1 \le \sum_{Q \in \mathcal{F}} \int_{Q} \phi \left(\frac{|\nabla u(x)|}{\frac{\lambda}{4C_1}} \right) dx.$$

Together with $\sum \chi_Q(x) \le C_{\kappa,c}\chi_{\Omega}(x)$ as in (i) above, by the convexity we know

$$I_{1} \leq C_{\kappa,c} \int_{\Omega} \phi \left(\frac{|\nabla u(x)|}{\frac{\lambda}{4C_{1}}} \right) dx \leq \int_{\Omega} \phi \left(\frac{|\nabla u(x)|}{\lambda/C(n,C_{\kappa,c})} \right) dx.$$

To estimate I_2 , for each $Q \in \mathcal{F}$, applying the chain property given in (ii) above, for any $Q \in \mathcal{F}$ with $Q \neq Q_0$, we obtain

$$\begin{split} |u_{Q}-u_{Q_{0}}| &\leq \sum_{j=0}^{N-1} |u_{Q_{j}}-u_{Q_{j+1}}| \\ &\leq \sum_{j=0}^{N-1} (|u_{Q_{j}}-u_{Q_{j+1}\cap Q_{j}}| + |u_{Q_{j+1}}-u_{Q_{j+1}\cap Q_{j}}|). \end{split}$$

For adjacent cubes Q_j, Q_{j+1} , one has $|Q_j \cap Q_{j+1}| \ge C_{\kappa,c}^{-1} \min\{|Q_j|, |Q_{j+1}|\}$ and $C_{\kappa,c}^{-1}|Q_{j+1}| \le |Q_j| \le C_{\kappa,c}|Q_{j+1}|$. This implies

$$|u_{Q_{j}} - u_{Q_{j} \cap Q_{j+1}}| \leq \frac{1}{|Q_{j} \cap Q_{j+1}|} \int_{Q_{j}} |u(v) - u_{Q_{j}}| dv$$

$$\leq \frac{C_{\kappa,c}}{\min\{|Q_{j}|, |Q_{j+1}|\}} \int_{Q_{j}} |u(v) - u_{Q_{j}}| dv$$

$$\leq \frac{C_{\kappa,c}^{2}}{|Q_{j}|} \int_{Q_{j}} |u(v) - u_{Q_{j}}| dv,$$

and also similar estimate for $|u_{Q_{j+1}} - u_{Q_j \cap Q_{j+1}}|$. Therefore we get

$$|u_Q - u_{Q_0}| \le 2C_{\kappa,c}^2 \sum_{i=1}^N \int_{Q_i} |u(v) - u_{Q_i}| dv.$$

For each cube Q_j , by Jessen inequality, one has

$$\int_{Q_j} \frac{|u(v) - u_{Q_j}|}{\lambda} dv = \phi_n^{-1} \circ \phi_n \left(\int_{Q_j} \frac{|u(v) - u_{Q_j}|}{\lambda} dv \right) \\
\leq \phi_n^{-1} \left(\int_{Q_j} \phi_n \left(\frac{|u(v) - u_{Q_j}|}{\lambda} \right) dv \right).$$

Using inequality (7),

$$\int_{Q_i} \frac{|u(v) - u_{Q_i}|}{\lambda} dv \le \phi_n^{-1} \left(\int_{Q_i} \phi \left(\frac{|\nabla u(v)|}{\lambda/C_1} \right) dv \right) := \phi_n^{-1} \left(\int_{Q_i} f(v) dv \right).$$

Therefore,

$$\frac{4|u_{Q} - u_{Q_{0}}|}{\lambda} \leq 8C_{\kappa,c}^{2} \sum_{j=0}^{N} \phi_{n}^{-1} \left(\int_{Q_{j}} f(v) dv \right).$$

Since $\phi_n \in \Delta_2$, we know $\phi_n(tx) \ge t^{K_{\phi_n}-1}\phi_n(x)$ for all $t \in [1, \infty)$ and $x \in \mathbb{R}$. Together with Lemma 2.4, we get

$$\phi_n\left(8C_{\kappa,c}^2\sum_{i=0}^N\phi_n^{-1}\left(\int_{Q_i}f(v)dv\right)\right)\leq C(C_{\kappa,c},K_\phi)\phi_n\left(\sum_{i=0}^N\phi_n^{-1}\left(\int_{Q_i}f(v)dv\right)\right).$$

Applying $Q = Q_N \subset C_{\kappa,c}Q_j$ given in (ii), one has

$$|Q|\phi_n\left(\sum_{i=0}^N {\phi_n}^{-1}\left(\int_{Q_i} f(v)dv\right)\right) \leq \int_Q \phi_n\left(\sum_{P\in\mathcal{F}} {\phi_n}^{-1}\left(\int_P f(v)dv\right)\chi_{C_{\kappa,c}P}\right)(x)dx.$$

By $\sum_{Q \in \mathcal{F}} \chi_Q \le \sum_{Q \in \mathcal{F}} \chi_{\kappa Q} \le C_{\kappa,c} \chi_{\Omega}$ as given (i) above,

$$I_{2} \leq C(C_{\kappa,c}, K_{\phi}) \sum_{Q \in \mathcal{F}} \int_{Q} \phi_{n} \left(\sum_{P \in \mathcal{F}} \phi_{n}^{-1} \left(\int_{P} f(v) dv \right) \chi_{C_{\kappa,c}P} \right) (x) dx$$

$$\leq C(C_{\kappa,c}, K_{\phi}) \int_{\Omega} \phi_{n} \left(\sum_{P \in \mathcal{F}} \phi_{n}^{-1} \left(\int_{P} f(v) dv \right) \chi_{C_{\kappa,c}P} \right) (x) dx.$$

Using Lemma 2.7, we know

$$I_2 \leq C(C_{\kappa,c}, K_{\phi}) \int_{\Omega} \phi_n \left(\sum_{P \in \mathcal{F}} \left\{ \mathcal{M} \left[\left(\phi_n^{-1} \left(\int_{P} f(v) dv \right) \right)^{\frac{1}{2}} \chi_P \right] \right\}^2 \right) (x) dx.$$

By Lemma 2.4, we know $\phi_n \in \Delta_2 \cap \nabla_2$. Then $\phi_n(t^2) \in \Delta_2 \cap \nabla_2$ Applying Lemma 2.6 to q = 2 and $\psi(t) := \phi_n(t^2)$, we obtain

$$I_2 \leq CC(C_{\kappa,c}, K_{\phi}, a) \int_{\Omega} \phi_n \Biggl(\sum_{P \in \mathcal{F}} \Biggl(\phi_n^{-1} (\int_{P} f(v) dv) \Biggr) \chi_P \Biggr) (x) dx.$$

Let $a_P = |P|^{\frac{\beta}{n}} \oint_P f(v) dv$. For each $x \in \Omega$, by the increasing property of ϕ_n and the convexity of ϕ_n , we have

$$\phi_{n}\left(\sum_{P\in\mathcal{F}}\left(\phi_{n}^{-1}(a_{P})\right)\chi_{P}(x)\right) = \phi_{n}\left(\frac{\sum_{P\in\mathcal{F}}\chi_{P}(x)}{\sum_{P\in\mathcal{F}}\chi_{P}(x)}\sum_{P\in\mathcal{F}}\left(\phi_{n}^{-1}(a_{P})\right)\chi_{P}(x)\right)$$

$$\leq \phi_{n}\left(\frac{C_{\kappa,c}}{\sum_{P\in\mathcal{F}}\chi_{P}(x)}\sum_{P\in\mathcal{F}}\left(\phi_{n}^{-1}(a_{P})\right)\chi_{P}(x)\right)$$

$$\leq \sum_{P\in\mathcal{F}}\frac{\chi_{P}(x)}{\sum_{P\in\mathcal{F}}\chi_{P}(x)}\phi_{n}(C_{\kappa,c}\phi_{n}^{-1}(a_{P})).$$

Applying $\phi_n(tx) \ge t^{K_{\phi_n}-1}\phi_n(x)$ for all $t \in [1, \infty)$ and $x \in \mathbb{R}$. and $\chi_{\Omega} \le \sum \chi_Q$ as given in (i) above, one gets

$$\phi_n \left(\sum_{P \in \mathcal{F}} \left(\phi_n^{-1}(a_P) \right) \chi_P(x) \right) \le \sum_{P \in \mathcal{F}} \frac{C(C_{\kappa,c}, K_\phi)}{\chi_\Omega(x)} \phi_n \left(\phi_n^{-1}(a_P) \right) \chi_P(x)$$

$$\le C(C_{\kappa,c}, K_\phi) \sum_{P \in \mathcal{F}} \chi_P(x) a_P.$$

Using $\sum \chi_Q \leq C_{\kappa,c} \chi_\Omega$ again, one gets

$$I_{2} \leq C(C_{\kappa,c}, K_{\phi}, a) \int_{\Omega} \sum_{P \in \mathcal{F}} a_{P} \chi_{P}(x) dx$$

$$\leq C(C_{\kappa,c}, K_{\phi}, a) \sum_{P \in \mathcal{F}} a_{P} |P| = C(C_{\kappa,c}, K_{\phi}, a) \sum_{P \in \mathcal{F}} \int_{P} f(v) dv$$

$$\leq C(C_{\kappa,c}, K_{\phi}, a) \int_{\Omega} \phi \left(\frac{|\nabla u(v)|}{\lambda / C_{1}} \right) dv.$$

By the convexity, one has

$$I_2 \le \int_{\Omega} \phi \left(\frac{|\nabla u(v)|}{\lambda / C(n, C_{\kappa,c}, K_{\phi}, a)} \right) dv.$$

Combing the estimates I_1 and I_2 , we complete the proof.

3. Proof of Theorem 1.2 (II)

To prove Theorem 1.2 (ii), we need the following estimates and Lemmas which would be prove later.

Let $z \in \Omega$, $d(z, \partial \Omega) \le m < \operatorname{diam} \Omega$. Denote $\Omega_{z,m}$ by a component of $\Omega \setminus \overline{B_{\Omega}(z, m)}$. For $t > r \ge m$ with $\Omega_{z,m} \ne \emptyset$, define $u_{z,r,t}$ in Ω as

(8)
$$u_{z,r,t}(y) = \begin{cases} 0, & y \in \Omega \setminus [\Omega_{z,m} \setminus B_{\Omega}(z,r)] \\ \frac{|y-z|-r}{t-r}, & y \in \Omega_{z,m} \cap [B(z,t) \setminus B(z,r)] \\ 1, & y \in \Omega_{z,m} \setminus B_{\Omega}(z,t), \end{cases}$$

where $B_{\Omega}(z,t) = B(z,t) \cap \Omega$.

It's not difficult to know that $u_{z,r,t}$ is Lipschitz with the Lipschitz constant $\frac{1}{t-r}$.

Lemma 3.1. Let ϕ be a Young function. For any bounded domain $\Omega \subset \mathbb{R}^n$ and $z \in \Omega$ with $d(z, \partial\Omega) \le m < \dim \Omega$. For $t > r \ge m$, we have $u_{z,r,t} \in \dot{W}^{1,\phi}(\Omega)$ with

$$||u_{z,r,t}||_{\dot{W}^{1,\phi}(\Omega)} \le \left[\phi^{-1}\left(\frac{1}{|\Omega_{z,m}\setminus B(z,r)|}\right)(t-r)\right]^{-1}.$$

Proof. Noting that $u_{z,r,t}$ is Lipschitz with the Lipschitz constant $\frac{1}{t-r}$, then $\nabla u_{z,r,t}$ almost exists and $|\nabla u_{z,r,t}| \le \frac{1}{t-r}$. By the definition of $u_{z,r,t}$, we know $|\nabla u_{z,r,t}| = 0$ in $\Omega \setminus [\Omega_{z,m} \setminus B_{\Omega}(z,r)]$ and $\Omega_{z,m} \setminus B_{\Omega}(z,t)$. Hence

$$H:=\int_{\Omega}\phi\bigg(\frac{|\nabla u_{z,r,t}(x)|}{\lambda}\bigg)dx\leq\int_{\Omega_{z,m}\setminus B(z,r)}\phi\bigg(\frac{1}{\lambda(t-r)}\bigg)dx.$$

Letting $\lambda \ge \left[\phi^{-1}\left(\frac{1}{|\Omega_{z,m}\setminus B(z,r)|}\right)(t-r)\right]^{-1}$, we have $H \le 1$ as desired.

For $x_0, z \in \Omega$, let r > 0 such that $d(z, \partial \Omega) < r < |x_0 - z|$. Define

$$\omega_{x_0,z,r}(y) = \frac{1}{r} \inf_{\gamma(x_0,y)} \ell(\gamma \cap B(z,r)), \quad \forall y \in \Omega,$$

where the infimum is taken over all rectifiable curves γ joining x_0 and y.

Lemma 3.2. Let ϕ be a Young function. For any bounded domain $\Omega \subset \mathbb{R}^n$, $x_0, z \in \Omega$ and r > 0 satisfying $d(z, \partial\Omega) < r < |x_0 - z|$, we have $w_{x_0, z, r} \in \dot{W}^{1, \phi}(\Omega)$ with

$$\|\omega_{x_0,z,r}\|_{\dot{W}^{1,\phi}(\Omega)} \le C \left[\phi^{-1}(r^{-n})r\right]^{-1}$$

where $C \ge 1$ is depending only on n, ω_n and ϕ .

Proof. Let $\gamma_{x,y}$ be the segment joining x, y. Noting that $l(\gamma_{x,y} \cap B(z, r)) \le |x - y|$ for any $x \in \Omega$ and $y \in \Omega$, together with a curve $\gamma(x_0, x) \cup \gamma_{x,y}$ joining x_0, x , we have

$$\omega_{x_0,z,r}(y) \le \omega_{x_0,z,r}(x) + \frac{1}{r}|x-y|.$$

Similarly, $\omega_{x_0,z,r}(x) \leq \omega_{x_0,z,r}(y) + \frac{1}{r}|x-y|$. Therefore, we get $|\omega_{x_0,z,r}(y) - \omega_{x_0,z,r}(x)| \leq \frac{1}{r}|x-y|$, that is, $\omega_{x_0,z,r}$ is Lipschitz and $\nabla \omega_{x_0,z,r}$ exists with $|\nabla \omega_{x_0,z,r}| \leq \frac{1}{r}$.

Noting that $d(x, \partial\Omega) \le |x-z| + d(z, \partial\Omega) \le |x-z| + r$ for $x \in \Omega \setminus B(z, 6r), y \in B(x, \frac{1}{2}d(x, \partial\Omega))$, then we know

$$|y-z| \ge |x-z| - |y-x| \ge |x-z| - \frac{1}{2}(|x-z|+r) = \frac{1}{2}|x-z| - \frac{r}{2} \ge 3r - \frac{r}{2} \ge 2r.$$

that is, $B(x, \frac{1}{2}d(x, \partial\Omega)) \cap B(z, 2r) = \emptyset$. Let $\gamma_{x,y}$ is the segment joining x, y. Then $\gamma_{x,y}$ is in $B(x, \frac{1}{2}d(x, \partial\Omega))$. Moreover, $\gamma_{x,y} \subset \Omega \setminus B(z, r)$. For any curve $\gamma(x_0, x), \gamma(x_0, x) \cup \gamma_{x,y}$ joining x_0 and y, we get

$$l((\gamma(x_0, x) \cup \gamma_{x,y}) \cap B(z, r)) = l(\gamma(x_0, x) \cap B(z, r)).$$

So $\omega_{x_0,z,r}(y) \leq \omega_{x_0,z,r}(x)$.

Similarly, $\omega_{x_0,z,r}(x) \leq \omega_{x_0,z,r}(y)$. Hence $\omega_{x_0,z,r}(x) = \omega_{x_0,z,r}(y)$, $\forall x \in \Omega \setminus B(z,6r)$, $y \in B(x,\frac{1}{2}d(x,\partial\Omega))$. Since $\omega_{x_0,z,r}(x) = \omega_{x_0,z,r}(y)$ for any $x \in \Omega \setminus B(z,6r)$, $y \in B(x,\frac{1}{2}d(x,\partial\Omega))$ then $|\nabla \omega_{x_0,z,r}(x)| = 0$ for any $x \in \Omega \setminus B(z,6r)$. Hence

$$H := \int_{\Omega} \phi \left(\frac{|\nabla \omega_{x_0, z, r}(x)|}{\lambda} \right) dx = \int_{\Omega \cap B(z, 6r)} \phi \left(\frac{|\nabla \omega_{x_0, z, r}(x)|}{\lambda} \right) dx$$
$$\leq \int_{\Omega \cap B(z, 6r)} \phi \left(\frac{1}{\lambda r} \right) dx \leq \omega_n (6r)^n \phi \left(\frac{1}{\lambda r} \right).$$

If $\lambda = M \left[\phi^{-1} \left(r^{-n} \right) r \right]^{-1}$ with $M = \omega_n (6r)^n$, then $H \le 1$.

Lemma 3.3. Let $\phi \in \Delta_2$ be a Young function with $K_{\phi} < 2^n$ in (4) and a bounded domain $\Omega \subset \mathbb{R}^n$ supports the (ϕ_n, ϕ) -Poincaré inequality (3). Fix a point x_0 so that $r_0 := \max\{d(x, \partial\Omega) : x \in \Omega\} = d(x_0, \partial\Omega)$. Assume that $x, x_0 \in \Omega \setminus \overline{B(z, r)}$ for some $z \in \Omega$ and $r \in (0, 2 \operatorname{diam} \Omega)$, there exists a positive constant b_0 that x, x_0 are contained in the same component of $\Omega \setminus \overline{B(z, b_0 r)}$.

Proof. Let

 $b_{x,z,r} := \sup\{c \in (0,1], x, x_0 \text{ are contained in the same component of } \Omega \setminus \overline{B(z,cr)}\}.$

To get b_0 , it sufficient to prove $b_{x,z,r}$ has a positive lower bound independent of x,z,r. We may assume $b_{x,z,r} \le \frac{1}{10}$. Denote Ω_x as the component of $\Omega \setminus \overline{B(z,2b_{x,z,r}r)}$ containing x. If exists a constant $C \ge 1$ independent of x,z,r such that

(9)
$$\frac{r}{C}(\frac{1}{2} - 2b_{x,z,r}) \le |\Omega_x|^{\frac{1}{n}} \le C2b_{x,z,r}r,$$

we know $b_{x,z,r} > \frac{1}{4(C^2+1)}$ as desired. Set $c_0 = 2b_{x,z,r} < \frac{1}{5}$. Denote by Ω_{x_0} the component of $\Omega \setminus \overline{B(z,c_0r)}$ containing x_0 . Observing

$$r_0 \le \max_{y \in B(z, c_0 r)} |x_0 - y| \le r + c_0 r + d(x_0, B(z, r)) \le \frac{6}{5} r + d(x_0, B(z, r))$$

and

$$d(x_0, B(z, c_0 r)) > |x_0 - z| - \frac{1}{5} = d(x_0, B(z, r)) + r - \frac{1}{5}r = d(x_0, B(z, r)) + \frac{4}{5}r,$$

we obtain $d(x_0, B(z, c_0 r)) \ge \frac{r_0}{2}$, hence

(10)
$$B(x_0, \frac{r_0}{2}) \subset \Omega_{x_0} \subset \Omega \setminus \Omega_x.$$

Define

$$w(y) = \frac{1}{c_0 r} \inf_{\gamma(x_0, y)} \ell(\gamma \cap B(z, c_0 r)), \quad \forall y \in \Omega,$$

where the infimum is taken over all rectifiable curves γ joining x_0 and y.

By Lemma 3.2,

$$\|\omega\|_{\dot{W}^{1,\phi}(\Omega)} \le C \left[\phi^{-1}\left(\frac{1}{(c_0r)^n}\right)c_0r\right]^{-1},$$

together with (ϕ_n, ϕ) -Poincaré inequality (3), we know

$$||\omega - \omega_{\Omega}||_{L^{\phi_n}(\Omega)} \le C||\omega||_{\dot{W}^{1,\phi}(\Omega)} \le C\left[\phi^{-1}\left(\frac{1}{(c_0r)^n}\right)\right]^{-1}\frac{1}{c_0r}.$$

On the other hand, by (10), $y \in B(x_0, \frac{1}{2}r_0)$, $\omega(y) = 0$. Since Ω is bounded, $r_0 > 0$, we have $\frac{|\operatorname{diam} \Omega|}{r_0^n} \le C$. Using the convexity of ϕ_n ,

$$\int_{\Omega} \phi_n \left(\frac{|\omega(x)|}{\lambda} \right) dx \le \frac{1}{2} \int_{\Omega} \phi_n \left(\frac{|\omega(x) - \omega_{\Omega}|}{\lambda} \right) dx + \frac{|\Omega|}{2} \phi_n \left(\frac{|\omega_{B(x_0, \frac{1}{2}r_0)} - \omega_{\Omega}|}{\lambda} \right).$$

By the Jensen inequality,

$$\begin{split} |\Omega|\phi_n\bigg(\frac{|\omega_{B(x_0,\frac{1}{2}r_0)} - \omega_{\Omega}|}{\lambda}\bigg) &\leq |\Omega| \int_{B(x_0,\frac{1}{2}r_0)} \phi_n\bigg(\frac{|\omega(x) - \omega_{\Omega}|}{\lambda}\bigg) dx \\ &\leq \frac{|\Omega|}{|B(x_0,\frac{1}{2}r_0)|} \int_{\Omega} \phi_n\bigg(\frac{|\omega(x) - \omega_{\Omega}|}{\lambda}\bigg) dx \\ &\leq 2^n C^n \int_{\Omega} \phi_n\bigg(\frac{|\omega(x) - \omega_{\Omega}|}{\lambda}\bigg) dx. \end{split}$$

Hence

$$\int_{\Omega} \phi_n \left(\frac{|\omega(x)|}{\lambda} \right) dx \le C \int_{\Omega} \phi_n \left(\frac{|\omega(x) - \omega_{\Omega}|}{\lambda} \right) dx,$$

furthermore, we get

(11)
$$\|\omega\|_{L^{\phi_n}(\Omega)} \le C\|\omega - \omega_{\Omega}\|_{L^{\phi_n}(\Omega)}.$$

Since for any $y \in \Omega_x$, $\omega(y) \ge 1$,

$$\int_{\Omega} \phi_n \left(\frac{|\omega(x)|}{\lambda} \right) dx \ge \phi_n \left(\frac{1}{\lambda} \right) |\Omega_x|,$$

then we know

$$\|\omega\|_{L^{\phi_n}(\Omega)} \ge \left[\phi_n^{-1}\left(\frac{1}{|\Omega_x|}\right)\right]^{-1}.$$

Therefore,

$$C\phi^{-1}\left[\frac{1}{(c_0r)^n}\right](c_0r) \le \phi_n^{-1}\left[\frac{1}{|\Omega_x|}\right].$$

By $\frac{H(A)}{A} \le C \frac{1}{\phi(A)^{\frac{1}{n}}}$ in (6), letting $A = \phi^{-1} \left[\frac{1}{(c_0 r)^n} \right]$, we have

$$\frac{\phi_n^{-1}\left[\frac{1}{(c_0r)^n}\right]}{\phi^{-1}\left[\frac{1}{(c_0r)^n}\right]} \le C(c_0r),$$

that is,

$$\phi_n^{-1}\left[\frac{1}{(c_0r)^n}\right] \le C\phi_n^{-1}\left[\frac{1}{|\Omega_x|}\right].$$

By Lemma 2.4, $\phi_n \in \Delta_2$, and the fact $\phi_n(tx) \geq t^{K_{\phi_n}-1}\phi_n(x)$ for all $t \in [1, \infty)$ and $x \in \mathbb{R}$, we have $\frac{1}{(c_0r)^n} \leq C\frac{1}{|\Omega_x|}$ and

$$|\Omega_x|^{\frac{1}{n}} \le C(c_0 r).$$

For $j \ge 0$ with $\Omega_x \setminus \overline{B(z, c_j r)} \ne \emptyset$, define v_j in Ω as

$$v_{j}(y) = \begin{cases} 0 & y \in \Omega \setminus [\Omega_{x} \setminus B_{\Omega}(z, c_{j+1}r)] \\ \frac{|y-z|-c_{j}r}{c_{j+1}r-c_{j}r} & y \in \Omega_{x} \cap [B(z, c_{j}r) \setminus B(z, c_{j+1}r)], \\ 1 & y \in \Omega_{x} \setminus B_{\Omega}(z, c_{j}r), \end{cases}$$

Let $\Omega_{z,x} = \Omega_x$, $r = c_j r$ and $t = c_{j+1} r$, then $v_j(y) = u_{z,c_j r,c_{j+1} r}(y)$ where $u_{z,c_j r,c_{j+1} r}(y)$ is defined in (8). Applying Lemma 3.1, we have

$$||v_j||_{\dot{W}^{1,\phi}(\Omega)} \le C \left[\phi^{-1} \left(\frac{1}{|\Omega_x \setminus B(z,c_jr)|}\right) (c_{j+1}r - c_jr)\right]^{-1}.$$

Applying (9), we have $v_i(y) = 0$ for $y \in B(x_0, \frac{1}{2}r_0)$. Similarly to (11), we get

(13)
$$||v_j||_{L^{\phi_n}(\Omega)} \le C||v_j - v_{j_{\Omega}}||_{L^{\phi_n}(\Omega)}.$$

And $v_i(y) = 1$ for $y \in \Omega_x \setminus B_{\Omega}(z, c_i r)$, then we have

$$||v_j||_{L^{\phi_n}(\Omega)} \ge \left[\phi_n^{-1}\left(\frac{1}{|\Omega_x \setminus B_{\Omega}(z,c_jr)|}\right)\right]^{-1}.$$

By the (ϕ_n, ϕ) -Poincaré inequality (3), we know

$$\phi_n^{-1}\left(\frac{1}{|\Omega_x\setminus B_{\Omega}(z,c_jr)|}\right)\geq C\phi^{-1}\left(\frac{1}{|\Omega_x\setminus B(z,c_jr)|}\right)(c_{j+1}r-c_jr).$$

By $\frac{H(A)}{A} \le C \frac{1}{\phi(A)^{\frac{1}{n}}}$ in (6), letting $A = \phi^{-1} \left(\frac{1}{|\Omega_x \setminus B(z, c_j r)|} \right)$, we get

$$c_{j+1}r - c_jr \le C|\Omega_x \setminus B(z, c_jr)|^{\frac{1}{n}}.$$

Hence $c_{j+1} - c_j r \le C |\Omega_x \setminus B(z, c_j r)|^{\frac{1}{n}} \le C 2^{-\frac{j}{n}} |\Omega_x|^{\frac{1}{n}}$.

Now we prove that $\sup \{c_j\} > 1$. Otherwise, we have $c_j \le 1$ for all j. By $x \in \Omega \setminus \overline{B(x,r)}$, then there exists $\delta > 0$ such that

$$B(x, \delta) \subset \Omega \setminus \overline{B(x, r)} \subset \Omega \setminus \overline{B(x, c_0 r)}$$
.

By the connectivity of the $B(x, \delta)$, we have $B(x, \delta) \subset \Omega_x$. Then

$$B(x, \delta) \subset \Omega_x \setminus \overline{B(x, r)} \subset \Omega_x \setminus B(x, c_j r),$$

and

$$0 < |B(x, \delta)| \le |\Omega_x \setminus \overline{B(x, r)}| \le |\Omega_x \setminus B(x, c_j r)| = 2^{-j} |\Omega_x|.$$

Letting $j \to \infty$ we get a contradiction, hence $\sup\{c_j\} > 1$. So there exists c_j such that $c_j \ge \frac{1}{2}$. Let $j_0 = \inf\{j \ge 1 : c_j \le \frac{1}{2}\}$, then

$$\left(\frac{1}{2}-c_{0}\right)r\leq\left(c_{j_{0}}-c_{0}\right)r=\sum_{j=0}^{j_{0}-1}(c_{j+1}-c_{j})r\leq C\sum_{j=0}^{j_{0}-1}2^{-\frac{j}{n}}|\Omega_{x}|^{\frac{1}{n}}\leq 2C|\Omega_{x}|^{\frac{1}{n}}.$$

So $\frac{r}{C}(\frac{1}{2} - 2b_{x,z,r}) \le |\Omega_x|^{\frac{1}{n}}$. By the (12), we have

$$\frac{r}{C}(\frac{1}{2} - 2b_{x,z,r}) \le |\Omega_x|^{\frac{1}{n}} \le C2b_{x,z,r}r, \ C \ge 1.$$

Then $b_{x,z,r} \ge \frac{1}{4(C^2+1)}$, which implies b > 0.

Lemma 3.4. Let $s \in (0,1)$ and $\phi \in \Delta_2$ be a Young function with $K_{\phi} < 2^n$ in (4), a bounded domain $\Omega \subset \mathbb{R}^n$ supports the (ϕ_n, ϕ) - Poincaré inequality (3), then the Ω has the LLC(2) property, that is, there exists a constant $b \in (0,1)$ such that for all $z \in \mathbb{R}^n$ and r > 0, any pair of point in $\Omega \setminus \overline{B(z,r)}$ can be joined in $\Omega \setminus \overline{B(z,br)}$.

Proof. Fix x_0 so that $r_0 := \max(d(x, \partial\Omega) : x \in \Omega) = d(x_0, \partial\Omega)$) and b_0 is the constant in Lemma 3.3. Then we spilt into three cases to prove it.

Case 1. For $z \notin B\left(x_0, \frac{r_0}{8 \operatorname{diam} \Omega} r\right)$, we consider the radius r.

If $r > \frac{16(\operatorname{diam}\Omega)^2}{r_0}$, then $\forall y \in \overline{B\left(z, \frac{r_0}{16\operatorname{diam}\Omega}r\right)}$, we have

$$|y - x_0| \ge |z - x_0| - |z - y| \ge \frac{r_0}{16 \operatorname{diam} \Omega} r > \operatorname{diam} \Omega.$$

By $\Omega \subset B(x_0, \operatorname{diam} \Omega)$, we get $\Omega \cap \overline{B(z, \frac{r_0}{16 \operatorname{diam} \Omega} r)} = \emptyset$. Here, any pair of point in $\Omega \setminus \overline{B(z, r)}$ can be joined in $\Omega \setminus \overline{B(z, \frac{r_0}{16 \operatorname{diam} \Omega} r)} = \Omega$.

If $r \leq \frac{16(\operatorname{diam}\Omega)^2}{r_0}$ and $d(z,\partial\Omega) > \frac{b_0r_0}{32\operatorname{diam}\Omega}r$. When $z \notin \Omega$, then any pair of point in $\Omega \setminus \overline{B(z,r)}$ can be joined in $\Omega \setminus \overline{B(z,\frac{b_0r_0}{32\operatorname{diam}\Omega}r)} = \Omega$. When $z \in \Omega$, then $B\left(z,\frac{b_0r_0}{64\operatorname{diam}\Omega}r\right) \subset B\left(z,\frac{b_0r_0}{32\operatorname{diam}\Omega}r\right) \subset \Omega$. Similar to the process of proving $b_{x,z,r} > 0$ in Lemma 3.3, we know $\Omega \setminus \overline{B(z,\frac{b_0r_0}{64\operatorname{diam}\Omega}r)}$ is a connected set. Here, any pair of point in $\Omega \setminus \overline{B(z,r)}$ can be joined in $\Omega \setminus \overline{B(z,\frac{b_0r_0}{64\operatorname{diam}\Omega}r)}$.

If $r \leq \frac{16(\operatorname{diam}\Omega)^2}{r_0}$ and $d(z,\partial\Omega) \leq \frac{b_0r_0}{32\operatorname{diam}\Omega}r$. Let $y \in B\left(z,\frac{b_0r_0}{16\operatorname{diam}\Omega}r\right) \cap \Omega$. By $B\left(y,(1-\frac{b_0}{2})\frac{r_0}{8\operatorname{diam}\Omega}r\right) \subset B\left(z,\frac{r_0}{8\operatorname{diam}\Omega}r\right) \subset B(z,r)$, we know

$$\forall x \in \Omega \setminus \overline{B(z,r)}, x, x_0 \in \Omega \setminus \overline{B\left(y, (1 - \frac{b_0}{2}) \frac{r_0}{8 \operatorname{diam} \Omega} r\right)}.$$

By Lemma 3.3, x, x_0 are in the same component of $\Omega \setminus \overline{B\left(y, b_0(1 - \frac{b_0}{2}) \frac{r_0}{8 \operatorname{diam} \Omega} r\right)}$. By

$$\forall w \in B\left(z, \frac{b_0(1-b_0)r_0}{16\operatorname{diam}\Omega}r\right),\,$$

we have

$$|w - y| \le |w - z| + |z - y| < \frac{b_0(1 - b_0)r_0}{16\operatorname{diam}\Omega}r + \frac{b_0r_0}{16\operatorname{diam}\Omega}r = b_0\left(1 - \frac{b_0}{2}\right)\frac{r_0}{8\operatorname{diam}\Omega}r.$$

Then

$$B\left(z, \frac{b_0(1-b_0)r_0}{16\operatorname{diam}\Omega}r\right) \subset B\left(y, b_0\left(1-\frac{b_0}{2}\right)\frac{r_0}{8\operatorname{diam}\Omega}r\right),$$

and $\Omega \setminus \overline{B\left(y, b_0\left(1 - \frac{b_0}{2}\right) \frac{r_0}{8 \operatorname{diam} \Omega} r\right)} \subset \Omega \setminus \overline{B\left(z, \frac{b_0(1 - b_0)r_0}{16 \operatorname{diam} \Omega} r\right)}$. Here, any pair of point in $\Omega \setminus \overline{B(z, r)}$ can be joined in $\Omega \setminus \overline{B\left(z, \frac{b_0(1 - b_0)r_0}{16 \operatorname{diam} \Omega} r\right)}$.

Case 2. If $z \in B\left(x_0, \frac{r_0}{8 \operatorname{diam} \Omega} r\right)$, for any $x \in \Omega \setminus \overline{B(z, r)}$,

$$r - \frac{r_0}{8 \operatorname{diam} \Omega} r \le |x - z| - |x_0 - z| \le |x - x_0| \le \operatorname{diam} \Omega,$$

so

$$r \le \frac{\operatorname{diam} \Omega}{1 - \frac{r_0}{8\operatorname{diam} \Omega}} \le 2\operatorname{diam} \Omega.$$

Then

$$B\left(z, \frac{r_0}{8 \operatorname{diam} \Omega} r\right) \subset B\left(x_0, \frac{r_0}{4 \operatorname{diam} \Omega} r\right) \subset B\left(x_0, \frac{r_0}{2}\right) \subset B(x_0, r_0) \subset \Omega$$

Similar to the process of proving $b_{x,z,r} > 0$ in Lemma 3.3, we have $\Omega \setminus \overline{B\left(z, \frac{r_0}{8 \operatorname{diam} \Omega} r\right)}$ is a connected set. And by

$$\Omega \setminus \overline{B(z,r)} \subset \Omega \setminus \overline{B(z,\frac{r_0}{8 \operatorname{diam} \Omega} r)},$$

we know any pair of point in $\Omega \setminus \overline{B(z,r)}$ can be joined in $\Omega \setminus \overline{B(z,\frac{r_0}{8\operatorname{diam}\Omega}r)}$.

Combining above cases, we get the desired result with

$$b = \min \left\{ \frac{r_0}{16 \operatorname{diam} \Omega}, \frac{b_0 r_0}{64 \operatorname{diam} \Omega}, \frac{b_0 (1 - b_0) r_0}{16 \operatorname{diam} \Omega} \right\}.$$

Proof of Theorem 1.2(ii). Let $\Omega \subset \mathbb{R}^n$ be a simply connected planar domain, or a bounded domain that is quasiconformally equivalent to some uniform domain when $n \leq 3$. Assume Ω supports the $(\phi_{\underline{n}}, \phi)$ -Poincaré inequality.

By [7, 8], Ω has a separation property with $x_0 \in \Omega$ and some constant $C_0 \ge 1$, that is $\forall x \in \Omega$, \exists a curve $\gamma : [0,1] \to \Omega$, with $\gamma(0) = x, \gamma(1) = x_0$, and $\forall t \in [0,1]$, either $\gamma([0,1]) \subset \overline{B} := \overline{B(\gamma(t), C_0 d(\gamma(t), \Omega^{\complement}))}$, or $\forall y \in \gamma([0,1]) \setminus \overline{B}$ belongs to the different component of $\Omega \setminus \overline{B}$. For any $x \in \Omega$, let γ be a curve as above. By the arguments in [36], It suffices to prove there exists a constant C > 0 so that

(14)
$$d(\gamma(t), \Omega^{\complement}) \ge C \operatorname{diam} \ \gamma([0, t]), \ \forall t \in [0, 1].$$

Indeed, (14) could modify γ to get a John curve for x.

By Lemma 3.4, Ω has the LLC(2) property. Let $a = 2 + \frac{C_0}{b}$, where b is the constant in Lemma 3.4. For $t \in [0, 1]$. (1) If $d(\gamma(t), \Omega^{\complement}) \ge \frac{d(x_0, \Omega^{\complement})}{a}$, then

$$\gamma([0,t]) \subset \Omega \subset B\left(\gamma(t), \frac{ad(\gamma(t), \Omega^{\complement})}{d(x_0, \Omega^{\complement})} \operatorname{diam} \Omega\right).$$

So

diam
$$\gamma([0,t]) \le \frac{2ad(\gamma(t),\Omega^{\mathbb{C}})}{d(x_0,\Omega^{\mathbb{C}})}$$
 diam Ω .

and

$$d(\gamma(t), \Omega^{\complement}) \ge \frac{d(x_0, \Omega^{\complement})}{2a \operatorname{diam} \Omega} \operatorname{diam} \ \gamma([0, t]).$$

(2) If $d(\gamma(t), \Omega^{\complement}) < \frac{d(x_0, \Omega^{\complement})}{a}$, we prove that

$$\gamma([0,t]) \subset \overline{B(\gamma(t),(a-1)d(\gamma(t),\Omega^{\complement}))}.$$

Otherwise, there exists $y \in \gamma([0, t]) \setminus \overline{B(\gamma(t), (a-1)d(\gamma(t), \Omega^{\complement}))}$. By

$$|x_0 - \gamma(t)| \ge d(x_0, \Omega^{\complement}) - d(\gamma(t), \Omega^{\complement}) > (a - 1)d(\gamma(t), \Omega^{\complement}),$$

we know $x_0, y \in \Omega \setminus \overline{B(\gamma(t), (a-1)d(\gamma(t), \Omega^{\complement}))}$, by Lemma 3.4, x_0 and y are contained in the same complement of $\Omega \setminus \overline{B(\gamma(t), b(a-1)d(\gamma(t), \Omega^{\complement}))}$. Since $b(a-1) \geq C_0$, then x_0 and y are contained in the same complement of $\Omega \setminus \overline{B(\gamma(t), C_0d(\gamma(t), \Omega^{\complement}))}$, which is in contradiction with the separation property. Hence

$$\gamma([0,t]) \subset \overline{B(\gamma(t),(a-1)d(\gamma(t),\Omega^{\complement}))},$$

then

diam
$$\gamma([0, t]) \le 2(a - 1)d(\gamma(t), \Omega^{\complement}).$$

So

$$d(\gamma(t), \Omega^{\complement}) \ge \frac{1}{2(a-1)} \operatorname{diam} \ \gamma([0,t]).$$

Let $C = \min\left\{\frac{d(x_0, \Omega^{\mathbb{C}})}{2a \operatorname{diam} \Omega}, \frac{1}{2(a-1)}\right\}$, then (14) holds. The proof is completed.

Acknowledgment. The authors would like to thank Professor Yuan Zhou for several valuable discussions of this paper. The authors are partially supported by National Natural Science Foundation of China (No.) and GuangDong Basic and Applied Basic Research Foundation (Grant No. 2022A1515111056).

References

- [1] R. A. Adams. Sobolev spaces. Academic Press, 1975.
- [2] R. A. Adams. On the Orlicz-Sobolev imbedding theorem. *Journal of Functional Analysis*, 24(3):241–257, 1977.
- [3] A. Alberico. Boundedness of solutions to anisotropic variational problems. *Communications in Partial Differential Equations*, 36(3):470–486, 2010.
- [4] A. Alberico, A. Cianchi, L. Pick, and L. Slavíková. Fractional Orlicz-Sobolev embeddings. *Journal de Mathématiques Pures et Appliquées*, 149:216–253, 2021.
- [5] B. Bojarski. Remarks on Sobolev imbedding inequalities. In *Complex Analysis Joensuu 1987*, pages 52–68. Springer, 1988.
- [6] J. Boman. L^p-estimates for Very Strongly Elliptic Systems. Stockholms Universitet. Matematiska Institutionen, 1982.
- [7] S. Buckley and P. Koskela. Sobolev-Poincaré implies John. Mathematical Research Letters, 2(5):577–593, 1995.
- [8] S. M. Buckley and P. Koskela. Criteria for imbeddings of Sobolev-Poincaré type. *International Mathematics Research Notices (IMRN)*, 1996(18):881–901, 1996.
- [9] S. M. Buckley, P. Koskela, and G. Lu. Boman equals John. In *Proceedings of the XVI Rolf Nevanlinna Colloquium*, pages 91–99. W. de Gruyter, 1996.
- [10] A. Calderón. Lebesgue spaces of differentiable functions and distributions. In *Proc. Sympos. Pure Math*, volume 4, pages 33–49, 1961.
- [11] A. Cianchi. A sharp embedding theorem for Orlicz-Sobolev spaces. *Indiana University Mathematics Journal*, pages 39–65, 1996. Publisher: JSTOR.
- [12] A. Cianchi. A fully anisotropic Sobolev inequality. *Pacific Journal of Mathematics*, 196(2):283–294, 2000.
- [13] A. Cianchi. Optimal Orlicz-Sobolev embeddings. Revista Matemática Iberoamericana, 20(2):427–474, 2004.
- [14] A. Cianchi. Higher-order Sobolev and Poincaré inequalities in Orlicz spaces. *Forum Mathematicum*, 18(5):745–767, 2006.
- [15] A. Cianchi and V. Maz'ya. Sobolev inequalities in arbitrary domains. *Advances in Mathematics*, 293:644–696, 2016. Publisher: Elsevier.

- [16] D. V. Cruz-Uribe, J. M. Martell, and C. Pérez. *Weights, extrapolation and the theory of Rubio de Francia*, volume 215. Springer Science & Business Media, 2011.
- [17] B. Dyda, L. Ihnatsyeva, and A. V. Vähäkangas. On improved fractional Sobolev-Poincaré inequalities. *Arkiv för Matematik*, 54(2):437–454, 2016. Publisher: Springer.
- [18] D. E. Edmunds, R. Kerman, and L. Pick. Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. *Journal of Functional Analysis*, 170(2):307–355, 2000. Publisher: Elsevier.
- [19] D. Gallardo. Orlicz spaces for which the Hardy-Littlewood maximal operator is bounded. *Publicacions Matematiques*, pages 261–266, 1988. Publisher: JSTOR.
- [20] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, volume 224. Springer, 1977.
- [21] A. Gogatishvili, P. Koskela, and Y. Zhou. Characterizations of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces. *Forum Mathematicum*, 25(4):787–819, 2013.
- [22] L. Grafakos. Classical Fourier Analysis, volume 2. Springer, 2008.
- [23] L. Grafakos. Modern Fourier Analysis, volume 250. Springer, 2009.
- [24] P. Hajłasz. Sobolev inequalities, truncation method, and John domains. *Rep. Univ. Jyväskylä Dep. Math. Stat.*, 83:1096–126, 2001.
- [25] T. Heikkinen and H. Tuominen. Orlicz-Sobolev extensions and measure density condition. *Journal of Mathematical Analysis and Applications*, 368(2):508–524, 2010.
- [26] R. Hurri-Syrjänen and A. V. Vähäkangas. On fractional Poincaré inequalities. *Journal d'Analyse Mathématique*, 120(1):85–104, 2013.
- [27] P. W. Jones. Extension theorems for BMO. Indiana University Mathematics Journal, 29(1):41-66, 1980.
- [28] P. W. Jones. Quasiconformal mappings and extendability of functions in Sobolev spaces. *Acta Mathematica*, 147:71–88, 1981.
- [29] A. Jonsson and H. Wallin. A Whitney extension theorem in L^p and Besov spaces. In *Annales de l'institut Fourier*, volume 28, pages 139–192, 1978.
- [30] A. Jonsson and H. Wallin. Function spaces on subsets of \mathbb{R}^n . *Mathematical Reports*, 2(1):221, 1984.
- [31] R. Kerman and L. Pick. Optimal Sobolev imbeddings. Forum Mathematicum, 18(4):535–570, 2006.
- [32] G. Leoni. A first course in Sobolev spaces. American Mathematical Society, 2017.
- [33] T. Liang. Fractional Orlicz–Sobolev extension/imbedding on Ahlfors *n*-regular domains. *Zeitschrift für Analysis und ihre Anwendungen*, 39(3):245–275, 2020.
- [34] T. Liang. A fractional Orlicz-Sobolev Poincaré inequality in John domains. *Acta Mathematica Sinica*, 37(6):854–872, 2021.
- [35] T. Liang and Y. Zhou. Orlicz-Besov extension and Ahlfors *n*-regular domains. *SCIENTIA SINICA Mathematica*, 51(12):1993–2012, 2020.
- [36] O. Martio. Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Math. Diss. Ser. A, 14:384–401, 1978.
- [37] O. Martio. John domains, bi-Lipschitz balls and Poincaré inequality. *Rev. Roumaine Math. Pures Appl*, 33(1-2):107–112, 1988.
- [38] Y. G. Reshetnyak. Integral representations of differentiable functions in domains with a nonsmooth boundary. *Sibirskii Matematicheskii Zhurnal*, 21(6):108–116, 1980.
- [39] E. M. Stein. Singular integrals and differentiability properties of functions, volume 2. Princeton university press, 1970.
- [40] H. Sun. An Orlicz-Besov Poincaré inequality via John domains. *Journal of Function Spaces*, 2019:5234507, 2019.
- [41] Y. Zhou. Criteria for optimal global integrability of Hajłasz-Sobolev functions. *Illinois Journal of Mathematics*, 55(3):1083–1103, 2011.
- [42] Y. Zhou. Hajłasz-Sobolev imbedding and extension. *Journal of mathematical analysis and applications*, 382(2):577–593, 2011.

Shangying Feng, Department of Mathematics, Beijing Normal University, Beijing 100191, P.R. China; *Email address*: 202021130044@mail.bnu.edu.cn

Tian Liang, School of Mathematics and Statistics, Huizhou University, Guangdong 516007, P.R. China *Email address*: liangtian@hzu.edu.cn