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Abstract

We persist in our investigation of the sup-completion of a Dedekind
complete Riesz space, extending to the broader context of Riesz spaces.
some results initially obtained by Feng, Li, Shen, and also by Erdos,
and Rényi.

1 Introduction

In this paper, we continue our investigation of the sup-completion of a
Dedekind complete Riesz space started in [3]. We delve deeper into the
decomposition of finite and infinite parts, initially introduced in [3], and fur-
ther investigate the properties elucidated in that study. Within our work, we
introduce a new concept that we call the ‘star map’ as a pivotal construct
necessary for generalizing results from measure theory or classical stochastic
theory to the domain of Riesz spaces. As we encounter instances where we
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seek to apply an inverse operation amidst dealing with non-invertible ele-
ments, we address this issue by introducing the notion of a ’partial inverse’.
While briefly discussed in our previous work [3], this concept will be sys-
tematically explored here with comprehensive details. Consider a Dedekind
complete Riesz space X with a weak order unit, denoted by e. Then the uni-
versal completion X* of X has a natural structure of an f-algebra, where e
serves as the identity element. Each element x in X functions as a weak unit
within the band B, generated by z in X*“. Consequently x has an inverse in
that band, referred to as the partial inverse of x. If x is a positive element in
the cone X7, where X* denotes the sup-completion of X, we denote by z*
the partial inverse of its finite part z/. This partial inverse is also recently
used by Roelands and Schwanke in [10] and they adopted the same notation.
It is also used in [9] to develop a Hahn-Jordan theorem in Riesz spaces. Our
motivation here is to get a Riesz space version of a result obtained by Feng,
Li and Shen in [7]. A weaker form of this result was obtained earlier by Erdés
and Rényi in [6] that allows to get a generalization of Borel Cantelli Lemma.

Let us give a brief outline of the content of the paper. Section 2 provides
some preliminaries. Sections 3 and 4 are devoted to present new results
concerning the sup-completion of a Dedekind complete Riesz space. In the
first part we investigate finite and infinite parts. The second part deals with
partial inverses of elements of X*®. We introduce that map x — x* where z*
is the inverse of 2/ in the band B,;. Then we prove under some conditions
that if (z,) converges to x in order then z¥, converges in order to z*. In the
last section we apply our results to obtain a generalization of a theorem of
Feng, Li and Shen to the setting of Riesz spaces. The reader is referred to
[5] for the definition of the sup-completion, a fundamental concept in this
paper, and to the papers [2] and [3] for more informations of that notion. All
unexplained terminology and notation concerning Riesz spaces can be found
in standard references [1], [12] and [11].

2 Preliminaries

We consider a Dedekind complete Riesz space X. We employ X* to represent
its universal completion, while its sup-completion is denoted by X?. Recall
that X? is a lattice ordered cone that contains X, and which has a greatest
element that we denote by oco. If B is a band in X then its sup-completion
B? is contained in X* (see [2 Theorem 6]) and its greatest element will



be denoted by cop. More about the space X* can be found in [2, B]. We
denote by B (X) the Boolean algebra of projection bands in X. To a band
B € B (X)) we associate the band projection Pg on B and we use the notation
P? = ] — P for any band projection P. We shorten Pg, to P,, with B,
denoting the principal band generated by x. It should be noted that this
notion can be extended in a natural manner to elements in X*°. It was shown
indeed in [2, Lemma 4] that if we define 7, (a) = sup (a A nx) for a in X3 and

Ty (a) = my (a*) — 1, (a7) for a € X, then 7, is the band projection Py, ().
We will simply write P, = Py () and B, = R(F,) the range of P,. Notice
that for every x € X* we have x 4+ oo = oo. In particular; if B is a band
then for every x € B, x + oo = copg. For x € X*® we can define its positive
and negative parts as ¥ =2 V0 and 2= = —(z A0). Then 27 — 2~ = .
(The formula a Ab+a Vb= a+bis still true in X*). These parts can be
characterized by the following property: if z = a — b with a,b € X3 and
aAb=0, then a = 2% and b = ™. Indeed we have

t=2v0=(a—b)V0=aVb—b=a+b—b=a.
Now as bAa =0bAxt =0 the equality
P+:E—Pf+ (:)3+—x_) :Pg+ (a—b)

gives b = x~ as well. Recall that tow elements in X3 are said to be disjoint
and we write v Ly if x Ay =0.

Lemma 1 Let (z,), (ya) be two nets in X3 such that (o) L (yo). Then the
following statements hold.

(i) \a/(:ca + Ya) = \a/xa + \a/ya and {1\(% + Ya) = {J\xa + {x\ya;
(ii) imsup(za + ya) = limsupz, + limsupy, and liminf(z, + ya) =
liminf z, + lim inf y,,.
Proof. Put x = \/[L’a and y = \/ya. It follows from [3| Lemma 11.(iii)], that
\/:)sa A \/ya — 0 and hence Px+y P, + P,
(i )The inequality z +vy > \/ (Za + Ya) is obvious. On the other hand we
have \/ (2o + ¥o) > « and \/ (ma + Ya) >y, which gives

V(zo +ya) >xVy=x+y,
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where the last equality holds because x A y = 0.
For the second part we have clearly

/\(Zlfa + yOé) Z /\xOm /\yon

and then as A z, and )\ y, are disjoint we get

/\(Zlfa +yo¢) > /\Zlﬁ'a + /\ya,

On the other hand we have

P:c /\(xa + yoe) S 1’57
for all 5 and then P, A(zq + yo) < A zo. Similarly we get Py A(zq + ya) <
)\ Yo and so

/\(ma"‘ya) :Pm/\(xa+ya)+Py/\(xa+ya) < /\xa"‘/\yaa

«

which ends the proof of (i).

(ii) This follows easily from (i). m

The above lemma is not valid if we have only z, L y, for each a. Take,
for example, X = R?, z; = (1,0) = yo and x5 = (0,1) = y;.

The following lemma gives another case when equalities in Lemma [Il (i)
hold.

Lemma 2 Let (24),c4 and (Ya) e 4 be two decreasing nets in X35 then inf(z,+
Yo) = inf z, + inf y,.

Proof. We will make use of [(ii) where the equality is proved if one of the
nets is constant. First observe that the inequality

inf(z, + yo) > inf(z,) + inf(ys)
is quite obvious. Fix § in A. Then for any o > 3 we have
. _ . <
f (%o + ya) = Inf (2 +ya) < i0f (20 +y5)

= inf = inf .
(gﬁxa‘l‘yﬁ élelAIaﬂLyﬁ



Hence
inf(zq + ya) < ilﬁlf (inf, 2o + yp) = inf(z,) + inf(yg).

This completes the proof. m

Lemma 3 Let (2,),c4 be a net in X3 and (By),c, @ net in B(X) such
that x, € BE for every a € A. Then sup x,, € (sup B,)’, inf z,, € (inf B,)”,
limsup z, € (limsup B,)® and liminf z, € (liminf B,)’.

Proof. The statements are obvious if z, € X for every o € A. Now let
y be fixed in X, and observe that y A z, € B, for all a. So y A supz, =
sup (y A x,) € (sup B,)®. As this happens for each y € X, we get supz, €
(sup B,)®. The proof of the other results is similar. =

Remark 4 If {z,:«a € A} is a subset of X5 and y € X3 then supyz, =
acA

ysup z, holds in X3. This follows from [3, Lemma 24] when A is finite and
acA

then holds for arbitrary subsets using [3, Lemma 23]. It should be noted that
a similar formula for infimum fails in general (see Lemma [11] below).

3 More about finite and infinite parts

We develop in this section some material concerning the space X?, the sup-
completion of X, that are needed to prove our results in Section These
results can be interesting in their own right.

Let X be a Dedekind complete Riesz space with weak order unit e. It was
shown in [3] that every element y € X7 has a decomposition:

y=y' +y*eX",
where y* is the largest element in B* for some band B in X and y/ € B%
It is easy to see that 2°° < y> whenever x <y in X7, but it is not the case
for the finite parts in general. Consider for example z = (1,1) <y = (1, 00)
in (R?)”.
We would like to note this useful point for further reference.



Remark 5 FElements of X3 of the form x> are characterized by the following
property:
0<a<z2®=na<z™ foralln € N.

Additionally, it is noteworthy to observe that if P = Pg is a band projection
such that Px = oo and P%x € X% then Pz = x> and P = z/.

Lemma 6 Let X be a Dedekind complete Riesz space and x,y € XI. Then
the following statements hold.

(i) (x+9)° =2 +y>° and (x+y) <zl +yf with equality if = and y
are disjoint.

(ii) (zVy)® = 2®°Vy™ = 24y and (z Vy) = PloalVPLyl < alvyl.
1) (xANy) =2 ANy>* and (x Ny) =z Ny +27 ANy + x> Ny’.

() (x.9)° = zf y® + 2=yl + 229> and (zy)’ = 27y/. In particular, if
x € XY then (zy) = 2y’ and (zy)™ = zy™.

Proof. Let B be the band generated by x> 4 y*°, so that cop = x> +y* =
x>V y>°, and let P be the corresponding band projection.
(i) Clearly, P (z +y) = P* (2/ +y/) € X*, and then

P(z+y) > 2> +y>* = cop.
So P(x +y) = 2™ +y>* = cop and then 2°° + y® = cop = (v + y)™ and
(z+y) =P (af +y7) = Ploal + Py’ <o/ +47.
(ii) Again as cop > P (z Vy) > 2™V y™ = cop we get
oop=P(zVy)=z>*Vy>.
On the other hand

Pl(zvy) =PV Ply=Pla/ v Plyl = PLoal v PLyl € X

This shows that

cop = (z+y)*° =(zVy)™, and (zVy) = Phal v Pyl

6



If # Ly then 2/ 4+ y/ L 2 + y> and then
Pl +yl) =2l + 4.
(iii) It follows from [3| Lemma 12] that
Ay =a° Ay® +af Ay® + a2 Ayl + 2l Ayl

Considering z°° Ay is infinite (unless zero) and z/ Ay>® +2>° Ayl +2f Ay/ is
finite, mutually disjoint, they are likely the infinite and finite parts of x A y.
(iv) The proof is similar. =

Remark 7 As mentioned earlier the map x —— x° is increasing on X3,
whereas the map v — xf is not. However, there is an important case
where the implication: * <y = x/ < y/ holds true. This occurs when the
difference is finite: If y = v+a with a € X and x <y, then vl <yl Indeed
we have

:c:yoo—l—yf—a:yoo—i—yf—Pyooa—PyClooa:yoo+yf—PyClooa.

But as yf—P;ooa S B;loo, we deduce from the uniqueness of the decomposition
[3, Theorem 15] that x/ = y/ — Pl.a <yl

Remark 8 (i) It is well known that for every z,y € X, we have By, =
Byny = B, N By. This formula is still valid when x,y € X{. This can be
shown by taking two nets (x,) and (yo) in X such that x, T x and y, T y.
(i) It was shown in [3, Proposition 25] that if x € X5 and B is a projection
band then cop.x = oOp,, = 00Opnp,. In particular, if B C B, we have
XOR.T = XOR.

Proposition 9 Let (z4),c4 be a net in X° and let y € X°. Then the fol-
lowing statements hold.

(1) sup(y + o) = Y + sup z,.
(i1) If (o) is order bounded from below in X*, then inf(y+x,) = y+inf z,.

(111) limsup(y + z,) = y + lim sup x,.



() If (x) is order bounded from below in X*°, then
liminf(y 4+ z,) = y + liminf z,.

Proof. (i) This is a particular case of [3, Property (P8)].
(ii) The inequality y + inf z, < inf (y + z,) is obvious. For the converse

assume first that y € X*. Then by the first inequality
—y +inf (y + z,) < infa,,
and so
inf (y + z,) = y + inf z,.

This shows the result for this particular case. Moreover, as (24),c4 is order
bounded from below we can assume without loss of generality that (74),c 4
and y are in the positive cone X3 . We treat now the case y = oop for some
band B. Let P denotes the corresponding band projection. Then from the
inequality

igf(:cajLooB) < x5+ o0op, B e A,

we deduce that
P igf(a:a +00p) < Plag < xp.
As this happens for every J we get
P iglf(xa + oop) < igf Ty
Now observe that

inf(z, + oop) = Pdinf(xa + ocop) + Pinf(z, + cop) < inf z, + 0op,

which shows the second inequality. Finally the general case can be derived
by employing the decomposition y = y/ 4+ y> in the following way:

inf(y + z,) = y™ + inf (yf +3,) =y™ + y! +inf (z4) = y + inf z,.
(iii) and (iv) can be deduced easily from (i) and (ii). m
It follows from [3, Theorem 5] that if (z,) and (y,) are two nets in X?

such that z, Tz and y, Ty in X* then (¥4 +Ya), T = +y (apply (i) to the
map X x X — X; (z,y) — z +y).
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Proposition 10 Let (x,) and (y,) be two nets in X*® that are bounded from
below. Then the following statements hold.

(i) liminf z, + liminf y, < liminf (z, + y,) < liminf z, + lim sup y,
(i) limsup (z4 + yo) < limsup z, + lim sup y,.

(#ii) If limy, exists then liminf (z, + y,) = liminf z, + lim y,.

Proof. (i) We will make use of Lemma[@l We have for all g > 6,

inf z, 4+ inf y, < inf (x4, + y,) < inf | 2, + sup ¥,
a>p azp” aZB( Yo) aZB( az%y )

= inf x4 +sup y, < liminf z, + sup y,.
a>p a>0 a>0

Taking the supremum over [, we obtain

liminf(z,) + liminf(y,) < liminf(z, + yo) < liminf z, 4 sup y,.
a>0

Then taking the infimum over 6 and using Proposition [0 we get the desired
inequalities.
(ii) We have for each S,

SUp (Zo + Ya) < SUP Ty + SUDP Yo
a>p a>f azf

Then, taking the infimum over § an using Lemma Pl we get the desired
inequality.
(iii) This is an easy consequence of (i). =

Proposition 11 Let (z,) be a net in X3

1, u€ X and B € B(X). Then
the following statements hold.

(1) If u> € B; then

info o

inf ux, = winf z,.
(0% (0%
In particular we have:

(a) If B C Bints, then inf(copz,) = cop.inf z, = cop.



(b) If u € X then igfu:za = uigfa:a.

(i1) If u™ C Bjigupa, then limsup(uz,) = ulimsup (z,) . In particular, if

B C Biimsup(z,) then limsup(z,00p) = coplimsup (z,) .

(#i) If u>*° € Biminfe, then liminf(uz,) = wliminfz,. In particular, if
B C Bliminfxa then

liminf(copz,) = ocopliminf (z,) = cop.

Proof. (i)(a) Assume first that B C Biy¢,,. Then copinf z, = cop = coprp
for each 8 € A. Thus the formula

inf(x,00p) = copinf z, = cop
holds.
(b) Assume now that v € X%. The inequality inf (uz,) > uinfz, is

obvious. For the converse let z € X such that z < inf,(uz,). Then
2 € By, C By = By. Hence u*z < w*ux, < xz, for every a. It follows
that v*z < inf 2, and then z = v.v*z < winf, z,. From this we deduce the
inequality inf, (uz,) < winf, z,.

(¢) The general case. Assume now that u € X*. Since (u/z4)0 L (4™®24)q
it follows from Lemma [Il and cases (a) and (b) that

inf(ux,) = inf(ufz,) + inf(u™®x,)

= o/ inf(z,) + u™ inf(z,) = winf(z,),

as required.
(ii) We have for each § € A,

sup(xaooB) = 00pB- Sup(xa) = O0B-
a>f a>f

Since B C Biimsupz, it follows by (i) that
oo limsup(z,) = ocop inf (sup(a:a)) = inf (ooB.sup(xa))
a B \axp B a>p
= limsup(z,.00p) = 0op.

«
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The general case can be deduced in a similar way as in (i).

(iii) Assume first that u = oop for some B C Bj, i, . One inequality
is obvious as liminf (copz,) < cop = oogliminf z,. To prove the converse
let us put ug = u iI>lfBZL'a for B € A. Then ug 1 ocop. So for every v > f3,

ug € Binf 5, It follows in view of (i) that

>y

inf ugxr, = ug inf x, = ug.
azy azy

By taking the supremum over v we get
ug = liminf ugz, = sup inf ugx, = sup ug inf z,
a o az>y B azf

= ugsup inf x, = ugliminf z,,.
B a>f «

Taking the supremum over § we get

oop = oopliminf z, = sup lim inf ugz, < liminf copz,.
(0% (0% (0%

This proves (iii) in that special case. The general case can be deduced as in

(i). m

Remark 12 In Proposition[1d, the condition B C By, », can not be dropped
as the following example can show. If X =R, u =00 and z, =n~', n > 1,
then oo = infaxr, # winfx, = 0. But it is useful to note the following
inequality igf (ury) < u™ +ulinf z,.

Lemma 13 Let (Ta),c4 s (Ya)uea be two nets in X7. Then

lim sup (Z4¥ya) > limsup z,, lim inf y,,.
acA acA acA

If, in addition, (supa>6 :)sa)oo € Byt ., for some B and (hminfya) €
B then

a>p
limsup zq
liminf (z4y,) < limsup z,. liminf y,,.
« o o
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Proof. Fix 8, in A with 8 > ~. Then we have for each 6 > 3,

Sup (Ta¥Ya) = ToYe = Tg mf Yar-
a>f

According to Remark [ we have

SUp (Ta¥a) = SUp (TalYa) > sup (:Ee inf ya)
azy a>p 0> azf

= sup xy. inf y, > limsup z,. mf Yo
>3 a>p

Taking the supremum over 3 we get

sup (Ta¥Ya) > Sup (lim sup . inf ya) = lim sup z,. lim inf y,,.
azy Bz azf

From this we derive the inequality
lim sup (Z4Ya) > limsup z,. liminf y,,.

(i) Assume now (Sup,ssa) . € B3 for some 8 € A. Then

1nf Yo

(SuprZ’Y I’O‘) = Blnf Yo for every V= B

a>y

Now for 8 > v > 3 we have

inf (zaya) < yosup q.
azy a>y

It follows that

inf (z,ys) < inf (yg. sup xa) 1nf Yg. Sup T, < liminf y,. sup z,.
azy 0>~

a>y 0>y a>y a>y

where we have used [I1l(i) in the equality above. For a fixed v we have for
every 0 > v,

inf (z4ya) < 1nf (Za¥a) < liminf y,.sup z,.
azy Z a>6

12



Now taking the infimum over § > v and using again Lemma [1(i) we get

inf (z,y,) < inf (lim inf y,. sup xa) = lim inf y,. lim sup z,.
azy B2y a>p

as required. m

We conclude this section with a brief discussion on Boolean algebras.
Recall that a Boolean algebra is a distributive lattice A with smallest and
largest elements that is complemented. The latter means that for every
element a € A there exists a (necessarily unique) element a’ such that aAa’ =
0 and a V d = 1, where 0 denotes the smallest element of A and 1 its
largest one. The Boolean algebra A is said to be Dedekind complete if every
nonempty subset has a supremum.

Consider a Dedekind complete Riesz space X with weak order unit e.
Three crucial Boolean algebras in this context are isomorphic. The two first
are familiar: the set C (e) consisting of all components of e, and the set of all
band projections B (X). These are isomorphic through the mapping:

Cle) — B(X); ur— B,.

It should be noted that this map preserves suprema and infima. Specif-
ically, for any set {p, : @ € A} of components of e, sup By, = Bsupp, and
inf B, = Binfp,. Observe that the first formula remains valid for general
sets, the second, however, fails in general. The third noteworthy Boolean
algebra of interest is similarly isomorphic to the aforementioaned ones. It is
intricately associated to the space X* as it is consisting of infinite parts of
positive elements within X*. Let us employ the following notation to repre-
sent it:

0o (X)={2":2€ X} ={oop:BeB(X)}.
The following result tells us that oo (X) is isomorphic to B (X).
Proposition 14 Let (B,),.4 be a net in B(X). The following hold.

(i) 1lgf 00p, = OOinfB, ANd SUP 00, = OOsup B, -
« o o
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(ii) liminf (cop,) = OOlminf, B, and limsup (00p,) = OOlimsup, Ba -
(i1i) The map ¢ : B(X) — {oop: Be€ B(X)}; B — oop is an order

continuous Boolean algebra isomorphism.

Proof. (i) The inequality A, ocop, > ooa.p, is evident. Conversely, if
z € [/\aooBa]S, then z < oop, for every «, so z € B, for every «, and
consequently z € A, B,. Therefore z < oou,p,, establishing the desired in-
equality. For the second result, it is clear that if F' is finite then

SUp 00p, = OOsup By -
ack acF

Now it is sufficient to observe that

supoop, = Sup Supoog,,
« F finite CA a€F
and
Osup Bo — sup O sup Ba-
o F finite CA a€eF

(ii) is an immediate consequence of (i).
(iii) The fact that ¢ is an isomorphism is quite clear, and since it respects
infinite suprema and infima, it is order continuous by (i) and (ii). =

4 The star map

According to [8, Theorem 5] any universally complete Riesz space X with
weak unit e is von Neumann regular (that is, for every a € X there exists
b € X such that a = a?b ) and it is not difficult to deduce from this result
that any order weak unit element is invertible (see for example [10, Remark
3.3]). Here, we present a concise proof of this result employing the concept
of sup-completion.

Lemma 15 Let X be a universally complete Riesz space with weak unit e,
which is also an algebraic unit. Then every weak unit x has an inverse in X.

14



Proof. Assume first that + € X ;. We know by [12] Theorem 146.3] that

1
x + —e is invertible. Let y, denotes its inverse. Then v, is increasing and if
n

we put y = supy, € X we have

1 1
(SL’ + —6) Yn = TYp + —Yy = €. (*>
n n

In particular, zy, < e. By taking the supremum over n we get xy < e. As
x is a weak unit we get y> = 0, that is, y € X. Now taking the limit as
n —> oo in (%) we obtain zy = e and we are done.

For the general case we write © = 27 —27. So (¢ — 27 )y = e. Write
a = P,+y and b = P,-y. Then

e= (2" —27) (a+b) =azt — bz,

So x (a — b) = e and we are done. =
For every y € X the band B, in X generated by the finite part of y is
a universally complete Riesz space with unit p = P re. The inverse of y/ in
the band B,s will be denoted by y*. Thus we have the following:
yy* — y*y — 6yf f— eByf = nye‘

In particular By~ = B,s C B,,.
We list now some useful properties of the map x —— x* defined from X*
to X™.

Proposition 16 Let X be a Dedekind complete Riesz space and x,y € X°.
Then the following hold.

(i) 0* = oo}y = 0 for every band in X.
(i) (\x)" = X~tz* for every real \ # 0.

(iii) If x L y, then x* L y* and (z +y)* = «* + y*. In particular, |z|* =
()" + (27)" and (Qx)" = Qx* for every band projection Q.

(iv) (xy)" = 2*y* € Byryr = Byepys.

(v) (2P)" = (z*)" for x € X% and p > 0.

15



(vi) If 0 < = < y and P is a band projection such that P < P,. Then
Py* < Px*. In particular Py* < z*.

Proof. We will show only the last property. Multiply the inequality z <y

by y*x*, yields
Ppy* < Ppx® <z’

Furthermore, as < y, we have 2> L ¢/, implying P,~y* = 0. Now, given
that P < P, = P« + P,~, we deduce that
Py* < Ppy* + Pyoy™ = Ppyf®,
and then
Py* < PP,.y* < PPjx* < Pa".
Thus, the desired inequality is established. m

Lemma 17 Let (24)aca be a net in XY and x € X° such that x T , then
rt =2 o X

Proof. It is enough to prove the following inequalities:
limsup 2z}, < 2" <liminf ).

According to Lemma [I6] we infer from the inequalities z, < = (for a € A)
that
P, x" <.

Since the net (z,) is increasing, this implies that
P,z" = 2" <liminf . (1)
On the other hand we have by Lemma [Tl (iv) Pyl < aj for all « > 3. So

limsup P, x;, = Py, limsup x;, < zj.
Multiplying the above inequality by 3, we obtain

xplimsup x}, < xﬁx}’; < e.

16



Taking the supremum over [ yields
xlimsup ), <e. (2)

In particular, x> limsup 2} < e, implying > L limsupx}. As limsup z,
belongs to B, we have

limsup x, = P, limsup z}, + P,s limsup x}, = P, limsup z,.
Thus (2)) implies that
limsup z}, = Py« limsup 2}, = 2"z limsup z}, < 2. (3)
Now, combining () and (@), we conclude that z¥ —>+ z* in X*. m

Proposition 18 Let (24),c4 @nd (Ya)eq be two sequences in X such that
To T 1w and yo Ty in X° and 22 < yo for all a. Then zoy’ —= xfy* in Xv.

Proof. According to Lemma [I7] we have that
yr 25y in XM (4)
Moreover, from the inequality 22 < v, it follows that
Taln = €rxoTaln < Th.

Notably, the sequence (z,y}) is order bounded in X™. Now as x, T x we have
erTo T2/ € X" and thus

Pptq —2 2l in X (5)

As the product is order continuous in X* we derive from (4] and [B that
Py (2,y%) — xfy* in X“. In particular

oy = limsup (Ppe (20y)) = Po limsup (2,y7) (6)
= liminf (Pp (249%)) = Py liminf (z,y7) .

To conclude our proof observe that both limsup (z,y%) and liminf (z,y%)
belong to the band B,« in X", enabling us to simplify (@) by removing P,
from the right side members. m
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Lemma 19 Let (v4),c4 be an order bounded net in X} and u € XY{. Then
the following statements are valid.

(i) inf (uz,) = winf z, and sup (ux,) = usup z,.

(#1) liminf (uz,) = uliminf z, and limsup (uz,) = wlimsup z,.

Proof. (i) The inequality inf (ux,) > winf z, is obvious. To establish the

reverse inequality, let z € X be a positive lower bound of {uz, : @ € A} . It is
enough to show that z < winf z,. Observe that u*z < u*uzr, < x, and then
u*z < inf x,. But as z belongs to the band B, we have z = uu*z < uinf z,,.
This proves the first assertion; the proof of the second assertion follows a
similar line of reasoning.

(ii) This is an immediate consequence of (i). =

Lemma 20 Let (z,) and (ya) be two order bounded nets in XY. Then the
following inequalities hold.

liminf z,.liminf y, < liminf (z,y,) < liminf z,. lim sup y,

< limsup (z4Ye) < limsup x,. lim sup y,.
Proof. (i) For any v large enough and 8 > v we have

SUp (ZTaYa) < SUP Lq. SUP Yo
a>f azf o>y

So taking the infimum over [ it follows from Lemma [19] that

lim sup (z4ya) < limsup z,. Sup y,.
az>y

Hence, taking the infimum over 7, we obtain
lim sup (z4¥Ya) < limsup (z,) limsup (ya) -
(ii) For 8 > « we have

inf > inf 2. inf 4.
inf (TaYa) 2 inf zo. inf ya

So taking the supremum over [ it follows from Lemma [19 that

liminf (z4y,) > liminf z,. iI>lf Yo
a>y
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Hence, taking the supremum over ~, we obtain
liminf (z,y,) > liminf z,. lim inf y,.
The two other inequalities are similar. m

Lemma 21 Let (o) and (yo) be two order bounded sequences in X. If
To — x then limsup (24ya) = zlimsup y, and liminf (r,y,) = 2 liminf g,

Proof. By Lemma 20 we have

x liminf y, = liminf x,. lim inf y, < liminf 2.y,

< lim sup z,. liminf 3, = x liminf y,,

Hence liminf (z,y,) = «liminf y,. The second equality follows similarly. m
We will prove now a multiplicative decomposition property in X3 .

Proposition 22 Let X be a Dedekind complete Riesz space and x,y,z € X3.
If x < yz then there exists a decomposition v = ab of x with 0 < a <y and
0<b<z.

Proof. By restricting ourselves to the band B, ., we may assume that X
has a weak unit e > 0. Assume first that y is finite. Then z = y.y*x is a
suitable decomposition. Indeed as z < yz we have x € By, and so P,z = x.
Moreover y*xr < y*yz < z. If y is infinite, then a suitable decomposition
could be # =z (2% + e,) . (27 + €.0) .

General case. Write + = Pz + P% where P = P,s, and observe that
Pz < Pyz = y/Pz and Pz < y>*P%z. Using the previous two cases we

can write Pz = ab and Plx = a%b?, with a,b € B, at, bd e (Bgf> with
0<a<Py,0<b< Pz, 0< at < de, and 0 < b? < Pz Tt is easily seen
now that x = (a + ad) . (b + bd) is a suitable decomposition of x. =

5 Applications

In this section, we consider a Riesz conditional triple (X, e, T') , unless ex-
plicitely stated otherwise. Here X is a Dedekind complete Riesz space with
order weak unit e, and T a conditional expectation operator on X with
Te=e.
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Definition 23 Let X be an Archimedean Riesz space with weak order unit
e. Let M = (myj),, ;c, be an n-matriz with entries in X. We say that
M is positive semi-definite if M is symmetric and x* Mx € X, for every
r € (X,)", where X, is the ideal generated by e and x7 = (zy,....,z,) is the
transpose of x. This means that Y m; jx;x; > 0 for all x4, ...,x, € X,.
2¥}

Remark 24 [t is clear that if M is a positive semi-definite matrix then
2'Mx € X, for every x € (X)". Moreover, in order to prove that a matriz
M = (my;) is positive semi-definite it is enough to check the positivity of
2T Mz for elements x in (R (T))". Indeed if v € X and V the f-subalgebra
of X" generated by the set of the coefficients of M and of x. Then for every
w€ Hy (V) and X = (w(z;) e, ..., w (z;)e)" we have

w(z"Mz) =w (ATMX) >0,
as N € R(T)" and w is positive. Thus M is positive semi-definte.

For a matrix M in M,, (X) let I (M) denote the sum of all entries of M,

1<ij<n

Lemma 25 Let (z,) be a positive sequence in Xy, where X is a Dedekind

neN

complete Riesz space with weak order unit e, and let R,, = Y x, € X7, for

n € N. Then RY® = (inf R,,)™ .

k=n

Proof. Clearly R;° > (inf R,)™ and by [3, Proposition 21],

n—1 o0
R = R® + (Zxk> = R>™.
k=1

Assume that v € BJﬂfo. Then R,, > tu for all real ¢ > 0. So inf R,, > tu for

all real ¢ > 0. This shows that u € B<inf R >o<>. We deduce fri"om this that

BR;O C Bl in )oo and so <infRn> >R =
We aim to generalize to the setting of Riesz space the following result due
to Feng and Shen [7].

CB<
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Theorem 26 Let (2, F,P) be a probability space, (A,) a sequence of events
and (wy,) a sequence of positive reals. If > w,P(A,) = oo, then

n=1

n 2
Pl )2 s s S )
n i=1 2uj=1 Vil i

Our inspiration for the proof derives from [7]. But the proof here is more
technical.

For a subalgebra Y of X* we will use H,, (Y) to denote the set of all Riesz
and algebra homomorphism from Y to R. We recall that if Y is generated by
a countable set the H,, (Y') separates points of Y and we have, in particular,
for y € Y, the equivalence

y>0< p(y) >0foral p e H, (V).

Lemma 27 Let M = (m;;) € M,, (X") be a positive semi-definite matriz,
V' a unital subalgebra of X* containing the entries of M and ¢ : V — R a
positive algebra homomorphism. Then the real matriz o (M) = (¢ (my;)) is
positive semi-definite.

Proof. Let A\ = (A,...,\,) € R® and 2 = (\e, Age, ..., \pe) . An easy
computation gives ¢ (zMa”) = AT (M) X, and the result follows. m

Lemma 28 Let n,ky,...,k, be integers, with k = ki + ... + k, and A;; €
Mki,kj (X-i-) .

1. If M = (Az'j)1§z‘,j§n
S = (T (Ayj)) is so.

€ My (X) is positive semi-definite then the matrix

2. If M = (my;) is positive semi-definite then det M > 0.

Proof. (i) Let z € X", then 27 Sz = v Mv > 0 with v = (21, 21, ..., T, T, ..., Ta,

(ii) Let V be the subalgebra of X™ generated by the entries of M and e.
For every ¢ € H,, (V') the matrix ¢ (M) is positive semi-definite by Lemma
27 So its determinant is positive. This shows that

@ (det M) =det o (M) > 0.

As this holds for every ¢ € H,, (V) we deduce that det M > 0. m
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Lemma 29 Given a partition of an (m + n) X (m +n) symmetric matriz
M = (mi,j) S Mm+n(X) .
A C
M = ( tC B ) )

where A € M,,(X), B € M, (X) and C € M,,, ,(X). If M is positive semi-
definite, then T'(C)? < T'(A).I'(B).

Proof. This follows from Lemma 28 and the fact that T'(A).T'(B) —T'(C)? =

[(4) T(C)
det(F(CT) F(B))' ]

Lemma 30 Let {Q;}!, be a sequence of band projections on X. Then the
matriz M = (T'Q;Qje)1<i j<n 1S positive semi-definite.

Proof. Let u = (uy,us, ..., u,) € R(T)". Then using the average property of
T we have

uMu® = Y uu;TQiQze = YT (uu;QiQye)
i,j 3¥)

n 2
i, i=1

which proves the desired result. m
Consider now a sequence (v,) in R(7T"); and a sequence (@) in B(X).
For any 1 < g <n < oo, let us define the following

Kq,n = ZviTQiea
1=q

Rq,n = ZvivlTQine>
i=q
Sen =, viv;TQ;Qje,

q<i,j<n

Ryn () = Y 0juiTQiQje, for 1 < j < n.
i=q
These notations will be utilized in subsequent discussions, notably in our

main result, Theorem [34]

Lemma 31 With the aforementioned notations, the following relationship
holds true:
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(i) If1 < q<n<oothen K7, < Sgn.

(11) For all1 < p < g < oo we have

Jj=p~ "q,

SinSon — €, She (Spas + 2IMREL () i X as n— oo
In particular, if the finite part Sioo of Sq00 ts null, we get

* o
SynSpn — €5, a8 N —> 0.

Proof. (i) Put z = > v;Q;e. Then by the averaging property of T we
1=q
have Tz = > T (v;Q;e) = > v;TQ;e. Hence it follows from Cauchy-Schwarz
i=q i=q

Inequality or Lyapunov inequality [4] that
2 2 2
K, = (Tx)” <Tz*=S5,,,

q—1

(i) Write Sy, = Spg—1+ Sgn+2>  Ryn (j) . According to Lemma [I7], we

j=p
o .
have 57, — S, . in X*. Moreover, we have clearly

S;nSq,n = qu)nﬁ’ T qume, (7)

and
S Spg—1 = S o Spg-1 in X" (8)

Observe on the other hand that
2
2 /. 2 272 2
R, (j) <vj (i;qviTQie> =vi K, <viSyn.

It follows from Lemma [I§ that

(U?Sqm)*qu (5) = (v;)ZS* RI_(j) in X"

qiw qiw

As S;  R!  (j) belongs to the band B,, we deduce that

SinRan (7) = 07 (078n) Rgn () == Si oo R0 (j) in X*.
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As RS, (J) < 825, L Sy s we have

,O0 q,007
S;,OOR%OO (j) = S;,ooRg,oo (.]) :

Hence,
* -1 . o % —1 N u
Sq,nZ§:qu,n (j) — Sq,oozg» RI_(j) in X" 9)

=p~ 'q,00

The required result follows by combining (@), (8), and (@). =

Lemma 32 Let X be a Dedekind complete Riesz space with weak order unit
e, and let 'Y be a reqular Dedekind complete Riesz subspace of X with e € Y.
Then x> € Y* for every element v € Y. In particular this can be applied
toY =R(T), the range of a conditional expectation operator T.

Proof. Let x be an element in Y. By [3, Lemma 12| we have
rAne=a' Ane+r° Anecy.
It follows that
sAn+De—aAne=a' A(n+1)e—a/ Ane+ Pce €Y.
Taking the order limit we get P,<e € Y. So
!l Ane =z Ane—ney~ €Y.
Hence

z! = sup (:Ef/\ne) ey.

n

Now we get 2° =z — 2/ € Y*, as required. m
Remark. Let (z,) and (y,) be two bounded sequences in XY{. It is easy
to see that if z,, — x then

lim sup (z,y,) = x lim sup y,,.
This will be used in the next result.

Proposition 33 Using the same notations as previously and let B be the
band generated by K15 and P the corresponding band projection. Then the
following assertions are valid.
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(i) RS, < KPS, < ST

(it) The sequences (K ) and (R! ) are decreasing.
(i4) For all integer ¢ we have K2 = K75, and Ry = RY,.
(w) ForV, = Px,,S;, K}, we have:

limsup V,, = Pk, . limsup (anKfn)

= (PKgmsgvoosl,q_l + P, €+ 2Pgr S; o TR (j)>
(Kl,q—lK;oo + Pquooe)2 lim sup [S;,nan] )

(v) We have the following equality

lim sup (PSinKin) = limsup (PS;HK;H) .

n

In particular, if B = X, then limsup (S;,RK;H) is independent of q.

The last two points in Lemma B3 provide a generalization of 7, Proposi-
tion 6].
Proof. (i) By Lemma BT K7, < Si, and then K7 < Sy, which yields
K, = (K 12’00)00 < 57%- For the second inequality observe that

Ry, = UlkzlvaQ1Qk€ < v Ky,

and we deduce as above that R7% < K77.

(ii) This follows from Remark [7l

(iii) This follows immediately from the equality (z + )™ = 2 + y™
which holds for all elements =,y € X3. [3, Proposition 21].

(iv) In view of Lemma BIl(i) we have S}, .K7, < e. Hence the first
equality follows from the remark preceding Proposition [33] and the fact that
Py, et Pk, e asn — oo. For the second we will use the decomposition

L * 2 * 2 *
Vo= P, St K2, = P, St K2, Ay M,

where ,
A, = (Kl,q—lKZ,n + PKW(@) )
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and

q—1
Mn = PKq,n <Sl7q_1S;n +e+ QSJ,nZRq,n (j)) .
j=1

According to Lemma [31] the inequality K gm < S, implies that K2, S* <

q7n qin

Ps, e. Hence the sequence (K?2,S: ) is order bounded in X*. We have

q7n q7n
. 2
PKq,nKiTL = Kg,n (Kl,q—qu,n + PK(]y”e) = K‘inAn’
with
* 2 o * 2 . u
An = (Klyq—qu,n + PKq,ne) — (Kl,q—qu,oo + PKq,oo(B) in X*.

Next, we observe that

q—1 -
Px, .S, = Px,,. <5Lq_1 + Sy + 23" Ry (j))
J

=1

= Px,.Syn (S;nSl,q_l + Ps, e + 25;’";121}2‘1’" (]))
= Pg,,.S. M,
with
M, = Pg,, <Sl,q_15;n +e+ QSZ,njqu,n ( j)) .
Now in the proof of Lemma [31] it has been shown that
S nBRan () == S o Rgoo (j) in X*.

So we have
o q—1
M, — M := Pk, Sl,q_lS;’oo +e+ QSJ’OOZR%OO () | in X,
j=1
q—1 .
= Kg,mslvq—lsg,oo + Pk, e+ QPKiooS;OO];R{;oo ()

where we use in the last equality the fact that R7S (7)) L Sy (1 <j <q—1)
and that K29 1 Sy . This shows, in particular, that (M,) is order bounded

,O0

26



in X*. On the other hand we have by definition of M,, that M,, My € By, , C
Bs,,, and
S:;,HM:; = PKq,nS:]k,nM:; = PKq,nSik,n S Sin

Hence
M;, < SyuSt, = SiaSi, <.

This shows that (M) is order bounded in X*. Now using Lemma 2] we get
Pye = Pimint i, e < liminf Py e = liminf (M, M) = M liminf M.
Thus Pye < M liminf M and then
M* < liminf M. (10)
Similarly we have
M limsup M, = limsup (M, M) = limsup ey, <e.

Thus Py limsup M, < M*. Now as (M) is contained in the band By, and
M is a weak order unit of that band; the last inequality becomes

limsup M, < M*. (11)

We deduce from (I0) and (II)) that M* —>+ M* in X“. Observe finally that
cach of the three sequences (e, S, K2,) . (A,) and (M,) is bounded in
X which enables us to use Lemma 21l and conclude that

qin q7n n

lim sup (PqunSinKin) = limsup [(K?,S;,) MrA,]

q7n q7n

= limsup [K],S¢,] . lim M. lim A4,

. 2
= limsup [K2,5;,] M (Kiq (Ko) +ex,.)
in X, This completes the proof of (iv).

(v) This is an immediate consequence of (iv) by applying P to (iv) and
using the equality K79, = K72, proved in (iii). m
We reach now the central result of this section.
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Theorem 34 Let (X,e,T) be a conditional Riesz triple, (v,) a sequence in
R(T)y and (Q,) a sequence of band projections. Let P be the projection on

the band generated by the infinite part of Y v;TQ;e. Then (Q,, = P, Qne.)
i=1

TPlimsup Q,,e > limsup (P (anKfn)) .
o f
In particular, if (ZUZTQZ-@) =0 then
i=1

T <lim sup Qvne) > lim sup (anKlzn) .

n n

Proof. (i) Let B be the band associated to P. By Lemma B2 cop € R (T)*
and by [3, Proposition 7] we get PgT = T Pg. Put Q,, = Q;P,,. Then ¢ :=

\V Qe is a component of e and it follows from Cauchy-Schwarz inequality

i=q
2
KqQ’n = (T (c.Zvﬂ)m)) <Tc.Syn.
i=q

that
So as T' commutes with P, we obtain

PK;H < T (Pc).P(Syn) = T.\/ PQ,,e.P(S;n),

i=q

which implies that

P(KZ,S;,) = PK.,PS;, <T (\/ PQvne> PSy.PS;,
1=q

q?n q7n
=T <\/ PQvne> ,
i=q

where the last equality holds because T (\/PQvne belongs to the band
1=q

BNBs,, and PS,,.PS;, is the component of e on this band. It follows that

a:=T (lim sup PQvne) =limsupT <\/ PQvie)

4 n>q i=q

> limlimsup P (S;,,.K7,) = limsup P (S} ,.K7 ),
q n n
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which proves the desired inequality. Here the last equality follows from
o0 f

Lemma BI[(v). In the case (ZviTQie) = 0 we get Ky, € B for every
i=1

n, and then P (Sj, K7,) = S,.K},. It follows from the first case that

n

T (lim sup Qvne) > lim sup (Sian%n) :

This completes the proof. m
Applying Theorem B4 to v, = (Tq,)* with ¢ = Q;e, we obtain the
following result which is a generalization of [7, Corollary 2].

Corollary 35 Under the hypothesis of Theorem[34] with q; = Q;e we have

* 2
T (limsup Panqn) > limsup< > (Tqiqu)*T(qiqj)) ( S eTqi) )

n 1<4,5<n 1<i<n

Theorem allows to get a generalization of Borel-Cantelli Lemma proved
by the author [3, Theorem 31].

Corollary 36 Let (I,),, be a sequence of parwise T-independent band pro-
jections on X. If B is a band on X" such that

TP,e=o00p+u with u € Bd,

n=1

then Pg commutes with T and
Pg =limsup P,.

Proof. We know that Pg commutes with 7" (see the proof of Theorem [34]).
Now observe that

S TPEPe=PE> TPe=uc X"

Hence, accorfing to [3, Lemma 26], P¢limsup @, = 0, which implies the
inequality
limsup P, < Pg.
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The reverse inequality will follow from Theorem [34] Indeed if we apply the
theorem with v, = e we get

Tlimsup Q,, = T'Pglimsup Qe > limsup (Pp (S}, K7,.)) (A1)

Moreover, we have by T-independance,
Sl,n S Kin + Kl,na

which yields
PSl,n = SinSLn < SinKin + SinKLn?

and then
PgPs, , < PBSinKin + PSSy Kin.

Taking the limsup over n in this last inequality gives
PpPs, ., <limsup (PBST,nKin) + lim sup (PBS;,nKl,n> )
Since cop = K75, < S7%, we have PpPs, = PpPse = Pp. So

PpPs,, = PpPg; + PpPsx_ = PPs_= Pp. (12)

f
1,00
Now, K, and S;, are increasing with Kin < Sin, we obtain thanks to
Proposition [I8]

St K10~ St KT (13)

which gives
PyS;, K1, —= PpSi  K{ . = 0.

Combining (I2) and ([I3]) we derive that

TPBe = PBe = PBPSl,ooe S lim sup (PBS;nKin)
< TPglimsup P,e.

Applying Theorem [34] gives
T Pge < T'limsup P,e.

Therefore, since T is strictly positive we conclude that

Pge = limsup P,e.
his complete the proof. m
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