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Abstract

We persist in our investigation of the sup-completion of a Dedekind

complete Riesz space, extending to the broader context of Riesz spaces.

some results initially obtained by Feng, Li, Shen, and also by Erdös,

and Rényi.

1 Introduction

In this paper, we continue our investigation of the sup-completion of a
Dedekind complete Riesz space started in [3]. We delve deeper into the
decomposition of finite and infinite parts, initially introduced in [3], and fur-
ther investigate the properties elucidated in that study. Within our work, we
introduce a new concept that we call the ‘star map’ as a pivotal construct
necessary for generalizing results from measure theory or classical stochastic
theory to the domain of Riesz spaces. As we encounter instances where we
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†This document is the results of the research project funded by the National Science

Foundation
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seek to apply an inverse operation amidst dealing with non-invertible ele-
ments, we address this issue by introducing the notion of a ’partial inverse’.
While briefly discussed in our previous work [3], this concept will be sys-
tematically explored here with comprehensive details. Consider a Dedekind
complete Riesz space X with a weak order unit, denoted by e. Then the uni-
versal completion Xu of X has a natural structure of an f -algebra, where e
serves as the identity element. Each element x in X functions as a weak unit
within the band Bx generated by x in Xu. Consequently x has an inverse in
that band, referred to as the partial inverse of x. If x is a positive element in
the cone Xs

+, where Xs denotes the sup-completion of X, we denote by x∗

the partial inverse of its finite part xf . This partial inverse is also recently
used by Roelands and Schwanke in [10] and they adopted the same notation.
It is also used in [9] to develop a Hahn-Jordan theorem in Riesz spaces. Our
motivation here is to get a Riesz space version of a result obtained by Feng,
Li and Shen in [7]. A weaker form of this result was obtained earlier by Erdös
and Rényi in [6] that allows to get a generalization of Borel Cantelli Lemma.

Let us give a brief outline of the content of the paper. Section 2 provides
some preliminaries. Sections 3 and 4 are devoted to present new results
concerning the sup-completion of a Dedekind complete Riesz space. In the
first part we investigate finite and infinite parts. The second part deals with
partial inverses of elements of Xs. We introduce that map x 7−→ x∗ where x∗

is the inverse of xf in the band Bxf . Then we prove under some conditions
that if (xα) converges to x in order then x∗

α converges in order to x∗. In the
last section we apply our results to obtain a generalization of a theorem of
Feng, Li and Shen to the setting of Riesz spaces. The reader is referred to
[5] for the definition of the sup-completion, a fundamental concept in this
paper, and to the papers [2] and [3] for more informations of that notion. All
unexplained terminology and notation concerning Riesz spaces can be found
in standard references [1], [12] and [11].

2 Preliminaries

We consider a Dedekind complete Riesz space X. We employ Xu to represent
its universal completion, while its sup-completion is denoted by Xs. Recall
that Xs is a lattice ordered cone that contains X, and which has a greatest
element that we denote by ∞. If B is a band in X then its sup-completion
Bs is contained in Xs (see [2, Theorem 6]) and its greatest element will
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be denoted by ∞B. More about the space Xs can be found in [2, 3]. We
denote by B (X) the Boolean algebra of projection bands in X . To a band
B ∈ B (X) we associate the band projection PB on B and we use the notation
P d = I − P for any band projection P. We shorten PBx

to Px, with Bx

denoting the principal band generated by x. It should be noted that this
notion can be extended in a natural manner to elements in Xs. It was shown
indeed in [2, Lemma 4] that if we define πx (a) = sup

n

(a ∧ nx) for a in Xs
+ and

πx (a) = πx (a
+) − πx (a

−) for a ∈ X, then πa is the band projection Pπa(e).
We will simply write Px = Pπx(e) and Bx = R (Px) the range of Px. Notice
that for every x ∈ Xs we have x + ∞ = ∞. In particular; if B is a band
then for every x ∈ B, x +∞B = ∞B. For x ∈ Xs we can define its positive
and negative parts as x+ = x ∨ 0 and x− = − (x ∧ 0) . Then x+ − x− = x.
(The formula a ∧ b + a ∨ b = a + b is still true in Xs). These parts can be
characterized by the following property: if x = a − b with a, b ∈ Xs

+ and
a ∧ b = 0, then a = x+ and b = x−. Indeed we have

x+ = x ∨ 0 = (a− b) ∨ 0 = a ∨ b− b = a + b− b = a.

Now as b ∧ a = b ∧ x+ = 0 the equality

P d
x+x = P d

x+

(

x+ − x−
)

= P d
x+ (a− b)

gives b = x− as well. Recall that tow elements in Xs
+ are said to be disjoint

and we write x ⊥ y if x ∧ y = 0.

Lemma 1 Let (xα) , (yα) be two nets in Xs
+ such that (xα) ⊥ (yα) . Then the

following statements hold.

(i)
∨

α

(xα + yα) =
∨

α

xα +
∨

α

yα and
∧

α

(xα + yα) =
∧

α

xα +
∧

α

yα;

(ii) lim sup(xα + yα) = lim sup xα + lim sup yα and lim inf(xα + yα) =
lim inf xα + lim inf yα.

Proof. Put x =
∨

α

xα and y =
∨

α

yα. It follows from [3, Lemma 11.(iii)], that
∨

α

xα ∧
∨

α

yα = 0 and hence Px+y = Px + Py.

(i)The inequality x + y ≥
∨

α

(xα + yα) is obvious. On the other hand we

have
∨

α

(xα + yα) ≥ x and
∨

α

(xα + yα) ≥ y, which gives

∨

α

(xα + yα) ≥ x ∨ y = x+ y,
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where the last equality holds because x ∧ y = 0.
For the second part we have clearly

∧

α

(xα + yα) ≥
∧

α

xα,
∧

α

yα,

and then as
∧

α

xα and
∧

α

yα are disjoint we get

∧

α

(xα + yα) ≥
∧

α

xα +
∧

α

yα,

On the other hand we have

Px

∧

α

(xα + yα) ≤ xβ,

for all β and then Px

∧

α

(xα + yα) ≤
∧

α

xα. Similarly we get Py

∧

α

(xα + yα) ≤
∧

α

yα and so

∧

α

(xα + yα) = Px

∧

α

(xα + yα) + Py

∧

α

(xα + yα) ≤
∧

α

xα +
∧

α

yα,

which ends the proof of (i).
(ii) This follows easily from (i).
The above lemma is not valid if we have only xα ⊥ yα for each α. Take,

for example, X = R
2, x1 = (1, 0) = y2 and x2 = (0, 1) = y1.

The following lemma gives another case when equalities in Lemma 1.(i)
hold.

Lemma 2 Let (xα)α∈A and (yα)α∈A be two decreasing nets in Xs
+ then inf(xα+

yα) = inf xα + inf yα.

Proof. We will make use of 9.(ii) where the equality is proved if one of the
nets is constant. First observe that the inequality

inf(xα + yα) ≥ inf(xα) + inf(yα)

is quite obvious. Fix β in A. Then for any α ≥ β we have

inf
α∈A

(xα + yα) = inf
α≥β

(xα + yα) ≤ inf
α≥β

(xα + yβ)

= inf
α≥β

xα + yβ = inf
α∈A

xα + yβ.
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Hence
inf(xα + yα) ≤ inf

β
(infα xα + yβ) = inf(xα) + inf(yβ).

This completes the proof.

Lemma 3 Let (xα)α∈A be a net in Xs
+ and (Bα)α∈A a net in B (X) such

that xα ∈ Bs
α for every α ∈ A. Then sup xα ∈ (supBα)

s , inf xα ∈ (inf Bα)
s ,

lim sup xα ∈ (lim supBα)
s and lim inf xα ∈ (lim inf Bα)

s .

Proof. The statements are obvious if xα ∈ Xu
+ for every α ∈ A. Now let

y be fixed in X+ and observe that y ∧ xα ∈ Bα for all α. So y ∧ sup xα =
sup (y ∧ xα) ∈ (supBα)

s . As this happens for each y ∈ X+ we get sup xα ∈
(supBα)

s . The proof of the other results is similar.

Remark 4 If {xα : α ∈ A} is a subset of Xs
+ and y ∈ Xs

+ then sup
α∈A

yxα =

y sup
α∈A

xα holds in Xs
+. This follows from [3, Lemma 24] when A is finite and

then holds for arbitrary subsets using [3, Lemma 23]. It should be noted that
a similar formula for infimum fails in general (see Lemma 11 below).

3 More about finite and infinite parts

We develop in this section some material concerning the space Xs, the sup-
completion of X, that are needed to prove our results in Section 5. These
results can be interesting in their own right.

Let X be a Dedekind complete Riesz space with weak order unit e. It was
shown in [3] that every element y ∈ Xs

+ has a decomposition:

y = yf + y∞ ∈ Xs,

where y∞ is the largest element in Bs for some band B in X and yf ∈ Bd.
It is easy to see that x∞ ≤ y∞ whenever x ≤ y in Xs

+, but it is not the case
for the finite parts in general. Consider for example x = (1, 1) ≤ y = (1,∞)
in (R2)

s
.

We would like to note this useful point for further reference.
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Remark 5 Elements of Xs
+ of the form x∞ are characterized by the following

property:
0 < a ≤ x∞ =⇒ na ≤ x∞ for all n ∈ N.

Additionally, it is noteworthy to observe that if P = PB is a band projection
such that Px = ∞B and P dx ∈ Xu then Px = x∞ and P dx = xf .

Lemma 6 Let X be a Dedekind complete Riesz space and x, y ∈ Xs
+. Then

the following statements hold.

(i) (x+ y)∞ = x∞ + y∞ and (x+ y)f ≤ xf + yf with equality if x and y
are disjoint.

(ii) (x ∨ y)∞ = x∞∨y∞ = x∞+y∞ and (x ∨ y)f = P d
y∞xf∨P d

x∞yf ≤ xf∨yf .

(iii) (x ∧ y)∞ = x∞ ∧ y∞ and (x ∧ y)f = xf ∧ yf + xf ∧ y∞ + x∞ ∧ yf .

(iv) (x.y)∞ = xf .y∞ + x∞.yf + x∞.y∞ and (xy)f = xfyf . In particular, if
x ∈ Xu

+ then (xy)f = xyf and (xy)∞ = xy∞.

Proof. Let B be the band generated by x∞+ y∞, so that ∞B = x∞+ y∞ =
x∞ ∨ y∞, and let P be the corresponding band projection.

(i) Clearly, P d (x+ y) = P d
(

xf + yf
)

∈ Xu, and then

P (x+ y) ≥ x∞ + y∞ = ∞B.

So P (x+ y) = x∞ + y∞ = ∞B and then x∞ + y∞ = ∞B = (x+ y)∞ and

(x+ y)f = P d
(

xf + yf
)

= P d
y∞xf + P d

x∞yf ≤ xf + yf .

(ii) Again as ∞B ≥ P (x ∨ y) ≥ x∞ ∨ y∞ = ∞B we get

∞B = P (x ∨ y) = x∞ ∨ y∞.

On the other hand

P d (x ∨ y) = P dx ∨ P dy = P dxf ∨ P dyf = P d
y∞xf ∨ P d

x∞yf ∈ Xu.

This shows that

∞B = (x+ y)∞ = (x ∨ y)∞ , and (x ∨ y)f = P d
y∞xf ∨ P d

x∞yf .
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If x ⊥ y then xf + yf ⊥ x∞ + y∞ and then

P d
(

xf + yf
)

= xf + yf .

(iii) It follows from [3, Lemma 12] that

x ∧ y = x∞ ∧ y∞ + xf ∧ y∞ + x∞ ∧ yf + xf ∧ yf .

Considering x∞∧y∞ is infinite (unless zero) and xf ∧y∞+x∞∧yf+xf ∧yf is
finite, mutually disjoint, they are likely the infinite and finite parts of x ∧ y.

(iv) The proof is similar.

Remark 7 As mentioned earlier the map x 7−→ x∞ is increasing on Xs
+,

whereas the map x 7−→ xf is not. However, there is an important case
where the implication: x ≤ y =⇒ xf ≤ yf holds true. This occurs when the
difference is finite: If y = x+a with a ∈ Xu

+ and x ≤ y, then xf ≤ yf . Indeed
we have

x = y∞ + yf − a = y∞ + yf − Py∞a− P d
y∞a = y∞ + yf − P d

y∞a.

But as yf−P d
y∞a ∈ Bd

y∞ , we deduce from the uniqueness of the decomposition
[3, Theorem 15] that xf = yf − P d

y∞a ≤ yf .

Remark 8 (i) It is well known that for every x, y ∈ X+ we have Bxy =
Bx∧y = Bx ∩ By. This formula is still valid when x, y ∈ Xs

+. This can be
shown by taking two nets (xα) and (yα) in X such that xα ↑ x and yα ↑ y.
(ii) It was shown in [3, Proposition 25] that if x ∈ Xs

+ and B is a projection
band then ∞B.x = ∞PBx = ∞B∩Bx

. In particular, if B ⊆ Bx we have
∞B.x = ∞B.

Proposition 9 Let (xα)α∈A be a net in Xs and let y ∈ Xs. Then the fol-
lowing statements hold.

(i) sup(y + xα) = y + sup xα.

(ii) If (xα) is order bounded from below in Xs, then inf
α
(y+xα) = y+inf

α
xα.

(iii) lim sup
α

(y + xα) = y + lim sup
α

xα.
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(iv) If (xα) is order bounded from below in Xs, then

lim inf
α

(y + xα) = y + lim inf
α

xα.

Proof. (i) This is a particular case of [3, Property (P8)].
(ii) The inequality y + inf

α
xα ≤ inf

α
(y + xa) is obvious. For the converse

assume first that y ∈ Xu. Then by the first inequality

−y + inf
α
(y + xα) ≤ inf

α
xα,

and so
inf
α
(y + xα) = y + inf

α
xα.

This shows the result for this particular case. Moreover, as (xα)α∈A is order
bounded from below we can assume without loss of generality that (xα)α∈A
and y are in the positive cone Xs

+. We treat now the case y = ∞B for some
band B. Let P denotes the corresponding band projection. Then from the
inequality

inf
α
(xα +∞B) ≤ xβ +∞B, β ∈ A,

we deduce that
P d inf

α
(xα +∞B) ≤ P dxβ ≤ xβ.

As this happens for every β we get

P d inf
α
(xα +∞B) ≤ inf

α
xα.

Now observe that

inf
α
(xα +∞B) = P d inf

α
(xα +∞B) + P inf

α
(xα +∞B) ≤ inf

α
xα +∞B,

which shows the second inequality. Finally the general case can be derived
by employing the decomposition y = yf + y∞ in the following way:

inf
α
(y + xα) = y∞ + inf

α

(

yf + xα

)

= y∞ + yf + inf
α
(xα) = y + inf

α
xα.

(iii) and (iv) can be deduced easily from (i) and (ii).
It follows from [3, Theorem 5] that if (xα) and (yα) are two nets in Xs

+

such that xα ↑ x and yα ↑ y in Xs then (xα + yα)α ↑ x + y (apply (i) to the
map X ×X −→ X ; (x, y) 7−→ x+ y).
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Proposition 10 Let (xα) and (yα) be two nets in Xs that are bounded from
below. Then the following statements hold.

(i) lim inf xα + lim inf yα ≤ lim inf (xα + yα) ≤ lim inf xα + lim sup yα

(ii) lim sup (xα + yα) ≤ lim sup xα + lim sup yα.

(iii) If lim yα exists then lim inf (xα + yα) = lim inf xα + lim yα.

Proof. (i) We will make use of Lemma 9. We have for all β ≥ θ,

inf
α≥β

xα + inf
α≥β

yα ≤ inf
α≥β

(xα + yα) ≤ inf
α≥β

(

xα + sup
α≥θ

yα

)

= inf
α≥β

xα + sup
α≥θ

yα ≤ lim inf xα + sup
α≥θ

yα.

Taking the supremum over β, we obtain

lim inf(xα) + lim inf(yα) ≤ lim inf(xα + yα) ≤ lim inf xα + sup
α≥θ

yα.

Then taking the infimum over θ and using Proposition 9 we get the desired
inequalities.

(ii) We have for each β,

sup
α≥β

(xα + yα) ≤ sup
α≥β

xα + sup
α≥β

yα.

Then, taking the infimum over β an using Lemma 2, we get the desired
inequality.

(iii) This is an easy consequence of (i).

Proposition 11 Let (xα) be a net in Xs
+, u ∈ Xs

+ and B ∈ B (X) . Then
the following statements hold.

(i) If u∞ ∈ Bs
infα xα

then
inf
α
uxα = u inf

α
xα.

In particular we have:

(a) If B ⊂ Binf
a

xα
then inf

a
(∞Bxα) = ∞B. inf

a
xα = ∞B.
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(b) If u ∈ Xu
+ then inf

α
uxα = u inf

α
xα.

(ii) If u∞ ⊂ Bs
lim supxα

then lim sup
α

(uxα) = u lim sup
α

(xα) . In particular, if

B ⊂ Blim sup
α

(xα) then lim sup
α

(xα∞B) = ∞B lim sup
α

(xα) .

(iii) If u∞ ∈ Blim inf
α

xα
then lim inf

α
(uxα) = u lim inf

α
xα. In particular, if

B ⊂ Blim inf
α

xα
then

lim inf
α

(∞Bxα) = ∞B lim inf
α

(xα) = ∞B.

Proof. (i)(a) Assume first that B ⊆ Binf
α

xα
. Then ∞B inf

α
xα = ∞B = ∞Bxβ

for each β ∈ A. Thus the formula

inf
α
(xα∞B) = ∞B inf

α
xα = ∞B

holds.
(b) Assume now that u ∈ Xu

+. The inequality inf
α
(uxα) ≥ u inf

α
xα is

obvious. For the converse let z ∈ Xu
+ such that z ≤ infα(uxα). Then

z ∈ Buxα
⊂ Bu = Bu∗ . Hence u∗z ≤ u∗uxα ≤ xα for every α. It follows

that u∗z ≤ inf xα and then z = u.u∗z ≤ u infα xα. From this we deduce the
inequality infα(uxα) ≤ u infα xα.

(c) The general case. Assume now that u ∈ Xs
+. Since (u

fxα)α ⊥ (u∞xα)α
it follows from Lemma 1 and cases (a) and (b) that

inf
α
(uxα) = inf

α
(ufxα) + inf

α
(u∞xα)

= uf inf
α
(xα) + u∞ inf

α
(xα) = u inf

α
(xα),

as required.
(ii) We have for each β ∈ A,

sup
α≥β

(xα∞B) = ∞B. sup
α≥β

(xα) = ∞B.

Since B ⊂ Blim supxα
it follows by (i) that

∞B lim sup
α

(xα) = ∞B inf
β

(

sup
α≥β

(xα)

)

= inf
β

(

∞B. sup
α≥β

(xα)

)

= lim sup
α

(xα.∞B) = ∞B.
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The general case can be deduced in a similar way as in (i).
(iii) Assume first that u = ∞B for some B ⊆ Bs

lim inf
α

xα
. One inequality

is obvious as lim inf (∞Bxα) ≤ ∞B = ∞B lim inf xα. To prove the converse
let us put uβ = u inf

α≥β
xα for β ∈ A. Then uβ ↑ ∞B. So for every γ ≥ β,

uβ ∈ B inf
α≥γ

xα
. It follows in view of (i) that

inf
α≥γ

uβxα = uβ inf
α≥γ

xα = uβ.

By taking the supremum over γ we get

uβ = lim inf
α

uβxα = sup
γ

inf
α≥γ

uβxα = sup
β

uβ inf
α≥β

xα

= uβ sup
β

inf
α≥β

xα = uβ lim inf
α

xα.

Taking the supremum over β we get

∞B = ∞B lim inf
α

xα = sup
β

lim inf
α

uβxα ≤ lim inf
α

∞Bxα.

This proves (iii) in that special case. The general case can be deduced as in
(i).

Remark 12 In Proposition 11, the condition B ⊆ Binfα xα
can not be dropped

as the following example can show. If X = R, u = ∞ and xn = n−1, n ≥ 1,
then ∞ = inf axn 6= u inf xn = 0. But it is useful to note the following
inequality inf

α
(uxα) ≤ u∞ + uf inf xα.

Lemma 13 Let (xα)α∈A , (yα)α∈A be two nets in Xs
+. Then

lim sup
α∈A

(xαyα) ≥ lim sup
α∈A

xα lim inf
α∈A

yα.

If, in addition,
(

supα≥β xα

)∞
∈ Bs

inf
α≥β

yα
for some β and

(

lim inf
α∈A

yα

)∞

∈

Bs
lim supxα

then
lim inf

α
(xαyα) ≤ lim sup

α

xα. lim inf
α

yα.

11



Proof. Fix β, γ in A with β ≥ γ. Then we have for each θ ≥ β,

sup
α≥β

(xαyα) ≥ xθyθ ≥ xθ inf
α≥β

yα.

According to Remark 4 we have

sup
α≥γ

(xαyα) ≥ sup
α≥β

(xαyα) ≥ sup
θ≥β

(

xθ inf
α≥β

yα

)

= sup
θ≥β

xθ. inf
α≥β

yα ≥ lim sup xα. inf
α≥β

yα.

Taking the supremum over β we get

sup
α≥γ

(xαyα) ≥ sup
β≥γ

(

lim sup xα. inf
α≥β

yα

)

= lim sup xα. lim inf yα.

From this we derive the inequality

lim sup (xαyα) ≥ lim sup xα. lim inf yα.

(ii) Assume now
(

supα≥β xα

)∞
∈ Bs

inf
α≥β

yα
for some β ∈ A. Then

(

supα≥γ xα

)∞
∈ Bs

inf
α≥γ

yα
for every γ ≥ β.

Now for θ ≥ γ ≥ β we have

inf
α≥γ

(xαyα) ≤ yθ sup
α≥γ

xα.

It follows that

inf
α≥γ

(xαyα) ≤ inf
θ≥γ

(

yθ. sup
α≥γ

xα

)

= inf
θ≥γ

yθ. sup
α≥γ

xα ≤ lim inf yα. sup
α≥γ

xα.

where we have used 11.(i) in the equality above. For a fixed γ we have for
every δ ≥ γ,

inf
α≥γ

(xαyα) ≤ inf
α≥δ

(xαyα) ≤ lim inf yα. sup
α≥δ

xα.
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Now taking the infimum over δ ≥ γ and using again Lemma 11(i) we get

inf
α≥γ

(xαyα) ≤ inf
β≥γ

(

lim inf yα. sup
α≥β

xα

)

= lim inf yα. lim sup xα.

as required.
We conclude this section with a brief discussion on Boolean algebras.

Recall that a Boolean algebra is a distributive lattice A with smallest and
largest elements that is complemented. The latter means that for every
element a ∈ A there exists a (necessarily unique) element a′ such that a∧a′ =
0 and a ∨ a′ = 1, where 0 denotes the smallest element of A and 1 its
largest one. The Boolean algebra A is said to be Dedekind complete if every
nonempty subset has a supremum.

Consider a Dedekind complete Riesz space X with weak order unit e.
Three crucial Boolean algebras in this context are isomorphic. The two first
are familiar: the set C (e) consisting of all components of e, and the set of all
band projections B (X) . These are isomorphic through the mapping:

C (e) −→ B (X) ; u 7−→ Bu.

It should be noted that this map preserves suprema and infima. Specif-
ically, for any set {pα : α ∈ A} of components of e, supBpα = Bsup pα and
inf Bpα = Binf pα. Observe that the first formula remains valid for general
sets, the second, however, fails in general. The third noteworthy Boolean
algebra of interest is similarly isomorphic to the aforementioàned ones. It is
intricately associated to the space Xs as it is consisting of infinite parts of
positive elements within Xs. Let us employ the following notation to repre-
sent it:

∞ (X) =
{

x∞ : x ∈ Xs
+

}

= {∞B : B ∈ B (X)} .

The following result tells us that ∞ (X) is isomorphic to B (X) .

Proposition 14 Let (Bα)α∈A be a net in B (X) . The following hold.

(i) inf
α
∞Bα

= ∞inf
α

Bα
and sup

α

∞Bα
= ∞sup

α
Bα

.
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(ii) lim inf
α

(∞Bα
) = ∞lim infα Bα

and lim sup
α

(∞Bα
) = ∞lim supα Bα

.

(iii) The map φ : B(X) −→ {∞B : B ∈ B (X)} ; B 7−→ ∞B is an order
continuous Boolean algebra isomorphism.

Proof. (i) The inequality
∧

α∞Bα
≥ ∞∧αBα

is evident. Conversely, if

z ∈ [
∧

α∞Bα
]≤ , then z ≤ ∞Bα

for every α, so z ∈ Bα for every α, and
consequently z ∈

∧

αBα. Therefore z ≤ ∞∧αBα
, establishing the desired in-

equality. For the second result, it is clear that if F is finite then

sup
α∈F

∞Bα
= ∞ sup

α∈F

Bα
.

Now it is sufficient to observe that

sup
α

∞Bα
= sup

F finite ⊆A

sup
α∈F

∞Bα
,

and
∞sup

α
Bα

= sup
F finite ⊆A

∞ sup
α∈F

Bα
.

(ii) is an immediate consequence of (i).
(iii) The fact that φ is an isomorphism is quite clear, and since it respects

infinite suprema and infima, it is order continuous by (i) and (ii).

4 The star map

According to [8, Theorem 5] any universally complete Riesz space X with
weak unit e is von Neumann regular (that is, for every a ∈ X there exists
b ∈ X such that a = a2b ) and it is not difficult to deduce from this result
that any order weak unit element is invertible (see for example [10, Remark
3.3]). Here, we present a concise proof of this result employing the concept
of sup-completion.

Lemma 15 Let X be a universally complete Riesz space with weak unit e,
which is also an algebraic unit. Then every weak unit x has an inverse in X.

14



Proof. Assume first that x ∈ X+. We know by [12, Theorem 146.3] that

x+
1

n
e is invertible. Let yn denotes its inverse. Then yn is increasing and if

we put y = sup yn ∈ Xs
+ we have

(

x+
1

n
e

)

yn = xyn +
1

n
y = e. (*)

In particular, xyn ≤ e. By taking the supremum over n we get xy ≤ e. As
x is a weak unit we get y∞ = 0, that is, y ∈ X. Now taking the limit as
n −→ ∞ in (∗) we obtain xy = e and we are done.

For the general case we write x = x+ − x−. So (x+ − x−) y = e. Write
a = Px+y and b = Px−y. Then

e =
(

x+ − x−
)

(a+ b) = ax+ − bx−.

So x (a− b) = e and we are done.
For every y ∈ X+ the band Byf in Xu generated by the finite part of y is

a universally complete Riesz space with unit p = Pyf e. The inverse of yf in
the band Byf will be denoted by y∗. Thus we have the following:

yy∗ = y∗y = eyf = eB
yf

:= Pyf e.

In particular By∗ = Byf ⊆ By.
We list now some useful properties of the map x 7−→ x∗ defined from Xs

to Xu.

Proposition 16 Let X be a Dedekind complete Riesz space and x, y ∈ Xs.
Then the following hold.

(i) 0∗ = ∞∗
B = 0 for every band in X.

(ii) (λx)∗ = λ−1x∗ for every real λ 6= 0.

(iii) If x ⊥ y, then x∗ ⊥ y∗ and (x + y)∗ = x∗ + y∗. In particular, |x|∗ =
(x+)

∗
+ (x−)

∗
and (Qx)∗ = Qx∗ for every band projection Q.

(iv) (xy)∗ = x∗y∗ ∈ Bx∗y∗ = Bx∗∧y∗ .

(v) (xp)∗ = (x∗)p for x ∈ Xs
+ and p > 0.
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(vi) If 0 ≤ x ≤ y and P is a band projection such that P ≤ Px. Then
Py∗ ≤ Px∗. In particular Pxy

∗ ≤ x∗.

Proof. We will show only the last property. Multiply the inequality x ≤ y
by y∗x∗, yields

Px∗y∗ ≤ Py∗x
∗ ≤ x∗.

Furthermore, as x ≤ y, we have x∞ ⊥ yf , implying Px∞y∗ = 0. Now, given
that P ≤ Px = Px∗ + Px∞ , we deduce that

Py∗ ≤ Px∗y∗ + Px∞y∗ = Px∗y∗,

and then
Py∗ ≤ PPx∗y∗ ≤ PPy∗x

∗ ≤ Px∗.

Thus, the desired inequality is established.

Lemma 17 Let (xα)α∈A be a net in Xu
+ and x ∈ Xs such that xα ↑ x, then

x∗
α

o
−→ x∗ in Xu.

Proof. It is enough to prove the following inequalities:

lim sup x∗
α ≤ x∗ ≤ lim inf x∗

α.

According to Lemma 16 we infer from the inequalities xα ≤ x (for α ∈ A)
that

Pxα
x∗ ≤ x∗

α.

Since the net (xα) is increasing, this implies that

Pxx
∗ = x∗ ≤ lim inf x∗

α. (1)

On the other hand we have by Lemma 16.(iv) Pxβ
x∗
α ≤ x∗

β for all α ≥ β. So

lim sup
α

Pxβ
x∗
α = Pxβ

lim sup
α

x∗
α ≤ x∗

β.

Multiplying the above inequality by xβ , we obtain

xβ lim sup x∗
α ≤ xβx

∗
β ≤ e.
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Taking the supremum over β yields

x lim sup x∗
α ≤ e. (2)

In particular, x∞ lim sup x∗
α ≤ e, implying x∞ ⊥ lim sup x∗

α. As lim sup x∗
α

belongs to Bs
x, we have

lim sup x∗
α = Px∞ lim sup x∗

α + Pxf lim sup x∗
α = Px∗ lim sup x∗

α.

Thus (2) implies that

lim sup x∗
α = Px∗ lim sup x∗

α = x∗x lim sup x∗
α ≤ x∗. (3)

Now, combining (1) and (3), we conclude that x∗
α

o
−→ x∗ in Xu.

Proposition 18 Let (xα)α∈A and (yα)α∈A be two sequences in Xu
+ such that

xα ↑ x and yα ↑ y in Xs and x2
α ≤ yα for all α. Then xαy

∗
α

o
−→ xfy∗ in Xu.

Proof. According to Lemma 17, we have that

y∗α
o

−→ y∗ in Xu. (4)

Moreover, from the inequality x2
α ≤ yα it follows that

xαy
∗
α = exα

xαy
∗
α ≤ x∗

α.

Notably, the sequence (xαy
∗
α) is order bounded in Xu. Now as xα ↑ x we have

ex∗xα ↑ xf ∈ Xu and thus

Px∗xα
o

−→ xf in Xu. (5)

As the product is order continuous in Xu we derive from 4 and 5 that
Px∗ (xαy

∗
α)

o
−→ xfy∗ in Xu. In particular

xfy∗ = lim sup (Px∗ (xαy
∗
α)) = Px∗ lim sup (xαy

∗
α) (6)

= lim inf (Px∗ (xαy
∗
α)) = Px∗ lim inf (xαy

∗
α) .

To conclude our proof observe that both lim sup (xαy
∗
α) and lim inf (xαy

∗
α)

belong to the band Bx∗ in Xu, enabling us to simplify (6) by removing Px∗

from the right side members.
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Lemma 19 Let (xα)α∈A be an order bounded net in Xu
+ and u ∈ Xu

+. Then
the following statements are valid.

(i) inf
α
(uxα) = u inf xα and sup

α

(uxα) = u supxα.

(ii) lim inf
α

(uxα) = u lim inf
α

xα and lim sup
α

(uxα) = u lim sup
α

xα.

Proof. (i) The inequality inf
α
(uxα) ≥ u inf xα is obvious. To establish the

reverse inequality, let z ∈ X be a positive lower bound of {uxα : α ∈ A} . It is
enough to show that z ≤ u inf xα. Observe that u∗z ≤ u∗uxα ≤ xα and then
u∗z ≤ inf xα. But as z belongs to the band Bu we have z = uu∗z ≤ u inf xα.
This proves the first assertion; the proof of the second assertion follows a
similar line of reasoning.

(ii) This is an immediate consequence of (i).

Lemma 20 Let (xα) and (yα) be two order bounded nets in Xu
+. Then the

following inequalities hold.

lim inf xα. lim inf yα ≤ lim inf (xαyα) ≤ lim inf xα. lim sup yα

≤ lim sup (xαyα) ≤ lim sup xα. lim sup yα.

Proof. (i) For any γ large enough and β ≥ γ we have

sup
α≥β

(xαyα) ≤ sup
α≥β

xα. sup
α≥γ

yα.

So taking the infimum over β it follows from Lemma 19 that

lim sup (xαyα) ≤ lim sup xα. sup
α≥γ

yα.

Hence, taking the infimum over γ, we obtain

lim sup (xαyα) ≤ lim sup (xα) lim sup (yα) .

(ii) For β ≥ γ we have

inf
α≥β

(xαyα) ≥ inf
α≥β

xα. inf
α≥γ

yα.

So taking the supremum over β it follows from Lemma 19 that

lim inf (xαyα) ≥ lim inf xα. inf
α≥γ

yα.
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Hence, taking the supremum over γ, we obtain

lim inf (xαyα) ≥ lim inf xα. lim inf yα.

The two other inequalities are similar.

Lemma 21 Let (xα) and (yα) be two order bounded sequences in Xu
+. If

xα
o

−→ x then lim sup (xαyα) = x lim sup yα and lim inf (xαyα) = x lim inf yα.

Proof. By Lemma 20 we have

x lim inf yα = lim inf xα. lim inf yα ≤ lim inf xαyα

≤ lim sup xα. lim inf yα = x lim inf yα

Hence lim inf (xαyα) = x lim inf yα. The second equality follows similarly.
We will prove now a multiplicative decomposition property in Xs

+.

Proposition 22 Let X be a Dedekind complete Riesz space and x, y, z ∈ Xs
+.

If x ≤ yz then there exists a decomposition x = ab of x with 0 ≤ a ≤ y and
0 ≤ b ≤ z.

Proof. By restricting ourselves to the band By+z we may assume that X
has a weak unit e > 0. Assume first that y is finite. Then x = y.y∗x is a
suitable decomposition. Indeed as x ≤ yz we have x ∈ By, and so Pyx = x.
Moreover y∗x ≤ y∗yz ≤ z. If y is infinite, then a suitable decomposition
could be x = x (z∗ + ez∞) .

(

zf + ez∞
)

.
General case. Write x = Px + P dx where P = Pyf , and observe that

Px ≤ Pyz = yfPz and P dx ≤ y∞P dz. Using the previous two cases we

can write Px = ab and P dx = adbd, with a, b ∈ Bs
yf
, ad, bd ∈

(

Bd
yf

)s

with

0 ≤ a ≤ Py, 0 ≤ b ≤ Pz, 0 ≤ ad ≤ P dy, and 0 ≤ bd ≤ P dz. It is easily seen
now that x =

(

a+ ad
)

.
(

b+ bd
)

is a suitable decomposition of x.

5 Applications

In this section, we consider a Riesz conditional triple (X, e, T ) , unless ex-
plicitely stated otherwise. Here X is a Dedekind complete Riesz space with
order weak unit e, and T a conditional expectation operator on X with
Te = e.
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Definition 23 Let X be an Archimedean Riesz space with weak order unit
e. Let M = (mij)1≤i,j≤n

be an n-matrix with entries in X. We say that

M is positive semi-definite if M is symmetric and xTMx ∈ X+ for every
x ∈ (Xe)

n , where Xe is the ideal generated by e and xT = (x1, ...., xn) is the
transpose of x. This means that

∑

i,j

mi,jxixj ≥ 0 for all x1, ..., xn ∈ Xe.

Remark 24 It is clear that if M is a positive semi-definite matrix then
xTMx ∈ X+ for every x ∈ (X)n . Moreover, in order to prove that a matrix
M = (mi,j) is positive semi-definite it is enough to check the positivity of
xTMx for elements x in (R (T ))n . Indeed if x ∈ Xn

e and V the f -subalgebra
of Xu generated by the set of the coefficients of M and of x. Then for every
ω ∈ Hm (V ) and λ = (ω (xj) e, ..., ω (xj) e)

T we have

ω
(

xTMx
)

= ω
(

λTMλ
)

≥ 0,

as λ ∈ R (T )n and ω is positive. Thus M is positive semi-definte.

For a matrix M in Mn (X) let Γ (M) denote the sum of all entries of M,
that is, Γ (M) =

∑

1≤i,j≤n

mij .

Lemma 25 Let (xn)n∈N be a positive sequence in X+, where X is a Dedekind

complete Riesz space with weak order unit e, and let Rn =
∞
∑

k=n

xk ∈ Xs
+, for

n ∈ N. Then R∞
1 = (inf Rn)

∞ .

Proof. Clearly R∞
1 ≥ (inf Rn)

∞ and by [3, Proposition 21],

R∞
1 = R∞

n +

(

n−1
∑

k=1

xk

)∞

= R∞
n .

Assume that u ∈ B+
R∞

1
. Then Rn ≥ tu for all real t ≥ 0. So inf

n
Rn ≥ tu for

all real t ≥ 0. This shows that u ∈ B(

inf
n

Rn

)∞ . We deduce from this that

BR∞
1
⊆ B(

inf
n

Rn

)∞ and so
(

inf
n
Rn

)∞

≥ R∞
1 .

We aim to generalize to the setting of Riesz space the following result due
to Feng and Shen [7].
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Theorem 26 Let (Ω,F ,P) be a probability space, (An) a sequence of events

and (wn) a sequence of positive reals. If
∞
∑

n=1

wnP(An) = ∞, then

P(lim supAn) ≥ lim sup
n

(
∑n

i=1wiP(Ai))
2

∑n
i=1

∑n
j=1wiwjP(AiAj)

.

Our inspiration for the proof derives from [7]. But the proof here is more
technical.

For a subalgebra Y of Xu we will use Hm (Y ) to denote the set of all Riesz
and algebra homomorphism from Y to R. We recall that if Y is generated by
a countable set the Hm (Y ) separates points of Y and we have, in particular,
for y ∈ Y, the equivalence

y ≥ 0 ⇔ ϕ (y) ≥ 0 for all ϕ ∈ Hm (V ) .

Lemma 27 Let M = (mij) ∈ Mn (X
u) be a positive semi-definite matrix,

V a unital subalgebra of Xu containing the entries of M and ϕ : V −→ R a
positive algebra homomorphism. Then the real matrix ϕ (M) := (ϕ (mij)) is
positive semi-definite.

Proof. Let λ = (λ1, ..., λn) ∈ R
n and x = (λ1e, λ2e, ..., λne) . An easy

computation gives ϕ
(

xMxT
)

= λTϕ (M) λ, and the result follows.

Lemma 28 Let n, k1, ..., kn be integers, with k = k1 + ... + kn and Ai,j ∈
Mki,kj (X+) .

1. If M = (Aij)1≤i,j≤n
∈ Mk (X) is positive semi-definite then the matrix

S = (Γ (Aij)) is so.

2. If M = (mij) is positive semi-definite then detM ≥ 0.

Proof. (i) Let x ∈ Xn, then xTSx = vTMv ≥ 0 with v = (x1, x1, ..., x1,x2, ..., x2, ....., xn, ..., xn)
T .

(ii) Let V be the subalgebra of Xu generated by the entries of M and e.
For every ϕ ∈ Hm (V ) the matrix ϕ (M) is positive semi-definite by Lemma
27. So its determinant is positive. This shows that

ϕ (detM) = detϕ (M) ≥ 0.

As this holds for every ϕ ∈ Hm (V ) we deduce that detM ≥ 0.
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Lemma 29 Given a partition of an (m + n) × (m + n) symmetric matrix
M = (mi,j) ∈ Mm+n(X) :

M =

(

A C
tC B

)

,

where A ∈ Mm(X), B ∈ Mn(X) and C ∈ Mm,n(X). If M is positive semi-
definite, then Γ(C)2 ≤ Γ(A).Γ(B).

Proof. This follows from Lemma 28 and the fact that Γ(A).Γ(B)−Γ(C)2 =

det

(

Γ (A) Γ (C)
Γ
(

CT
)

Γ (B)

)

.

Lemma 30 Let {Qi}
n
i=1 be a sequence of band projections on X. Then the

matrix M = (TQiQje)1≤i,j≤n is positive semi-definite.

Proof. Let u = (u1, u2, ..., un) ∈ R(T )n. Then using the average property of
T we have

uMuT =
∑

i,j

uiujTQiQje =
∑

i,j

T (uiujQiQje)

= T
∑

i,j

uiujQiQje = T

(

n
∑

i=1

uiQie

)2

≥ 0.

which proves the desired result.
Consider now a sequence (vn) in R(T )+ and a sequence (Qn) in B(X).

For any 1 ≤ q ≤ n ≤ ∞, let us define the following

Kq,n :=
n
∑

i=q

viTQie,

Rq,n :=
n
∑

i=q

viv1TQiQ1e,

Sq,n :=
∑

q≤i,j≤n

vivjTQiQje,

Rq,n (j) :=
n
∑

i=q

vjviTQiQje, for 1 ≤ j ≤ n.

These notations will be utilized in subsequent discussions, notably in our
main result, Theorem 34.

Lemma 31 With the aforementioned notations, the following relationship
holds true:
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(i) If 1 ≤ q ≤ n ≤ ∞ then K2
q,n ≤ Sq,n.

(ii) For all 1 ≤ p ≤ q < ∞ we have

S∗
q,nSp,n

o
−→ eSq,∞

+S∗
q,∞

(

Sp,q−1 + 2
∑q−1

j=pR
f
q,∞ (j)

)

in Xu as n −→ ∞

In particular, if the finite part Sf
q,∞ of Sq,∞ is null, we get

S∗
q,nSp,n

o
−→ eSq,∞

as n −→ ∞.

Proof. (i) Put x =
n
∑

i=q

viQie. Then by the averaging property of T we

have Tx =
n
∑

i=q

T (viQie) =
n
∑

i=q

viTQie. Hence it follows from Cauchy-Schwarz

Inequality or Lyapunov inequality [4] that

K2
q,n = (Tx)2 ≤ Tx2 = Sq,n,

(ii) Write Sp,n = Sp,q−1+Sq,n+2
q−1
∑

j=p

Rq,n (j) . According to Lemma 17, we

have S∗
q,n

o
−→ S∗

q,∞ in Xu. Moreover, we have clearly

S∗
q,nSq,n = PSq,n

e ↑ PSq,∞
e, (7)

and
S∗
q,nSp,q−1

o
−→ S∗

q,∞Sp,q−1 in Xu. (8)

Observe on the other hand that

R2
q,n (j) ≤ v2j

(

n
∑

i=q

viTQie

)2

= v2jK
2
q,n ≤ v2jSq,n.

It follows from Lemma 18 that

(

v2jSq,n

)∗
Rq,n (j)

o
−→

(

v∗j
)2

S∗
q,∞Rf

q,∞ (j) in Xu.

As S∗
q,∞Rf

q,∞ (j) belongs to the band Bvj we deduce that

S∗
q,nRq,n (j) = v2j

(

v2jSq,n

)∗
Rq,n (j)

o
−→ S∗

q,∞Rq,∞ (j) in Xu.
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As R∞
q,∞ (j) ≤ S∞

q,∞ ⊥ S∗
q,∞, we have

S∗
q,∞Rq,∞ (j) = S∗

q,∞Rf
q,∞ (j) .

Hence,
S∗
q,n

∑q−1
j=pRq,n (j)

o
−→ S∗

q,∞

∑q−1
j=pR

f
q,∞ (j) in Xu. (9)

The required result follows by combining (7), (8), and (9).

Lemma 32 Let X be a Dedekind complete Riesz space with weak order unit
e, and let Y be a regular Dedekind complete Riesz subspace of X with e ∈ Y.
Then xf , x∞ ∈ Y s for every element x ∈ Y s

+. In particular this can be applied
to Y = R (T ) , the range of a conditional expectation operator T.

Proof. Let x be an element in Y s
+. By [3, Lemma 12] we have

x ∧ ne = xf ∧ ne + x∞ ∧ ne ∈ Y.

It follows that

x ∧ (n + 1) e− x ∧ ne = xf ∧ (n + 1) e− xf ∧ ne+ Px∞e ∈ Y.

Taking the order limit we get Px∞e ∈ Y. So

xf ∧ ne = x ∧ ne− nex∞ ∈ Y.

Hence
xf = sup

n

(

xf ∧ ne
)

∈ Y.

Now we get x∞ = x− xf ∈ Y s, as required.
Remark. Let (xn) and (yn) be two bounded sequences in Xu

+. It is easy

to see that if xn
o

−→ x then

lim sup (xnyn) = x lim sup yn.

This will be used in the next result.

Proposition 33 Using the same notations as previously and let B be the
band generated by K∞

1,∞ and P the corresponding band projection. Then the
following assertions are valid.
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(i) R∞
1,∞ ≤ K∞

1,∞ ≤ S∞
1,∞.

(ii) The sequences
(

Kf
q,∞

)

and
(

Rf
q,∞

)

are decreasing.

(iii) For all integer q we have K∞
q,∞ = K∞

1,∞ and R∞
q,∞ = R∞

1,∞.

(iv) For Vn := PKq,n
S∗
1,nK

2
1,n we have:

lim sup
n

Vn = PKq,∞
lim sup

n

(

S∗
1,nK

2
1,n

)

=
(

P
K

f
q,∞

S∗
q,∞S1,q−1 + PKq,∞

e+ 2P
K

f
q,∞

S∗
q,∞

∑q−1
j=1R

f
q,∞ (j)

)∗

(

K1,q−1K
∗
q,∞ + PKq,∞

e
)2

lim sup
n

[

S∗
q,nK

2
q,n

]

.

(v) We have the following equality

lim sup
n

(

PS∗
1,nK

2
1,n

)

= lim sup
n

(

PS∗
q,nK

2
q,n

)

.

In particular, if B = X, then lim sup
n

(

S∗
q,nK

2
q,n

)

is independent of q.

The last two points in Lemma 33 provide a generalization of [7, Proposi-
tion 6].
Proof. (i) By Lemma 31 K2

1,n ≤ S1,n and then K2
1,∞ ≤ S1,∞, which yields

K∞
1,∞ =

(

K2
1,∞

)∞
≤ S∞

1,∞. For the second inequality observe that

R1,n = v1
n
∑

k=1

vkTQ1Qke ≤ v1K1,n,

and we deduce as above that R∞
1,∞ ≤ K∞

1,∞.
(ii) This follows from Remark 7.
(iii) This follows immediately from the equality (x+ y)∞ = x∞ + y∞

which holds for all elements x, y ∈ Xs
+. [3, Proposition 21].

(iv) In view of Lemma 31.(i) we have S∗
1,n.K

2
1,n ≤ e. Hence the first

equality follows from the remark preceding Proposition 33 and the fact that
PKq,n

e ↑ PKq,∞
e as n −→ ∞. For the second we will use the decomposition

Vn := PKq,n
S∗
1,nK

2
1;n = PKq,n

S∗
q,nK

2
q,n.An.M

∗
n ,

where
An =

(

K1,q−1K
∗
q,n + PKq,n

e
)2

,
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and

Mn = PKq,n

(

S1,q−1S
∗
q,n + e + 2S∗

q,n

q−1
∑

j=1

Rq,n (j)

)

.

According to Lemma 31, the inequality K2
q,n ≤ Sq,n implies that K2

q,nS
∗
q,n ≤

PSq,n
e. Hence the sequence

(

K2
q,nS

∗
q,n

)

is order bounded in Xu. We have

PKq,n
K2

1,n = K2
q,n

(

K1,q−1K
∗
q,n + PKq,n

e
)2

= K2
q,nAn,

with

An =
(

K1,q−1K
∗
q,n + PKq,n

e
)2 o

−→
(

K1,q−1K
∗
q,∞ + PKq,∞

e
)2

in Xu.

Next, we observe that

PKq,n
S∗
1,n = PKq,n

(

S1,q−1 + Sq,n + 2
q−1
∑

j=1

Rq,n (j)

)∗

= PKq,n
S∗
q,n

(

S∗
q,nS1,q−1 + PSq,n

e+ 2S∗
q,n

q−1
∑

j=1

Rq,n (j)

)∗

= PKq,n
S∗

q,n
M∗

n.

with

Mn = PKq,n

(

S1,q−1S
∗
q,n + e + 2S∗

q,n

q−1
∑

j=1

Rq,n (j)

)

.

Now in the proof of Lemma 31 it has been shown that

S∗
q,nRq,n (j)

o
−→ S∗

q,∞Rq,∞ (j) in Xu.

So we have

Mn
o

−→ M := PKq,∞

(

S1,q−1S
∗
q,∞ + e+ 2S∗

q,∞

q−1
∑

j=1

Rq,∞ (j)

)

in Xu,

= P
K

f
q,∞

S1,q−1S
∗
q,∞ + PKq,∞

e + 2P
K

f
q,∞

S∗
q,∞

q−1
∑

j=1

Rf
q,∞ (j)

where we use in the last equality the fact that R∞
q,∞ (j) ⊥ S∗

q,∞ (1 ≤ j ≤ q−1)
and that K∞

q,∞ ⊥ S∗
q,∞. This shows, in particular, that (Mn) is order bounded
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inXu. On the other hand we have by definition ofMn thatMn,M
∗
n ∈ BKq,n

⊂
BSq,n

and
S∗
q,nM

∗
n = PKq,n

S∗
q,nM

∗
n = PKq,n

S∗
1,n ≤ S∗

1,n.

Hence
M∗

n ≤ Sq,nS
∗
1,n = S1,nS

∗
1,n ≤ e.

This shows that (M∗
n) is order bounded in Xu. Now using Lemma 21 we get

PMe = Plim infMn
e ≤ lim inf PMn

e = lim inf (MnM
∗
n) = M lim infM∗

n .

Thus PMe ≤ M lim infM∗
n and then

M∗ ≤ lim infM∗
n. (10)

Similarly we have

M lim supM∗
n = lim sup (MnM

∗
n) = lim sup eMn

≤ e.

Thus PM lim supM∗
n ≤ M∗. Now as (M∗

n) is contained in the band BKq,∞
and

M is a weak order unit of that band; the last inequality becomes

lim supM∗
n ≤ M∗. (11)

We deduce from (10) and (11) that M∗
n

o
−→ M∗ in Xu. Observe finally that

each of the three sequences
(

eKq,n
S∗
q,nK

2
q,n

)

, (An) and (Mn) is bounded in
Xu, which enables us to use Lemma 21 and conclude that

lim sup
n

(

PKq,n
S∗
1,nK

2
1,n

)

= lim sup
n

[(

K2
q,nS

∗
q,n

)

M∗
nAn

]

= lim sup
n

[

K2
q,nS

∗
q,n

]

. limM∗
n . lim

n
An

= lim sup
n

[

K2
q,nS

∗
q,n

]

.M∗
(

K1,q−1

(

Kf
q,∞

)∗
+ eKq,∞

)2

in Xu. This completes the proof of (iv).
(v) This is an immediate consequence of (iv) by applying P to (iv) and

using the equality K∞
1,∞ = K∞

q,∞ proved in (iii).
We reach now the central result of this section.
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Theorem 34 Let (X, e, T ) be a conditional Riesz triple, (vn) a sequence in
R(T )+ and (Qn) a sequence of band projections. Let P be the projection on

the band generated by the infinite part of
∞
∑

i=1

viTQie. Then (Qvn = PvnQne.)

TP lim sup
n

Qvne ≥ lim sup
n

(

P
(

S∗
1,nK

2
1,n

))

.

In particular, if

(

∞
∑

i=1

viTQie

)f

= 0 then

T

(

lim sup
n

Qvne

)

≥ lim sup
n

(

S∗
1,n.K

2
1,n

)

.

Proof. (i) Let B be the band associated to P. By Lemma 32 ∞B ∈ R (T )s

and by [3, Proposition 7] we get PBT = TPB. Put Qvi = QiPvi . Then c :=
n
∨

i=q

Qvie is a component of e and it follows from Cauchy-Schwarz inequality

that

K2
q,n =

(

T

(

c.
n
∑

i=q

viQie

))2

≤ Tc.Sq,n.

So as T commutes with P, we obtain

PK2
q,n ≤ T (Pc) .P (Sq,n) = T

n
∨

i=q

PQvne.P (Sq,n) ,

which implies that

P
(

K2
q,nS

∗
q,n

)

= PK2
q,n.PS∗

q,n ≤ T

(

n
∨

i=q

PQvne

)

.PSq,n.PS∗
q,n

= T

(

n
∨

i=q

PQvne

)

,

where the last equality holds because T

(

n
∨

i=q

PQvne

)

belongs to the band

B∩BSq,n
and PSq,n.PS∗

q,n is the component of e on this band. It follows that

a := T

(

lim sup
n

PQvne

)

= lim
q

sup
n≥q

T

(

n
∨

i=q

PQvie

)

≥ lim
q

lim sup
n

P
(

S∗
q,n.K

2
q,n

)

= lim sup
n

P
(

S∗
1,n.K

2
1,n

)

,
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which proves the desired inequality. Here the last equality follows from

Lemma 31(v). In the case

(

∞
∑

i=1

viTQie

)f

= 0 we get K1,n ∈ B for every

n, and then P
(

S∗
1,nK

2
1,n

)

= S∗
1,n.K

2
1,n. It follows from the first case that

T

(

lim sup
n

Qvne

)

≥ lim sup
n

(

S∗
1,n.K

2
1,n

)

.

This completes the proof.
Applying Theorem 34 to vn = (Tqn)

∗ with qi = Qie, we obtain the
following result which is a generalization of [7, Corollary 2].

Corollary 35 Under the hypothesis of Theorem 34 with qi = Qie we have

T

(

lim sup
n

PTqnqn

)

≥ lim sup
n

(

∑

1≤i,j≤n

(TqiTqj)
∗ T (qiqj)

)∗

.

(

∑

1≤i≤n

eTqi

)2

.

Theorem 34 allows to get a generalization of Borel-Cantelli Lemma proved
by the author [3, Theorem 31].

Corollary 36 Let (Pn)n≥1 be a sequence of parwise T -independent band pro-
jections on X. If B is a band on Xu such that

∞
∑

n=1

TPne = ∞B + u with u ∈ Bd,

then PB commutes with T and

PB = lim sup
n

Pn.

Proof. We know that PB commutes with T (see the proof of Theorem 34).
Now observe that

∞
∑

n=1

TP d
BPne = P d

B

∞
∑

n=1

TPne = u ∈ Xu.

Hence, accorfing to [3, Lemma 26], P d
B lim supQn = 0, which implies the

inequality
lim supPn ≤ PB.
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The reverse inequality will follow from Theorem 34 Indeed if we apply the
theorem with vn = e we get

T lim sup
n

Qn = TPB lim sup
n

Qne ≥ lim sup
n

(

PB

(

S∗
1,nK

2
1,n

))

(A1)

Moreover, we have by T -independance,

S1,n ≤ K2
1,n +K1,n,

which yields
PS1,n

= S∗
1,nS1,n ≤ S∗

1,nK
2
1,n + S∗

1,nK1,n,

and then
PBPS1,n

≤ PBS
∗
1,nK

2
1,n + PBS

∗
1,nK1,n.

Taking the lim sup over n in this last inequality gives

PBPS1,∞
≤ lim sup

(

PBS
∗
1,nK

2
1,n

)

+ lim sup
(

PBS
∗
1,nK1,n

)

.

Since ∞B = K∞
1,∞ ≤ S∞

1,∞ we have PBPS1,∞
= PBPS∞

1,∞
= PB. So

PBPS1,∞
= PBPS

f
1,∞

+ PBPS∞
1,∞

= PBPS∞
1,∞

= PB. (12)

Now, K1,n and S1,n are increasing with K2
1,n ≤ S1,n, we obtain thanks to

Proposition 18,
S∗
1,nK1,n

o
−→ S∗

1,∞Kf
1,∞, (13)

which gives
PBS

∗
1,nK1,n

o
−→ PBS

∗
1,∞Kf

1,∞ = 0.

Combining (12) and (13) we derive that

TPBe = PBe = PBPS1,∞
e ≤ lim sup

(

PBS
∗
1,nK

2
1,n

)

≤ TPB lim sup
n

Pne.

Applying Theorem 34 gives

TPBe ≤ T lim sup
n

Pne.

Therefore, since T is strictly positive we conclude that

PBe = lim sup
n

Pne.

his complete the proof.
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