
ar
X

iv
:2

40
3.

17
94

5v
1 

 [
m

at
h.

FA
] 

 2
9 

Fe
b 

20
24

A PROOF OF SYLVESTER’S THEOREM

SAPTAK BHATTACHARYA

Abstract. We give a new elementary proof of existence and unique-
ness of a solution to the Sylvester equation AX −XB = Y

1. Introduction

Given finite dimensional Hilbert spaces H, K and operators A ∈
L(K), B ∈ L(H) and Y ∈ L(H, K) the Sylvester equation asks for
solutions X ∈ L(H, K) to

AX −XB = Y (1)

A particular case of interest is the Lyapunov equation

A∗X +XA = Y (2)

which arises in stability theory (see [4]). Equation (1) was first studied
by Sylvester in [6], who showed that it has a unique solution if σ(A) ∩
σ(B) = ∅. This was generalized to infinite dimensions by Rosenblum
in [5].

The purpose of this note is to give a short proof of Sylvester’s theorem
using elementary block matrix arguments. Other different proofs are
given in [1, 2, 3]. A thorough survey on equation (1) can be found in
[1].

2. Main result

Theorem 1. Let H and K be finite dimensional Hilbert spaces and let

A ∈ L(K) and B ∈ L(H) with σ(A) ∩ σ(B) = ∅. Then for every Y ∈
L(H,K) there exists a unique X ∈ L(H,K) such that AX −XB = Y .

Proof. Consider the map Φ : L(H,K) → L(H,K) given by Φ(X) =
AX −XB. It suffices to show that Φ is injective. If ker Φ contains an
invertible X , we have

X−1AX = B
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implying σ(A) = σ(B), a contradiction. If not, we use a block matrix
argument to reduce to this case. Let X ∈ ker Φ such that X 6= O.
Consider the direct sum decompositions

H = (kerX)⊥ ⊕ kerX

and

K = imX ⊕ kerX∗.

Note that (kerX)⊥ 6= {0}. With respect to these decompositions, we
have the block matrices

X =

(

Y O

O O

)

A =

(

E F

G H

)

and

B =

(

P Q

R S

)

.

Observe that Y is invertible. The condition AX = XB now yields

(

EY O

GY O

)

=

(

Y P Y Q

O O

)

implying

EY = Y P, (3)

G = O and Q = O.

Now

A =

(

E F

O H

)

and

B =

(

P O

R S

)

.

Thus, σ(E) ⊂ σ(A) and σ(P ) = σ(P t) ⊂ σ(Bt) = σ(B) which im-
plies σ(E) ∩ σ(P ) = ∅. From (3), we have a contradiction due to the
invertibility of Y .
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