# A PROOF OF SYLVESTER'S THEOREM 

SAPTAK BHATTACHARYA


#### Abstract

We give a new elementary proof of existence and uniqueness of a solution to the Sylvester equation $A X-X B=Y$


## 1. Introduction

Given finite dimensional Hilbert spaces $\mathcal{H}, \mathcal{K}$ and operators $A \in$ $\mathcal{L}(\mathcal{K}), B \in \mathcal{L}(\mathcal{H})$ and $Y \in \mathcal{L}(\mathcal{H}, K)$ the Sylvester equation asks for solutions $X \in \mathcal{L}(\mathcal{H}, K)$ to

$$
\begin{equation*}
A X-X B=Y \tag{1}
\end{equation*}
$$

A particular case of interest is the Lyapunov equation

$$
\begin{equation*}
A^{*} X+X A=Y \tag{2}
\end{equation*}
$$

which arises in stability theory (see [4]). Equation (1) was first studied by Sylvester in [6], who showed that it has a unique solution if $\sigma(A) \cap$ $\sigma(B)=\emptyset$. This was generalized to infinite dimensions by Rosenblum in [5].

The purpose of this note is to give a short proof of Sylvester's theorem using elementary block matrix arguments. Other different proofs are given in [1, 2, 3]. A thorough survey on equation (1) can be found in [1].

## 2. Main Result

Theorem 1. Let $\mathcal{H}$ and $\mathcal{K}$ be finite dimensional Hilbert spaces and let $A \in \mathcal{L}(\mathcal{K})$ and $B \in \mathcal{L}(\mathcal{H})$ with $\sigma(A) \cap \sigma(B)=\emptyset$. Then for every $Y \in$ $\mathcal{L}(\mathcal{H}, \mathcal{K})$ there exists a unique $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ such that $A X-X B=Y$.

Proof. Consider the map $\Phi: \mathcal{L}(\mathcal{H}, \mathcal{K}) \rightarrow \mathcal{L}(\mathcal{H}, \mathcal{K})$ given by $\Phi(X)=$ $A X-X B$. It suffices to show that $\Phi$ is injective. If $\operatorname{ker} \Phi$ contains an invertible $X$, we have

$$
X^{-1} A X=B
$$

[^0]implying $\sigma(A)=\sigma(B)$, a contradiction. If not, we use a block matrix argument to reduce to this case. Let $X \in \operatorname{ker} \Phi$ such that $X \neq O$. Consider the direct sum decompositions
$$
\mathcal{H}=(\operatorname{ker} X)^{\perp} \oplus \operatorname{ker} X
$$
and
$$
\mathcal{K}=\operatorname{im} X \oplus \operatorname{ker} X^{*}
$$

Note that $(\operatorname{ker} X)^{\perp} \neq\{0\}$. With respect to these decompositions, we have the block matrices

$$
\begin{aligned}
X & =\left(\begin{array}{ll}
Y & O \\
O & O
\end{array}\right) \\
A & =\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
\end{aligned}
$$

and

$$
B=\left(\begin{array}{ll}
P & Q \\
R & S
\end{array}\right)
$$

Observe that $Y$ is invertible. The condition $A X=X B$ now yields

$$
\left(\begin{array}{cc}
E Y & O \\
G Y & O
\end{array}\right)=\left(\begin{array}{cc}
Y P & Y Q \\
O & O
\end{array}\right)
$$

implying

$$
\begin{gather*}
E Y=Y P  \tag{3}\\
G=O \text { and } Q=O
\end{gather*}
$$

Now

$$
A=\left(\begin{array}{ll}
E & F \\
O & H
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
P & O \\
R & S
\end{array}\right) \text {. }
$$

Thus, $\sigma(E) \subset \sigma(A)$ and $\sigma(P)=\sigma\left(P^{t}\right) \subset \sigma\left(B^{t}\right)=\sigma(B)$ which implies $\sigma(E) \cap \sigma(P)=\emptyset$. From (3), we have a contradiction due to the invertibility of $Y$.

## References

1. R. Bhatia and P. Rosenthal, How and why to solve the operator equation $A X$ $X B=Y$, Bull. London Math. Soc. 29 (1997), no. 1, 1-21.
2. N. Higham, Functions of Matrices : Theory and Computation, Society for Industrial and Applied Mathematics (2008).
3. H. Dym, Linear Algebra in Action, Graduate Studies in Mathematics, American Mathematical Society (2013).
4. P. C. Parks, A. M. Lyapunov's stability theory - 100 years on, IMA J. Math. Control Inform. 9 (1992), no. 4, 275-303.
5. M. Rosenblum, On the operator equation $B X-X A=Q$, Duke Math. J. 23 (1956) 263-269.
6. J. Sylvester, Sur l' equation en matrices $p x=x q$ ', C. R. Acad. Sci. Paris. 99 (1884), 67-71, 115-116

Indian Statistical Institute, New Delhi 110016, India
Email address: saptak21r@isid.ac.in


[^0]:    2010 Mathematics Subject Classification. 15A23, 15A30.
    Key words and phrases. Sylvester's equation, block matrices.

