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Abstract 

The degree distribution, referred to as the delta-sequence of a 

network is studied. Using the non-normalized Lorenz curve, we 

apply a generalized form of the classical majorization partial 

order.  

Next, we introduce a new class of small worlds, namely those 

based on degree centralities of networks. Similar to a previous 

study, small worlds are defined as sequences of networks with 

certain limiting properties. We distinguish between three types 

of small worlds: those based on the highest degree, those 

based on the average degree, and those based on the median 

degree. We show that these new classes of small worlds are 

different from those introduced previously based on the 

diameter of the network or the average and median distance 

between nodes. However, there exist sequences of networks 

that qualify as small worlds in both senses of the word, with 

stars being an example. Our approach enables the comparison 

of two networks with an equal number of nodes in terms of 

their “small-worldliness”.  
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Finally, we introduced neighboring arrays based on the degrees 

of the zeroth and first-order neighbors and proved that for 

trees, equal neighboring arrays lead to equal delta-arrays. 

Keywords: network theory; Lorenz curves; generalized Lorenz 

majorization, small worlds; degree centralities; comparison of 

networks; trees; neighboring array 

 

1. Introduction 

Consider an undirected network or graph G = (V,E), where V 

denotes the set of vertices or nodes, and E denotes the set of 

edges or links. In this text, the terms graph and network refer 

to the same mathematical concept and are used 

interchangeably. A path of length n is a sequence of vertices 

(v0, …vk, vk+1, …, vn) such that {v0, …, vn-1} and {v1, …, vn} are 

sets (being sets each consist of different elements) and for k= 

0,…, n-1, vk is adjacent to vk+1. A cycle is a path for which the 

starting point v0 coincides with the endpoint vn. A graph is 

connected if there exists (at least one) path between any two 

vertices. If #V = N, then the degree centrality of node i, i = 

1, …, N, i.e., the number of edges connected to node i, is 

denoted as 𝛿𝑖 . In this article we always assume that G is 

connected, hence all degree centralities are strictly larger than 

zero. As there is no natural order among the nodes in a 

network we assume that these values are ranked in decreasing 

order.  

Notation 
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The array of degree centralities of a network G with N nodes is 

denoted as 

Δ𝐺 =  (𝛿1(𝐺), 𝛿2(𝐺), … , 𝛿𝑁(𝐺)).                     (1) 

We will informally refer to such an array as a delta-sequence, 

consisting of delta-values. Clearly, ∑ 𝛿𝑖𝑁
𝑖=1 = 2 (#𝐸) , a notion 

which is known as the total degree of the network. It is easy to 

see that 2(N-1) ≤  ∑ 𝛿𝑖𝑁
𝑖=1  ≤ N(N-1). The lower bound is obtained 

e.g., for a chain consisting of N nodes, see further, while the 

upper bound is obtained for a complete graph where each node 

is connected to each other node. 

As real-world networks are often dynamic we will work, as we 

did in a previous study on small-world networks (Egghe & 

Rousseau, 2024), within the context of a sequence of finite 

node sets (V𝑁)𝑁∈ℕ of networks (G𝑁)𝑁∈ℕ , i.e., ∀ 𝑁 ∈ ℕ:   #V𝑁  = N 

Of course, also all edge sets EN are finite. 

 

Before moving on to examples and theory we recall the 

following definitions. 

1.1 Definition:  Free or unrooted tree (Knuth, 1973, p. 363) 

A free or unrooted tree is a connected graph with no cycles. 

Equivalently it is a connected graph such that removing any 

edge makes it disconnected. Another equivalent definition 

states that if v and v’ are different vertices, then there exists 

exactly one path from v to v’. As we will never use the notion of 

the root of a tree, we will just use the term ‘tree’ for “free tree”.   
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1.2 Definition. Isomorphic graphs 

Two graphs G and G’ are isomorphic if there exists a bijection f 

between the vertices of G and G’ such that there is an edge 

between vertices u and v in G if and only if there is an edge 

between the vertices f(u) and f(v) in G’. 

1.3 Definition: Spanning tree of a connected graph 

A spanning tree of an N-node connected graph is a set of N-1 

edges that connects all nodes of the network and contains no 

cycles. A graph may have different (non-isomorphic) spanning 

trees. 

 

2. Examples of networks and their delta-sequences 

2.1 The complete network on N nodes 

The delta-sequence of an N-node complete network is 

Δ𝐺 = (𝑁 − 1, … ,𝑁 − 1�����������
𝑁 𝑡𝑖𝑡𝑡𝑡

) 

In this case ∑ 𝛿𝑖𝑁
𝑖=1 = N(N-1) and its diameter is 1.  

2.2 The N-star 

The N-star consists of a central node and N-1 peripheral nodes, 

each with one link, namely to the center. Then 

Δ𝐺 =  �𝑁 − 1, 1, … , 1���
𝑁−1−𝑡𝑖𝑡𝑡𝑡

� 

Its sum is 2(N-1) and its diameter is 2. 

2.3 The N-polygon 
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The N-polygon consists of N nodes forming a simple path of 

different nodes, that links to its starting point. Then 

Δ𝐺 =  �2, … ,2���
𝑁 𝑡𝑖𝑡𝑡𝑡

� 

Its sum is 2N and its diameter is N/2 for even N and (N-1)/2 for 

odd N.  

2.4 The N-chain 

The N-chain consists of one path of N different nodes. Then 

Δ𝐺 =  � 2, … , 2���
𝑁−2 𝑡𝑖𝑡𝑡𝑡

, 1,1� 

Its sum is 2(N-1) and its diameter is N-1. 

2.5 Trees 

It is obvious that there is no delta-sequence applicable to all 

trees, but we do have the following lemma, to which we will 

refer as Knuth’s lemma. 

Lemma (Knuth, 1976, p. 363) 

An N-node connected network is a tree if and only if it has N-1 

edges and hence a total degree equal to 2(N-1).   

We note that stars and chains are all special trees.  

3. The delta-sequence and a generalized majorization 

partial order  

3.1 The standard Lorenz curve and Gini index 
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As the delta-sequence does not have a fixed sum we first 

consider its (standard) Lorenz curve. The highest Lorenz curve 

for a network with N nodes is obtained for the star. It always 

starts by connecting the origin to the point with coordinates 

�1
𝑁

, 1
2
�. In general, its standard Gini index (Rousseau et al., 2018, 

formula (4.19)) is (N-2)/2N with a limiting value of 0.5. The 

lowest Lorenz curve, with Gini index zero, is obtained for a 

delta-sequence consisting of the same numbers, such as for 

any complete network, but also for any polygon.  

3.2 The non-normalized Lorenz curve 

In (Egghe & Rousseau, 2023a) we used the so-called non-

normalized Lorenz curve in a continuous context. This study 

and its follow-up (Egghe & Rousseau, 2023b) led to a rigorous 

definition of the notion of global impact. We would say, based 

on (Egghe & Rousseau, 2023b), that the notion of majorization 

in a network does not only depend on the number of links, but 

also on their concentration.  

In the discrete context, the non-normalized Lorenz curve is 

defined as follows. 

Definition: Non-normalized Lorenz curves 

Let 𝑋 =  (𝑥1, 𝑥2, … , 𝑥𝑁)  be a decreasing N-array of non-negative 

real numbers, then the corresponding non-normalized Lorenz 

curve is the polygonal line connecting the origin (0,0) with the 

points �𝑗, ∑ 𝑥𝑗
𝑗
𝑘=1 �, j= 1, …, N. This curve ends at the point with 

coordinates  �𝑁, ∑ 𝑥𝑗𝑁
𝑘=1 �.  



7 
 

Definition: The non-normalized (or generalized) majorization 

order for N-arrays 

If X and Y are decreasing N-arrays of non-negative real 

numbers, then X is majorized by Y, denoted as X -< Y if  

∀𝑗, 𝑗 = 1, … ,𝑁: ∑ 𝑥𝑗
𝑗
𝑘=1  ≤ ∑ 𝑦𝑗

𝑗
𝑘=1                   (2) 

The -< relation is only a partial order as non-normalized Lorenz 

curves (just like standard Lorenz curves) may intersect, see 

further. If there exists at least one j such that the inequality is 

strict, we say that X is strictly majorized by Y. If ∀𝑗, 𝑗 =

1, … ,𝑁; 𝑥𝑗  ≤  𝑦𝑗 then obviously X -< Y, but the opposite relation 

does not hold.  

Definition. Acceptable measures 

If X denotes the set of all decreasing N-arrays of non-negative 

real numbers, then a function m: X →  ℝ+  is an acceptable 

measure for the relation -< if X -< Y implies that m(X) ≤ m(Y).  

 

It is important to note that the definitions of non-normalized 

Lorenz curves and in particular the notion of the generalized 

Lorenz majorization order, denoted as -<, and the 

corresponding acceptable measures are generally applicable to 

all decreasing N-array of non-negative real numbers.  

Hence, the above definitions can be applied to the set of delta- 

sequences and the corresponding networks, leading to 

expressions such as Δ𝐺 -< Δ𝐻 for two N-node networks, but also 
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to the gamma-sequences, introduced later in this text. We 

already note that if T(G) denotes a spanning tree of the 

network G, then T(G) -< G. 

 

As an illustration of the importance of the generalized 

majorization order, we recall the following definition. 

Definition: Network density (Wasserman & Faust, 1994) 

The density D of an undirected network G with N nodes is 

defined as 

𝐷(𝐺) =  2.(#𝐸)
𝑁(𝑁−1)

= ∑ 𝛿𝑖𝑁
𝑖=1

𝑁(𝑁−1)
                            (3) 

Clearly, network density is just a normalized total degree. Two 

N-networks with the same density D have non-normalized 

Lorenz curves with the same endpoint, but D does not say 

anything about the exact relation between the two non-

normalized Lorenz curves. In this sense, the majorization 

partial order applied to delta-sequences refines the notion of 

network density. 

Let now Δ𝐺  and Δ𝐻  be the degree sequences of the N-node 

networks G and H, then the following theorem holds. 

3.4 Theorem 1 

(i) Δ𝐺 -< Δ𝐻 ⇒ 𝛿1(𝐺) ≤  𝛿1(𝐻) 

(ii) Δ𝐺 -< Δ𝐻 ⇒  1
𝑁

 ∑ 𝛿𝑗(𝐺)𝑁
𝑗=1  ≤  1

𝑁
 ∑ 𝛿𝑗(𝐻)𝑁

𝑗=1    
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(iii) Δ𝐺 -< Δ𝐻 ⇏ Md(Δ𝐺) ≤ Md(Δ𝐻) and neither does it imply that 

Md( Δ𝐺 ) ≥ Md( Δ𝐻 ), where Md stands for the median of a 

sequence. 

(iv) The reverse implications do not hold 

Proof. (i) and (ii) follow trivially from the definition of -<. 

(iii) We provide two counterexamples (N=5) 

The 5-chain G has a degree sequence Δ𝐺  = (2,2,2,1,1) and H 

(see Fig. 1) has a degree sequence  Δ𝐻  = (3,2,1,1,1). Then Δ𝐺 

-< Δ𝐻 but  M𝑑(Δ𝐺) = 2 > M𝑑(Δ𝐻) = 1. 

 

Fig. 1. Networks G and H illustrating part (iii) 

For G1 and H1 (see Fig. 2) we have Δ𝐺1  = (3,3,2,2,2) and Δ𝐻1 = 

(4,3,3,2,2). Then Δ𝐺1 -< Δ𝐻1 and M𝑑(Δ𝐺1) = 2 < M𝑑(Δ𝐻1) = 3. 

 

Fig. 2 Networks G1 and H1 illustrating part (iii) 
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(iv) For the opposite of case (i) we consider the networks H1 

and H2 (see Fig. 3) with Δ𝐻1  = (5,3,3,3,3,3) and Δ𝐻2  = 

(4,4,4,3,3,2). Then neither Δ𝐻1  -< Δ𝐻2 , nor Δ𝐻2  -< Δ𝐻1 , 

illustrating that -< is a partial, not a complete, order. Moreover, 

𝛿1(𝐻2) = 4  < 𝛿1(𝐻1) = 5 , 𝛿(𝐻1)��������  =  𝛿(𝐻2)��������  = 20
6

 and 𝑀𝑑�Δ𝐻2� =  7
2

>

 𝑀𝑑�Δ𝐻1� =  3 □ 

  

Fig.3 The networks H1 (left) and H2 (right) used in part (iv) 

 

From our earlier investigation (Egghe & Rousseau, 2023a), we 

know that the following are acceptable measures for  

generalized majorization among delta-sequences:   

A. The Gini index:  Gini(Δ𝐺) = ∑ �∑ 𝛿𝑗𝑖
𝑗=1 �𝑁

𝑖=1  

B. The entropy or Theil measure: Th(Δ𝐺) = ∑ 𝛿𝑗ln (𝛿𝑗)𝑁
𝑗=1  

C. The power measure: P(Δ𝐺) = ∑ 𝛿𝑗
𝑝,𝑝 > 1𝑁

𝑗=1  

 

3.5 The network with the lowest non-normalized Lorenz curve. 

Theorem 2. An N-node chain is the lowest connected network in 

the generalized majorization partial order. 
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Proof. By Knuth’s Lemma, the endpoint of the generalized 

Lorenz curve of any network that is not a tree is situated 

strictly above that of a tree. Hence, the lowest possible network 

must be a tree. Among all trees, the N-chain has the lowest 

generalized Lorenz curve.  

 

Remark. We note that it is not even possible for a general 

network to have a generalized Lorenz curve that at any place is 

situated below that of an N-chain. Indeed, when the endpoint is 

fixed, then the lowest generalized Lorenz curve is the one 

whose classical Lorenz curve is the diagonal. As the lowest 

possible endpoint is 2N, this corresponds e.g., to the N-polygon, 

with delta-array (2,2,…, 2). Its cumulative array is (2,4,6,…., 

2N-4, 2N-2, 2N). Yet, the corresponding array for the N-chain 

is (2,4,6,…., 2N-2, 2N-1,2N), showing that it is not possible to 

be situated (locally) strictly under the generalized Lorenz curve 

of the N-chain. 

Remark further that the largest generalized Lorenz curve of an 

N-node network is the one corresponding to the N-complete 

network. 

 

3.6 Examples of non-comparable networks  

We already remarked that -< is only a partial order, implying 

that some N-node networks are not comparable. Theorem 1 
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already provided some examples. Here we provide some more 

examples. 

a) Case N =5 

Consider the networks in Fig. 4 

 

Fig.4. Incomparable 5-node networks: G1, G2 and G3 

For the first and the second network, we have delta-sequences 

(3,3,3,2,1) and (4,2,2,1,1). Hence Δ𝐺1  −⊀ Δ𝐺2  and Δ𝐺2  −⊀ Δ𝐺1 . 

These networks have a different number of links. Consider now 

G1 and G3 with the same number of links. The delta-sequence 

of G3 is (4,2,2,2,2). Then, clearly Δ𝐺1  −⊀ Δ𝐺3 and Δ𝐺3−⊀ Δ𝐺1. We 

further note that D(G1) > D(G2), 𝛿1(𝐺1) <  𝛿1(𝐺2)  and  
1
𝑁

 ∑ 𝛿𝑗(𝐺1) >𝑁
𝑗=1

1
𝑁

 ∑ 𝛿𝑗(𝐺2)𝑁
𝑗=1  but Δ𝐺1  −⊀ Δ𝐺2 and Δ𝐺2  −⊀ Δ𝐺1. 

b) Case N = 6 and beyond. 

Consider again the networks shown in Fig.3. 

The delta-sequences of H1 and H2 are respectively (5,3,3,3,3,3) 

and (4,4,4,3,3,2). Their sums are equal to 20. Yet, Δ𝐻1  −⊀ Δ𝐻2   

and  Δ𝐻2−⊀ Δ𝐻1. If we add chains of equal length to a node with 

degree 3, we may obtain incomparable networks with any 

larger number of nodes.   
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c) The cases 2 ≤ N ≤ 4.  

i) There is only one network with N = 2, hence any two 

networks are comparable. 

ii) The case N=3. Then there are only 2 non-isomorphic 

networks, shown in Fig.5. 

 

Fig. 5. The two non-isomorphic networks with three nodes. 

The delta-sequence of the chain on the left is (2,1,1), while the 

delta-sequence of the polygon on the right is (2,2,2). Clearly, 

the chain is strictly smaller than the polygon. 

iii) The case N = 4. There are six non-isomorphic connected 4-

node networks. See Fig. 6. 

 

Fig. 6. The six non-isomorphic networks with degree 4. 
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Referring to these networks, from left to right and from the first 

row to the second, as G1, G2, G3, G4, G5, and G6 we obtain the 

following delta-sequences: 

Δ𝐺1 = (2,2,1,1); Δ𝐺2 = (3,1,1,1); Δ𝐺3 = (3,2,2,1); Δ𝐺4 = (2,2,2,2); 

Δ𝐺5 = (3,3,2,2); and Δ𝐺6  = (3,3,3,3). The corresponding 

cumulative distributions are: (2,4,5,6), (3,4,5,6), (3,5,7,9), 

(2,4,6,8), (3,6,8,10) and (3,6,9,12). Hence we have the 

following relations between these networks (Fig. 7). 

Δ𝐺1−<  �
Δ𝐺2
 Δ𝐺4

�−<  Δ𝐺3−<  Δ𝐺5−< Δ𝐺6   

Fig.7 Relations between delta-sequences of networks with 4 

nodes 

We see that only G2 and G4 are incomparable. We note that the 

(generalized) Gini-indices for these networks are: Gini(G1) = 17, 

Gini(G2) = 18, Gini(G3) = 24, Gini(G4) = 20, Gini(G5) = 27 and 

Gini(G6) = 30, illustrating the fact that the Gini index is an 

acceptable measure for the generalized majorization order.  

4. Degree sequences and small worlds 

4.1 Introduction to this section 

In this section, we introduce a new class of small worlds, 

namely those based on degree centralities of networks. Similar 

to a previous study, small worlds are defined as sequences of 

networks with certain limiting properties. We distinguish 

between different types of small worlds and show that these 

new classes of small worlds are different from those introduced 
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previously (Egghe & Rousseau, 2024). However, there exist 

sequences of networks that qualify as small worlds in both 

senses of the word, with stars being an example. Our approach 

enables the comparison of two networks with an equal number 

of nodes in terms of their “small-worldliness”.  

4.2. Definitions of small worlds derived from the degree 

distribution 

Because we will define here small worlds derived from the 

degree distribution we will use the abbreviation DSW. 

4.2.1 Small worlds derived from the largest degree (DSWL) 

If Δ𝐺𝑁 =  (𝛿1(𝐺𝑁), 𝛿2 (𝐺𝑁), … , 𝛿𝑁(𝐺𝑁)),  𝑁 ∈ ℕ, is the delta-sequence 

of G𝑁, then (G𝑁)𝑁∈ℕ is a degree small world based on the largest 

degree if 

lim𝑁→+∞
𝛿1(𝐺𝑁)
ln (𝑁)

= + ∞                           (4) 

We informally say that (G𝑁)𝑁∈ℕ is DSWL. 

4.2.2 Small worlds derived from the average degree (DSWA) 

If 𝛿(𝐺𝑁)��������,𝑁 ∈ ℕ, denotes the average degree in network G𝑁, 

 𝛿(𝐺𝑁)�������� =  1
𝑁

 ∑ 𝛿𝑗(𝐺𝑁)𝑁
𝑗=1                            (5) 

then (G𝑁)𝑁∈ℕ  is a degree small world based on the average 

degree if 

lim𝑁→+∞
𝛿(𝐺𝑁)���������

ln (𝑁)
= +  ∞                               (6) 

In the same vein as above we say that (G𝑁)𝑁∈ℕ is DSWA. 
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4.2.3 Small worlds derived from the median degree (DSWMd) 

If  𝑀𝑑(𝐺𝑁),𝑁 ∈ ℕ, denotes the median degree of the network GN, 

then (G𝑁)𝑁∈ℕ  is a degree small world based on the median 

degree if 

lim𝑁→+∞
𝑀𝑀(𝐺𝑁)
ln (𝑁)

= + ∞                              (7) 

We say that  (G𝑁)𝑁∈ℕ is DSWMd. 

4.3.Proposition 1 

a) If (G𝑁)𝑁∈ℕ is DSWMd, then (G𝑁)𝑁∈ℕ is DSWA 

b) If (G𝑁)𝑁∈ℕ is DSWA, then (G𝑁)𝑁∈ℕ is DSWL 

c) If (G𝑁)𝑁∈ℕ is DSWMd, then (G𝑁)𝑁∈ℕ is DSWL 

d) the reverse relations do not hold. 

Proof. Implication a) follows from the Markov property (Chow & 

Teicher, 1978), which states that  𝑀𝑑(𝐺𝑁) ≤ 2𝛿(𝐺𝑁)�������� . Hence, if 

(G𝑁)𝑁∈ℕ is DSWMd, then (G𝑁)𝑁∈ℕ is DSWA. 

Implication b) follows from the fact that 𝛿(𝐺𝑁)�������� ≤ 𝛿1(𝐺𝑁). 

Implication c) follows immediately from implications a) and b), 

or by noticing that  𝑀𝑑(𝐺𝑁)  ≤ 𝛿1(𝐺𝑁).   

d) Consider the following sequence of star networks  (𝑆𝑆𝑁)𝑁 (Fig. 

8) 
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Fig. 8. Star network (illustrated for N=6) 

Then  Δ𝑆𝑆𝑁 =  �𝑁 − 1, 1, … , 1���
(𝑁−1)𝑡𝑖𝑡𝑡𝑡

�. Clearly (𝑆𝑆𝑁)𝑁 is DSWL, but not 

DSWA or DSWMd. 

Finally, we have to show that DSWA does not imply DSWMd. 

Consider Fig.9, to which we refer as an M-spider, denoted as SM 

(Fig.9 shows a spider with M =5). It consists of a complete M-

node graph, where each node has an extra two links. Hence N= 

3M. 

 

Fig.9. 5-spider 
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The delta-sequence of an M-spider is Δ𝑆𝑀 =  �𝑀 + 1, … ,𝑀 + 1�����������
𝑀 𝑡𝑖𝑡𝑡𝑡

,

1, … , 1���
2𝑀 𝑡𝑖𝑡𝑡𝑡

� . The average 1
𝑁

 ∑ 𝛿𝑗(𝑆𝑀) = 𝑁
𝑗=1

𝑀2+3𝑀
3𝑀

 and hence  

lim𝑁→+∞
𝛿(𝑆𝑀)���������

ln (𝑁)
= lim𝑀→+∞

�𝑀3�+1

ln (3𝑀)
 = + ∞ , showing that (𝑆𝑀)𝑀 is DSWA. 

As 𝑀𝑑(Δ𝑆𝑀) = 1, this shows that (𝑆𝑀)𝑀 is not DSWMd.□ 

4.4 Examples 

We have already considered the sequence of stars. Now, we 

have a look at complete graphs, chains, and polygons.  

4.4.1. The sequence of complete graphs.  

For each N, Δ𝐺𝑁 = (𝑁 − 1, … . ,𝑁 − 1�����������
𝑁 𝑡𝑖𝑡𝑡𝑡

). Hence complete graphs are 

DSWMd and hence also DSWA and DSWL.  

4.4.2. The sequence of chains of length N, (𝐶𝐻𝑁)𝑁 . Then 

Δ𝐶𝐻𝑁 =  � 2, … , 2���
(𝑁−2)𝑡𝑖𝑡𝑡𝑡

, 1,1� . Chains are not small worlds based on 

their degree sequences. 

4.4.3. Polygons (𝑃𝑃𝑁)𝑁 . These are formed by connecting begin 

and end nodes of chains. Their delta-sequences are: Δ𝑃𝑃𝑁 =

 �2, … , 2, 2�������
𝑁 𝑡𝑖𝑡𝑡𝑡

�  . We see that polygons too are not small worlds 

based on their degree sequences.  
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5. Another approach to small worlds 

In a previous article (Egghe & Rousseau, 2024) we studied 

small worlds using the following definitions. We assume given a 

sequence (Ω𝑁)𝑁∈ℕ of finite sets and a distance function d defined 

on 𝛀 =  ⋃ Ω𝑁𝑁∈ℕ . The term “small world” was used there for a 

sequence (Ω𝑁)𝑁∈ℕ of finite sets satisfying one of the properties 

defined below.  

5.1 Small worlds based on the diameter (SWD) 

If 𝑑𝑁, 𝑁 ∈ ℕ, is the diameter of Ω𝑁, defined as 

 𝑑𝑁 =  𝑚𝑚𝑥{𝑑(𝐴,𝐵);  𝐴,𝐵 𝜖 Ω𝑁 }                              (8) 

then (Ω𝑁)𝑁∈ℕ is a SWD if there exists a finite constant C ≥ 0 

such that 

lim𝑁→+∞
𝑀𝑁
ln (𝑁)

= 𝐶                                      (9) 

Note that 𝑑𝑁 is short for diam(Ω𝑁).  

5.2 Small worlds based  on the average distance (SWA) 

If 𝜇𝑁 , 𝑁 ∈ ℕ , denotes the average distance between two 

different elements in Ω𝑁: 

𝜇𝑁 =  1
𝑁(𝑁−1)

 ∑ 𝑑(𝐴,𝐵)𝐴,𝐵 ∈ Ω𝑁
𝐴≠𝐵 

                       (10) 

then  (Ω𝑁)𝑁∈ℕ is an SWA if there exists a finite number C ≥ 0  

such that  

lim𝑁→+∞
𝜇𝑁
ln (𝑁)

= 𝐶                                     (11) 

5.3 Small worlds based on the median distance (SWMd) 
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If 𝑀𝑑𝑁 , 𝑁 ∈ ℕ , denotes the median distance between two 

different elements in Ω𝑁: 

𝑀𝑑𝑁 = 𝑚𝑚𝑑𝑚𝑚𝑚{{𝑑(𝐴,𝐵);𝐴,𝐵 ∈  Ω𝑁 ,𝐴 ≠ 𝐵 }}               (12) 

then (Ω𝑁)𝑁∈ℕ is a SWMd if there exists a finite number C ≥ 0  

such that 

 lim𝑁→+∞
𝑀𝑀𝑁
ln (𝑁)

= 𝐶                                       (13) 

Note that {{…}} in (12) refers to a multiset (Rousseau et al., 

5.13.1), i.e. a “set” in which elements may occur more than 

once. It is obvious that if a sequence of finite sets is an SWD 

(Ω𝑁)𝑁∈ℕ  then it is also an SWA and an SWMd (Egghe & 

Rousseau, 2024, section 2.4). 

6. The relation between SWs and DSWs 

We recall from (Egghe, 2024) that if 𝛼𝑗 (G), j= 1,…, N-1, 

denotes the number of times distance j (the shortest distance 

between two nodes) occurs in network G, then the array 

𝐴𝐴𝐺 = (𝛼1(𝐺),𝛼2(𝐺), … ,𝛼𝑁−1(𝐺))  is called the 𝛼  – array of the 

network G. 

In this section, we will find out if being an SW (Egghe & 

Rousseau, 2024) based on the so-called alpha-sequence, 

implies also being a DSW or vice versa. It will be shown that 

such implications do not exist, which implies that the notions of 

SW and DSW are different concepts. 

Two sequences of relations are already known: SWD ⇒ SWA ⇒ 

SWMd, (Egghe & Rousseau, 2024) and DSWMd ⇒  DSWA ⇒ 
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DSWL (see above). We will prove now that there is, in general, 

no relation between these sequences of implications. 

6.1 Theorem 3 

(i) SWD ⇏ DSWL 

(ii) DSWMd ⇏ SWMd 

Proof.(i). We first construct a network Ω𝑁  for fixed N > 3. 

Consider a chain with ⌊ln (𝑁)⌋  nodes (step 1). Each of these 

points has ⌊ln (𝑁)⌋ descendants (see Fig. 10) (step 2).  

 

Fig.10 Sketch of the construction of a counterexample, used in 

Theorem 3 (i)  

We continue this construction until at step a, we have 

∑ (⌊ln (𝑁)⌋)𝑘 𝑎
𝑘=1 ≥ 𝑁. We see that a is smaller than or equal to any 

b for which (⌊ln (𝑁)⌋)𝑏 ≥ 𝑁 . Then the number b satisfies the 

inequality 𝑏 ≥  ln (𝑁)
𝑙𝑙(⌊ln (𝑁)⌋)

 . We see that this network’s diameter 𝑑𝑁 

satisfies the inequality 𝑑𝑁  ≤  ⌊ln(𝑁)⌋ + 2 ln (𝑁)
𝑙𝑙(⌊ln (𝑁)⌋)

. Hence  

lim
𝑁→∞

𝑑𝑁
ln (𝑁) <  +∞ 
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which proves that  (Ω𝑁)𝑁∈ℕ  is SWD. However, (Ω𝑁)𝑁∈ℕ  is not 

DSW because each delta-value is smaller than or equal to  

⌊ln (𝑁)⌋+2, so that lim𝑁→∞
𝛿1

ln (𝑁)
  cannot be equal to +∞. 

(ii). We will construct a kite consisting of an M-complete 

network and a tail consisting of M-1 nodes (Fig. 11). Hence N = 

2M-1. For fixed N the delta-sequence of this kite, KN, is 

Δ𝐾𝑁 = �𝑀, 𝑀 − 1, … ,𝑀 − 1�����������
(𝑀−1)𝑡𝑖𝑡𝑡𝑡

 , 2, … , 2���
(𝑀−2)𝑡𝑖𝑡𝑡𝑡

 , 1�. We see that ∑ 𝛿𝑗(𝐾𝑙𝑁
𝑗=1 ) =

𝑀 + (𝑀− 1)2 + 2(𝑀− 2) + 1 =  𝑀2 + 𝑀 − 2. 

 

Fig. 11. Kite with N=2M-1 nodes 

Now, the kite’s alpha-sequence is: 𝐴𝐴(𝐾𝑁) = ��𝑀(𝑀−1)
2

� + 𝑀 −

1, 2𝑀 − 3, 2𝑀− 4, … ,𝑀 − 1, 0, … , 0���
(𝑁−𝑀−1)𝑡𝑖𝑡𝑡𝑡

� . One may check that 

𝛼1(𝐾𝑁) =  𝑀
2

2
+ 𝑀

2
− 1 = 1

2
∑ 𝛿𝑗(𝐾𝑁)𝑁
𝑗=1  and that ∑ 𝛼𝑗𝑁−1

𝑗=1 (𝐾𝑁) =  𝑁(𝑁−1)
2

. 
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Now we see that ∀𝑚 ∈  {1, … ,𝑁} ∶  ∑ 𝛼𝑗(𝐾𝑁)𝑖
𝑗=1 =  𝑀(𝑀−1)

2
+ (𝑀− 1) +

(2𝑀− 3) + (2𝑀− 4) + ⋯+ 2𝑀 − (𝑚 + 1)  = 𝑀(𝑀−1)
2

+ (𝑀− 1) +

2𝑀(𝑚 − 1) − (3 + 4 + ⋯+ 𝑚 + 1)  = 𝑀(𝑀−1)
2

+ (𝑀− 1) + 2𝑀(𝑚 − 1) −

 (𝑖+1)(𝑖+2)
2

+ 1 + 2 =  𝑀
2

2
− 3𝑀

2
+ 1 + 𝑚 �2𝑀− 3

2
� − 𝑖2

2
  (∗) 

Then the median is that natural number i  such that i is the first 

number for which (*) > 1
2

 ∑ 𝛼𝑗(𝐾𝑁)𝑁−1
𝑗=1 =  𝑁(𝑁−1)

4
=  𝑀2 − 3

2
𝑀 + 1

2
. 

This means that 

𝑚2 − (4𝑀− 3)𝑚 + (𝑀2 − 1) < 0 

and thus 𝑚 = 2𝑀−  3
2 

±  �3𝑀2 − 6𝑀 +  13
4

. The plus sign is not 

possible as otherwise i > N, hence 

𝑚 = 𝑀𝑑𝑁 > 2𝑀 −  
3
2 −  �3𝑀2 − 6𝑀 + 

13
4   

> 2𝑀 −  3
2
−  √3 𝑀 = �2 − √3�𝑀 − 3

2
 

Hence: 𝑀𝑑𝐾𝑁 >  �2−√3
2
�𝑁 −  �1+√3 

2
�. 

Consequently: lim𝑁→+∞
𝑀𝑀𝐾𝑁
ln (𝑁)

= +∞  which proves that  (𝐾𝑁)𝑁∈ℕ is 

not(SWMd). 

We further see that the median of the delta-sequence of K𝑁 

(denoted here as 𝑀𝑑(𝐾𝑁) ) is M-1 = (N-1)/2. Hence: 

lim
𝑁→+∞

𝑀𝛿𝐾𝑁
ln (𝑁) = lim

𝑁→+∞

𝑁 − 1
2

ln (𝑁) = + ∞  
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which shows that the sequence (K𝑁)𝑁∈ℕ is DSWMd. □ 

 

Corollary. If (Ω𝑁)𝑁∈ℕ is DSWL then it is not necessarily SWD. 

Proof. Assume that if (Ω𝑁)𝑁∈ℕ is DSWL then it is also SWD. Now  

DSWMd implies DSW (Proposition 1) from which we would 

know that (Ω𝑁)𝑁∈ℕ is SWD, from which it would follow by (Egghe 

& Rousseau, 2024) that (Ω𝑁)𝑁∈ℕ  were SWMd, which is a 

contradiction (by Theorem 3). 

 

Proposition 2. Consider  Z1 ={(Ω𝑁)𝑁∈ℕ ; (Ω𝑁)𝑁∈ℕ  𝑚𝑖 𝑆𝑆𝐷  } and Z2 = 

{(Ω𝑁)𝑁∈ℕ ; (Ω𝑁)𝑁∈ℕ  𝑚𝑖 𝐷𝑆𝑆𝐷  }, then 𝑍1  ∩  𝑍2  ≠  ∅. 

Proof. It suffices to give one sequence (Ω𝑁)𝑁∈ℕ  in the 

intersection  𝑍1  ∩  𝑍2. We know (Egghe & Rousseau, 2.6.2) that 

the sequence of stars is SWD and we also know that this 

sequence is DSWL. This proves this proposition. 

Proposition 3. Consider  Z3 ={(Ω𝑁)𝑁∈ℕ ; (Ω𝑁)𝑁∈ℕ  𝑚𝑖 𝑚𝑃𝑛 𝑆𝑆𝐷  } and 

Z4 = {(Ω𝑁)𝑁∈ℕ ; (Ω𝑁)𝑁∈ℕ  𝑚𝑖 𝑚𝑃𝑛 𝐷𝑆𝑆𝐷  }, then 𝑍3  ∩  𝑍4  ≠  ∅. 

Proof. Again it suffices to give one sequence in the intersection. 

The sequence (CH𝑁)𝑁∈ℕ  of N-chains is situated in the 

intersection, see Example 4.4.2. Note that also the sequence of 

N-polygons provides another example, see Example 4.4.3. 

 

7. Delta-sequences and small worlds derived from 

degree distributions 
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7.1 Theorem 4 

Consider the network sequences (Ω𝑁)𝑁∈ℕ  and  (Ω′𝑁)𝑁∈ℕ  , such 

that for each 𝑁 ∈ ℕ , #Ω𝑁 =  #Ω′𝑁  . If now, there exists 𝑁0 ∈ ℕ,  

such that for each 𝑁 ≥  𝑁0 : ΔΩ𝑁 -< ΔΩ𝑁′  , then  

(a) (Ω𝑁)𝑁∈ℕ is DSWL implies that (Ω′𝑁)𝑁∈ℕ  is DSWL, and hence 

DSWA. 

(b) (Ω𝑁)𝑁∈ℕ is DSWA implies that (Ω′𝑁)𝑁∈ℕ  is DSWA 

(c) it does not follow that (Ω𝑁)𝑁∈ℕ  is DSWMδ implies that 

(Ω′𝑁)𝑁∈ℕ  is DSWMδ 

(d) the opposite relations of (a) and (b) do not hold. 

Proof. Results (a) and (b) follow from the definitions of DWDL 

and DSWA and Proposition 1 in 4.3. The opposite relations of (a) 

and (b) do not hold, because if they did then we would have an 

equivalence in that proposition, which does not hold.  

Finally, we prove part (c). Inspired by the spider SM we 

construct the following networks. We consider three positive 

natural numbers M, a, and b (a and b stay fixed) and construct 

two networks with N = 2M+a+b nodes. For the first one, 

denoted as S1,N, we take b < a. It consists of a complete (M+a) 

network, where, moreover, on (M+b) of these nodes we add 

one node (by a single link), see Fig. 12.  
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Fig. 12 Case M = 3, a = 3, b= 1 

Then Δ𝑆1,𝑁 =  �𝑀 + 𝑚, … ,𝑀 + 𝑚,�����������
(𝑀+𝑏)𝑡𝑖𝑡𝑡𝑡

𝑀 + 𝑚 − 1, … ,𝑀 + 𝑚 − 1�����������������
(𝑎−𝑏)𝑡𝑖𝑡𝑡𝑡

, 1, … ,1���
(𝑀+𝑏)𝑡𝑖𝑡𝑡𝑡

�. 

For the second network, denoted as S2,N, we take b > a. It 

again consists of a complete M+a network, on each of these 

nodes we add a singly-linked node, while moreover on b-a 

nodes we add a second, single-linked node, see Fig. 13. 

 

Fig. 13. Case M =3, a = 1, b=3 
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Then Δ𝑆2,𝑁 =  �𝑀 + 𝑚 + 1, … ,𝑀 + 𝑚 + 1,�����������������
(𝑏−𝑎)𝑡𝑖𝑡𝑡𝑡

𝑀 + 𝑚, … ,𝑀 + 𝑚�����������
(𝑀+2𝑎−𝑏 )𝑡𝑖𝑡𝑡𝑡

, 1, … ,1���
(𝑀+𝑏)𝑡𝑖𝑡𝑡𝑡

�. 

Clearly, Δ𝑆1,𝑁−< Δ𝑆2,𝑁 for each N. Now 𝑀𝛿(𝑆1,𝑁)= M+a-1, which 

tends to infinity for N (or M) → ∞. This shows that �𝑆1,𝑁�𝑁  is 

DSWMd. Further,  𝑀𝛿�𝑆2,𝑁� = 1  (as b > a), which shows that 

�𝑆2,𝑁�𝑁 is NOT(DSWMd). 

7.2 Definition 

Based on Theorem 4, we propose the following definition: 

Given two networks G and H with delta-sequences Δ𝐺 and  Δ𝐻 , 

such that Δ𝐺  -<  Δ𝐻  then we say that network H is a smaller 

world than network G in the degree majorization sense.   

We explain this statement: one cannot say that a network is a 

small world (at least not in our view as we defined the notion of 

a small world only for network sequences), but it is possible to 

compare two networks in terms of small-worldliness. This is 

done based on the generalized Lorenz curve. This is similar to 

the use of the classical Lorenz curve for comparing e.g., income 

inequality.  

Theorem 4 shows that the uses of the terms “small world”, 

“smaller world” and “small-worldliness” are consistent.  

 

8. The neighboring array and the neighboring index 

8.1 Definitions 
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Let G be a connected network with N nodes. We define the 

neighboring (or gamma) array of G, denoted as Γ(𝐺) = 

(𝛾1(𝐺),𝛾2(𝐺), … , 𝛾𝑁(𝐺)) , with 𝛾𝑖(𝐺) =  ∑ 𝛿𝑗𝑗∈𝐴(𝑖) (𝐺), with 

 𝐴(𝑚) =  {𝑗 ∈  {1, … ,𝑁}, 𝑚 = 𝑗 or there is a link between nodes i and j} . 

Stated otherwise, the gamma-value of a node in a network is 

equal to the sum of the degree centralities of its zeroth and 

first-order neighbors. Next we define 𝜐(𝐺) =  ∑  𝛾𝑖𝑁
𝑖=1 (G) as the 

neighboring index of G. 

8.2 A characterization of the neighboring array. 

Let A be the adjacency matrix of an N-node network and let e = 

�1, … ,1���
𝑁 𝑡𝑖𝑡𝑡𝑡

� be the unit array. Then we have the following matrix 

multiplication result. 

Theorem 5. Γ = 𝑚. (𝐴2 + 𝐴) 

Proof. It is easy to check (and well-known) that Δ = 𝑚.𝐴. It is 

also well-known that the elements (i,j) of matrix A2, denoted as 

𝑏𝑖𝑗 , yield the number of paths from node i to node j with length 

2. Then 𝑚.𝐴2 =  �∑ 𝑏𝑖𝑗𝑁
𝑗=1 �

𝑖=1,…,𝑁
=  �∑ 𝑏𝑗𝑖𝑁

𝑗=1 �
𝑖=1,…,𝑁

=  Γ −  Δ □ 

8.3 Proposition 4 

𝜐(𝐺) =  ∑ 𝛿𝑗�𝛿𝑗 + 1)�𝑁
𝑗=1                                                         (14) 

Proof. Every value 𝛿𝑗  occurs 𝛿𝑗   times for its first-order 

neighbors, plus one more time for its zeroth-order neighbor 

(itself). □ 
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Remark. By (14) υ(𝐺)  follows from Δ(𝐺) , but when  Γ(𝐺)  is 

given, it is still an open problem if it is possible to construct 

Δ(𝐺). 

8.4 Examples (with N nodes); we assume that gamma-values 

are given in decreasing order. 

8.4.1 The complete N-node network 

Γ =  �𝑁(𝑁 − 1),𝑁(𝑁 − 1), … ,𝑁(𝑁 − 1)�����������������������
𝑁 𝑡𝑖𝑡𝑡𝑡

� 

𝜐 =  𝑁2(𝑁 − 1) 

8.4.2 The star 

Γ =  �2(𝑁 − 1),𝑁,𝑁, … ,𝑁�������
(𝑁−1) 𝑡𝑖𝑡𝑡𝑡

� 

𝜐 = (𝑁 + 2)(𝑁 − 1) 

8.4.3 The polygon (N>2) 

Γ =  �6,6, … ,6�����
𝑁 𝑡𝑖𝑡𝑡𝑡

� 

𝜐 = 6𝑁 

8.4.4 Chain (N>3) 

Γ =  � 6,6, … ,6�����
(𝑁−4)𝑡𝑖𝑡𝑡𝑡

 5,5,3,3� 

𝜐 = 6(𝑁 − 4) + 16 = 6𝑁 − 8 

8.4.5 The non-isomorphic networks (N=6). 
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Consider the networks shown in Fig. 14. Their alpha-sequences 

are the same, namely (10, 5, 0, 0, 0)  and so are their delta-

sequences: (4,4,3,3,3,3) , but their gamma-sequences are 

different, showing that these networks are not isomorphic: 

Γ𝐺 = (17,17, 14,14,13,13)  while Γ𝐺′ = (16,16,14,14, 14,14) . Note that 

𝜐(𝐺) = ∑ 𝛾𝑖𝑁
𝑖=1 = ∑ 𝛾𝑖′𝑁

𝑖=1 = 𝜐(𝐺′) = 88.  

This example shows that gamma-sequences are stronger than 

the combination of alpha- and delta-sequences when it comes 

to detecting isomorphisms. Yet, the combination of alpha-, 

delta- and gamma-sequences is not enough to detect 

isomorphism as shown in the next example. 

 

Fig. 14 Two non-isomorphic networks G (left) and G’ (right) 

8.4.6 An example of two non-isomorphic networks with equal 

alpha-, delta-, and gamma-sequences. 
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Fig.15. Two non-isomorphic networks with equal alpha-, delta- 

and gamma-sequences 

For both networks in Fig. 15 we have AF=(9,6,0,0); Δ  = 

(3,3,3,3,3,3) and Γ = (12,12,12,12,12,12). Yet, they are not 

isomorphic as Fig. 15(a) has triples that are not connected, 

such as {1,5,6}, while such triples do not exist in Fig.15(b).  

Remarks 

(a) If two networks have the same total degree ∑ 𝛿𝑗𝑁
𝑗=1  then 

they do not necessarily have the same neighboring index  

∑ 𝛾𝑗𝑁
𝑗=1 . 

The following networks, shown in Fig.16 (note that they are 

trees) have the same  ∑ 𝛿𝑗𝑁
𝑗=1  = 8, but the chain has ∑ 𝛾𝑗𝑁

𝑗=1 = 22, 

while the other one has ∑ 𝛾𝑗𝑁
𝑗=1  = 24. 
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Fig. 16. Networks with the same total degree but different 

neighboring index (same example as in Fig. 1) 

(b)  If two networks have the same neighboring index ∑ 𝛾𝑗𝑁
𝑗=1  

then they do not necessarily have the same total degree  

∑ 𝛿𝑗𝑁
𝑗=1 . 

The networks shown in Fig. 17 (with N = 6) have the same 

neighboring index ∑ 𝛾𝑗𝑁
𝑗=1 , namely 48, but different total degrees 

∑ 𝛿𝑗𝑁
𝑗=1 , namely 14 and 12. 

 

Fig. 17. Two networks with the same neighboring index but 

different total degree 

We close this section by providing examples that the 

majorization relation -< is not kept between Δ and Γ. 

Concretely:  Δ -< Δ’ ⇏ Γ -< Γ’ nor Γ’ -< Γ    (15) 

and Γ -< Γ’ ⇏ Δ -< Δ’  nor  Δ’ -< Δ     (16) 



33 
 

Indeed, for (15) we consider the networks (N=6), see Fig. 18. 

 

Fig.18. Illustration for (15) 

The upper network has Δ = (3,3,3,3,1,1) and Γ = 

(12,12,10,10,4,4) while the lower one has  Δ’ = (3,3,3,3,2,2) 

and Γ’ = (11,11,11,11,8,8). Then Δ -< Δ’, but neither Γ -< Γ’ 

nor Γ’-< Γ holds. 

For the case (16) (with N =4) we consider Fig.19. 

 

Fig. 19. Illustration for (16) 

For the upper network, we have Δ = (3,1,1,1) and Γ = (6,4, 

4,4) while the lower one has  Δ’ = (2,2,2,2) and Γ’ = (6,6,6,6). 

Consequently: Γ -< Γ’, but neither Δ -< Δ’, nor Δ’ -< Δ  holds. 

9. For trees, equal neighboring arrays lead to equal 

delta-arrays 

9.1 Theorem 6 

If G is a tree and Γ(𝐺) = Γ(𝐺′) then also G’ is a tree and Δ(𝐺) =

 Δ(𝐺′).  
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Proof. Assume that Δ(𝐺)  ≠  Δ(𝐺′). Then we know by the definition 

of  the delta-sequence (1) that there exists a ∈  ℕ such that 

# �𝑗 ;  𝛿𝑗 = 𝑚� ≠ #  �𝑗 ;  𝛿𝑗′ = 𝑚� 

Because of the inequality above we know that there exists 

𝑚 ∈  �𝑗 ;  𝛿𝑗 = 𝑚�  and 𝑚 ∉   �𝑗 ;  𝛿𝑗′ = 𝑚�  hence 𝛿𝑖 ≠ 𝛿𝑖′  and 𝛾𝑖 =  𝛾𝑖′ . As 

Γ(𝐺) = Γ(𝐺′)  it follows that ∃𝑘 ≠ 𝑚, node k directly linked to node 

i such that  𝛿𝑘 ≠ 𝛿𝑘′  and 𝛾𝑘 =  𝛾𝑘′  . Next, we continue by 

induction. 

Assume we have different nodes 𝑚1, … , 𝑚𝑡  such that ∀ 𝑗 =

1, … ,𝑚: 𝛿𝑖𝑗  ≠  𝛿𝑖𝑗
′   and 𝛾𝑖𝑗 =  𝛾𝑖𝑗

′ , where, moreover, ∀ 𝑗 = 2, … ,𝑚: node 

𝑚𝑗 is directly linked to node 𝑚𝑗−1 . As 𝛿𝑖𝑚  ≠  𝛿𝑖𝑚
′  and Γ(𝐺) = Γ(𝐺′) it 

follows that there exists a node 𝑚𝑡+1 directly linked to node 𝑚𝑡  

such that 𝛿𝑖𝑚+1  ≠  𝛿𝑖𝑚+1
′  and 𝛾𝑖𝑚+1 =  𝛾𝑖𝑚+1

′ . Now, node 𝑚𝑡+1  is not 

equal to any of the nodes 𝑚1, … , 𝑚𝑡 as otherwise there would exist 

a cycle in the tree G, which is impossible. Of course, networks 

G and G’ are are finite (like all networks in this article), which 

leads to a contradiction. Hence Δ(𝐺) =  Δ(𝐺′)  and by Knuth’s 

Lemma, both networks are trees. □ 

 

10 Conclusion 

We examined the degree distribution of a network and 

presented several examples. Utilizing the non-normalized 

Lorenz curve, we employed a generalized form of the 

majorization partial order. It is important to highlight that this 

represents a novel and fundamental application of the 
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generalized Lorenz partial order. Our investigations support 

Rousseau’s statement that Lorenz curves and Gini indices are 

universal tools for studying networks. Depending on the aim of 

the study the appropriate Lorenz-type curve should be used 

(Rousseau, 2011). Additionally, we introduced measures, 

including a Gini-type index, that respect the generalized Lorenz 

partial order.   

We further introduced a new class of small worlds, namely 

those based on degree centralities of networks. Similar to a 

previous study, small worlds are defined as sequences of 

networks with certain limiting properties. We distinguish 

between three types of small worlds: those based on the 

highest degree, those based on the average degree, and those 

based on the median degree. We show that these new classes 

of small worlds are different from those introduced previously 

based on the diameter of the network or the average and 

median distance between nodes. However, there exist 

sequences of networks that qualify as small worlds in both 

senses of the word, with stars being an example. Our approach 

enables the comparison of two networks with an equal number 

of nodes in terms of their “small-worldliness”. This comparison 

uses generalized Lorenz curves and the corresponding notion of 

generalized Lorenz majorization. 

Extending the idea of delta- and alpha-sequences we 

introduced gamma-sequences, gave examples, showed their 

relation with delta-sequences, and showed that there exist non-
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isomorphic networks with the same alpha-, delta- and gamma-

sequences. 

We end this article by stating some open problems (OP): 

OP1. Apply the generalized Lorenz order to the gamma-
sequence. 
OP2. Define and study Small Worlds in terms of the gamma-
sequence. 
OP3. Does the delta-sequence follow from the gamma-
sequence?  
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