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1 Introduction

1.1 Background

We consider the sequence of Tribonacci numbers {T},},>¢ defined by Top = 0, T3 = T> = 1 and the
recurrence relation
Tn+3 - Tn+2 + Tn—i—l + Tna

for all n > 0. The first few terms of this sequence are given by
0, 1,1, 2 4,7, 13, 24, 44, 81, 149, 274, 504, ....

The Diophantine equation
a® — b =c, (1.1)

where fixed integers @ > 1, b > 1 and ¢ are involved, is known as the Pillai equation. Originating from
Pillai’s work in [24], this equation’s potential to produce multiple nonnegative integer solutions (z,y)
has been a subject of interest. Pillai’s significant contribution was the demonstration that, for positive,
coprime integers a and b, and when |c| > ¢y(a, b), there is no more than at most a single solution (z,y).

Further explorations of the Pillai problem have focused on the cases where a is fixed as 2, 3, or a
particular prime p, replacing the sequence of powers of powers of b with other exponentially growing
sequences of positive integers, such as Pell numbers, Fibonacci numbers, Tribonacci numbers, and more
complex k—generalized Fibonacci numbers for an integer parameter k£ > 2. These studies, see for example
[2], [8], [11], [13], and [14], have largely confirmed the conclusion of the original Pillai problem: all integers
are uniquely represented in the above way, except for finitely many outliers.

In a number field K with ring of integers Og and a finite set of prime ideals S, an element € K is
an S—unit if its principal fractional ideal is a product of primes in S. For rational numbers, an S—unit is
a rational number whose numerator and denominator are divisible only by primes in S. More research
on the variation of (ILI]) are found in [3] and [26]. In [26], in equation (L)) Fibonacci numbers replaced
the powers of a, and S—units replaced the powers of b, while in the similar study [3], equation (LI
was investigated with Lucas numbers and S—units. In this note, we revisit (II]) instead with Tribonacci
numbers while retaining the S—units with S = {2, 3}.

Therefore, we investigate the exponential Diophantine equation

T, —2°3Y = c, (1.2)

for n,x,y € Z>o.
We discard the situation n = 1 since T7 = T = 1. Thus, we always assume that n = 0, n > 2. The
main results of this paper are the following theorems.
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1.2 Main Results
Theorem 1.1. The Diophantine equation ([L2) has in the case that ¢ = 0, exactly five solutions, namely
(n,z,y) = (2,0,0),(3,1,0), (4,2,0),(7,3,1),(9,0,4).
Furthermore, this representation is given by
0="T,—2"30 =73 — 2130 =7, — 2230 = T3, — 233 = Ty — 203%.

Theorem 1.2. Let ¢ € N such that the Diophantine equation ([L2)) has at least four solutions (n,z,y) €
Z;O. Then,
c=1.

Furthermore, this representation is given by
1="T—2°30 =1, — 293! = T — 213 = T — 2231,

Theorem 1.3. Let ¢ € —N such that the Diophantine equation [L2) has at least five solutions (n,z,y) €
Z;O. Then,
ce{-8,—-2}.

Furthermore, these representations are given by

—8=Ty—233 =17, — 2032 =T, — 223! = T3, — 2°3° = T}, — 2939,
—2=Ty—213 =T, — 293t =75 — 223° =7, — 213t = T, — 2032,

2 Methods

2.1 Preliminaries

The Tribonacci sequence (T3, ),>0 has a characteristic polynomial given by
U(X)=X>-X?-X—1.

This polynomial ¥(X) is irreducible in Q[X], and has a positive real zero

1
a=z (1 + (19 + 3v/33)1/3 + (19 — 3\/3_3)1/3) :

lying strictly outside the unit circle and two complex conjugate zeros § and -y lying strictly inside the unit
circle. Furthermore, |3| = |y| = a~'/2. According to Dresden and Zu [I5], we have

Ty = Cod™ ' +Cpp" '+ C "' foralln >0, (2.1)

where Cx = (X —1)/(4X — 6). Dresden and Zu [15], also showed that the contribution of the complex
conjugate zeros § and 7 to the right—hand side of [2.J)) is very small. More precisely,

1
|Tw = Caa™ | < 5 foralln > 0. (2.2)

The minimal polynomial P(X) of C, over the integers is given by
P(X) =44X°% —44X% + 12X — 1, (2.3)
and has zeros Cy, Cg, C,, with |Cy/, |C3l, |Cy| < 1. Numerically, these values are approximated as

1.83 < a < 1.84,
0.73 < |8 = |y| = o~ ¥/? < 0.74,
0.61 < |Cyl < 0.62, (2.4)
0.19 < |Cs] = |C,| < 0.20.



Let K := Q(«, 8) be the splitting field of the polynomial ¥ over Q. Then, [K : Q] = 6. Furthermore,
[Q(«x) : Q] = 3. The Galois group of K over Q is given by

G := Gal(K/Q) =~ {(1), (f), (), (B7), (), (a7 B)} ~ Ss.

Thus, we identify the automorphisms of G with the permutations of the zeros of the polynomial ¥. For
instance, the permutation («y) corresponds to the automorphism o : @ +— «, v — « and 8 — .
We need additional properties.

Proposition 2.1. The following hold:
(i) There ezists a unique z € K such that z* = a/B.
(ii) If m > 2, then +z is not an mth power of some other element in K.

Proof. (i) For the existence of z, see Proposition 5.1 (i) in [6]. The uniqueness of z follows from the fact
that K does not contain cubic roots of unity. The minimal polynomial Q(X) of z is

QIX) =X+ X5 +2X* +3X% +2X* + X + 1.

(ii) Assume that +z = y™ for some integer m > 2. We may assume that m = p is a prime and write
y = (£2)/? € K. Note that y is an algebraic integer as it is a unit. Also, |y| = |2|/? = |a/B|/? = |a|'/?P.
Note that all conjugates of y have absolute values in the set {|a|'/??,1,|a|~*/?P}. Using the main result
of Voutier in [23], we have that

1
alt 2 =l 2 1+ 55

loglogd 3
2d ’

logd

where d is the degree of K. Using d = 6 and taking logarithms, we get
log «
P= 1 (loglog6\®
og log
21 1+ — | ——

og( +2~6( log 6 ) )
Now we used SageMath to check that for prime p < 106, the polynomial Q(XP) is irreducible. This proves
(ii). O

< 106.

We recall one additional simple fact from calculus. This is Lemma 1 in [26].
Lemma 2.1 (Lemma 1 in [26]). If z € R satisfies |z| < %, then |log(1 + z)| < 3|x|.
To end this section, we present an analytic argument which is Lemma 7 in [16].

Lemma 2.2 (Lemma 7 in [16]). If m > 1, T > (4m*)™ and T > —, then

_c
(log 2)
z < 2™T(logT)™.

2.2 Linear forms in logarithms

We use several times Baker—type lower bounds for nonzero linear forms in four or more logarithms of
algebraic numbers. There are many such bounds mentioned in the literature like that of Baker and
Wiistholz from [I] or Matveev from [19]. Before we can formulate such inequalities we need the notion of
height of an algebraic number recalled below.

Definition 2.1. Let A be an algebraic number of degree d with minimal primitive polynomial over the
integers
d
aor® + ayz? 4+ -+ ag = ag H(x —A@),
i=1

where the leading coefficient ag is positive. Then, the logarithmic height of X\ is given by

d
1 .
h(A) := E(logao + E log max{|A®|, 1})

i=1



In particular, if A is a rational number represented as A := p/q with coprime integers p and ¢ > 1,
then h(A) = log max{|p|, ¢}. The following properties of the logarithmic height function A(-) will be used
in the rest of the paper without further reference:

h(A1 £ X2) < (A1) + h(A2) + log2;
h(AAY) < h(A) + h(Xa);
h(AN%) = |s|h(N\) wvalid for s € Z.

A linear form in logarithms is an expression
A:=byloghi + -+ by log Ay, (2.5)

where for us A1, ..., \; are positive real algebraic numbers and b1, . .., b; are nonzero integers. We assume,
A # 0. We need lower bounds for |[A|. We write L := Q(Ay,...,\:) and D for the degree of .. We start
with the general form due to Matveev [19].

Theorem 2.1 (Matveev, [19]). Put T := X0 ...\l —1 = ¢ — 1. Assume T’ #0. Then
log || > —1.4-30"% . %5 . D2(1 +log D)(1 + log B)A; - - - Ay,

where B > max{|b1|,...,|b:|} and A; > max{Dh()\;),|log;|,0.16} fori=1,... ¢t.

We also employ a p—adic variation of Laurent’s result as established by Bugeaud and Laurent in [9],
Corollary 1. Prior to outlining their result, we require a few additional notations.

Definition 2.2. Let p be a prime number. The p-adic valuation of an integer x, denoted by vp(x), is
defined by

0, if = 0.

(2) = {max{k: eN:pF |z}, ifx#0;

Additionally, if x = a/b is a rational number and a, b are integers, then we put

vp(@) = vy(a) — vy (b).

The formula for v,(x) when x is rational given by Definition does not depend on the representation
of x as a ratio of integers a/b. It follows easily from Definition that if z is rational, then

vp(x) = ordy(z),

where ord,(z) is the exponent of p in the factorization of z. For example, 12(9/8) = —3. Now for the
algebraic number A in Definition 2.1l we define

()\) — V;D(ag/ao),

Vp

that is, it is the p—adic valuation of the rational number a4/ag divided by the degree d of A. For example,
when z is a rational number, we write it as * = ag/ag with coprime integers a4 and ag > 1, then its
minimal polynomial is f(X) = apX — aq has degree 1 so

vp(z) = vp(aa/ao),

consistent with Definition The p-adic valuation gives rise to the conventional absolute value. When
the rational numbers Q are completed with the standard absolute value, the outcome is the set of real
numbers, R. Conversely, employing the p-adic absolute value for the completion of QQ yields the p-adic
numbers, represented as Q.

Similarly to the preceding context, let A; and A9 be algebraic numbers over Q, treated as elements of
the field K, := Qp(A1, A2), with D := [Qp(A1, A2) : Qp]. Similar to the situation in Theorem 1] above,
we must employ an adjusted height function. Specifically, we express it as follows:

1
B\ > max{h(xi),%}, for i=1,2.



Theorem 2.2 (Bugeaud and Laurent, [9]). Let b1, be be positive integers and suppose that \1 and Ao are
multiplicatively independent algebraic numbers such that vp(A1) = vp(A2) = 0. Put

by by
E =
W0e) W)
and
E := max {log E’ + loglog p + 0.4, 10, 10 log p} .
Then

24pg
Anb: )<« 2 p2pART AR (A
(A 1) = gy D Qu)H 0),

where g > 0 is the smallest integer such that v, (A — 1) > 0.

Applying Theorem 2.1l and 22] we get upper bounds on our variables.
However, such upper bounds are too large, thus there is need to reduce them. In this paper, we use
the following result related with continued fractions (see Theorem 8.2.4 in [20]).

Lemma 2.3 (Legendre). Let u be an irrational number, [ag, a1, az, .. .| be the continued fraction expansion
of w. Let p;/qi = [ao,a1,a2,...,a;], for all i > 0, be all the convergents of the continued fraction of
w, and M be a positive integer. Let N be a mon-negative integer such that qn > M. Then putting
a(M) :=max{a; :1=0,1,2,..., N}, the inequality

1

Z (a(M) +2)2

-

holds for all pairs (r,s) of positive integers with 0 < s < M.

However, since there are no methods based on continued fractions to find a lower bound for linear
forms in more than two variables with bounded integer coefficients, we use at some point a method based
on the LLL-algorithm. We next explain this method.

2.3 Reduced Bases for Lattices and LLL-reduction methods

Let k be a positive integer. A subset £ of the k-dimensional real vector space R is called a lattice if
there exists a basis {b, b, ..., by} of R¥ such that

k k
L= 7b= {Zribihi ez}.
=1

i=1

In this situation we say that by, bs, ..., bx form a basis for £, or that they span £. We call k£ the rank of
L. The determinant det(L), of £ is defined by

det(ﬁ) = |d€t(b1,b2, ce ,bk)|,

with the b; being written as column vectors. This is a positive real number that does not depend on the
choice of the basis (see [I0] Sect 1.2).

Given linearly independent vectors by, bs,...,b; in RF, we refer back to the Gram-Schmidt
orthogonalization technique. This method allows us to inductively define vectors b} (with 1 < i < k)
and real coefficients p, ; (for 1 < j <14 < k). Specifically,

1—1
<biab*§>
by =bi— Y pijbis  Hig = s

where (-,-) denotes the ordinary inner product on R¥. Notice that b} is the orthogonal projection of
b; on the orthogonal complement of the span of by,...,b;—1, and that Rb; is orthogonal to the span of
b1, ...,b;_ for 1 <7 < k. It follows that b7,b3,...,b; is an orthogonal basis of RE.



Definition 2.3. The basis b1,ba, ..., b, for the lattice L is called reduced if

AN
| =

lgill < =, for 1<j<i<n, and

167 + pai—1by_, > > Z||bi71||2a for 1<i<mn,

where || - || denotes the ordinary Euclidean length. The constant % above is arbitrarily chosen, and may
be replaced by any fized real number P with 3 <P < 1, (see [17] Sect 1).

Let £ C R* be a k—dimensional lattice with reduced basis by,...,b, and denote by B the matrix with
columns by, ..., b;. We define

l(ﬁ ’U): minuGLHu_UH ) ’U¢£
’ mingzueg [Jul| 5 vel

where || - || denotes the Euclidean norm on R¥. It is well known that, by applying the LLL-algorithm, it
is possible to give in polynomial time a lower bound for I (£,v) > ¢1 (see [25], Sect. V.4).

Lemma 2.4. Let v € R¥ and 2 = B~ v with z = (21,. .., 2x)T. Furthermore,
(i) if v & L, let ip be the largest index such that z;, # 0 and put o := {z;,}, where {-} denotes the
distance to the nearest integer.
(i1) if v e L, put o := 1.
Finally, we have

|[61]] 1
= d = b1|.
a1 112?<Xk{||b;f|| an o= cy o|bal]

In our application, we are given real numbers 79,71, ..., N, which are linearly independent over Q and
two positive constants c3 and c4 such that

Imo +arm + -+ apni| < czexp(—caH), (2.6)
where the integers a; are bounded as |a;] < A; with A; given upper bounds for 1 < ¢ < k. We write
Ao = 112a<xk{Ai}'

71/7

The basic idea in such a situation, from [I2], is to approximate the linear form (2.6]) by an
approximation lattice. So, we consider the lattice £ generated by the columns of the matrix

1 0 0 0
0 1 0 0
A= : ,
0 0 1 0
(Mm | [Mn2] ... [Mmg—1] [Mng]

where M is a large constant usually of the size of about A% . Let us assume that we have an LLL-reduced
basis b1, . .., br of £ and that we have a lower bound [ (£,v) > ¢; with v := (0,0,...,—[Mng]). Note that
co can be computed by using the results of Lemma 2.4l Then, with these notations the following result is
Lemma VI.1 in [25].

k—1 1+Z;_g A
Lemma 2.5 (Lemma VL1 in [25]). Let S := ZA? and T = % If 3 > T?+ S, then
i=1
. . . . . _ _ B - _ LMUOJ
inequality (28] implies that we either have a1 = ag =--- = ax—1 =0 and a, = — (M) , or
Nk

H < i (log(MC3) — log (\/03?_ T)) .

SageMath 9.5 is used to perform all the computations in this work.



2.4 Equations in «, 3,7y
In this section, we prove the following results which will be helpful and recalled later.
Lemma 2.6. The equation

17" 1—aV

l—q% 1—-a*

(2.7)

has no integer solutions u,v, with u > v > 1.
Proof. Let u,v € Z, with u > v > 1. Then we can write [Z1) as

a® — o :’yu*’}/Uﬁ*’}/UOZU*’}/uOZU;

u v

ot —a’ = o

|

—a’| =" =" +9"" —"a
S |,y|u + |’7|U T CYu—O.S'U +av—0.5u’

where we have used the fact that |y| = a~'/2. Assume for a moment that v > 5 which implies that u > 6
since u > v. Then the above inequality implies

O[u72 +au73 =a¥ — aufl < at — oV < 1+au70.5v +av70.5u
<14 au—2.5 + au—1—0.5»6 =14+ au—2.5 + au—4

<14 25 4 qv73,
Therefore, =2 < 14 a“~25. From this, we see that a*~? (1 — a~?®) < 1. This implies that

e _ Ja _ V1.84
Va—1 " /1831

so that u < 4.24. This contradicts the assumption that « > 6. Therefore (Z7) has no solutions with
v > 5. This means that ([27) may have solutions only for 1 < v < 4. We go back and rewrite (2.7 as

< 3.85,

«

au_av:,yu_,yv_’_,yvau_,yua'u
au:,yu_,yv+,yvau_,yuav+av
S |,y|u 4 |'Y|U + au70.5v +av70.5u +av
<24 CYu—0.5 4 a3'5 +a4’

so that a* (1 — a_0'5) < 22, which gives u < 7. With help of SageMath, we check for v € {1,2,3,4} and
u € {2,3,4,5,6,7} that satisfy ([Z7) and find no solutions. O

Lemma 2.7. Assume that the algebraic numbers

— g an — % (1 — a”h—n) (1 — ,ynz—n) _ (1 _ anz—n) (1 _ ’7"1_’”)
"o T ((1 =) (L—qyrem) = (1= pre=n) (1 - vmn>) ’

B

are multiplicatively dependent for n > ny > na. Then Ay = £zt for some integer t with |t| < 80n + 244
and z is defined in Proposition [21.

Proof. Suppose A1 and A9 are multiplicatively dependent. This means that there exists integers A and
B, not both zero, such that \{! = A\J. Since \; = 23, we have

)\]23 =234,

Let d := ged(3A4, B) and write 34 = Ajd, B = Bid. Then )\]291 = (42" where (4 is a root of unity of
order dividing d. Since K does not contain roots of unity other than +1, it follows that )\23 =424 We
show that By = 1. Indeed, since ged(A;, B1) = 1, we get that A;p + Bi1g = 1 for some integers p, q.
Thus,

z = 2MPHBId — (41)P(\D9) B



The above calculation shows that £z is a power of exponent By of some other number in K, so by (ii)
of Proposition 2.1l we get B; = 1. Thus, Ay = £2! with ¢t = A;, and we need to bound ¢. Note that
[t] = |log |A2]|/|log z|. We estimate

Ca ((L=a™ =) (1=9™7") = (1= a™") (1 =™
& (i = s =)

|log [Call + [log|Cpl| + [log [ (1 —a™ ") (1 =~"7") — (L —a"") (1 —4™7")]|
+log[(1—pm7") (1—y"7") = (1= 8"77) (1= ")

The first two terms above are bounded as |log |Cy|| < 0.5 and |log|Cp|| < 1.67. The next two terms are
absolute values of logarithms of absolute values of differences of complex numbers. These can be very

small or can be very large. In the “large” part it is easy. Since a > 1 and n > ny > no, |8 = |y| = a~/2,
we have by the absolute value inequality and the fact that |1 — @™ ™| =1 —a™ ™™ < 1 for ¢ = 1,2, that

| log [Az]|

‘1og

IN

(1=a™ ") (L =9™"") = (1 =a™ ") (1 =" ") < [T =™+ [1 =™
< 14am/2 4 4 o(nmm2)/2 < o9g(nmn2) /242 o gt (2.8)

where we used a® > a + 1 and 2 < 2. Furthermore,

(I=B"7") A=) = (1= B"7") (A =)
< = B =y (L L -y < 200 ) () 1)
< 2(a("_"2)/2+2)2 = 2q" 2Tt < gD, (2.9)

The challenge is computing lower bounds. Let
u:=1=p"M""  wv:=1—-7m""
Then we need to compute a lower bound for
|(u0)) = (uv)™)|

over all the distinct conjugates of wv. For example, taking ¢ = id and 7 to be the map that swaps
with 7, we get a lower bound on the absolute value the expression appearing in the denominator of A in
the statement of Lemma [2Z7] (ignoring Cg), while taking o to be the map that swaps a with 5 and 7 the
three cycle 8 — v +— a we get a lower bound on the numerator appearing in the expression of Ay in the
statement of Lemma 2.7 (ignoring C,,). For this, we use a well-known root separation result of Mahler
[18]. In our particular case, it says that if

d
R(X) =]](X - 2) € Z[X]

i=1

is a monic polynomial with integer coefficients and distinct roots then writing

d
M(R) := ]‘[max{l, |2il}

for its Mahler measure, we have

5 =2l > Gyt

For us,

R(X)= ] (X = (u)®)

oc€S3

has degree d = 6. Writing down the 6 conjugates (uv)(”), we get a total of 12 factors namely two
occurrences of each of 1 — §"<~™ for each s € {1,2} and 0 € {a,8,7}. Ignoring the contributions of
1 —a™ =™ (as they are in (0,1)) and using |1 — 6"~ < 1 + a(?~7)/2 < o(r=1+4/2 35 hefore twice for
each of s € {1,2} and § € {8, v}, we get that

M(P) < (a(n—nl+4)/2)4(a(n—n2+4)/2)4 — a4n—2n2—2n1+16 S CY4n-i—10_



Thus,
(00) ) = ()7 > g
showing that if the left-hand side above is < 1, then
[og | ((uv)(?) — (uv))]|| < log(63a2°"+50) < (20m + 50) log o + 31og 6.

Comparing the above with (28] and (Z9), we conclude that the last bound above holds in all cases.
Putting everything together, we get

[log [A2|| < 0.5+ 1.67 + 2((20n + 50) log & + 3log 6) < (40n + 100) log v 4 13.

We thus get
< 80n + 244.

It < |log | Aa]| < (40n + 100) log v + 13
log |2| 0.5log

Lemma 2.8. For any positive integer t, we have
(i) va(zt —1) <14 wa(n), and
(i) v3(zt —1) <1+ v3(n).

Proof. For a prime ideal 7 of Ok and an element z € K, we write v,(z) for the exponent at which
appears in the factorization of the principal fractional ideal xOk. We shall use the following well-known
fact. Let p € Z be the prime such that = sits above p (so, 7 | p) and let e, := v, (p) is the ramification
index of 7. If ¢ € K is such that

Erx
-1’

ve(C—1) > then Ue(Ch = 1) = v (¢ — 1) +vp(n) (2.10)
p

(see Lemma 1 in [22] or Lemma 4.4 in [5]). We start with p = 2. Then 20k = 73, where 7 is a prime

ideal of Ok. In fact, 7 is principal and generated by 1+ 2+ 22, as it can be seen by rewriting the equation

Q(z)=0 as (22 +24+1)° =222+ 1)2(22 + 1),

and using that z + 1, 22 + 1 are units in Ox. Now Ok/7 is a field with 4 elements. Since va(z — 1) =
v9(22—1) = 0, we get that the order of z modulo 7 is 3. Thus, v, (2" —1) = 0 unless 3 | t and v (2> —1) = 1.
For t = 3k, we get that

e = D) = (B - D(EHF ) =0 (22— 1) =1,

provided k is odd. This proves (i) when n is odd. Since 23 +1=2%—-1+2= 23— 1 (mod 73), we get that
Ur(224+1) = 1. Thus, v;(2° —1) =2. Now 26 +1 =26 —1+2=2%—-1 (mod 73), so also v, (2% +1) = 2.
Thus,

U2 = 1) = (25 = )28 + 1) = v (2% = 1) + e (22 +1) = 4.

The above calculations show that v,(z! — 1) < 4 unless 12 | t. In particular, unless 12 | ¢, we get
vo(zt — 1) = vr (2 — 1)/3 < 1, again confirming (i) in this case. However, if 12 | ¢, then setting k := /12,
then since

we get by formula (2.I0) that
vp(28 = 1) = v (("F = 1) = v (212 = 1) + e (k) = 4 + (v (n) — 6) < v (n) = 3va(n),

and since vo(2! — 1) = v(2" — 1)/3, we get the conclusion (i). Conclusion (ii) is even easier. Indeed,
7 = 30k is prime. Further, the order of z in Ok /7 is exactly 13 and v3(2!*—1) = 1 > 1/12. Thus, formula
(ZI0) applies and gives that v5(z* — 1) = 0 unless 13 | ¢ and if 13 | ¢, then v3(2 — 1) =1 + v3(n). O



2.5 Bounds for solutions to S—unit equations

It is also a well known fact from [8] that
a" 2 < T, <a" ' holds for all n > 1.
Now, if ¢ > 0 in (I2), then
273Y =T, —c<T, <a" L.
This implies that xlog2 + ylog3 < (n — 1)loga < (n — 1) log 1.84. Hence,
r,y <n.
On the other hand, if ¢ < 0 in (L2]), then
o < T, =2"3Y + ¢ < 273,
This implies that o™~ 2 < 2%3Y, or simply,

(n —2)log a < 2max{zlog2,ylog3}.

(2.11)

(2.12)

(2.13)

The purpose of this subsection is to deduce a result from the following lemma. The following lemma

is Proposition 1 from [26].

Lemma 2.9 (Proposition 1, [26]). Let A > 1080 be a fived integer and assume that
2°3Y — 2713U1 — A,

Then 223Y < A(log A)%° loglog A

We now state and prove the following consequence of Lemma

(2.14)

Lemma 2.10. Assume that (n,n1,x,21,y,y1) is a solution to T,, — 2*3Y = T,,, — 2¥13¥*, with n > 310

and n > ny. Then, for X = xlog2 + ylog 3, we have
0.080" < exp(X) < o™ (nloga)®los(nlose)

and
nloga—3 < X <nloga + 60 (log(nloga))2 .

Proof. If n > 310, then
A =23V — 97131 =T, — T, >T,_y> T > "% >1.8336 > 10%
So, we apply Lemma 29, with A =T, — T}, < T), < o™~ !, by (@II). This yields

60logloga™ ™! 60 log log a™

exp(X) < a™ ! (loga™ ™) < a" (loga™) =a" (nloga)
On the other hand,
0.08a" < " < Ty _o < Ty, — T, =2%3Y —2%13¥" < 273Y = exp(X).
Combining [2.15) and 2.I6]), we get
0.080" < exp(X) < o™ (nloga)®los(nlose)
and taking logarithms both sides gives
nloga —3 < X < nloga + 60 (log(nloga))?,

which proves Lemma 2101
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3 Proof of Theorem [1.1]

We go back to (L2]) and treat the case ¢ = 0. This reduces the Diophantine equation to
T, = 2%3Y. (3.1)

Now, an investigation on the largest prime factor of k—generalized Fibonacci numbers was made in [7].
Specifically, when k& = 3, it was shown in [7] that the only solutions to equation BI]) have n < 9. A
verification by hand in this range yields the corresponding solutions from Theorem .1 o

4 Proof of Theorem

4.1 An absolute upper bound on n

For technical reasons, we assume n > 310 and we determine an upper bound onn. Let (n,z,y), (n1,z1,y1),
(n2,x2,y2) and (n3,x3,ys) be elements from Z2, such that

T, —2%3Y =T, — 213" =1T,, —2%23¥2 =T, — 2%23%. (4.1)
Without loss of generality, we assume n > ny > na > ns.
Lemma 4.1. Let ¢ > 1 be such that the Diophantine equation [L2) has at least two representations as
c=1T,—2%3Y=1T,, —2%13%.

Then
n—ni <9.6-10% logn.
Proof. Since ¢ > 1, we have T, > 2%3¥ and T,,, > 2713¥1. We go back to equation (L2) and rewrite it as
T, —2%3Y =1T,, —2*13%
CaOén71 4 Cﬁﬁnfl + C,Y’Yn71 _ 2m3y — Caam*l 4 Cgﬂn171 + C’y,ynlfl _ 2113y1
CaOén_l o 2z3y _ Caanl—l + Cﬁﬂnl_l + Cry'}/nl_l o Cﬁﬂn_l o C»y’)’n_l o 21131;1
< Cha™ 142 <10C,a™ L,

for all n > 310. So, we conclude that
2730 o~ ("D — 1] < 100~ (), (4.2)

We now apply TheoremZIlon the left-hand side of @Z). Let Ty := 273YC; 'a~ (=1 —1 = o —1. Notice
that Ag # 0 otherwise I'y = 0 and we would have C,a"~! = 223¥ € Z. Conjugating this relation by any
automorphism that sends « to 3, we get Cg3" "1 = 273¥, which is a contradiction because |CzB8" 1| < 1
while 273Y% > 1 for all 2,y > 0. We use the field K := Q(«) of degree D = 3. Here, t := 4,

AL:i=2, A =3, A3 =Cy, M\ :=q,
by:=z, by:=y, by:=—-1, by:=—(n—1).

Next, max{|b1|, |b], b3, |b4]} = max{z,y,1,n — 1} < n, so we can take B := n. The minimal polynomial
of C, over the integers is indicated at (23]). Since its roots satisfy |Cy|, |Csl, |Cy| < 1, it follows that
h(Cy) = 3log44. So, we can take A; := Dh(A;) = 3log2, Ay := Dh(\2) = 3log3, As := Dh()\3) =
log44, and Ay := Dh(M\y) =3 - %log‘a = log a. Therefore, Theorem 2] gives,

log |T'| > —1.4-307-4%5.32(1 + log 3)(1 + log n)(31og 2)(3 log 3)(log 44) (log )
> —5.6-10% logn, (4.3)

where the last inequality holds for n > 310. Comparing (£2) and ([£3)), we get
(n —n1)loga —log10 < 5.6 - 10'° logn,

so that n —nqy < 9.6 - 1015 log n. O
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Next, we state and prove the following result.

Lemma 4.2. Letc>1, X :=xlog2+ ylog3 and X1 := x1log2 + y1 log3. Then
X — X; <85-10% (logn)®.
Proof. We go back to equation ([2]) and rewrite it as
Coa" ™t = Cua™ ™ =278V = CpfM ™ — Cpf" 1 + Coy™ ™1 = Oy ™1 — 271391,

Caanl_l (an—n1 _ 1) - Cﬁ (ﬂn171 _ ﬂnfl) C’Y (,Ynlfl _ ,Ynfl) 271 3Y1

+

2%3v

223y 223y 223y - 223v
and taking absolute values, we have
Coa™m ™l (qn—m — 1 1 1 1
o™ (a >1‘ <3exp(—(X — X1)),

~ exp(X) + exp(X) + exp (X — X1)

where we have used the fact that the contribution of the complex conjugate zeros 8 and v to the right-hand
side of the equation above is very small, see relation (2.4]).
Let 'y := Cpa™ 1 (@™ —1)-27237Y — 1. Then

Coam ™1 (an=™ — 1)
2r 3y

Ty :’ — 1] < 3exp (—(X — X1)). (4.4)

Notice that I'; = e — 1 # 0, otherwise we would have

Ca (an—l _ anl—l)

223y

=1.
Taking algebraic conjugates, we would get

Cﬁ (ﬂn—l o ﬂnl_l)
223y

1=

<1,

a contradiction. Therefore, I'; # 0 (so, also A1 # 0). We again use the field Q(«) of degree D = 3. Here,
t:=4,
)\1 = 2; )\2 = 33 )‘3 = Q, )\4 = Ca(an7n1 — 1),

b1 = =, b2 =Y, b3 =Ny — 1, b4 = 1.

Next, max{|b1],|b2|, |bs|, |b4]} = max{x,y,1,n1 — 1} < n, so we can take B := n. As before, we can still
take A; := 3log2, Ay := 3log3, A3 := log a. Moreover, assuming n —ny > 2, so "™ — 1 > 1, we have

3h(Ag) = 3h(Co(a” ™ —1)) <3h(Cq) + 3h(a"™™ —1) <log44 + log(a”" " — 1) + 21log(1.55)
< (n—mn1)loga +log44 4 2log1.55 < 5.7 x 10" log n. (4.5)

where we have used Lemma [£Il The number 1.55 above is an upper bound on
™M -1 <1+ ™| <1+1/a<1.55

and also on |y®~™ — 1|. This was if n — ny > 2, but if n — ny = 1, the above bound (€3] still holds. So,
we take A4 := 5.7 - 10 logn.
Then, by Theorem 2.1]

log [Ty > —1.4-307 - 4*% . 32(1 + log 3)(1 + log n)(3 log 2)(3 log 3)(log @) (5.7 - 10'® log n)
> —8.4-10% (logn)”. (4.6)

Comparing (£4) and {6, we get
X — X; <85-10% (logn)®. (4.7)

This proves Lemma O
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To proceed further, let us write Xy, = min{z, x1, T2}, Ymin := min{y, y1,y2}. We state and prove
the following result.

Lemma 4.3. Assume that ¢ > 1. Then either
Tmin, Ymin < 1022(10g n)S,
or n < 36100.

Proof. Again, we go back to equation (L2) and assume it has two solutions (n,z,y), (n1,z1,y1). We
rewrite it as

Caanfl o CaOén171 + Cﬁﬂn71 o Cgﬂn171 + Cw,ynfl o Cv,ynlfl — 2m3y o 2I1391;
Coa™ ' (1=a™ ™) +CaB" (1= B + Oy (L= 4™ ") = 2739 — 271301, (4.8)

At this point, if we assume a third solution (ng,x2,y2) to (L2), then we can also rewrite a relation
analogous to (L8] as

Coa™ M (1=a™ ")+ CpB" " (1= B"7") + Oy (1 =™ 7)) =273V — 2%23%2, (4.9)
We now eliminate C,y"~! from ([J) and [3) to get

Caa™1 (1= a™ =) (1 =477) = (1= o) (1= 4™ =7)] +
a8~ [(1 = 377 (1=77277) — (1 57270) (1 =)
= (2739 — 2713Y1) (1 — 4™ ") — (273Y — 2723¥2) (1 — 4™ 7). (4.10)
We first show that the left—hand side of ([@I0) is nonzero. Indeed, if it was equal to zero, then we would
have (273 — 231301 (1 — 472~ ") — (293 — 2923¥2) (] — 4™ ~") = (), 50 that

1—ym—n 223y _9i3n
1 —qma—n 223y — 2w23u2

Taking algebraic conjugates, we get

1— ,ynlfn 1—gm—n

1— 2= - 1 —qnz—n’

(4.11)

Moreover, n > nj; > ng implies n — ny > n — n1, and Lemma tells us that (II) has no integer
solutions n — n1, n — ng, with n — ny > n — ny. Hence, the left—hand side of (£I0) is nonzero. Note
also that the term (1 — ™ ~") (1 —A™2~") — (1 — ™2~ ™) (1 — 4™ ™) appearing on the right-hand side
of ([@I0) is nonzero. Indeed, if it was zero, then we would have

17,Yn17n 1*5"177}
1 _,yng—n = 1— an—n’

a relation which is an algebraic conjugate of (@II), which cannot hold. Thus, the above relation is
nonzero.
Next, we go back to (£I0) and rewrite it as

Ca (g) (1= am=) (L= ") — (1= ™) (19"
Ci\B) (=g (=)= (1= pr) (1 =y )
_ (273 2M3I) (L g — (273 — 2733) (1 — 9
CoB T[T = p—) (1= ye=) = (1= B (1 — 7
B 9Tmin3Ymin . A
CoB T (1= B (1 — 7= = (1§ (1 — =]

+1

where

A= (QI*Imm:))y*ymm _ errmm:))yrymm) (1 _ ,7n27n)_(2171min3y7ymin _ 2mzfzmin3y2fymm) (1 _ ,ynrn) )
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Since v,(8) =0, for p = 2,3 and

—2/3, if p=2;
vp(Cp) = / . -
0, if p=3,

we have

Co ("M (L—am™™)(1—q""") = (1—a™ ") (1—y™"")
(%) Y

Co \B)  (=pmmm)(l—qmmm) = (1= =) (1= ™)

= Zpmin +12(A) — (=2/3) — 12 ((1 — ﬁ"l_") (1 — 7"2—") _ (1 _ an—n) (1 _ an—n)) -

Therefore, since v5(A) > 0 because A is an algebraic integer, we get
C., [a n—1 (1 — an1—n) (1 _ ,ynz—n) _ (1 _ ang—n) (1 o ’Ynl_")
Tmin < Vs —_— | = 11
i (Cﬁ <ﬂ) =g ) (1) — (=g ) (1)
+ s ((1 _ 5n17n) (1 B 7nrn) B (1 B 5nrn) (1 B ,ynlfn)) _ (4.12)

In a similar way,

I B A e L e i Bl e U [ ke L)
Ymin S V3 <CB <6> (1 — fmi—n) (1 — ,ynz—n) — (1 — Bre—n) (1 — yma—n) + 1)

+u3((1=B""") (1=q"") = (1=p""") (1—9™")). (4.13)

Next, we estimate
vp (L= ") (L=y™7) = (1= Bm7") (1= 77)), (4.14)
for p = 2,3. Well, the number shown at (£I4]) is an algebraic integer all whose conjugates are bounded
in absolute value by
2(1 +O[(n7n1)/2)(1 +a(n7n2)/2) < O[(nfnl)/2+(nfn2)/2+6 S O[nfnngG.
Thus, the last coefficient of the minimal polynomial for the number shown inside the valuation at ([{14)
is at most a5("~"2)+36  This shows that

(6(n —ng2) + 30) log
logp '

(1377 (177 = (1= 57277) (1 =) <
Using Lemma 3] we get that the above bounds are at most
5.7-10'%logn (p=2) and 3.2-10'%logn (p = 3).

At this point, relations (12) and (£I3) become

Co (a\" T (L—am)(1—y""") —(1-a™")(1-7""") 16
Tmin < Vo (C_g (E) (L= ) (1= A7) — (1= fmm) (1 =y ) +1]+5.7-10"logn

(4.15)

and

n—1 — — — —
o 1 _ ny—n 1 . na2—my __ 1 . na—n 1 _ ny—n

s \B) G=Fm=) (= ym) = (1= ) (1— )
(4.16)

Lastly, we estimate

% g n—1 (1 — an1—n) (1 _ ,ynz—n) _ (1 _ 04"2_") (1 _ 7”1—71)
Vp (Cg (ﬂ) (1 — Br—n) (1 —yn2=n) — (1 — fra—n) (1 — ym—n) + 1) . (4.17)
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Let

A=

PR (S it e D e [

@
E G \ (L= =) (1= 7= = (1= pa=n) (1= )
We distinguish two cases.

Case 1. \; and Ao are multiplicatively independent.

We can apply Lemma 22 to (£17) with the field Q(«, ) of degree D := 6. Since h(A1) = 3(log)/3 =
log a, we can choose h(A1) := log « for all cases p = 2,3 (note that loga > logp/D for p = 2,3). Further,

W (A2) < 2h(Co) +4h (1 —a™ ") + 4log(1 — a" ") + 2log 2
2log44

4
+2log2+ 2 (log(1 +[B]™ ") +log(1+ ™))
4
<4tz (log(oz(""“’/2 +1) + log(a("™m2)/2 4 1))

<4+ % (n—m1)/2+2+ (n—n2)/2 + 2)) log

8(n—mna2+4)

3 loga < 1.6 x 10'¢logn,

<4+

where we have used Lemma [£.1] and n > 310. Therefore,

b1 b2 n—1 1

WO WOw  ROw)  WOe) S

E/

We now have

E = max {log E’ + loglogp + 0.4,10, 10 log p}
= max {logn + loglog p + 0.4,10,10logp} .

If n > 36100, then F < 1+ logn in both cases p = 2, 3. Therefore, Lemma 2.2] gives

Co [\ (L—am ) (1—9""") —(1—a™™") (1—y""")
(&) )

G \B)  T=Fmm) =y ) = (= pm) (1= ymn)

24pg 2141/ /
< — =2 FE*“D*h'(\ )R (A
= (p—1)(logp)? Ak (%2)
2

24pg 2 1 4 16

— = (1 1+ — - 67(1 -1.6-10° 1
— Dogp) 5" (*k%%wJ (log ) e
3.7-10%pg 3
— (I .

< - Dogpy 8"

Hence, inequalities (I5) and ([@I6) become

3.7-10%°.2.3

i < ———— =2 (] 3 ) 10161 1022(] 3
Tmin < (2_1)(1Og2)4(0gn) + 5.7 x 10" logn < 10**(logn)

and

3.7-10%0.3-13

Ymin < EETE0 (logn)® + 3.2 x 10*%logn < 5 x 102! (log n)>.

In the above, we used g = 3 when p = 2 and g = 13 when p = 3 as in the proof of Lemma 28 This was
in case A1 and A9 are multiplicatively independent.

Case 2. \1 and X2 are multiplicatively dependent.

In this case, \; = 2% and A\ = 42* for some integer ¢ with |t| < 80n + 244 by Lemma .7 Thus,

)\71171)\2 1= izt+3(n_1) + 1 | z2t+6n—2 —1.
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The exponent of z above is in absolute value is at most 2|t| + 6n — 2 < 186n + 500 < n?. Lemma 2§ now
shows that

_ log n?

n—1

vp(A\T" A2+ 1) <1+ Tog p < 3logn

for n > 36100 and p € {2,3}. Comparing this to Case 1, we see that the bounds from Case 1 still hold.
This completes the proof of Lemma O

Lastly, we consider a fourth solution (ns,zs,ys), with n > n; > ny > n3 and we find an absolute
bound for n. We prove the following result.

Lemma 4.4. If ¢ > 1 and n > 36100, then
n<12-10%, z < 1.1-10%, y < 6.8-103C.

Proof. Lemma 3] indicates that within any set of three solutions, the smallest values of x and y are
constrained to be less than 10%2(logn)3. Consequently, in a quadrat of solutions, it is possible for at most
one solution to have an x—value exceeding 10??(logn)® and similarly, at most one solution can have a
y—value surpassing this bound. Therefore, it follows that at least one solution in each set will have both
x and y confined within this limit. This particularly implies that the smallest solution adheres to these
bounds. Hence,

X3 =23log2 + yslog3 < (log2 + log3) - 10*2(logn)® < 1.8 - 10*?(log n)3.
With Lemmas 210 and 2] we get

nloga—-3 <X
=X3+ (Xo— X3)+ (X1 — Xo) + (X — X7)
<1.8-10%(logn)® + 3-8.5-10°° (logn)”
< 2.44-10% (logn)®

which implies

(ogn)? < 4.1-10%, (4.18)

We apply Lemma 2.2 to inequality (£I8) above with z :=n, m := 3, T := 4.1-10%°. Since T' > (4-3%)3 =
46656, we get
n < 2™T(logT)™ = 2%-4.1-10*(log4.1-10%°)® < 1.2 10%7,

Further, we have by Lemma that
X < nloga + 60 (log(nloga))?;
zlog?2+ylog3 < 1.2-10% " loga + 60 (log(1.2 - 103" log a))2 < 7.4-10%,

This gives < 1.1-10%7 and y < 6.8 - 1036 and completes the proof of Lemma F4l O

4.2 Reduction of the upper bound on n

Here, we use the LLL-reduction method, the theory of continued fractions and as well as p—adic reduction
methods due to [21] to find a rather small bound for n.
To begin, we go back to equation (£2). Assuming n —ny > 5, we can write

|Ao| = |log Cy — zlog2 — ylog3 + (n — 1)logal < 15a~ ("),

where we used Lemma ] with n — ny > 5 since ™™™ > o® > 2. So, we consider the approximation

lattice
1 0 0

A == 0 1 0 )
|[Mlog2| |Mlog3] |[Mloga]
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with M := 1012 and choose v := (0,0, —| M log C,, |). Now, by Lemma 24, we get
Al >¢; =107  and  ¢p:=2.15-10%.
Moreover, by Lemma [4.4] we have
r <A =11-10%, y< Ay :=6.8-10%, n—1< A3:=1.2-10%.

So, Lemma 2.5 gives S = 1.7-107* and T = 1.49 - 103", Since ¢2 > T2 + S, then choosing c3 := 15 and
cq = log a,, we get n —n; < 285.
Next, we now go back to equation ([@4]). Assume that X — X; > 2. We can then write

[A1| = ’(711 —1)loga +log Cy (@™ — 1) —zlog2 — ylog3’ <4.5exp(—(X — X1)),

where we used Lemma [ZT] together with the fact that exp(X — X;) > exp(2) > 6. So, we use the same
approximation lattice
1 0 0
A= 0 1 0 ,
|[Mlog2| |Mlog3] |[Mloga]
with M := 103 and choose v := (0,0, —| M log Cy (™™™ —1)|). It turns out that for all values 1 <

n —ny < 285, the chosen constant M is sufficiently large, so we can still apply Lemma By Lemma
2.4] we maintain the lower bound |A1| > ¢; := 10749 ¢3 := 6.13 - 1037 and by Lemma [£4] we also have

<A =11-10%, y< A :=6.8-10%, n—1< A3:=1.2-10%.

So, Lemma 28] still gives the same values of S and T as before. Since ¢3 > T2+, we now choose c3 := 4.5
and ¢4 := 1 and we get X — X; < 174.

Next, we find reduced bounds on ., and Ymi, using p—adic reduction methods due to [21]. We go
back to equation (L2) and assume it has two solutions (n,x,y), (n1,z1,y1). We rewrite it as

c=T,—2%3Y =T,, — 27139,
so that we can determine v, (T,, — T, ). Notice that from the above equation,

Vp (Ty, — Tny) = v, (2739 — 2%13V1)
=1, (Qmmm 3JYmin (2$—$min 3Y—Ymin _ 2z1—zmm3y1_ymm))

=, (QImm 3ymin) + Vp (2171min3y7ymin — 9T1~Tmin 3y1*ymin) ,
and thus

Vp (QImingymin) =1, (Tn _ Tnl) - (21717111'71. 3Y~Ymin _ 2I17Imin3y17ymin)
<uvp(Th —Tn,). (4.19)
Now, we determine v, (T, —T,,) foralln —ny > 1, n < 1.2- 103" and p = 2,3. Here, we show how to
do it for p = 2, and then we automate the process in SageMath. Since n < 1.2-1037 < 2'24 then n has
at most 124 binary digits. Let d := n —n; < 285, by the results in the reduction above. So, we need an
upper bound for
V2 (Tn - Tnl) =12 (Tn1+d - Tnl) )

but since n1 < n, we instead bound
vy (Trid —Th), de[l,285], n<12-10%.

The Tribonacci sequence is periodic modulo 2% with period 2¥*1. In particular, T, q — T, is
periodic modulo 28 with period 2° < 1000. With a simple program in SageMath, we checked over
all d € [1,285] for which there is n < 1000 such that 2% | T,,4 — T,,. There are 214 such
d’s, namely {1,3,4,5,7,8,9,11,12,13,15, 16,17, 19, 20, 21, 23, 24, 25, 27, 28, , . . ., 281, 283, 284, 285}. Some
numbers are missing from this list. This means that for the missing numbers d, we have vo(Tp4q—Ty) < 7
always.
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Here, we will work out one d only, for explanation. Namely, we take d = 9. We calculate no(d) € [1,29)
such that for n = ng(d) we have that vo(Lyp4+q— Ly) > 8. This is unique in this case and it is no(d) = 167.
So, from now on, every n < 1.2- 1037 such that vo(Ty1q — T},) > 8 is of the form n = 167 + 2%z, for some
z € Z. So now, we need to find out z such that v2(T),+9 — Ty,) is as large as possible. For this, we go to
the Binet formula and get

Toto — T = (Caa™® + CpB" 8 + C " 8) — (Coa™ ' + CB" 1 + C7" 1)

a® —1) Coa" 1+ (87 = 1) O™+ (1° = 1) Cy" !
)C a167+29z 1 (ﬁg _ 1) Cﬁﬂ167+292—1 + (79 _ )C 7167+29z—1
)C 0166 292 (ﬂg B 1) C’gﬁlGGBQQZ (’Y o 1) C 7166 292

o —1) Caa'%exp, (2721ogy @) + (87 — 1) C3B'% exp, (2%21og, B)
He

(79 — exp2 (29,zlog2 ’y) .

a’ —1

(0%

= (o
=
( 9 _
=

We can apply a simple cosmetic to the above relation so that we have terms in loga?, log * and logv*
inside the respective exponentials. We write
Toyo — T = (& — 1) Caa*®exp, (27210g, ) + (87 — 1) C3B'% exp, (272 1og, B*)
+ (79 — 1) C’,Y'ylGG expy (272 log, 74) .
Moreover,
logya® =logy (1— (1—a')) == ~——, (4.20)
n>1

and in the right-hand side, |(1 — a?)"/n|y < 2~ (n—logn/log2) ~ 9—4n/3+logn/log2 where we have used the
fact that vo(a? — 1) = va((a — 1)(a + 1)(a? + 1)) = 4/3. This therefore shows that series given in the
right—hand side of ([@20) converges. For the argument in the exponential, we have

Vo (272 log, a4) > 1/2(282) > 8,

so |27z log, a4‘2 <278 <271 therefore the exponential in this input is convergent 2-adically. The same
arguments work with « replaced by g or v. We now stop the argument of the logarithm at n = 120, so
put
120 4\
11—«
Pzzl( . ) (4.21)
n=

such that

1—a*)"
log,a* = P — Z %

n>121

Since n — logyan > n — logn/log2 and the function n — logn/log?2 is at least 121 for all n > 128, then
n — va(n) > 121 for all n > 121. Thus, log, a* = P + u, where vo(u) > 121. We therefore have,

272log, a* = 272P 4 2" z2u,

so that
expy(2721logy at) = expy (272 P 4 272u) = exp, (272 P) expy (27 2u).
We have
y? y"
eXpQ(y):1+y+?+---+F+~~ .

For v5(y) > 2 and n > 2 we have

n

v (”—) — () — valnl) = () — (n— 0(n)) > n(aly) — 1) > va(y),

where the last inequality holds as it is equivalent to va(y) > n/(n — 1), which is so since vo(y) > 2 >
n/(n — 1) for all n > 2. In the above, o2(n) is the sum of the digits of n in base 2. It then follows that
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expy(y) = 1 (mod 2*2®)), provided o(y) > 2. Hence, exp,(272zu) = 1 (mod 27t*2(W)) = 1 (mod 2'2%).
Thus
(27zP)k

i (mod 2'2%).

expy (272 logy a) = expy(272P)  (mod 2'%®) = Z
k>0

Indeed,

k!

since o2(k) > 1 and vo(P) > 1, so it follows that the above numbers are > 719 = 133 > 128 for k£ > 19.
Thus, we may truncate the series at £k = 18 and write

vy (M> = ka(272P) — va(k!) > (T + va(P)k — (k — o2(k)) > Tk,

18
exp, (272 log, a4) =
k=0

(27zP)F

i (mod 2'2%).

The same argument works with « replaced by 3 or -y, so we may write

120 4\ T 120 A\
1-4 1—7
Q::—Z% and R::—Z%, (4.22)
n=1 n=1
so that
18 18
272Q)* 272R)*
exp, (272 log, B*) = Z % (mod 2'%) and exp,(27zlogy7?) = Z (T (mod 2'%%).
k=0 k=0
Thus,
18 9 166 (97 k 9 166 (97 k 9 166 (o7 k
-1)C, 22P -1)C 2 -1)C 22R
Tn+9 _ Tn — Z (CY ) o ( ? ) + (ﬁ ) if ( ZQ) + (’7 ) ¥y ( Z ) (mod 2128).

k=0

The right—-hand side above is a polynomial of degree 18 in z whose coefficients are rational numbers which
are 2—adic integers (that is, the numerators of those rational numbers are always odd). We will show that
in our range the above expression is never 0 modulo 228, This will show that vo(T,19 — T},) < 128 for
n < 1.2-10%.

We need to find these numbers which is not so easy in SageMath as P, @ and R involve large powers
of a, B and +y respectively. Nevertheless, we can compute A := P+ Q@+ R, B := PQ + PR+ QR and
C := PQR. Next, the coeflicients

ug = (a® = 1) Cua'®P* + (8% — 1) Cpp"°Q" + (+? — 1) C,7"° R (4.23)
form a linearly recurrence sequence of recurrence
Uk+3 = Augio — Bugy1 + Cug, for k>0,

with wug, u; and ug obtained from (£23) when k = 0, 1,2 respectively. So, we can compute all the
remaining ones iteratively and look at the polynomial

18

f(z):= Z(fz)k% (mod 2'28).

k=0

All coefficients uy,/k! are 2-adic integers, and we can reduce them modulo 2'?%. As a result, we obtain
a polynomial in Z/(2'2%Z)[z]. Our goal is to find a z such that this polynomial = 0 (mod 2'28). This is
achieved incrementally. Specifically, by reducing f(z) modulo 219 211 212 213 and so forth, we deduce
the necessary digit of z in the subsequent power of 2 (either 0 or 1) to ensure divisibility by higher and
higher powers of 2, in accordance with Hensel’s lemma. This process yields

z=2042" 422428 424 425 4+ 20 4 2T 4 28 4 29 4.
and upon extracting digits up to 2!°!, we express

Z:20+21+22+23+24+25+26+27+28+29+---+2100+2101+2102t,
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2127

and reduce f(z) modulo , obtaining

2123(8 +9¢t)  (mod 2'27).
Notice that we should choose z as a multiple of 8, leading to
n>219. (o4 21028y — 9124 5 1 9. 1037,

This analysis demonstrates that effectively, vo(Th49 — Th) < 126.

A similar analysis was performed for the other values of d as well as for p = 3. In the case of p = 3, the
period of (T},),>0 modulo 3¥*1 is 13- 3%, so we work 3—adically with logs(a!?), logs(3'3) and log;(v*?).
In all cases, we obtained that v,(T,, — Ty,) < 128. Hence, in all cases, we conclude from (19 that

Tminy Ymin < 128.
Lastly, we find a smaller upper bound for n. If we write cx for the upper bound of X — X7, then

X =X+ (Xl 7X2) + (X 7X1> < zmmlog2+ymm10g3+2cx,
xlog2+ ylog3 < 128log2 + 128log3 + 2 - 174 < 578.

Hence, z < 834 and y < 527. On the other hand, Lemma [ZT0] implies that nloga — 3 < X < 578, so
that n < 962.

4.3 Conclusion

To finalize with the proof of Theorem [[L2] we note that for n > 310, the bounds are n < 962, x < 834, and
y < 527. To efficiently handle large T, values, our SageMath 9.5 code utilized batch processing, iterating
through all (n, z,y) combinations within these ranges. This approach selected ¢ > 1 values with at least
four representations of the form T, — 2¥3¥ aligning with the solutions in Theorem The computation,
performed on an 8GB RAM laptop, was completed in about 3 hours. O

5 Proof of Theorem

5.1 An absolute upper bound on n

We proceed as in Subsection [£Iland determine an absolute upper bound on n. Without loss of generality,
we may assume n > ni > 310, and continue by proving a series of results.

Lemma 5.1. Let ¢ < —1 such that (n,z,y) and (n1,x1,y1) satisfy (L2) with n > nq > 310, then
X — X <5.55- 10" logn.

Proof. Since ¢ < —1, then T}, — 2*3¥ < —1 and hence 2*3Y — T,, > 0. We go back to (L2) and rewrite it
as

0<273Y — T, =273V — T,
273Y — Cpa" ™1 = 27139 — Cpa™ 4+ Cp (B =) + Oy (=™
< 9¥13Y1 4 CB (ﬁn—l _ Bnl—l) + 07 (,yn—l . 7711—1) :
273Y — Cpa™ 1| < 27139 + 2, (5.1)

where the last inequality holds for all n > ny > 310. So, dividing through both sides of (.1 by 2%3Y, we
conclude that

27737YCha ! — 1] < Bexp{—(X — X1)}. (5.2)

We now apply Theorem E21] on the left-hand side of (52). Let I'y := 27%37¥Coa™ ! — 1 = ef2 — 1.
Like before, Ay # 0 otherwise we would have C,a™~! = 273¥ ¢ Z. Conjugating this relation by any
automorphism that swaps o and 3, we get Cg3"~1 = 273, which is a contradiction because |Cz8" 1| < 1
while 273Y% > 1 for all 2,y > 0. We use the field K := Q(«) of degree D = 3. Here, t := 4,

A =2, Xi=3, A3:=0C,, M :i=aq,
by :=—x, by:=—y, b3:=1, by:=n—1.
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We have max{|b1],|b2], |b3|, |b4|} = max{z,y,1,n — 1} = n. So, we can take B := n. Again, h(C,) =
%log 44. So, we can take A; :=3log2, Ay := 3log3, As :=log44, and A4 := log . Therefore, Theorem
2.1 gives,
log [Ty > —1.4-307 - 4%5.32(1 + log 3)(1 + log n)(31og 2)(3 log 3) (log 44) (log )
> —5.5-10" logn, (5.3)
where the last inequality holds for n > 310. Comparing (5.2]) and (5.3]), we get
X — X; < 5.55-10" logn. (5.4)
This proves Lemma [5.11 u
Next, we prove the following.

Lemma 5.2. Let ¢ < —1 such that (n,z,y), (n1,21,y1) and (ne,x2,y2) satisfy ([L2) with n > ny > ne
and ny > 310, then
n—mny <2-10%(logn)?

Proof. Since we assume a third solution (ng, 2, y2) to (IL2)), then Lemma 210 also holds for ny > ny. By
hypothesis, ny > 310, so

0.080™ < exp(X;) = 2°13Y1 < o™ (n log )0 18 1o
We can then rewrite (B.I)) with the above inequality and get

|2°3Y — Caa™ | < 271391 + 2
<a™ (nl IOg a)GO log(n1 log «) 492

< 1.01a™ (n1 log Q)GO log(n1 log o) .

Dividing through by C,a"~!, we obtain
1.01c

[e3%

273V C; o~ (Y 1] < S0 (07 (g log @) 0B 1os )
< 3a~("7™) (n; log o) 1B o) (5:5)

Let I's := 2%3YC, a~ (=1 _1 = eMs — 1. By the same arguments and data used in the proof of Lemma
Bl above, we conclude by Matveev’s Theorem 2] that

(n —n1)log o — log 3 — 60 [log(ny log a)]” < 5.5 - 10" log n;
- 60 [log(n log @)]* +log 3 + 5.5 - 10*5 log n

n—mni

log o
< 2-10"(logn)?,
where we have used the fact that n > ny; > 310. Hence, Lemma [5.2]is proved. O

Next, we retain the notation ,;, := min{z, x1, 22} and ypmin, := min{y, y1, y2} and prove the following
result.

Lemma 5.3. Let ¢ < —1 such that (n,z,y), (n1,21,y1), (R, T2,y2) and (ns,xs3,ys3) satisfy [L2) with
n >mny > ng > ng and ny > 310, then either

Tmins Ymin < 2 10%! (1Og TL)4,
or n < 36100.

Proof. We follow the same arguments as in the proof of Lemma but using the bounds from Lemma
In particular, we consider again the p—adic valuations ([AI2)) and [@I3]). We have,

o (Ca (e T e (L= - (1= et (L)
s (% 5) oA “)
Frp (1= (1= = (1=8"="")(1-9m"")), (5.6)
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and

B) =g - = (A- g (-
o (17 (L) = (1= ) (1), )

As before, we first estimate v, (1 — g™ ~") (1 —~™"") = (1 —p"2"")(1—~™"")), for p = 2,3.
Specifically,

n—1 niy—n _ Amn2—n\ __ _ . n2—n _ Ani—n
%m§%<%<g> (=) (L") = (1= ™) (1 =y >+Q
B

(1= 5 7) (=) — (1= g (L= < (e £ 30 s

- (6-2-10'(logn)? + 30) log v
log p

1.1-10%(logn)?, if p=2;
6.7-10%(logn)?, if p=3,

where we have used Lemma [5.2] and n > 310. At this point, relations (5.6]) and (5.7)) become

Ca « n—1 (1 o 04"17") (1 o ,ynQ—n) _ (1 _ anzf’n) (1 _ ,Ynl*n) 16 9
Tnin < V2 (C_ﬂ (E) (1 — Bnl—n) (1 — /ynz—n) — (1 — ﬁnz—n) (1 — ’ynl_n) +1)+1.1-10 (logn) )

(5.8)

and

. % g n—1 (1 _ a’rm-n) (1 _ ,yng—n) _ (1 _ ang—n) (1 _ ,yn1—n) . 15 5
Ymin < V3 <Cﬁ (ﬂ) (1 _ ﬂ’ﬂl*n) (1 7}}/”27") — (1 — ﬂngfn) (1 7,}/”17") +1]+6.7-10 (10gn) .

(5.9)

Lastly, we estimate

., (Ca (g)n— (1 —am—n) (1 — 2T — (1 — anz—") (1 — yman) + 1) ’ (5.10)

G \B) Ty = =)
with
_a B [0
R R A (e = e

as before. We again distinguish two cases.
Case 1. \; and Ao are multiplicatively independent.

We apply Lemma 2] to (BI0) with the field Q(«, 8) of degree D := 6. Since h(A\1) = 3(loga)/3 =
log a, we can choose h(\1) := log « for all cases p = 2, 3. Like in Subsection ] Case 1 of Lemma 3]

8(n—ng+4)
3
8(2-10%(logn)? + 4)
3
< 3.3-10"(logn)?,

h'(A2) <4+ log o

<4+ log o

where we have used Lemma and n > 310. Therefore,

b1 b2 n—1 1

B = W () + ROa)  RW(g) + W ()

<n.

We have

E = max {log £’ + loglogp + 0.4,10,101logp}
= max {logn + loglog p + 0.4, 10, 10logp} .
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If n > 36100, then E < 1+ logn in both cases p = 2,3. Therefore, Lemma 2.2] gives

Co ("M (L—am ™) (1—q"") — (1 —a™"") (1—y™"")
(e )

G \B)  T=pmm) =y = (= p) (L= ymn)

% 24/ ’
~(p- 1)(10gp)4E DR (A1)h'(A2)

24pg 2 1 S . ,
gl 14+ —— . 1 .3.3-1 1
= D(logp) " ( +1og36100) 6*(log a) - 3.3 - 107 (log n)
7.6-10"pg

< Dlogp) "

Hence, inequalities (5.8)) and (B.9) become
7.6-10%.2.3

e | 411101 2 < 2.10%'(1 4
(2 —1)(log2)* (logn)” + (logn)” < (logn)™,

Tmin <

and
_76:10'-3.13
Ymin = 7371 (log 3)

In the above, we used ¢ = 3 when p = 2 and g = 13 when p = 3.

(logn)* +6.7-10'° (logn)® < 1.1 x 10*!(logn)*.

Case 2. \1 and X2 are multiplicatively dependent.

Like the explanation done before in Subsection [.1]

log n?

n—1
vp(AT T A +1) <1+ logp < 3logn,
for n > 36100 and p € {2,3}. Comparing this to Case 1, we see that the bounds from Case 1 still hold.
This completes the proof of Lemma O

To conclude this subsection, we consider a fourth solution (ns,xs,ys), with n > ny > ns > n3 and we
find an absolute bound for n. We prove the following result.

Lemma 5.4. Ifc < —1 and n > 36100, then
n < 6.1-10%, z <5.5-10%, y < 3.5-10%.

Proof. Lemmal[5.3]tells that out of any four solutions, the minimal 2 and y are bounded by 2-10%!(log n)?.
So, out of the five solutions, at most one of them has x which is not bounded by 2 - 102! (logn)* and at
most one of them has y which is not bounded by 2 - 10?!(logn)*. Hence, at least one of the solutions has
both x and y bounded by 2 - 10?1 (logn)*, which in particular, shows that,

X, = x4log2 + yslog3 < (log2 +log3) - 2-10*! (logn)* < 3.6 - 10%* (logn)*.
Now, by Lemmas and 5.1, we get
nloga—3 < X = X4+ (X3 — X4) + (X2 — X3) + (X1 — Xo) + (X — X1)
< 3.6-10* (logn)* +4-5.55- 10" logn
< 3.61-10%" (logn)*,
which implies

21

We apply Lemma 2.2 to inequality (5.11]) above with z := n, m := 4, T := 6 - 10! Since T > (4 - 42)4,

we get
n < 2™T(logT)™ = 2* -6 - 10 (log 6 - 10°1)* < 6.1 - 10%.

Further, we have by Lemma .10 that
X < nloga + 60 (log(nloga))?;
zlog?2+ylog3 < 6.1-10* loga + 60 (log(6.1 - 10%° log a))2 < 3.8-10%.
This gives < 5.5-10% and y < 3.5 - 10%° and completes the proof of Lemma [5.41 o
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5.2 Reduction of the upper bound on n

Again, we use the LLL-reduction methods, the theory of continued fractions and as well as p—adic
reduction methods due to [21] to find a rather small bound for n.
First, we consider (52)) with the assumption that X — X7 > 2 and take logarithms, that is

[A2] = [logCy + (n — 1) loga — zlog 2 — ylog 3| < 4.5 exp(—(X — X1)).
Like before, we consider the approximation lattice

1 0 0
A= 0 1 0 :
[Mlog2| |Mlog3] |[Mloga]

with C := 10%° and choose v := (0,0, —| M log C, |). Now, by Lemma Z4 we get |Az| > ¢; := 9.3-10732
and hence ¢, := 5.12 - 103°. Moreover, by Lemma [5.4, we have

z<A; =55-10%2, y<A3=35-10", n—1<n< A3 =6.1-10%.

So, Lemma [ gives S = 4.25- 10 and T = 7.55 - 10%. Since ¢ > T? + S, then choosing c3 := 4.5 and
cq =1, we get X — X7 <138.
Next, we continue with the assumption that n > n;, and consider the inequality

0<273Y 2713 =T, — T, <Tp <a" L

Dividing through by 2¥3Y and taking logarithms, we get

an—l

|7 == |(x — x1)log2+ (y — y1)log 3| < 1.5 YETR

where we have assumed that 2%3% > o™ and applied Lemma Il Next, we divide the above equation by
ly1 — y|log2 and get

log3d z—ux; 1.2a™
log2  y1—y|  23¥[y —y|’
since a > 1.83 and y1, y are distinct. Note that y; and y are indeed distinct since if they were not, then
05 < lem — 1| = |1 —2%17%| < a"71/273Y < 0.5, a contradiction. By Lemma 2.3 with p := Eg; and
M :=10*8, we have ¢
1 logd x—x1 1.2a™
(@(M) +2)(y1 —y)? ~|log2  yi—y|  273v|y1 —y|’

where a(M) = 55 (in fact, qigo > 10*® and max{ar : 0 < k < 100} = 55). Multiplying the above
inequality by |y1 — y|log2 gives

log 2 log 2
< |z —x1)log2 —y1)log3
57-35-102  (a(M) + 2)|y; — v [(z — 21)log2 + (y — y1) log 3|,
so that .
3.4-10732 < |(z — 1) log 2 + (y — y1) log 3| < 1.5‘;@,

where we have used the upper bound y < 3.5-102%°. This gives 2%3Y < 2.5-103!a”, since a > 1.83. If the
assumption that 2¥3¥ > o is violated, then we would have 273 < o™ < 2.5 - 103'a™, and we are in the
same situation. Now, by assuming a third solution to (LZ), then

0<2%3Y — Cha™t < 291391 42 < 2.5-103a™ +2 < 2.51-103a™,
which gives

27390 oMY 1| < 7.6 - 1031 a~(nmm),
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Assume that 7.6 - 103*a~("="1) < 0.5, which is certainly true if n — n; > 123. Taking logarithms gives
|21og2 + ylog3 — (n — 1) log o — log Cy| < 1.5- 1070~ ("—m1),
So, we consider the approximation lattice

1 0 0
A= 0 1 0 ,
|[Mlog2| |Mlog3] [Mloga]

with M := 10°° and choose v := (0,0, —|MlogC,]). Now, by Lemma 24l we maintain |Az| > ¢1 1=
9.3-10732 and ¢y := 5.12- 1030, Still, by Lemma 5.4 we have

z< A =55-102, y<A3=35-10", n—1<n< A3 =6.1-10%.

So, Lemma 2.5] gives S = 4.25-10% and T' = 7.55 - 10%°, so that choosing c3 := 1.5 - 10°* and ¢4 := log a,
we get n —ng < 417.

To continue, we proceed as in Subsection [£.2] but with different upper bounds for n and n —n;. Notice
that in this case, d := n —n; < 417 and n < 6.1 -10%° < 299, We repeat the algorithm described in
Subsection after relation (£I9)) and obtain rather smaller bounds as Tmin, Ymin < 152.

Lastly, we find a smaller upper bound for n. If we write cx for the upper bound of X — X7, then

X = XQ + (Xl 7X2) =+ (X 7X1) < zmzn10g2+ymzn10g3+2CX,
xlog2 + ylog3 < 152log2 + 1521og3 + 2 - 138 < 549.

Hence, z < 793 and y < 500. On the other hand, Lemma 210 implies that nloga — 3 < X < 549, so
that n < 914.

5.3 Conclusion

Concluding the proof of Theorem [[.3] we note that for n > 310, the bounds are n < 913, z < 793, and
y < 500. To efficiently handle large T, values, our SageMath 9.5 code utilized batch processing, iterating
through all (n, z,y) combinations within these ranges. This approach selected ¢ < —1 values with at least
five representations of the form 7;, — 2%3Y, aligning with the solutions in Theorem The computation,
performed on an 8GB RAM laptop, was completed in about 2 hours. O
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