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AN EFFECTIVE ESTIMATE FOR THE SUM OF TWO CUBES

PROBLEM

SAUNAK BHATTACHARJEE

Abstract. Let f(x, y) ∈ Z[x, y] be a cubic form with non-zero discriminant, and for each
integer m ∈ Z, let, Nf (m) = #

{

(x, y) ∈ Z2 : f(x, y) = m
}

. In 1983, Silverman proved that

Nf (m) > Ω
(

(log |m|)3/5
)

when f(x, y) = x3+y3. In this paper, we obtain an explicit bound

for Nf (m), namely, showing that Nf (m) > 4.2×10−6(log |m|)11/13 (holds for infinitely many
integers m), when f(x, y) = x3 + y3.

1. Introduction

Let f(x, y) ∈ Z[x, y] be a cubic form with non-zero discriminant, and for each integer m ∈ Z,
define

Nf (m) =: #
{

(x, y) ∈ Z2 : f(x, y) = m
}

.

It has been a topic of interest to study how large can Nf (m) be. In 1935, Mahler [6] proved
that

Nf (m) > Ω
(

(log |m|)1/4
)

,

i.e., there exists a constant c > 0, independent of m, such that for infinitely many integers m,

Nf (m) > c (log |m|)1/4.

Invoking the theory of height functions, Silverman[1] extended the idea of Mahler (Mordell,
Pillai and Chowla[5]). This resulted in an improvement of the exponent from 1/4 to 1/3 and
simplification of calculation as well.

More specifically, restricting f(x, y) = x3 + y3 , Silverman proved that,

Nf (m) > Ω
(

(log |m|)3/5
)

.

In this short note, we are interested in the special case, when f(x, y) = x3 + y3. Using the
methods employed by Silverman and exploiting the properties of canonical height function on
elliptic curves, we explicitly capture the implied constant in the formula.

Theorem 1.1. Let f(x, y) = x3 + y3 ∈ Z[x, y]. Let m0 ∈ Z be a non zero integer. Consider
the curve E with homogeneous equation

E : f(x, y) = m0 z
3
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with the point [1,−1, 0] defined over Q. Using that point as origin, we give E the structure of
an elliptic curve. Let

r = rankE(Q)

the rank of the Mordell-Weil group of E/Q. Then the following inequality holds for infinitely
many integers m,

Nf (m) >
1

(9× 2r+1 − 20)r/r+2(ĥ(P̄ ))r/r+2
(log |m|)r/(r+2)

Where ĥ(P̄ ) denotes the Canonical height of a specified point P̄ on the elliptic curve E′ : Y 2 =
X3 − 432m2

0, defined over Q, with the base point [0, 1, 0] at infinity.

As an immediate corollary, we have the following.

Corollary 1.1. Let f(x, y) = x3 + y3 ∈ Z[x, y]. Then the following inequality holds for
infinitely many integers m,

Nf (m) > 4.2× 10−6(log |m|)11/13

2. Preliminaries

We state and develop the necessary tools to prove our main theorem.

Lemma 2.1. Let there exist integers x, y, z and m0, such that x3 + y3 = m0z
3 with

gcd(x, y, z) = 1, gcd(12m0z, x+ y) = d, then |d| < 31/312m
5/2
0 |z|1/2.

Proof. Let,

da = 12m0z and db = x+ y, where gcd(a, b) = 1.

Now, our aim is to show that,
d2|3.123m2

0b.

Let, p be a prime dividing d and having the maximum power k in d.

We will show that, p2k will always divide 3.123m2
0b.

As, pk|d ⇒ pk|12m0z, we have two possible cases,

pk|12m0 or p|z

If pk|12m0, then we are done. So, it is enough to show when p|z.

We have,
x3 + y3 = m0z

3 ⇒ 123m2
0(x+ y)((x+ y)2 − 3xy) = 123m3

0z
3

⇒ 123m2
0b(d

2b2 − 3xy) = d2a3

⇒ d2|3.123m2
0bxy

now,

p|d ⇒ p|x+ y
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but,

on the other hand, we have p|z and gcd(x, y, z) = 1, which clearly implies p ∤ xy.

As we have d2|3.123m2
0bxy, the primes dividing d and not dividing xy, should be completely

contained in the factorisation of 3.123m2
0b.

Hence,

p2k|3.123m2
0b , for all prime p dividing d ⇒ d2|3.123m2

0b.

⇒ |d|2 ≤ 3.123m2
0|b| ⇒ |d|3 ≤ 3.123m2

0|b||d| = 3.123m2
0|x+ y|

⇒ |d|6 ≤ (3.123m2
0)

2(|x+ y|)2 ≤ (3.123m2
0)

2|x3 + y3| = (3.123m2
0)

2m0|z|
3

⇒ |d| < 31/312m
5/2
0 |z|1/2.

�

Next, we state the following result due to Nèron and Tate from [2], which gives the required
properties of the canonical height, we are going to apply in the proof of the theorem.

Lemma 2.2. (Néron, Tate) Consider the canonical height or Nèron-Tate height denoted

by ĥ on an elliptic curve E/Q, defined as the following

ĥ(P ) = 1
2 limk→∞

(

4−khx
(

[2k]P
))

where hx(P ) = log (H ([x(P ), 1])) , then

(a) For all P,Q ∈ E(Q) we have

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

(parallelogram law).

(b) For all P ∈ E(Q) and all m ∈ Z,

ĥ([m]P ) = m2ĥ(P ).

(c) The canonical height ĥ is a quadratic form on E, i.e., ĥ is an even function, and the
pairing

〈·, ·〉 : E(Q)× E(Q) → R, 〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q),

is bilinear.

(d) Let P ∈ E(Q). Then ĥ(P ) ≥ 0, and ĥ(P ) = 0 if and only if P is a torsion point.

(e)

ĥ =
1

2
hx +O(1),

where the O(1) depends on E and x.

Proof. See pp. 248− 251 [2]. �
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Note that, in (e) of Lemma 2.2, the implied constant is not explicit. In 1990, Silverman
proved a general result which explicitly determines the constant in terms of the j-invariant
and discriminant of the elliptic curve. From [3] we invoke a specific case of this result here.

Lemma 2.3. Let, E/Q be an elliptic curve given by the Weierstrass equation

y2 = x3 +B , then for every P ∈ E(Q̄)

−1
6h(B)− 1.48 ≤ ĥ(P )− 1

2hx(P ) ≤ 1
6h(B) + 1.576

Proof. See pp. 726 [3] . �

Once we have the lower bound of Nf (m) in theorem 1.1, the explicit lower bound in corollary
1.1 follows from the existence of a specific elliptic curve of rank 11, which is recently given by
Elkies and Rogers in [4]. We state this result as a proposition below.

Proposition 2.1. The elliptic curve given by the equation

x3 + y3 = m0z
3 or the Weierstrass form Y 2 = X3 − 432m2

0

where, m0 = 13293998056584952174157235 , has the Mordell-Weil rank 11.

Moreover, max{hx(Pi) | 1 ≤ i ≤ 11} = 76.61 where Pi varies over 11 independent points of
the Mordell-Weil group.

Proof. For the construction of this elliptic curve and the list of 11 independent points; see pp.
192-193 [4] . The rest follows by simple computation. �

3. Proof of theorem 1.1 and corollary 1.1

We are given, that the elliptic curve E/Q

E : x3 + y3 = m0z
3

with the base point [1,−1, 0] has the Mordell-Weil rank r.

Observe that, any non-torsion point Q = [x(Q), y(Q), z(Q)] ∈ E(Q) has z(Q) 6= 0 as the only
point in E(Q) with z(Q) = 0 is Q = [1,−1, 0], the identity of the Mordell-Weil group E(Q).

As the rank of E(Q) is r, we can choose r independent points P1, ..., Pr from the free part
of the group E(Q) and for any point Q ∈ E(Q), we will always write Q = [x(Q), y(Q), z(Q)]
with x(Q), y(Q), z(Q) ∈ Z and gcd (x(Q), y(Q), z(Q)) = 1.

Now fix a large positive integer N and for each n = (n1, ..., nr) ∈ Zr with 1 ≤ ni ≤ N ,
consider the sum

Qn = n1P1 + ...+ nrPr
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which gives N r distinct points in E(Q).

Now consider

m = m0

∏

n

z(Qn)
3,

where the product runs over all r−tuples (n1, ..., nr). Note that, m 6= 0 as z(Qn) 6= 0.

Hence for each r-tuple n′ = (n′
1, ..., n

′
r), the equation f(x, y) = x3 + y3 = m has the following

integral solution

(x, y) =



x(Qn′)
∏

n 6=n′

z(Qn)
3, y(Qn′)

∏

n 6=n′

z(Qn)
3



 .

From this, we immediately get

Nf (m) > N r.

Now, we will use the properties of height functions to give an upper bound for m in terms of
N . To do this in an explicit manner, we will first transform the elliptic curve E/Q into it’s
Weierstrass form and then will proceed by using the explicit properties of the height functions
on that Weierstrass form.

Consider the following morphism which takes E/Q to it’s Weierstrass form E′/Q

Φ : E → E′

defined as

Φ([x, y, z]) =

{
[

12m0
z

y+x , 36m0
y−x
y+x , 1

]

, z 6= 0,

[0, 1, 0], z = 0.

where E′ : Y 2 = X3 − 432m2
0 denotes the Weierstrass form of E : x3 + y3 = m0z

3.

Note that, Φ induces a group homomorphism Φ : E(Q) → E′(Q) of the corresponding Mordell-
Weil groups.

Let Qn = [x(Qn), y(Qn), z(Qn)] ∈ E(Q) as above. Then the height (with respect to x) of Qn

under Φ is given by

hx (Φ(Qn)) = h (x (Φ(Qn))) ,

where h(x(P ) = log (H ([x(P ), 1])), H is the height on P1(Q) [2, pp. 234].

As z(Qn) 6= 0, we have

x (Φ(Qn)) = 12m0
z(Qn)

y(Qn) + x(Qn)

for simplicity we will write x, y, z respectively for x(Qn), y(Qn) and z(Qn).
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Hence, we can write

hx (Φ(Qn)) = log

(

H

(

[12m0
z

y + x
, 1]

))

= log (H ([12m0z, x+ y]))

= log

(

max{|
12m0z

d
|, |

x+ y

d
|}

)

where, d = gcd(12m0z, x+ y) and log
(

max{|12m0z
d |, |x+y

d |}
)

≥ log
(

|12m0z|
|d|

)

.

So, clearly

hx (Φ(Qn)) + log(|d|) ≥ log(12|m0|) + log(|z|).

Now, using Lemma 2.1 we have

hx (Φ(Qn)) ≥ bm0
+

1

2
log(|z|)

where, bm0
is a constant depending on m0.

Further, using (e) of Lemma 2.2, we have

log(|z|) ≤ 4ĥ(Φ(Qn)) + cm0

where, cm0
is another constant depending on m0.

As, Φ : E(Q) → E′(Q) is group homomorphism,

ĥ (Φ(Qn)) = ĥ (
∑r

i=1 niΦ(Pi)).

Now, using (a), (b) and (d) of Lemma 2.2, we have the following estimate for ĥ.

ĥ(Φ(Qn)) ≤ (3× 2r−1 − 2)max{ĥ(niΦ(Pi)) | 1 ≤ i ≤ r}

≤ (3× 2r−1 − 2)N2 max{ĥ(Φ(Pi)) | 1 ≤ i ≤ r}

For simplicity of notation, write max{ĥ(Φ(Pi)) | 1 ≤ i ≤ r} = ĥ(P̄ ), P̄ = Φ(Pi) for some i.

Hence, altogether we have

log(|z(Qn)|) ≤ 4(3 × 2r−1 − 2)N2ĥ(P̄ ) + cm0

≤ (3× 2r+1 − 7)N2ĥ(P̄ )

as we can choose a large N such that cm0
≤ N2ĥ(P̄ ).

Now, we have total N r points Qn on E(Q), so for large enough N ,

log |m| = 3
∑

n

log |z(Qn)|+ log(|m0|) ≤ (32 × 2r+1 − 20)N r+2ĥ(P̄ ).

So, clearly we have the following estimate
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Nf (m) > N r ≥
1

(9× 2r+1 − 20)r/r+2(ĥ(P̄ ))r/r+2
(log |m|)r/(r+2)

which concludes the proof of theorem 1.1, because we can choose arbitrarily large N , giving
infinitely many choices for m.

The proof of the corollary 1.1 follows by using the elliptic curve of Proposition 2.1 in Theorem
1.1. Observe that, using Lemma 2.3 on the elliptic curve Y 2 = X3 − 432m2

0 with m0 =
13293998056584952174157235, we have

ĥ(P̄ ) ≤ 121.767/6 + 76.61/2 + 1.576 = 60.17

by putting r = 11, we have the required estimate holding for infinitely many integers m

Nf (m) > 4.2× 10−6(log |m|)11/13.

4. Concluding remarks

It will be interesting to know, if a similar explicit bound can be obtained for other cubic
forms as well. The key idea is to get a result similar to Lemma 2.1 for a general form, then
using the similar methods in this article an explicit bound can be obtained. In our case,
for f(x, y) = x3 + y3, the computation turned out to be much simpler which can be a bit
complicated for other forms.
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