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AN EFFECTIVE ESTIMATE FOR THE SUM OF TWO CUBES
PROBLEM

SAUNAK BHATTACHARJEE

ABSTRACT. Let f(z,y) € Z[z,y] be a cubic form with non-zero discriminant, and for each
integer m € Z, let, Ny(m) = # {(x, y) €Z%: f(z,y) = m}. In 1983, Silverman proved that

Ny¢(m) > Q ((log |m|)3/5) when f(z,y) = 23 +y>. In this paper, we obtain an explicit bound

for Nt (m), namely, showing that Ny (m) > 4.2 x 1075 (log |m/|)*'/** (holds for infinitely many
integers m), when f(x,y) = z* 4+ ¢°.

1. Introduction

Let f(z,y) € Z[z,y] be a cubic form with non-zero discriminant, and for each integer m € Z,
define

Ng(m) =: #{(:E,y) eZ?: f(zx,y) = m}

It has been a topic of interest to study how large can Ny(m) be. In 1935, Mahler [6] proved
that

Ny(m) > @ ((log|m|)'/*) ,
i.e., there exists a constant ¢ > 0, independent of m, such that for infinitely many integers m,

N¢(m) > c(log |m|)/*.

Invoking the theory of height functions, Silverman[I] extended the idea of Mahler (Mordell,
Pillai and Chowla[5]). This resulted in an improvement of the exponent from 1/4 to 1/3 and
simplification of calculation as well.

More specifically, restricting f(x,y) = 23 + 42 , Silverman proved that,

Ny(m) > Q ((log |m\)3/5) .

In this short note, we are interested in the special case, when f(x,y) = 2® + y>. Using the
methods employed by Silverman and exploiting the properties of canonical height function on
elliptic curves, we explicitly capture the implied constant in the formula.

Theorem 1.1. Let f(z,y) = 23+ y> € Z[x,y]. Let mg € Z be a non zero integer. Consider
the curve E with homogeneous equation

E: f(z,y) = mg 2"
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with the point [1,—1,0] defined over Q. Using that point as origin, we give E the structure of

an elliptic curve. Let
r =rank E(Q)

the rank of the Mordell-Weil group of E/Q. Then the following inequality holds for infinitely
many integers m,
1
Nf(m) > =
(9 x 9r+1 _ 20)r/r+2(h(P))r/r+2

Where E(P) denotes the Canonical height of a specified point P on the elliptic curve E' : Y? =
X3 —432m3, defined over Q, with the base point [0,1,0] at infinity.

(log [m])"/+2)

As an immediate corollary, we have the following.
Corollary 1.1. Let f(x,y) = 2 +y3 € Z[z,y]. Then the following inequality holds for
infinitely many integers m,

Ny(m) > 4.2 x 10”8 (log |m|)1+/13

2. Preliminaries

We state and develop the necessary tools to prove our main theorem.

Lemma 2.1. Let there exist integers x, y, z and mg, such that x> + y> = moz® with
ged(x,y,z) = 1, ged(12moz,x + y) = d, then |d| < 31/312mg/2|z|1/2.
Proof. Let,

da = 12mgz and db = x + y, where gcd(a,b) = 1.

Now, our aim is to show that,
d?3.123mdb.

Let, p be a prime dividing d and having the maximum power k in d.
We will show that, p?* will always divide 3.123m%b.
As, p*|d = p*|12mgz, we have two possible cases,
pFl12mg  or  plz

If p¥|12my, then we are done. So, it is enough to show when p)z.

We have,
23+ 3 = me2® = 122md(z + y)((z 4+ y)? — 3zy) = 123m323
= 12°m2b(d*b* — 3zy) = d*a®
= d?|3.12°mibay
now,

pld=plz+y
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but,
on the other hand, we have p|z and ged(x,y, z) = 1, which clearly implies p { zy.

As we have d?|3.123m3bxy, the primes dividing d and not dividing zy, should be completely
contained in the factorisation of 3.123m3b.

Hence,

p?13.123m2b | for all prime p dividing d = d?|3.123m2b.

= |d|* < 3.125m|p| = |d]® < 3.12°md|b||d| = 3.123m3 |z + y|
= |d|° < (3.12°mg)*(|z + y|)* < (3.12°mg)?|2* + 4’| = (3.12°m§)*mo| |

= |d| < 3'/312m>/%|2|1/2.
O

Next, we state the following result due to Neéron and Tate from [2], which gives the required
properties of the canonical height, we are going to apply in the proof of the theorem.

Lemma 2.2. (Néron, Tate) Consider the canonical height or Néron-Tate height denoted
by h on an elliptic curve E/Q, defined as the following

h(P) = Llimy o0 (47%h, ([2°]P)) where hy(P) = log (H ([x(P),1])) , then

(a) For all P,Q € E(Q) we have
h(P+ Q)+ h(P — Q) = 2h(P) + 2h(Q)
(parallelogram law).
(b) For all P € E(Q) and allm € Z,
h([m]P) = m*h(P).

(¢) The canonical height his a quadratic form on E, i.e., h is an even function, and the
pairing

() E@ x E@ =R, (P.Q)=h(P+Q)~h(P)~hQ),
s bilinear.
(d) Let P € E(Q). Then h(P) >0, and h(P) = 0 if and only if P is a torsion point.
(e) ,
h= She +0(1),
where the O(1) depends on E and x.
Proof. See pp. 248 — 251 [2]. O



4 SAUNAK BHATTACHARJEE

Note that, in (e) of Lemma 2.2 the implied constant is not explicit. In 1990, Silverman
proved a general result which explicitly determines the constant in terms of the j-invariant
and discriminant of the elliptic curve. From [3] we invoke a specific case of this result here.

Lemma 2.3. Let, E/Q be an elliptic curve given by the Weierstrass equation
y? =23 + B, then for every P € E(Q)

Ln(B) —1.48 < h(P) — 1h,(P) < th(B) + 1.576
Proof. See pp. 726 [3] . O

Once we have the lower bound of N¢(m) in theorem [T} the explicit lower bound in corollary
[T follows from the existence of a specific elliptic curve of rank 11, which is recently given by
Elkies and Rogers in [4]. We state this result as a proposition below.

Proposition 2.1. The elliptic curve given by the equation
23 +y3 = moz> or the Weierstrass form Y? = X3 — 432m}2

where, mg = 13293998056584952174157235 , has the Mordell-Weil rank 11.

Moreover, max{h,(P;) | 1 <i < 11} = 76.61 where P; varies over 11 independent points of
the Mordell-Weil group.

Proof. For the construction of this elliptic curve and the list of 11 independent points; see pp.
192-193 [4] . The rest follows by simple computation. O

3. Proof of theorem [I.1] and corollary [I.1]

We are given, that the elliptic curve E/Q

E::z:?’—l—y?’:moz?’

with the base point [1,—1,0] has the Mordell-Weil rank r.

Observe that, any non-torsion point Q = [z(Q), y(Q),2(Q)] € E(Q) has z(Q) # 0 as the only
point in E(Q) with 2(Q) =0 is Q = [1,—1,0], the identity of the Mordell-Weil group E(Q).

As the rank of E(Q) is r, we can choose r independent points Py, ..., P. from the free part
of the group E(Q) and for any point Q € E(Q), we will always write @ = [z2(Q), y(Q), 2(Q)]
with 2(Q), y(Q), 2(Q) € Z and ged (2(Q), y(Q), 2(Q)) = 1.

Now fix a large positive integer N and for each n = (nqy,...,n,) € Z" with 1 < n; < N,
consider the sum

Qn =mP +..+n.P
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which gives N” distinct points in E(Q).

Now consider

m = mo [ (Qu)?,
where the product runs over all r—tuples (n1,...,n,). Note that, m # 0 as z2(Q,,) # 0.

Hence for each r-tuple n’ = (nf, ...,n.), the equation f(z,y) = 23 + y® = m has the following
integral solution

(2.9) = | 2(@u) T 2@ 9(@u) ] #(Qu)?
n#n/ n#n’

From this, we immediately get
Ng(m) > N".

Now, we will use the properties of height functions to give an upper bound for m in terms of
N. To do this in an explicit manner, we will first transform the elliptic curve E/Q into it’s
Weierstrass form and then will proceed by using the explicit properties of the height functions
on that Weierstrass form.

Consider the following morphism which takes E/Q to it’s Weierstrass form E’/Q

b:FE— FE
defined as

[12m0 2 36mo 52, ] R

D([z,y,2]) = {
[0,1,0], 2 =0.

where E' : Y2 = X3 — 432 m2 denotes the Weierstrass form of E : 2° + > = mgz3.

Note that, ® induces a group homomorphism ® : E(Q) — E’(Q) of the corresponding Mordell-
WEeil groups.

Let Qpn = [2(Qn), y(Qn), 2(@Qn)] € E(Q) as above. Then the height (with respect to ) of @,
under @ is given by

where h(z(P) = log (H ([z(P),1])), H is the height on P'(Q) [2, pp. 234].

As z(Qy,) # 0, we have

Q)
T (@) = Lm0 )

for simplicity we will write x,y, z respectively for z(Q,),y(Q,) and z(Qy,).
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Hence, we can write

b (0(Qu) = 1o (# (120

=)
= log (H ([12mg2,  + y)))
12mgz

z+y
— tog (max(| 2725, £ )

where, d = ged(12moz,z +y) and log (max{|122ez| |Zt¥[1) > log (%).

So, clearly
he (2(Qn)) + log(|d]) = log(12|mpl) + log(|2|).

Now, using Lemma [2.I] we have

e (2(Qu) 2 by + 5 log(12])

where, by, is a constant depending on my.

Further, using (e) of Lemma [2.2] we have

log(|2]) < 41(®(Qn)) + em

where, ¢, is another constant depending on my.
As, @ : E(Q) — F’'(Q) is group homomorphism,
h(®(Qn) = h (i, mi®(P))-
Now, using (a), (b) and (d) of Lemma 22 we have the following estimate for .
W®(Qn)) < (3% 277" —2) max{h(n;®(P)) | 1 <i <r}
<Bx 27N —2)N?max{h(®(P)) |1<i<r}

For simplicity of notation, write max{h(®(F5;)) |1 <i <r} = h(P), P = ®(P;) for some i.

Hence, altogether we have

log(|2(Qn)l) < 4(3 x 277! = 2)N?h(P) + i,

< (3x 2" —7)N?h(P)
as we can choose a large N such that ¢, < N2h(P).
Now, we have total N" points @, on E(Q), so for large enough N,
log [m| =3 log|2(Qn)| + log(Imo|) < (3% x 2"+ — 20)N"*?A(P).

So, clearly we have the following estimate
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1
s r/(r+2)
Ng(m) > N" > O % 271 20) IR (b (B (log |m])

which concludes the proof of theorem [I.I], because we can choose arbitrarily large N, giving
infinitely many choices for m.

The proof of the corollary [Tl follows by using the elliptic curve of Proposition 2.J]in Theorem
LI Observe that, using Lemma 23 on the elliptic curve Y2 = X3 — 432m3 with my =
13293998056584952174157235, we have

A~ =

h(P) < 121.767/6 + 76.61/2 + 1.576 = 60.17

by putting » = 11, we have the required estimate holding for infinitely many integers m

Ny(m) > 4.2 x 107 5(log |m|)t/13,

4. Concluding remarks

It will be interesting to know, if a similar explicit bound can be obtained for other cubic
forms as well. The key idea is to get a result similar to Lemma 2.1] for a general form, then
using the similar methods in this article an explicit bound can be obtained. In our case,
for f(x,y) = 2® + y3, the computation turned out to be much simpler which can be a bit
complicated for other forms.
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