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RATIONAL DIOPHANTINE SEXTUPLES WITH STRONG PAIR

ANDREJ DUJELLA, MATIJA KAZALICKI, AND VINKO PETRIČEVIĆ

Abstract. A set of m distinct nonzero rationals {a1, a2, . . . , am} such that
aiaj +1 is a perfect square for all 1 ≤ i < j ≤ m, is called a rational Diophan-

tine m-tuple. If in addition, a2i + 1 is a perfect square for 1 ≤ i ≤ m, then
we say the m-tuple is strong. In this paper, we construct infinite families of
rational Diophantine sextuples containing a strong Diophantine pair.

1. Introduction

A Diophantine m-tuple is a set of m distinct positive integers with the property
that the product of any two of its distinct elements plus 1 is a square. Fermat
found the first Diophantine quadruple in integers {1, 3, 8, 120}. If a set ofm nonzero
rationals has the same property, then it is called a rational Diophantine m-tuple.
If in addition, a rational Diophantine m-tuple has the property that the square of
each element plus 1 is a square, we say that it is strong. The first example of a
rational Diophantine quadruple was the set

{

1

16
,
33

16
,
17

4
,
105

16

}

found by Diophantus. Euler proved that the exist infinitely many rational Diophan-
tine quintuples (see [15]), in particular he was able to extend the integer Diophantine
quadruple found by Fermat, to the rational quintuple

{

1, 3, 8, 120,
777480

8288641

}

.

Stoll [17] recently showed that this extension is unique. Therefore, the Fermat set
{1, 3, 8, 120} cannot be extended to a rational Diophantine sextuple.

In 1969, using linear forms in logarithms of algebraic numbers and a reduction
method based on continued fractions, Baker and Davenport [1] proved that if d
is a positive integer such that {1, 3, 8, d} forms a Diophantine quadruple, then d
has to be 120. This result motivated the conjecture that there does not exist a
Diophantine quintuples in integers. The conjecture has been proved recently by
He, Togbé and Ziegler [14] (see also [5]).

In the other hand, it is not known how large can be a rational Diophantine tuple.
In 1999, Gibbs found the first example of rational Diophantine sextuple [13]

{

11

192
,
35

192
,
155

27
,
512

27
,
1235

48
,
180873

16

}

.

In 2017 Dujella, Kazalicki, Mikić and Szikszai [9] proved that there are infinitely
many rational Diophantine triples that can be extended to a Diophantine sextuple
in infinitely many ways, while Dujella and Kazalicki [8] (inspired by the work of
Piezas [16]) described another construction of parametric families of rational Dio-
phantine sextuples. Dujella, Kazalicki and Petričević [11] proved that there are
infinitely many rational Diophantine sextuples such that denominators of all the
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elements (in the lowest terms) in the sextuples are perfect squares, and also proved
[10] that there are infinitely many rational Diophantine sextuples containing two
regular quadruples and one regular quintuple. No example of a rational Diophan-
tine septuple is known. Lang’s conjecture on varieties of general type implies that
the number of elements in a rational Diophantine tuple is bounded by an absolute
constant (for more details, see the introduction of [9]). For additional information
on Diophantine m-tuples, refer to the survey article [6] and the book [7].

In this paper, we study rational Diophantine sextuples which contain a strong
elements (i.e. the elements a with the property that a2 + 1 is a perfect square).

Denote by C an affine curve given by the equation p(u, v) = 0 where

p(u, v) = 3u4v4 − 8u4v3 + 6u4v2 − u4

− 8u3v4 + 4u3v3 − 8u3v2 + 12u3v + 6u2v4

− 8u2v3 + 4u2v2 + 8u2v + 6u2 + 12uv3 + 8uv2

+ 4uv + 8u− v4 + 6v2 + 8v + 3.

The curve C is birationally equivalent to the elliptic curve

E : y2 + xy + y = x3 − 33x+ 68.

Torsion subgroup of Mordell-Weil group of E/Q is generated by the point [−1, 10]
of order 6, while the free part of the group is generated by the point [11/4,−25/8].
In particular, E has infinitely many rational points.

Define three parametric families

F1(u, v) =
[

2u
(u−1)(u+1) ,

2v
(v−1)(v+1) ,

2(v−1)(v+1)(u−1)(u+1)
(−v+uv−u−1)2

]

,

F2(u, v) =
[

2u
(u−1)(u+1) , − 2(u−v)(uv+1)

(uv+v+1−u)(uv−v+u+1) , − 2(uv−v+u+1)(u3v−u3
−v−1)

(u−1)(u+1)(uv+v+1−u)2

]

,

F3(u, v) =
[

− 2v
(v−1)(v+1) , − 2(u−v)(uv+1)

(uv+v+1−u)(uv−v+u+1) ,
2(uv+v+1−u)(v3u−v3

−u−1)
(uv−v+u+1)2(v+1)(v−1)

]

.

By carefully selecting parameters (u, v), we can utilize methods described in [9]
to extend Diophantine triples to Diophantine sextuples, thus deriving our main
result.

Theorem 1. If (u, v) ∈ C(Q), then each triple Fi(u, v) is a rational Diophantine
triple (provided that all the elements are defined, distinct and nonzero), whose first
two elements form a strong Diophantine pair. Moreover, each such Fi(u, v) can be
extended to a rational Diophantine sextuple in infinitely many ways.

Remark 1. Note that F2(v, u) = −F3(u, v) = F3(−u, 1/v) for all pairs (u, v).
Therefore, since the mappings (u, v) 7→ (v, u) and (u, v) 7→ (−u, 1/v) are the auto-
morphisms of the curve C, the families F2 and F3 are parameterizing the same sets
of triples.

As a corollary, we obtain the following result.

Theorem 2. There are infinitely many rational Diophantine sextuples that contain
a strong Diophantine pair.

2. Induced elliptic curves and overview of [9]

To extend a rational Diophantine triple {a, b, c} to a quadruple, we need to find
d ∈ Q for which ad + 1, bd + 1 and cd + 1 are perfect squares. Such d naturally
defines a rational point on the elliptic curve y2 = (ax+ 1)(bx+ 1)(cx+ 1) which is
isomorphic (via transformation x 7→ x/abc, y 7→ y/abc) to the curve

Ea,b,c : y2 = (x+ ab)(x+ ac)(x+ bc).
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Conversely, the two descent argument implies that each d is equal to x(T +P )/abc
for some T ∈ 2Ea,b,c(Q) and P = [0, abc] ∈ Ea,b,c(Q) (see Proposition 1 in [4]).

Besides the rational points of order 2,

T1 = [−ab, 0], T2 = [−ac, 0], T3 = [−bc, 0],

we will also need rational point S = [1, rst] ∈ Ea,b,c(Q), where ab+1 = r2, ac+1 =
s2 and bc+ 1 = t2, for some r, s, t ∈ Q. Note that S = 2R, where R = [rs + rt +
st, (r+ s)(r+ t)(s+ t)]. In the case when {a, b} is a strong pair, we have two more
rational points

A = [a · abc, abc · rsu], B = [b · abc, abc · rtv] ∈ Ea,b,c(Q),

where a2 + 1 = u2 and b2 + 1 = v2 for some u, v ∈ Q.
The main result of [9] states that if {a, b, c} is a rational Diophantine triple such

that the point S on induced elliptic curve Ea,b,c has order 3, then for each integer n
{

a, b, c,
x([2n+ 1]P )

abc
,
x([2n+ 1]P + S)

abc
,
x([2n+ 1]P − S)

abc

}

is a rational Diophantine sextuple. Moreover, Lemma 1 in [9] shows that the order
of S is 3 if and only if S(a, b, c) = 0 where

S(a, b, c) = 3+4(ab+ac+bc)+6abc(a+b+c)−(abc)2(−12+a2+b2+c2−2ab−2ac−2bc).

Thus we are led to the following question.

Question 1. Are there infinitely many rational Diophantine triples {a, b, c} for
which a2 + 1 and b2 + 1 are perfect squares and S(a, b, c) = 0? We refer to such
triples as special.

For an affirmative answer to this question, one would need to find a curve of
genus zero or one (with infinitely many rational points) on the surface of the general
type, which is a 32-cover of the surface S(a, b, c) = 0. This surface is defined by
the condition that ab + 1, ac + 1, bc + 1, a2 + 1, and b2 + 1 are perfect squares.
In general, this is a difficult problem, so we sought inspiration from experimental
data.

3. Experiments and regularity

Our key insight came from examining numerical examples of special Diophantine
triples

{30464/2223, 22815/5168, 361/7956},
{30464/2223, 4807/31824, 10881/1292},
{-22815/5168, 4807/31824, -8092/2223}.

To understand these examples, it is necessary to introduce the concept of regu-
larity (see [10, 12]).

Definition 1. The quadruple (a, b, c, d) ∈ Q4 is called regular if r4(a, b, c, d) = 0
where

r4(a, b, c, d) = (a+ b− c− d)2 − 4(ab+ 1)(cd+ 1).

Similarly, the quintuple (a, b, c, d, e) is regular if r5(a, b, c, d, e) = 0 where

r5(a, b, c, d, e) = (abcde+2abc+a+b+c−d−e)2−4(ab+1)(ac+1)(bc+1)(de+1).

Note that polynomials r4 and r5 are symmetric.

In the examples above, we noticed that for the first triple {a, b, c} the (improper)
quintuple {a, a, b, b, c} is regular, i.e. r5(a, a, b, b, c) = 0. Similarly, for the second
and third triple the (improper) quadruple {a, b, b, c} is regular, i.e. r4(a, b, b, c) =
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0. Furthermore, the elliptic curves associated to these Diophantine triples are
isomorphic to each other.

These regularity conditions can be restated in the context of the arithmetic of
the elliptic curve Ea,b,c.

Proposition 3. Let {a, b, c} be a rational Diophantine triple containing a strong
pair {a, b}. Let A, B, P , and S be points in Ea,b,c(Q) as defined in Section 2. We
have that

a) r4(a, a, b, c) = 0 if and only if A = ±P ± S for some choice of signs,
b) r5(a, a, b, b, c) = 0 if and only if A±B ± S = O for some choice of signs.

Proof. It is known (see Section 3.1 of [7]) that for a Diophantine triple {a, b, c},
r4(a, b, c, d) = 0 if and only if d = x(P ± S), or equivalently D = ±P ± S for some
choice of signs, where D ∈ Ea,b,c(Q) and x(D) = d. Similarly, for a Diophantine
quintuple {a, b, c, d}, r5(a, b, c, d, e) = 0 if and only if e = x(D ± S) or equivalently
E = ±D ± S for some choice of signs, where E ∈ Ea,b,c(Q) and x(E) = e.

Both claims follow when we apply these results to Ea,b,c and points D = A and
E = B.

�

4. Proof of Theorem 1

To construct family F1, we proceed as follows. Set a = 2u
u2−1 and b = 2v

v2−1 to

ensure that a2 + 1 and b2 + 1 are perfect squares. If we substitute these values in

r5(a, a, b, b, c) = (abc)2 − 2ac2b− 4ac+ c2 − 4cb− 4

the resulting expression factors as r5(a, a, b, b, c) = q1q2 where

q1 = u2v2c+ 2ucv2 + 2cvu2 + cv2 − 2cv + c− 2uc+ cu2 + 2− 2v2 − 2u2 + 2u2v2,

q2 = cv2 − 2ucv2 + 2cv + u2v2c− 2cvu2 + cu2 + 2uc+ c− 2 + 2v2 − 2u2v2 + 2u2.

Solving for c in q2 = 0 we obtain two solution one of which is

c =
2(u2v2 − u2 − v2 + 1)

(−v + uv − u− 1)2
.

If we substitute all this in S(a, b, c) = 0, the expression factors as s1s2s3 where

s1 = 1 + 8vu4 − 8u3v2 − 8v3u2 + 4vu3 + 8uv2 − 8v3 + 8vu2

+ 8uv4 + 12v3u3 + 4uv3 + 12uv − 4u2v2 − 6u2v4 + u4v4

− 6u4v2 − 6u2 − 6v2 − 3v4 − 3u4 − 8u3,

s2 = 3− 8u3v2 + 8u− 8v3u2 + 12vu3 + 8v − 8v3u4

− 8u3v4 + 8uv2 + 8vu2 + 4v3u3 + 12uv3 + 4uv

+ 4u2v2 + 6u2v4 + 3u4v4 + 6u4v2 + 6u2 + 6v2 − v4 − u4,

s3 = (uv + v − u+ 1)2(−v + uv + u+ 1)2.

Note that factor s2 is equal to p(u, v) from the definition of curve C : p(u, v) = 0,
thus given a rational point (u, v) on C, we obtain the triple F1(u, v) from the
introduction. The curve defined by s1 = 0 is isomorphic to C.

It remains to show that {a, b, c} is a Diophantine triple (note that a priori we
only know that a2+1 and b2+1 are perfect squares). To this end, it is important to
notice that for regular quintuple {a, b, c, d, e}, not necessary Diophantine, we have
that (ab+1)(ac+1)(bc+1)(de+1) is a perfect square for every permutation of el-
ements (since polynomial r5(a, b, c, d, e) is symmetric). In particular, the regularity
of {a, a, b, b, c} implies that a2 +1, b2+1, ac+1 and bc+1 represent the same class
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modulo squares (i.e. they are equal in Q×/Q×2
). Since by construction a2 + 1 is a

perfect square, it remains to prove that ab+ 1 is a perfect square.
Let t(u, v) denote the product of the denominator and numerator of ab+1. Thus,

we have
t(u, v) = u4v4 − 2u4v2 + u4 + 4u3v3 − 4u3v − 2u2v4

+ 4u2v2 − 2u2 − 4uv3 + 4uv + v4 − 2v2 + 1.

It is straightforward to verify that

p(u, v) + t(u, v) = (uv + 1)2(uv − u− v − 1)2,

hence t(u, v) is a perfect square (as is ab+ 1) whenever p(u, v) = 0. Consequently,
the conclusion of Theorem 1 for F1(u, v) follows.

The curve given by the equation s1(u, v) = 0 is isomorphic to the curve C via
the mapping σ : (u, v) 7→ ( 1

u
,−v). Since σ(a) = −a, σ(b) = −b, and σ(c) = −c, we

observe that employing a parametrization by the equation s1(u, v) = 0 yields the
same family of triples. Similarly, since the surface q1(u, v, c) = 0 is isomorphic to
the surface q2(u, v, c) = 0 via the mapping (u, v, c) 7→ (−u,−v, c), it follows that
we do not get anything new by employing parametrization for c given by condition
q1 = 0. It is straightforward to verify that the condition s3(u, v) = 0 leads to triples
with repeated elements. Thus, we conclude that every special rational Diophantine
triple {a, b, c} satisfying r5(a, a, b, b, c) = 0 belongs to the family F1.

Similarly, to obtain the family F2(u, v) in the regularity condition

(1) r4(a, a, b, c) = −4− 4ab+ b2 − 4ac− 2bc− 4a2bc+ c2 = 0,

we substitute a = 2u
u2−1 and b = 2v

v2−1 , yielding the condition r1r2 = 0 where

r1 = −2− c+ 2cu+ 2u2 − cu2 − 2v − 4uv − 2u2v + 2v2 + cv2 − 2cuv2 − 2u2v2 + cu2v2,

r2 = 2− c− 2cu− 2u2 − cu2 − 2v + 4uv − 2u2v − 2v2 + cv2 + 2cuv2 + 2u2v2 + cu2v2.

By solving for c in the equation r1(u, v, c) = 0 and substituting the result into
S(a, b, c), we obtain S(a, b, c) = t1t2t3 = 0, where

t1 = (1 + u− v + uv)2(1 − u+ v + uv)2,

t2 = −3 + 8u− 6u2 + u4 − 16v + 4uv + 16u2v − 4u3v − 10v2

− 48uv2 − 4u2v2 − 2u4v2 + 16v3 − 4uv3 − 16u2v3

+ 4u3v3 − 3v4 + 8uv4 − 6u2v4 + u4v4,

t3 = −1 + 6u2 − 8u3 + 3u4 − 4uv + 16u2v + 4u3v − 16u4v

+ 2v2 + 4u2v2 + 48u3v2 + 10u4v2 + 4uv3 − 16u2v3

− 4u3v3 + 16u4v3 − v4 + 6u2v4 − 8u3v4 + 3u4v4.

In this manner, we obtain a triple a(u, v), b(u, v), c(u, v) parametrized by points
(u, v) on the curve D : t3(u, v) = 0. Note that the curve D is isomorphic to C

through the mapping α : C → D, defined as (u, v) 7→
(

−1+uv
u+v

,−v
)

. By precompos-

ing the above parametrization with the map α, we obtain the family F2.
It remains to show that F2(u, v) is Diophantine triple. In general, the regularity

condition r4(a, b, c, d) = 0 implies that (ab + 1)(cd + 1) is a perfect square for all
permutation of elements, as r4 is symmetric polynomial. Thus, after combining the
condition r4(a, a, b, c) = 0 with the requirement that a2 + 1 is a perfect square, the
remaining task is to establish that ab + 1 (or equivalently ac+ 1) is also a perfect
square. This is accomplished similarly to the case of the family F1. Similarly to
before, we deduce that any special rational Diophantine triple {a, b, c} satisfying
r4(a, a, b, c) = 0 belongs to the family F2.
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The statement for the family F3 follows from the observation that F2(v, u) =
F3(−u, 1/v) as noted in Remark 1. It follows from a discusion in Section 2 that
each of the triples from these families can be extended in infinitely many ways to
a Diophantine sextuple.

It is intriguing that triples satisfying different regularity conditions are param-
eterized by the same curve. This implies that there could be a direct relationship
between these families.

The observation that elliptic curves associated with the triples Fi(u, v), for i =
1, 2, 3, are isomorphic to each other provides an answer to this question.

5. Diophantine triples with isomorphic elliptic curves

Let {a, b, c} be a rational Diophantine triple for which S ∈ Ea,b,c(Q) has order
3 (i.e. S(a, b, c) = 0), and let W ∈ Ea,b,c(Q), W 6= ±S and 2W 6= O, be such that
1 − x(W ) is a perfect square. Write 1 − x(W ) = k2 for some k ∈ Q×. We can
choose the sign of k such that it is equal to the sign of y(W ). Consider the change
of variable and its inverse

(x, y) 7→

(

x

k2
+ 1−

1

k2
,
y

k3

)

, (X,Y ) 7→
(

k2X + 1− k2, k3Y
)

,

which defines an isomorphism φW : Ea,b,c → Ẽ where Ẽ : Y 2 = (X + A)(X +
B)(X + C) for some distinct A,B,C ∈ Q. Note that X(φW (W )) = 0, thus ABC
is a perfect square and AB

C
= c′2, AC

B
= b′2 and BC

A
= a′2 for some a′, b′, c′ ∈ Q×.

We can choose signs of a′, b′ and c′ such that a′b′ = C, a′c′ = B and b′c′ = A. It
follows that Ẽ = Ea′,b′,c′ . Since X(φW (S)) = 1, and φW (S) ∈ 2Ea′,b′,c′(Q) (since
S ∈ 2Ea,b,c(Q) and φW is a group isomorphism), we have that that 1+A, 1+B and
1+C are perfect squares. Elements a′, b′ and c′ are non-zero and distinct since A,B
and C are non-zero and distinct, therefore {a′, b′, c′} is a rational Diophantine triple.
Moreover, since φW (S) = ±S′, it follows that S′ has order 3, thus S(a′, b′, c′) = 0.

Conversely, let {a′, b′, c′} be a rational Diophantine triple for which S(a′, b′, c′) =
0 and let φ : Ea,b,c → Ea′,b′,c′ be an isomorphism. Denote by W = φ−1(P ′), where
P ′ ∈ Ea′,b′,c′(Q) with X(P ′) = 0. Since φ−1(X,Y ) = (u2X + v, u3Y ) for some
u, v ∈ Q, it follows from φ−1(S′) = ±S that u2 + v = 1. Since x(W ) = v, it follows
that 1 − x(W ) is a perfect square, and φ = φ±W . Thus, we proved the following
proposition.

Proposition 4. Let {a, b, c} be a rational Diophantine triple such that S(a, b, c) =
0, Ea,b,c the corresponding elliptic curve and W ∈ Ea,b,c(Q), 6W 6= O, a point
for which 1− x(W ) is a perfect square. Then φW defines an isomorphism between
Ea,b,c and Ea′,b′,c′ , where {a′, b′, c′} is a rational Diophantine triple, determined up
to the sign, for which S(a′, b′, c′) = 0. Furthermore, every rational Diophantine
triple {a′, b′, c′} with the property that S(a′, b′, c′) = 0 and Ea′,b′,c′

∼= Ea,b,c can be
obtained in this manner.

Remark 2. The condition 1− x(W ) = k2 is a perfect square defines a curve

y2 = (1− k2 + ab)(1− k2 + ac)(1 − k2 + bc).

If rst 6= 0 (or equivalently, if S is not a point of order 2), this curve has genus two.
Consequently, in our situation, only a finite number of points W ∈ Ea,b,c(Q) satisfy
the required property. The point P = [0, abc] induces the identity map.

For specificity, we will select elements a′, b′, and c′ such that φW ([−ab, 0]) =
[−a′b′, 0], φW ([−ac, 0]) = [−a′c′, 0], and φW ([−bc, 0]) = [−b′c′, 0]. Note that the
triple {a′, b′, c′} is determined only up to the sign.
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6. Another view on families Fi

We start with elements of the family F1. Let {a, b, c} be a special rational
Diophantine triple (a2+1 and b2+1 are perfect squares and S(a, b, c) = 0) for which
r5(a, a, b, b, c) = 0 (i.e. (a, a, b, b, c) is a regular quintuple). Let A,B ∈ Ea,b,c(Q)
for which x(A) = a · abc and x(B) = b · abc (these points are rational since {a, b}
is a strong pair). Proposition 3 implies that the regularity condition is equivalent
to A ± B ± S = O for some choice of sign. We can choose A,B and S so that
A+B+S = O (recall that S is a point of order 3 with x(S) = 1). Let W1 = A+T3

and W2 = B + T2, where T2 = [−ac, 0] and T3 = [−bc, 0] are the points of order 2.
It follows from the following result (Proposition 4 in [9]) that 1 − x(W1) and

1− x(W2) are perfect squares.

Proposition 5. Let Q, T and [0, α] be three rational points on an elliptic curve E
over Q given by the equation y2 = f(x), where f is a monic polynomial of degree
3. Assume that O 6∈ {Q, T,Q+ T }. Then

x(Q)x(T )x(Q + T ) + α2

is a perfect square.

Indeed, for E = Ea,b,c we have that

x(W1)x(T3)x(A) + (abc)2 = x(W1)(−bc)a · abc+ (abc)2 = (abc)2(1 − x(W1))

is a perfect square. Similarly, we obtain that 1− x(W2) is a perfect square.
Let φW1

: Ea,b,c → Ea′,b′,c′ be an isomorphism from Proposition 4 associated to
the point W1. The following proposition implies that a rational Diophantine triple
{a′, b′, c′} is special, satisfying the regularity condition (1), and thus belongs to the
F2 family.

Proposition 6. We have that a′2 = a2 and b′ =
x(φW1

(B+T3))

a′b′c′
.

Proof. It is easy to check that x(W1) = 1− k2, where k2 = (ab+1)(ac+1)
a2+1 . Hence

φW1
([−ab, 0]) =

[

−
a(a− c)

ac+ 1
, 0

]

,

φW1
([−ac, 0]) =

[

−
a(a− b)

ab+ 1
, 0

]

,

φW1
([−bc, 0]) =

[

−
(a− b)(a− c)

(ab+ 1)(ac+ 1)
, 0

]

.

Since −a′2 =
x(φW1

([−ab,0]))x(φW1
([−ac,0]))

x(φW1
([−bc,0])) , it follows that a′2 = a2. The second

statement follows from direct computation in MAGMA.
�

It follows that {a′, b′} is a strong pair since a′2+1 = a2+1 is a perfect square, and
b′2+1 is a perfect square since the point B′ = φW1

(B+T3), with x(B′) = b′ · a′b′c′

is rational. Moreover,

O = φW1
(A+B + S)

= φW1
(A+ T3) + φW1

(B + T3) + φW1
(S)

= P ′ +B′ + S′,

which, according to Proposition 3, implies the regularity condition r4(a
′, b′, b′, c′) =

0.
More precisely, through direct computation, we derive the following proposition.
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Proposition 7. Let (u0, v0) ∈ C(Q) be a rational point on the curve C, [a, b, c] =
F1(u0, v0) the corresponding Diophantine triple, and W1,W2 ∈ Ea,b,c(Q) points
defined as above. The triples associated to points W1 and W2 by Proposition 4 are
equal to F2(u0, v0) and F3(u0, v0) respectively.

Similarly, if [a, b, c] = F2(u0, v0) then the triples associated to points W1 and W2

are equal to F1(u0, v0) and F3(u0, v0) respectively, and if [a, b, c] = F3(u0, v0) then
the triples associated to points W1 and W2 are equal to F1(u0, v0) and F2(u0, v0)
respectively.

Example. We now go back to our starting numerical examples from Section 3.
Consider first a special rational Diophantine triple {a, b, c} where a = 30464/2223,
b = 22815/5168 and c = 361/7956. Note that {a, b, c} = F1(u0, v0), where
(u0, v0) = (−119/128,−135/169) is a rational point on the curve C. Consider
the rational points

A = [250880/6669, 94938136300/252028179],

B = [266175/21964, 18177179755/170264928],

onEa,b,c which correspond to the strong elements a and b. Let S = [1,−3307949/302328]
be a point of order 3. The regularity condition r5(a, a, b, b, c) = 0 is then equivalent
toA+B+S = O. LetW1 = A+[−bc, 0] = [19824/42025,−726438832196/108524729625]
and W2 = B + [−ac, 0] = [−64155/24649, 29291888395/1764671208]. When we ap-
ply Proposition 4 to the points W1 and W2 (recall that 1 − x(W1) and 1 − x(W2)
are perfect squares), using the isomorphisms φW1

and φW2
respectively, we obtain

triples F2(u0, v0) = { 30464
2223 , 4807

31824 ,
10881
1292 } and F3(u0, v0) = {−22815

5168 , 4807
31824 ,

−8092
2223 }

from our introductory example.
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