On generalizations of Iwasawa's theorem *

Jiangtao Shi**, Fanjie Xu, Mengjiao Shan

School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China

Abstract

Iwasawa's theorem indicates that a finite group G is supersolvable if and only if all maximal chains of the identity in G have the same length. As generalizations of Iwasawa's theorem, we provide some characterizations of the structure of a finite group G in which all maximal chains of every minimal subgroup have the same length. Moreover, let $\delta(G)$ be the number of subgroups of G all of whose maximal chains in G do not have the same length, we prove that G is a non-solvable group with $\delta(G) \leq 16$ if and only if $G \cong A_5$.

Keywords: supersolvable group; maximal chains; Iwasawa's theorem; solvable group; Fitting subgroup MSC(2020): 20D10

1 Introduction

In this paper all groups are considered to be finite. Let G be a group and H a subgroup of G. A maximal chain of H in G has length r means a chain of subgroups $H = H_0 < H_1 < H_2 < \ldots < H_r = G$ such that H_i is maximal in H_{i+1} for every $1 \le i \le r - 1$.

Since every maximal subgroup of a supersolvable group G has prime index, all maximal chains of every subgroup in G have the same length. Moreover, the following proposition obviously holds for maximal chains of subgroups.

Proposition 1.1 Let G be a group, H < K < G. If all maximal chains of H in G have the same length, then

- (1) all maximal chains of H in K have the same length;
- (2) all maximal chains of K in G have the same length.

Remark 1.2 Let G be a group, H < K < G. If all maximal chains of K in G have the same length, we cannot ensure that all maximal chains of H in G have the same length. For example, let $G = A_4 = \langle (123), (124) \rangle$, $K = \langle (123) \rangle$ and H = 1. Since K is maximal in G, all maximal chains of K in G have the same length. For H, it is easy to see that H < K < G and $H < \langle (12)(34) \rangle < \langle (12)(34), (13)(24) \rangle < G$ are two maximal chains of H in G having different length.

^{*}This research was supported in part by Shandong Provincial Natural Science Foundation, China (ZR2017MA022) and NSFC (11761079).

 $^{^{**}\}mathrm{Corresponding}$ author.

E-mail addresses: shijt2005@pku.org.cn (J. Shi), xufj2023@s.ytu.edu.cn (F. Xu), shanmj2023@s.ytu.edu.cn (M. Shan).

By Proposition 1.1, if all maximal chains of the identity in G have the same length, then all maximal chains of every subgroup in G have the same length. Using maximal chains of subgroups Iwasawa provided the following equivalent characterization of supersolvable groups.

Theorem 1.3 [6, Theorem 10.3.5] A group G is supersolvable if and only if all maximal chains of the identity in G have the same length.

As a generalization of Iwasawa's theorem, considering maximal chains of some particular minimal subgroups, we have the following result whose proof is given in Section 3.

Theorem 1.4 Let G be a group. If all maximal chains of every minimal subgroup of order both 2 and 3 in G have the same length, then G is solvable.

Furthermore, considering maximal chains of every minimal subgroup, we obtain the following result, the proof of which is given in Section 4.

Theorem 1.5 Let G be a group and F(G) the Fitting subgroup of G. If all maximal chains of every minimal subgroup in G have the same length, then

(1) G is non-supersolvable if and only if $G = F(G) \rtimes M$ and $\Phi(G) = Z(G) = 1$, where M acts faithfully on F(G), F(G) is the unique minimal normal subgroup of G and M is a supersolvable maximal subgroup of G, $|F(G)| = p^n$, $n \ge 2$;

(2) If G is non-supersolvable, then F(G) is a Sylow subgroup of G'. In particular, if $Z(G') \neq 1$, then F(G) = G'.

Remark 1.6 If we assume that all maximal chains of every subgroup of G of order a square of a prime in G have the same length, we cannot ensure that G is solvable. For example, let $G = A_5$. It is easy to see that all maximal chains of subgroup of A_5 of order 4 in A_5 have the same length, but A_5 is non-solvable.

Remark 1.7 Assume that G is a solvable group, we cannot ensure that all maximal chains of every minimal subgroup in G have the same length. For example, let $G = S_4 = \langle (12), (13), (14) \rangle$. Take $H = \langle (12) \rangle$ being a minimal subgroup of G. It is easy to see that $H < S_3 = \langle (12), (13) \rangle < G$ and $H < \langle (12), (34) \rangle < D_8 = \langle (1423), (34) \rangle < G$ are two maximal chains of H in G having different length.

Remark 1.8 The group in Theorem 1.5 might not be supersolvable. For example, all maximal chains of every minimal subgroup in A_4 have the same length, but A_4 is non-supersolvable.

Remark 1.9 In Theorem 1.5 even if assume that G has odd order, we cannot ensure that G is supersolvable. For example, let $G = \langle a, b, c | a^5 = b^5 = c^3 = 1$, [a, b] = 1, $c^{-1}ac = (ab)^{-1}$, $c^{-1}bc = a \rangle$. By the definition of G, it is easy to see that all maximal chains of every minimal subgroup in G have the same length but G is non-supersolvable.

Note that two examples in Remarks 1.7 and 1.8 also indicate that even if all maximal chains of every minimal subgroup in G have the same length, all maximal chains of the identity in G might not have the same length.

Remark 1.10 Suppose that G is a group satisfying all hypotheses in Theorem 1.5 (2), we cannot ensure that all maximal chains of every minimal subgroup in G have the same length. For example, let $G = S_4 = \langle (12), (13), (14) \rangle$, one has $F(G) = K_4 = \langle (12)(34), (13)(24) \rangle$. Take $M = S_3 = \langle (12), (13) \rangle$, then $G = F(G) \rtimes M$. Note that G satisfies all hypotheses in Theorem 1.5 (2), but all maximal chains of $\langle (12) \rangle$ in G have different length.

Denote by $\delta(G)$ the number of subgroups of G all of whose maximal chains in G do not have the same length. Observe that $\delta(A_5) = 16$ including the identity and 15 subgroups of order 2. In this paper, we obtain the following result whose proof is given in Section 5.

Theorem 1.11 Let G be a non-solvable group. Then $\delta(G) \leq 16$ if and only if $G \cong A_5$.

In Section 6, we also discuss the cases that all maximal chains of some other special subgroups in G have the same length.

2 Some necessary lemmas

Lemma 2.1 Let G be a group. Then G is supersolvable if and only if all maximal chains of $\Phi(G)$ in G have the same length.

Proof. We only need to prove the sufficiency part. Since all maximal chains of $\Phi(G)$ in G have the same length, all maximal chains of the identity subgroup $\overline{1} = \Phi(G)/\Phi(G)$ in $G/\Phi(G)$ have the same length. By [6, Theorem 10.3.5], $G/\Phi(G)$ is supersolvable. It follows that G is supersolvable.

Lemma 2.2 [8] A non-abelian simple group all of whose proper subgroups are solvable is said to be a minimal simple group, there are five classes in all:

- (1) $PSL_2(p)$, where p > 3 and $5 \nmid p^2 1$;
- (2) $PSL_2(2^q)$, where q is a prime;
- (3) $PSL_2(3^q)$, where q is an odd prime;
- (4) $PSL_3(3);$
- (5) $S_z(2^q)$, where q is an odd prime.

Lemma 2.3 [1, Theorem 5.4] Let G be a group of order n. If (n, 15) = 1, then G is solvable.

Lemma 2.4 [6, Theorem 10.4.2] Let G be a group having a nilpotent maximal subgroup of odd order. Then G is solvable.

3 Proof of Theorem 1.4

Proof. Let G be a counterexample of minimal order.

Note that if all maximal chains of every minimal subgroup in G have the same length, then all maximal chains of every non-trivial subgroup in G have the same length by Proposition 1.1.

For any maximal subgroup M of G, it is obvious that all maximal chains of every minimal subgroup of order both 2 and 3 in M have the same length by the hypothesis (Note that if there exists a maximal subgroup E of G such that $2 \nmid |E|$ or $3 \nmid |E|$, then Enaturally satisfies that all maximal chains of every minimal subgroup of order both 2 and 3 in E have the same length.). By the minimality of G, M is solvable. It follows that G is a minimal non-solvable group and then $G/\Phi(G)$ is a minimal non-abelian simple group.

Claim $\Phi(G) = 1$. Otherwise, assume $\Phi(G) \neq 1$. If $2 \mid |\Phi(G)|$ or $3 \mid |\Phi(G)|$, one has that all maximal chains of $\Phi(G)$ in G have the same length. By Lemma 2.1, G is supersolvable, a contradiction. If $(6, |\Phi(G)|) = 1$, then all maximal chains of every minimal subgroup of $G/\Phi(G)$ of order both 2 and 3 in $G/\Phi(G)$ have the same length. It follows that $G/\Phi(G)$ is solvable by the minimality of G, which implies that G is solvable, also a contradiction.

Therefore, $\Phi(G) = 1$. One has that G is a minimal non-abelian simple group. By Lemma 2.2, we divide our analyses into the following five cases.

(1) Let $G = PSL_2(p)$, where p > 3, $(5, p^2 - 1) = 1$ and $|G| = \frac{p(p^2 - 1)}{2}$.

Since G is non-solvable and $(5, p^2 - 1) = 1$, one has $3 \mid p^2 - 1$ by Lemma 2.3.

First, suppose $p^2 \equiv 1 \pmod{16}$. Then G has a maximal subgroup $M \cong S_4$ by [3]. It is easy to see that all maximal chains of subgroups of order 2 in S_4 do not have the same length, which implies that all maximal chains of subgroups of order 2 in G do not have the same length, a contradiction.

Next, suppose $p^2 \not\equiv 1 \pmod{16}$. Then G has a maximal subgroup $M \cong A_4$ by [3]. Consider a subgroup N of M of order 3, one has that N < M < G is a maximal chain of N in G. Let P be a Sylow 3-subgroup of G such that $N \leq P$. By Lemma 2.4, P is not a maximal subgroup of G. Assume $|P| = 3^n$, where $n \geq 1$.

If $n \ge 2$, it is easy to see that all maximal chains of N in G do not have the same length, a contradiction. Therefore, N = P is a Sylow 3-subgroup of G.

Since $3 \mid p^2 - 1$, one has $3 \mid p + 1$ or $3 \mid p - 1$. It follows that $3 \mid \frac{p+1}{2}$ or $3 \mid \frac{p-1}{2}$.

If $3 \mid \frac{p+1}{2}$, let *L* be a maximal subgroup of *G* that is isomorphic to a dihedral group of order $2 \cdot \frac{p+1}{2}$. By Sylow theorem, we can assume N < L. Since all maximal chains of *N* in *G* have the same length, one must have $\frac{p+1}{2} = 3$, which implies p = 5. Then $G = PSL_2(5)$. It is easy to see that all maximal chains of subgroups of order 2 in $PSL_2(5)$ do not have the same length, a contradiction.

If $3 \mid \frac{p-1}{2}$, let R be a maximal subgroup of G that is a dihedral group of order $2 \cdot \frac{p-1}{2}$. By Sylow theorem, we can assume N < R. Since all maximal chains of N in G have the same length, one must have $\frac{p-1}{2} = 3$, which implies p = 7, this contradicts $p^2 \not\equiv 1 \pmod{16}$.

(2) Let $G = PSL_2(2^q)$, where q is a prime.

By [3], it is easy to see that G has two distinct maximal subgroups M_1 and M_2 such that M_1 is a dihedral group of order $2 \cdot (2^q - 1)$ and M_2 is the normalizer of the Sylow 2-subgroup of G of order $2^q \cdot (2^q - 1)$, where subgroups of M_1 and M_2 of order $2^q - 1$ are cyclic. Let N_1 be a subgroup of M_1 of order 2, and let P be a Sylow 2-subgroup of G such that $P < M_2$. By Sylow theorem, we can assume $N_1 \leq P$. Since $q \geq 2$, it is easy to see that all maximal chains of N_1 in G do not have the same length, a contradiction.

(3) Let $G = PSL_2(3^q)$, where q is an odd prime.

By [3], G has the following two distinct maximal subgroups: $M_1 \cong A_4$ and M_2 is the normalizer of the Sylow 3-subgroup of G of order $3^q \cdot \frac{(3^q-1)}{2}$, where subgroups of M_2 of order $\frac{3^q-1}{2}$ are cyclic. Let N_1 be a subgroup of M_1 of order 3 and let Q be a Sylow 3-subgroup of G such that $Q < M_2$. By Sylow theorem, we can assume $N_1 \leq Q$. Since $q \geq 3$, it is easy to see that all maximal chains of N_1 in G do not have the same length, a contradiction.

(4) Let $G = PSL_3(3)$.

By [3], G has a maximal subgroup $M \cong S_4$. It is obvious that there exists a subgroup S of M of order 2 such that all maximal chains of S in M do not have the same length, which implies that all maximal chains of S in G do not have the same length, a contradiction.

(5) Let $G = S_z(2^q)$, where q is an odd prime.

By [7], G has two distinct maximal subgroups: M_1 is the normalizer of the Sylow 2subgroup of order $2^{2q} \cdot (2^q - 1)$, M_2 is a dihedral group of order $2 \cdot (2^q - 1)$, where subgroups of M_1 and M_2 of order $2^q - 1$ are cyclic. Let N_2 be a subgroup of M_2 of order 2 and let P be a Sylow 2-subgroup of G such that $P < M_1$. By Sylow theorem, we can assume $N_2 \leq P$. Note that $q \geq 3$ and then $2q \geq 6$. It is easy to see that all maximal chains of N_2 in G do not have the same length, a contradiction.

By above arguments, the counterexample of minimal order does not exist and so G is solvable.

4 Proof of Theorem 1.5

Lemma 4.1 Let G be a group in which all maximal chains of every minimal subgroup have the same length, F(G) be a Fitting subgroup of G. Then G is non-supersolvable if and only if $G = F(G) \rtimes M$ and $\Phi(G) = Z(G) = 1$, where M acts faithfully on F(G), F(G)is the unique minimal normal subgroup of G and M is a supersolvable maximal subgroup of G, $|F(G)| = p^n$, $n \ge 2$.

Proof. Since any minimal normal subgroup of a supersolvable group has prime order, the sufficiency part holds.

In the following we prove the necessity part.

Claim $\Phi(G) = 1$. Otherwise, assume $\Phi(G) \neq 1$. Then all maximal chains of $\Phi(G)$ in G have the same length. One has that G is supersolvable by Lemma 2.1, a contradiction. Hence $\Phi(G) = 1$.

Claim Z(G) = 1. Otherwise, assume $Z(G) \neq 1$. Then all maximal chains of Z(G) in G have the same length. For the quotient group G/Z(G), since all maximal chains of the identity subgroup Z(G)/Z(G) in G/Z(G) have the same length, G/Z(G) is supersolvable by [6, Theorem 10.3.5], which implies that G is supersolvable, a contradiction. Therefore, Z(G) = 1.

Note that G is solvable by Theorem 1.4. Let N be a minimal normal subgroup of G, where $|N| = p^n$, $n \ge 1$. Then all maximal chains of N in G have the same length. Consider the quotient group G/N. Since all maximal chains of the identity subgroup N/N in G/Nhave the same length, G/N is supersolvable by [6, Theorem 10.3.5]. If G has at least two distinct minimal normal subgroups, let N_0 be another minimal normal subgroup of G such that $N_0 \ne N$, then $N \cap N_0 = 1$. Arguing as above, one has that G/N_0 is supersolvable. It follows that $G \cong G/(N \cap N_0)$ is isomorphic to a subgroup of $G/N \times G/N_0$ and then G is supersolvable, a contradiction. Therefore, N is the unique minimal normal subgroup of G.

It follows that F(G) = N since $\Phi(G) = 1$ by [5, Chapter III, Theorem 4.5]. So $F(G) \nleq \Phi(G)$. There exists a maximal subgroup M of G such that $F(G) \nleq M$. One has G = F(G)M. Since G is solvable, F(G) is an elementary abelian group. One has $F(G) \cap M \trianglelefteq F(G)$. Moreover, as $F(G) \cap M \trianglelefteq M$, one has $F(G) \cap M \trianglelefteq G$. Note that $F(G) \cap M < F(G)$, then $F(G) \cap M = 1$ by the minimality of F(G). Therefore, $G = F(G) \rtimes M$. It implies that $M \cong G/F(G)$ is supersolvable.

Since G is solvable, one has $C_G(F(G)) \leq F(G)$ by [5, Chapter III, Theorem 4.2]. Moreover, as $F(G) \leq C_G(F(G))$, it follows that $C_G(F(G)) = F(G)$, which implies that M acts faithfully on F(G).

Note that G/F(G) is supersolvable and G is non-supersolvable. Therefore, $|F(G)| = p^n$, $n \ge 2$.

Lemma 4.2 Let G be a group in which all maximal chains of every minimal subgroup have the same length. If G is non-supersolvable, then F(G) is a Sylow subgroup of G'. In particular, if $Z(G') \neq 1$, then F(G) = G'.

Proof. Since G is non-supersolvable, one has that G/F(G) is supersolvable by Lemma 4.1, where $|F(G)| = p^n$, $n \ge 2$. By [4, Theorem 10.5.4], (G/F(G))' = G'F(G)/F(G) is nilpotent. It is obvious that $G' \ne 1$. Since F(G) is the unique minimal normal subgroup of G, $F(G) \le G'$, which implies that G'/F(G) is nilpotent.

Let $P \in \operatorname{Syl}_p(G')$. Then $F(G) \leq P$. If F(G) < P, then $1 < P/F(G) \operatorname{char} G'/F(G) \leq G/F(G)$ since G'/F(G) is nilpotent. One has $P \leq G$, which implies that $P \leq F(G)$, a contradiction. Hence $F(G) = P \in \operatorname{Syl}_p(G')$.

Assume $Z(G') \neq 1$. Since Z(G') char $G' \trianglelefteq G$, $Z(G') \trianglelefteq G$. One has Z(G') = F(G). Then G'/Z(G') = G'/F(G) is nilpotent. It follows that G' is nilpotent and then $G' \leq F(G)$. Moreover, as $F(G) \leq G'$, one has F(G) = G'.

Proof of Theorem 1.5. Combine Lemmas 4.1 and 4.2 together, we complete the proof of Theorem 1.5. $\hfill \Box$

5 Proof of Theorem 1.11

Lemma 5.1 Let G be a group. If $\delta(G) < 16$, then G is solvable.

Proof. Let G be a counterexample of minimal order.

For any proper subgroup M of G, if there exists a subgroup H of M such that all maximal chains of H in M do not have the same length, then all maximal chains of H in G do not have the same length. Therefore, $\delta(M) \leq \delta(G) < 16$. By the minimality of G, M is solvable. It follows that G is a minimal non-solvable group and then $G/\Phi(G)$ is a minimal non-abelian simple group.

If $\Phi(G) \neq 1$, since $\delta(G/\Phi(G)) \leq \delta(G) < 16$, $G/\Phi(G)$ is solvable by the minimality of G. It implies that G is solvable, a contradiction. Therefore, $\Phi(G) = 1$ and then G is a minimal non-abelian simple group.

Note that if all maximal chains of the subgroup H in G do not have the same length, then for any $g \in G$, all maximal chains of H^g in G do not have the same length, too.

By Lemma 2.2, we divide our analyses into the following five cases.

(1) Let $G = PSL_2(p)$, where p > 3, $(5, p^2 - 1) = 1$ and $|G| = \frac{p(p^2 - 1)}{2}$.

If $p^2 \not\equiv 1 \pmod{16}$. Arguing as in proof of Theorem 1.4, one has $3 \mid \frac{p+1}{2}$ or $3 \mid \frac{p-1}{2}$.

Case(i): Assume $3 \mid \frac{p+1}{2}$. When p = 5, then $G = PSL_2(5) \cong A_5$. However, $\delta(A_5) = 16$, a contradiction. When $p \ge 7$, G has a subgroup H of order 3 all of whose maximal chains in G do not have the same length. Observe that $|N_G(H)| = 2 \cdot \frac{p+1}{2} = p + 1$. Then $\delta(G) \ge |G: N_G(H)| = \frac{\frac{p(p^2-1)}{2}}{p+1} = \frac{p(p-1)}{2} \ge 21 > 16$, a contradiction. Case (*ii*): Assume $3 \mid \frac{p-1}{2}$. As $p^2 \ne 1 \pmod{16}$, one has p > 7. Then G has a subgroup

Case (*ii*): Assume $3 \mid \frac{p-1}{2}$. As $p^2 \not\equiv 1 \pmod{16}$, one has p > 7. Then G has a subgroup K of order 3 all of whose maximal chains in G do not have the same length. Observe that $|N_G(K)| = 2 \cdot \frac{p-1}{2} = p - 1$. Then $\delta(G) \geq |G: N_G(K)| = \frac{\frac{p(p^2-1)}{2}}{p-1} = \frac{p(p+1)}{2} > 28 > 16$, also a contradiction.

Next assume $p^2 \equiv 1 \pmod{16}$. Then $p \ge 7$.

If p = 7, then $G = PSL_2(7)$. It is easy to see that G has a subgroup H of order 2 all of whose maximal chains in G do not have the same length. By [2], all subgroups of $PSL_2(7)$ of order 2 are conjugate in G. Then $\delta(G) \ge |G: N_G(H)| = 21 > 16$, a contradiction.

If p > 7, then $p \ge 17$. By [3], G has the following four distinct maximal subgroups: $M_1 \cong S_4, M_2$ is a dihedral group of order $2 \cdot \frac{p+1}{2}, M_3$ is a dihedral group of order $2 \cdot \frac{p-1}{2}$ and M_4 is the normalizer of the Sylow *p*-subgroup of *G* of order $\frac{p(p-1)}{2}$. It is easy to see that *G* has a subgroup *H* of order 2 all of whose maximal chains in *G* do not have the same length, and only one of the following three cases might be true by the hypothesis: $(a) |N_G(H)| \leq |S_4| = 24$; $(b) |N_G(H)| \leq 2 \cdot \frac{p+1}{2} = p+1$; $(c) |N_G(H)| \leq 2 \cdot \frac{p-1}{2} = p-1$. Note that $p \geq 17$. For case (a), one has $\delta(G) \geq |G : N_G(H)| \geq \frac{p(p^2-1)}{24} \geq 102 > 16$, a contradiction. For case (b), one has $\delta(G) \geq |G : N_G(H)| \geq \frac{p(p^2-1)}{2} \geq 136 > 16$, a contradiction. For case (c), one has $\delta(G) \geq |G : N_G(H)| \geq \frac{p(p^2-1)}{2} \geq 153 > 16$, also a contradiction.

(2) Let $G = PSL_2(2^q)$, where q is a prime and $|G| = 2^q(2^{2q} - 1)$.

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 2 all of whose maximal chains in G do not have the same length and $|N_G(H)| = 2^q$. Then $\delta(G) \ge |G|$: $N_G(H)| + 1 = \frac{2^q(2^{2q}-1)}{2^q} + 1 = 2^{2q} - 1 + 1 \ge 16$, a contradiction.

(3) Let $G = PSL_2(3^q)$, where q is an odd prime number and $|G| = \frac{3^q(3^{2q}-1)}{2}$.

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 3 all of whose maximal chains in G do not have the same length and $|N_G(H)| \leq \frac{3^{q}(3^q-1)}{2}$. Then $\delta(G) \geq |G: N_G(H)| \geq \frac{(\frac{3^q}{2}(3^q-1))}{(\frac{3^q}{2}(3^q-1))} = 3^q + 1 \geq 28 > 16$, a contradiction. (4) Let $G = PSL_3(3)$.

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 2 all of whose maximal chains in G do not have the same length. By [2], all subgroups of G of order 2 are conjugate in G. Then $\delta(G) \geq |G: N_G(H)| = 117 > 16$, a contradiction.

(5) Let $G = S_z(2^q)$, where q is an odd prime and $|G| = (2^{2q} + 1)2^{2q}(2^q - 1)$.

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 2 all of whose maximal chains in G do not have the same length and $|N_G(H)| \leq 2^{2q}(2^q - 1)$. Then $\delta(G) \geq |G: N_G(H)| \geq \frac{(2^{2q}+1)2^{2q}(2^q-1)}{2^{2q}(2^q-1)} = 2^{2q} + 1 \geq 65 > 16$, also a contradiction.

All above arguments show that the counterexample of minimal order does not exist and so G is solvable.

Lemma 5.2 Let G be a non-solvable group. Then $\delta(G) = 16$ if and only if $G \cong A_5$.

Proof. We only need to prove the necessity part.

Since G is non-solvable, there exists a subgroup M of G such that M is a minimal non-solvable group. Then $M/\Phi(M)$ is a minimal non-abelian simple group. Note that $\delta(M/\Phi(M)) \leq \delta(M) \leq \delta(G) = 16$, one must have $\delta(M/\Phi(M)) = \delta(M) = \delta(G) = 16$ by Lemma 5.1. Then arguing as in proof of Lemma 5.1, one has $M/\Phi(M) \cong PSL_2(5) \cong PSL_2(4) \cong A_5$.

Claim $\Phi(M) = 1$. Otherwise, assume $\Phi(M) \neq 1$. Since all maximal chains of the identity in G do not have the same length, one has $\delta(G) \geq \delta(M/\Phi(M))+1$, a contradiction. Therefore, $\Phi(M) = 1$.

It follows that $M \cong A_5$. If M < G. Since $\delta(M) = \delta(G) = 16$, one has that M is normal in G. Let L be a subgroup of G such that M is maximal in L. Then $L/M \cong Z_p$ for some prime p. One gets $L \cong S_5$ or $A_5 \times Z_p$. However, it is easy to see that $\delta(S_5) > 16$ and $\delta(A_5 \times Z_p) > 16$, a contradiction. Therefore, $G = M \cong A_5$.

Proof of Theorem 1.11. Combine Lemmas 5.1 and 5.2 together, we complete the proof of Theorem 1.11. \Box

6 Remarks

Remark 6.1 A group G might not be solvable if G has at least one minimal subgroup H all of whose maximal chains in G do not have the same length. For example, let $G = SL_2(5)$. It is obvious that all maximal chains of every minimal subgroup of G of odd order in G have the same length. However, observe that $Z(G) = Z_2 < Z_4 < Q_8 < SL_2(3) < G$ and $Z(G) = Z_2 < Z_6 < SL_2(3) < G$ are two maximal chains of Z(G) in G having different length and Z(G) is the unique subgroup of G of order 2.

Remark 6.2 A group G might not be solvable if all maximal chains of any non-trivial subgroups of G except minimal subgroups of order p for a fixed prime divisor p of |G| have the same length. For example, it is easy to see that all maximal chains of non-trivial subgroups of A_5 except minimal subgroups of order 2 in A_5 have the same length, but A_5 is non-solvable.

Remark 6.3 If all maximal chains of every second maximal subgroup of a group G in G have the same length, then G might not be solvable. For example, let $G = PSL_2(17)$. By [3], it is easy to see that all maximal chains of every second maximal subgroup of $PSL_2(17)$ in $PSL_2(17)$ have the same length, but $PSL_2(17)$ is non-solvable.

Remark 6.4 Assume that G is solvable. If all maximal chains of every second maximal subgroup of G in G have the same length, then G might not be supersolvable. For example, let $G = GL_2(3)$. Let H be any subgroup of G, then $H \in \{1, \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_8, \mathbb{Z}_2 \times \mathbb{Z}_2, D_8, Q_8, SD_{16}, SL_2(3), GL_2(3)\}$, where $SD_{16} = \langle a, b \mid a^8 = b^2 = 1, b^{-1}ab = a^3 \rangle$. It is easy to see that all maximal chains of every second maximal subgroup of $GL_2(3)$ in $GL_2(3)$ have the same length, but $GL_2(3)$ is non-supersolvable.

References

[1] Z. Chen, Inner-Outer Σ -Groups and Minimal Non- Σ -Groups (Chinese), Southwest China Normal University Press, Chongqing, 1988.

- [2] J.H. Conway, R.T. Curtis, S.P. Norton, et al, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [3] L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Leipzig, Teubner, 1901.
- [4] M. Hall, The Theory of Groups, The Macmillan Company XIII, New York, 1964.
- [5] B. Huppert, Endliche Gruppen I, Spring-Verlag, New York, 1967.
- [6] D.J.S. Robinson, A Course in the Theory of Groups (Second Edition), Springer-Verlag, New york, 1996.
- [7] M. Suzuki, On a class of doubly transitive groups, Ann. Math. 75 (1962) 105-145.
- [8] J.G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, I, Bull. Amer. Math. Soc. 74 (1968) 383-437.