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On generalizations of Iwasawa’s theorem ∗

Jiangtao Shi ∗∗, Fanjie Xu, Mengjiao Shan
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Abstract

Iwasawa’s theorem indicates that a finite group G is supersolvable if and only
if all maximal chains of the identity in G have the same length. As generalizations
of Iwasawa’s theorem, we provide some characterizations of the structure of a finite
group G in which all maximal chains of every minimal subgroup have the same
length. Moreover, let δ(G) be the number of subgroups of G all of whose maximal
chains in G do not have the same length, we prove that G is a non-solvable group
with δ(G) ≤ 16 if and only if G ∼= A5.
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group; Fitting subgroup
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1 Introduction

In this paper all groups are considered to be finite. Let G be a group and H a subgroup

of G. A maximal chain of H in G has length r means a chain of subgroups H = H0 <

H1 < H2 < . . . < Hr = G such that Hi is maximal in Hi+1 for every 1 ≤ i ≤ r − 1.

Since every maximal subgroup of a supersolvable group G has prime index, all maximal

chains of every subgroup in G have the same length. Moreover, the following proposition

obviously holds for maximal chains of subgroups.

Proposition 1.1 Let G be a group, H < K < G. If all maximal chains of H in G have

the same length, then

(1) all maximal chains of H in K have the same length;

(2) all maximal chains of K in G have the same length.

Remark 1.2 Let G be a group, H < K < G. If all maximal chains of K in G have the

same length, we cannnot ensure that all maximal chains of H in G have the same length.

For example, let G = A4 = 〈(123), (124)〉, K = 〈(123)〉 and H = 1. Since K is maximal

in G, all maximal chains of K in G have the same length. For H , it is easy to see that

H < K < G and H < 〈(12)(34)〉 < 〈(12)(34), (13)(24)〉 < G are two maximal chains of

H in G having different length.

∗This research was supported in part by Shandong Provincial Natural Science Foundation, China (ZR2017MA022) and
NSFC (11761079).

∗∗Corresponding author.
E-mail addresses: shijt2005@pku.org.cn (J. Shi), xufj2023@s.ytu.edu.cn (F. Xu), shanmj2023@s.ytu.edu.cn (M. Shan).

1

http://arxiv.org/abs/2403.17960v1


By Proposition 1.1, if all maximal chains of the identity inG have the same length, then

all maximal chains of every subgroup in G have the same length. Using maximal chains

of subgroups Iwasawa provided the following equivalent characterization of supersolvable

groups.

Theorem 1.3 [6, Theorem 10.3.5] A group G is supersolvable if and only if all maximal

chains of the identity in G have the same length.

As a generalization of Iwasawa’s theorem, considering maximal chains of some partic-

ular minimal subgroups, we have the following result whose proof is given in Section 3.

Theorem 1.4 Let G be a group. If all maximal chains of every minimal subgroup of

order both 2 and 3 in G have the same length, then G is solvable.

Furthermore, considering maximal chains of every minimal subgroup, we obtain the

following result, the proof of which is given in Section 4.

Theorem 1.5 Let G be a group and F (G) the Fitting subgroup of G. If all maximal

chains of every minimal subgroup in G have the same length, then

(1) G is non-supersolvable if and only if G = F (G)⋊M and Φ(G) = Z(G) = 1, where

M acts faithfully on F (G), F (G) is the unique minimal normal subgroup of G and M is

a supersolvable maximal subgroup of G, |F (G)| = pn, n ≥ 2;

(2) If G is non-supersolvable, then F (G) is a Sylow subgroup of G′. In particular, if

Z(G′) 6= 1, then F (G) = G′.

Remark 1.6 If we assume that all maximal chains of every subgroup of G of order a

square of a prime in G have the same length, we cannot ensure that G is solvable. For

example, let G = A5. It is easy to see that all maximal chains of subgroup of A5 of order

4 in A5 have the same length, but A5 is non-solvable.

Remark 1.7 Assume that G is a solvable group, we cannot ensure that all maximal

chains of every minimal subgroup in G have the same length. For example, let G = S4 =

〈(12), (13), (14)〉. Take H = 〈(12)〉 being a minimal subgroup of G. It is easy to see that

H < S3 = 〈(12), (13)〉 < G and H < 〈(12), (34)〉 < D8 = 〈(1423), (34)〉 < G are two

maximal chains of H in G having different length.

Remark 1.8 The group in Theorem 1.5 might not be supersolvable. For example,

all maximal chains of every minimal subgroup in A4 have the same length, but A4 is

non-supersolvable.

Remark 1.9 In Theorem 1.5 even if assume that G has odd order, we cannot ensure

that G is supersolvable. For example, let G = 〈a, b, c | a5 = b5 = c3 = 1, [a, b] =

1, c−1ac = (ab)−1, c−1bc = a〉. By the definition of G, it is easy to see that all maximal

chains of every minimal subgroup in G have the same length but G is non-supersolvable.
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Note that two examples in Remarks 1.7 and 1.8 also indicate that even if all maximal

chains of every minimal subgroup in G have the same length, all maximal chains of the

identity in G might not have the same length.

Remark 1.10 Suppose that G is a group satisfying all hypotheses in Theorem 1.5

(2), we cannot ensure that all maximal chains of every minimal subgroup in G have the

same length. For example, let G = S4 = 〈(12), (13), (14)〉, one has F (G) = K4 =

〈(12)(34), (13)(24)〉. Take M = S3 = 〈(12), (13)〉, then G = F (G) ⋊ M . Note that G

satisfies all hypotheses in Theorem 1.5 (2), but all maximal chains of 〈(12)〉 in G have

different length.

Denote by δ(G) the number of subgroups of G all of whose maximal chains in G do not

have the same length. Observe that δ(A5) = 16 including the identity and 15 subgroups

of order 2. In this paper, we obtain the following result whose proof is given in Section 5.

Theorem 1.11 Let G be a non-solvable group. Then δ(G) ≤ 16 if and only if G ∼= A5.

In Section 6, we also discuss the cases that all maximal chains of some other special

subgroups in G have the same length.

2 Some necessary lemmas

Lemma 2.1 Let G be a group. Then G is supersolvable if and only if all maximal chains

of Φ(G) in G have the same length.

Proof. We only need to prove the sufficiency part. Since all maximal chains of Φ(G)

in G have the same length, all maximal chains of the identity subgroup 1̄ = Φ(G)/Φ(G)

in G/Φ(G) have the same length. By [6, Theorem 10.3.5], G/Φ(G) is supersolvable. It

follows that G is supersolvable.

Lemma 2.2 [8] A non-abelian simple group all of whose proper subgroups are solvable is

said to be a minimal simple group, there are five classes in all:

(1) PSL2(p), where p > 3 and 5 ∤ p2 − 1;

(2) PSL2(2
q), where q is a prime;

(3) PSL2(3
q), where q is an odd prime;

(4) PSL3(3);

(5) Sz(2
q), where q is an odd prime.

Lemma 2.3 [1, Theorem 5.4] Let G be a group of order n. If (n, 15) = 1, then G is

solvable.

Lemma 2.4 [6, Theorem 10.4.2] Let G be a group having a nilpotent maximal subgroup

of odd order. Then G is solvable.
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3 Proof of Theorem 1.4

Proof. Let G be a counterexample of minimal order.

Note that if all maximal chains of every minimal subgroup in G have the same length,

then all maximal chains of every non-trivial subgroup in G have the same length by

Proposition 1.1.

For any maximal subgroup M of G, it is obvious that all maximal chains of every

minimal subgroup of order both 2 and 3 in M have the same length by the hypothesis

(Note that if there exists a maximal subgroup E of G such that 2 ∤ |E| or 3 ∤ |E|, then E

naturally satisfies that all maximal chains of every minimal subgroup of order both 2 and

3 in E have the same length.). By the minimality of G, M is solvable. It follows that G is

a minimal non-solvable group and then G/Φ(G) is a minimal non-abelian simple group.

Claim Φ(G) = 1. Otherwise, assume Φ(G) 6= 1. If 2 | |Φ(G)| or 3 | |Φ(G)|, one has that

all maximal chains of Φ(G) in G have the same length. By Lemma 2.1, G is supersolvable,

a contradiction. If (6, |Φ(G)|) = 1, then all maximal chains of every minimal subgroup of

G/Φ(G) of order both 2 and 3 in G/Φ(G) have the same length. It follows that G/Φ(G)

is solvable by the minimality of G, which implies that G is solvable, also a contradiction.

Therefore, Φ(G) = 1. One has that G is a minimal non-abelian simple group. By

Lemma 2.2, we divide our analyses into the following five cases.

(1) Let G = PSL2(p), where p > 3, (5, p2 − 1) = 1 and |G| = p(p2−1)
2

.

Since G is non-solvable and (5, p2 − 1) = 1, one has 3 | p2 − 1 by Lemma 2.3.

First, suppose p2 ≡ 1 (mod 16). Then G has a maximal subgroup M ∼= S4 by [3]. It

is easy to see that all maximal chains of subgroups of order 2 in S4 do not have the same

length, which implies that all maximal chains of subgroups of order 2 in G do not have

the same length, a contradiction.

Next, suppose p2 6≡ 1 (mod 16). Then G has a maximal subgroup M ∼= A4 by [3].

Consider a subgroup N of M of order 3, one has that N < M < G is a maximal chain of

N in G. Let P be a Sylow 3-subgroup of G such that N ≤ P . By Lemma 2.4, P is not a

maximal subgroup of G. Assume |P | = 3n, where n ≥ 1.

If n ≥ 2, it is easy to see that all maximal chains of N in G do not have the same

length, a contradiction. Therefore, N = P is a Sylow 3-subgroup of G.

Since 3 | p2 − 1, one has 3 | p+ 1 or 3 | p− 1. It follows that 3 | p+1
2

or 3 | p−1
2
.

If 3 | p+1
2
, let L be a maximal subgroup of G that is isomorphic to a dihedral group of

order 2 · p+1
2
. By Sylow theorem, we can assume N < L. Since all maximal chains of N in

G have the same length, one must have p+1
2

= 3, which implies p = 5. Then G = PSL2(5).

It is easy to see that all maximal chains of subgroups of order 2 in PSL2(5) do not have

the same length, a contradiction.

If 3 | p−1
2
, let R be a maximal subgroup of G that is a dihedral group of order 2· p−1

2
. By

Sylow theorem, we can assume N < R. Since all maximal chains of N in G have the same

length, one must have p−1
2

= 3, which implies p = 7, this contradicts p2 6≡ 1 (mod 16).
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(2) Let G = PSL2(2
q), where q is a prime.

By [3], it is easy to see that G has two distinct maximal subgroups M1 and M2 such

that M1 is a dihedral group of order 2 · (2q − 1) and M2 is the normalizer of the Sylow

2-subgroup of G of order 2q · (2q − 1), where subgroups of M1 and M2 of order 2q − 1 are

cyclic. Let N1 be a subgroup of M1 of order 2, and let P be a Sylow 2-subgroup of G such

that P < M2. By Sylow theorem, we can assume N1 ≤ P . Since q ≥ 2, it is easy to see

that all maximal chains of N1 in G do not have the same length, a contradiction.

(3) Let G = PSL2(3
q), where q is an odd prime.

By [3], G has the following two distinct maximal subgroups: M1
∼= A4 and M2 is the

normalizer of the Sylow 3-subgroup of G of order 3q · (3
q
−1)
2

, where subgroups ofM2 of order
3q−1
2

are cyclic. Let N1 be a subgroup of M1 of order 3 and let Q be a Sylow 3-subgroup of

G such that Q < M2. By Sylow theorem, we can assume N1 ≤ Q. Since q ≥ 3, it is easy

to see that all maximal chains of N1 in G do not have the same length, a contradiction.

(4) Let G = PSL3(3).

By [3], G has a maximal subgroupM ∼= S4. It is obvious that there exists a subgroup S

of M of order 2 such that all maximal chains of S in M do not have the same length, which

implies that all maximal chains of S in G do not have the same length, a contradiction.

(5) Let G = Sz(2
q), where q is an odd prime.

By [7], G has two distinct maximal subgroups: M1 is the normalizer of the Sylow 2-

subgroup of order 22q ·(2q−1), M2 is a dihedral group of order 2 ·(2q−1), where subgroups

of M1 and M2 of order 2q − 1 are cyclic. Let N2 be a subgroup of M2 of order 2 and let

P be a Sylow 2-subgroup of G such that P < M1. By Sylow theorem, we can assume

N2 ≤ P . Note that q ≥ 3 and then 2q ≥ 6. It is easy to see that all maximal chains of N2

in G do not have the same length, a contradiction.

By above arguments, the counterexample of minimal order does not exist and so G is

solvable.

4 Proof of Theorem 1.5

Lemma 4.1 Let G be a group in which all maximal chains of every minimal subgroup

have the same length, F (G) be a Fitting subgroup of G. Then G is non-supersolvable if

and only if G = F (G)⋊M and Φ(G) = Z(G) = 1, where M acts faithfully on F (G), F (G)

is the unique minimal normal subgroup of G and M is a supersolvable maximal subgroup

of G, |F (G)| = pn, n ≥ 2.

Proof. Since any minimal normal subgroup of a supersolvable group has prime order,

the sufficiency part holds.

In the following we prove the necessity part.
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Claim Φ(G) = 1. Otherwise, assume Φ(G) 6= 1. Then all maximal chains of Φ(G) in

G have the same length. One has that G is supersolvable by Lemma 2.1, a contradiction.

Hence Φ(G) = 1.

Claim Z(G) = 1. Otherwise, assume Z(G) 6= 1. Then all maximal chains of Z(G) in

G have the same length. For the quotient group G/Z(G), since all maximal chains of the

identity subgroup Z(G)/Z(G) in G/Z(G) have the same length, G/Z(G) is supersolvable

by [6, Theorem 10.3.5], which implies that G is supersolvable, a contradiction. Therefore,

Z(G) = 1.

Note that G is solvable by Theorem 1.4. Let N be a minimal normal subgroup of G,

where |N | = pn, n ≥ 1. Then all maximal chains of N in G have the same length. Consider

the quotient group G/N . Since all maximal chains of the identity subgroup N/N in G/N

have the same length, G/N is supersolvable by [6, Theorem 10.3.5]. If G has at least two

distinct minimal normal subgroups, let N0 be another minimal normal subgroup of G such

that N0 6= N , then N ∩ N0 = 1. Arguing as above, one has that G/N0 is supersolvable.

It follows that G ∼= G/(N ∩N0) is isomorphic to a subgroup of G/N ×G/N0 and then G

is supersolvable, a contradiction. Therefore, N is the unique minimal normal subgroup of

G.

It follows that F (G) = N since Φ(G) = 1 by [5, Chapter III, Theorem 4.5]. So

F (G) � Φ(G). There exists a maximal subgroup M of G such that F (G) � M . One

has G = F (G)M . Since G is solvable, F (G) is an elementary abelian group. One has

F (G) ∩ M E F (G). Moreover, as F (G) ∩ M E M , one has F (G) ∩ M E G. Note that

F (G) ∩ M < F (G), then F (G) ∩ M = 1 by the minimality of F (G). Therefore, G =

F (G)⋊M . It implies that M ∼= G/F (G) is supersolvable.

Since G is solvable, one has CG(F (G)) ≤ F (G) by [5, Chapter III, Theorem 4.2].

Moreover, as F (G) ≤ CG(F (G)), it follows that CG(F (G)) = F (G), which implies that

M acts faithfully on F (G).

Note that G/F (G) is supersolvable and G is non-supersolvable. Therefore, |F (G)| =

pn, n ≥ 2.

Lemma 4.2 Let G be a group in which all maximal chains of every minimal subgroup

have the same length. If G is non-supersolvable, then F (G) is a Sylow subgroup of G′. In

particular, if Z(G′) 6= 1, then F (G) = G′.

Proof. SinceG is non-supersolvable, one has thatG/F (G) is supersolvable by Lemma 4.1,

where |F (G)| = pn, n ≥ 2. By [4, Theorem 10.5.4], (G/F (G))′ = G′F (G)/F (G) is nilpo-

tent. It is obvious that G′ 6= 1. Since F (G) is the unique minimal normal subgroup of G,

F (G) ≤ G′, which implies that G′/F (G) is nilpotent.

Let P ∈ Sylp(G
′). Then F (G) ≤ P . If F (G) < P , then 1 < P/F (G) charG′/F (G)E

G/F (G) since G′/F (G) is nilpotent. One has P E G, which implies that P ≤ F (G), a

contradiction. Hence F (G) = P ∈ Sylp(G
′).
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Assume Z(G′) 6= 1. Since Z(G′) charG′EG, Z(G′)EG. One has Z(G′) = F (G). Then

G′/Z(G′) = G′/F (G) is nilpotent. It follows that G′ is nilpotent and then G′ ≤ F (G).

Moreover, as F (G) ≤ G′, one has F (G) = G′.

Proof of Theorem 1.5. Combine Lemmas 4.1 and 4.2 together, we complete the

proof of Theorem 1.5.

5 Proof of Theorem 1.11

Lemma 5.1 Let G be a group. If δ(G) < 16, then G is solvable.

Proof. Let G be a counterexample of minimal order.

For any proper subgroup M of G, if there exists a subgroup H of M such that all

maximal chains of H in M do not have the same length, then all maximal chains of H in

G do not have the same length. Therefore, δ(M) ≤ δ(G) < 16. By the minimality of G,

M is solvable. It follows that G is a minimal non-solvable group and then G/Φ(G) is a

minimal non-abelian simple group.

If Φ(G) 6= 1, since δ(G/Φ(G)) ≤ δ(G) < 16, G/Φ(G) is solvable by the minimality of

G. It implies that G is solvable, a contradiction. Therefore, Φ(G) = 1 and then G is a

minimal non-abelian simple group.

Note that if all maximal chains of the subgroup H in G do not have the same length,

then for any g ∈ G, all maximal chains of Hg in G do not have the same length, too.

By Lemma 2.2, we divide our analyses into the following five cases.

(1) Let G = PSL2(p), where p > 3, (5, p2 − 1) = 1 and |G| = p(p2−1)
2

.

If p2 6≡ 1 (mod 16). Arguing as in proof of Theorem 1.4, one has 3 | p+1
2

or 3 | p−1
2
.

Case(i): Assume 3 | p+1
2
. When p = 5, thenG = PSL2(5) ∼= A5. However, δ(A5) = 16,

a contradiction. When p ≥ 7, G has a subgroup H of order 3 all of whose maximal chains

in G do not have the same length. Observe that |NG(H)| = 2 · p+1
2

= p + 1. Then

δ(G) ≥ |G : NG(H)| =
p(p2−1)

2

p+1
= p(p−1)

2
≥ 21 > 16, a contradiction.

Case (ii): Assume 3 | p−1
2
. As p2 6≡ 1 (mod 16), one has p > 7. Then G has a subgroup

K of order 3 all of whose maximal chains in G do not have the same length. Observe that

|NG(K)| = 2 · p−1
2

= p− 1. Then δ(G) ≥ |G : NG(K)| =
p(p2−1)

2

p−1
= p(p+1)

2
> 28 > 16, also a

contradiction.

Next assume p2 ≡ 1 (mod 16). Then p ≥ 7.

If p = 7, then G = PSL2(7). It is easy to see that G has a subgroup H of order 2 all of

whose maximal chains in G do not have the same length. By [2], all subgroups of PSL2(7)

of order 2 are conjugate in G. Then δ(G) ≥ |G : NG(H)| = 21 > 16, a contradiction.

If p > 7, then p ≥ 17. By [3], G has the following four distinct maximal subgroups:

M1
∼= S4, M2 is a dihedral group of order 2 · p+1

2
, M3 is a dihedral group of order 2 · p−1

2
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and M4 is the normalizer of the Sylow p-subgroup of G of order p(p−1)
2

. It is easy to see

that G has a subgroup H of order 2 all of whose maximal chains in G do not have the

same length, and only one of the following three cases might be true by the hypothesis:

(a) |NG(H)| ≤ |S4| = 24; (b) |NG(H)| ≤ 2 · p+1
2

= p + 1; (c) |NG(H)| ≤ 2 · p−1
2

= p − 1.

Note that p ≥ 17. For case (a), one has δ(G) ≥ |G : NG(H)| ≥
p(p2−1)

2

24
≥ 102 > 16, a

contradiction. For case (b), one has δ(G) ≥ |G : NG(H)| ≥
p(p2−1)

2

p+1
= p(p−1)

2
≥ 136 > 16, a

contradiction. For case (c), one has δ(G) ≥ |G : NG(H)| ≥
p(p2−1)

2

p−1
= p(p+1)

2
≥ 153 > 16,

also a contradiction.

(2) Let G = PSL2(2
q), where q is a prime and |G| = 2q(22q − 1).

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 2 all of whose

maximal chains in G do not have the same length and |NG(H)| = 2q. Then δ(G) ≥ |G :

NG(H)|+ 1 = 2q(22q−1)
2q

+ 1 = 22q − 1 + 1 ≥ 16, a contradiction.

(3) Let G = PSL2(3
q), where q is an odd prime number and |G| = 3q(32q−1)

2
.

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 3 all of whose

maximal chains in G do not have the same length and |NG(H)| ≤ 3q(3q−1)
2

. Then δ(G) ≥

|G : NG(H)| ≥
( 3

q(32q−1)
2

)

( 3
q(3q−1)

2
)
= 3q + 1 ≥ 28 > 16, a contradiction.

(4) Let G = PSL3(3).

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 2 all of whose

maximal chains in G do not have the same length. By [2], all subgroups of G of order 2

are conjugate in G. Then δ(G) ≥ |G : NG(H)| = 117 > 16, a contradiction.

(5) Let G = Sz(2
q), where q is an odd prime and |G| = (22q + 1)22q(2q − 1).

Arguing as in proof of Theorem 1.4, G has a subgroup H of order 2 all of whose

maximal chains in G do not have the same length and |NG(H)| ≤ 22q(2q − 1). Then

δ(G) ≥ |G : NG(H)| ≥ (22q+1)22q(2q−1)
22q(2q−1)

= 22q + 1 ≥ 65 > 16, also a contradiction.

All above arguments show that the counterexample of minimal order does not exist

and so G is solvable.

Lemma 5.2 Let G be a non-solvable group. Then δ(G) = 16 if and only if G ∼= A5.

Proof. We only need to prove the necessity part.

Since G is non-solvable, there exists a subgroup M of G such that M is a minimal

non-solvable group. Then M/Φ(M) is a minimal non-abelian simple group. Note that

δ(M/Φ(M)) ≤ δ(M) ≤ δ(G) = 16, one must have δ(M/Φ(M)) = δ(M) = δ(G) = 16 by

Lemma 5.1. Then arguing as in proof of Lemma 5.1, one has M/Φ(M) ∼= PSL2(5) ∼=

PSL2(4) ∼= A5.

Claim Φ(M) = 1. Otherwise, assume Φ(M) 6= 1. Since all maximal chains of the

identity inG do not have the same length, one has δ(G) ≥ δ(M/Φ(M))+1, a contradiction.

Therefore, Φ(M) = 1.

8



It follows that M ∼= A5. If M < G. Since δ(M) = δ(G) = 16, one has that M is

normal in G. Let L be a subgroup of G such that M is maximal in L. Then L/M ∼= Zp

for some prime p. One gets L ∼= S5 or A5 ×Zp. However, it is easy to see that δ(S5) > 16

and δ(A5 × Zp) > 16, a contradiction. Therefore, G = M ∼= A5.

Proof of Theorem 1.11. Combine Lemmas 5.1 and 5.2 together, we complete the

proof of Theorem 1.11.

6 Remarks

Remark 6.1 A group G might not be solvable if G has at least one minimal subgroup

H all of whose maximal chains in G do not have the same length. For example, let G =

SL2(5). It is obvious that all maximal chains of every minimal subgroup of G of odd order

in G have the same length. However, observe that Z(G) = Z2 < Z4 < Q8 < SL2(3) < G

and Z(G) = Z2 < Z6 < SL2(3) < G are two maximal chains of Z(G) in G having different

length and Z(G) is the unique subgroup of G of order 2.

Remark 6.2 A group G might not be solvable if all maximal chains of any non-trivial

subgroups of G except minimal subgroups of order p for a fixed prime divisor p of |G|

have the same length. For example, it is easy to see that all maximal chains of non-trivial

subgroups of A5 except minimal subgroups of order 2 in A5 have the same length, but A5

is non-solvable.

Remark 6.3 If all maximal chains of every second maximal subgroup of a group G in

G have the same length, then G might not be solvable. For example, let G = PSL2(17).

By [3], it is easy to see that all maximal chains of every second maximal subgroup of

PSL2(17) in PSL2(17) have the same length, but PSL2(17) is non-solvable.

Remark 6.4 Assume that G is solvable. If all maximal chains of every second maximal

subgroup of G in G have the same length, then Gmight not be supersolvable. For example,

let G = GL2(3). Let H be any subgroup of G, then H ∈ {1, Z2, Z4, Z8, Z2 × Z2, D8, Q8,

SD16, SL2(3), GL2(3)}, where SD16 = 〈a, b | a8 = b2 = 1, b−1ab = a3〉. It is easy to see

that all maximal chains of every second maximal subgroup of GL2(3) in GL2(3) have the

same length, but GL2(3) is non-supersolvable.
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