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A CATEGORICAL FORMULATION OF KRAUS’ PARADOX

ANDREW W SWAN

Abstract. We give a categorical formulation of Kraus’ “magic trick” for re-
covering information from truncated types. Rather than type theory, we work
in Van den Berg-Moerdijk path categories with a univalent universe, and rather
than propositional truncation we work with arbitrary cofibrations, which in-
cludes truncation as a special case. We show, using Kraus’ argument that
any cofibration with homogeneous domain is a monomorphism. We give some
simple concrete examples in groupoids to illustrate the interaction between

homogeneous types, cofibrations and univalent fibrations.

1. Introduction

Propositional truncation is one of the most basic and most important examples
of higher induction types [Uni13, Section 3.7]. An hProposition is a type A such
that any two elements of A are equal. We then define the propositional truncation
of a type A to be a type ‖A‖ together with a map | − | : A → ‖A‖ which makes A
into an hProposition in the “minimal way,” in the sense that it satisfies a suitable
induction principle. In [KECA17, Section 8.4] Kraus et al. gave a surprising proof
that under certain conditions we can take a term of the form |a| for a : A and
“extract” the term a back out. More formally, we have a family of dependent types
z : ‖A‖ ⊢ B(z) and a dependent function z : ‖A‖ ⊢ b(z) : B(z) such that for a : A,
B(|a|) is definitionally equal to A and b(|a|) is definitionally equal to a. This is
surprising, since by definition any two elements of ‖A‖ are equal, so we wouldn’t
expect to be able to distinguish different elements of ‖A‖ to the extent that we can
even find which element of A they came from.

In both the original presentation of [KECA17] and in our summary above, Kraus’
paradox is described in purely type theoretic terms, using terminology such as
“terms,” “induction,” “definitional equality,” and “computation rules.” This might
mislead one into thinking that Kraus’ paradox is an artefact of the technical aspects
of type theory and has no deeper meaning or significance outside type theory. We
remedy this with a purely categorical presentation of Kraus’ argument. We work in
the general setting of univalent Van den Berg-Moerdijk path categories [vdBM18],
and show that any cofibration with homogeneous domain is a monomorphism.
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2. Path categories

We work in the general setting of path categories, as defined below.

Definition 2.1 (Van den Berg-Moerdijk [vdBM18]). A path category is a category
C together with two classes of morphisms of C, F whose elements we refer to as
fibrations and W whose elements we refer to as weak equivalences, satisfying the
following conditions. Below and throughout the paper, we will refer to maps in the
intersection of F and W as trivial fibrations.

(1) Fibrations are closed under composition.
(2) The pullback of a fibration along any map exists and is also a fibration.
(3) The pullback of a trivial fibration along any map is a trivial fibration.
(4) Weak equivalences satisfy 2-out-of-6: for all maps f : A → B, g : B → C

and h : C → D, if both g ◦ f and h ◦ g are weak equivalences, then so are
f , g, h and h ◦ g ◦ f .

(5) Every isomorphism is a trivial fibration.
(6) Every trivial fibration has a section.
(7) C has a terminal object, and for every object B, the unique map B → 1 is

a fibration.
(8) For any objectB, the diagonal map B → B×B factors asB

r
→ PB

p
→ B×B

where r is a weak equivalence and p is a fibration. We refer to such a
factorisation as a path object on B.

Given a path object B
r
→ PB

p
→ B × B, we will write p0 for π0 ◦ p and p1 for

π1 ◦ p. Note that we get the 3-for-2 property as a special case of the 2-out-of-6
property, i.e. for maps f : A → B and g : B → C, if any two of the maps f , g and
g ◦ f is a weak equivalence, then so is the third.

Definition 2.2. Let A,B ∈ C, and let PB be a path object on B. For maps
f, g : A → B, a homotopy from f to g is a map H : A → PB making the following
diagram commute.

B

A PB

B

h

f

g

p0

p1

We say f and g are homotopic and write f ∼ g if there is a homotopy from f to g.

We can think of the definition of path category as the minimal structure on a
category necessary for the above notion of homotopy to be well behaved, in the
sense that we have the theorem below.

Theorem 2.3. (1) The definition of homotopy is independent of the particular
choice of path object on B.

(2) Homotopy gives an equivalence relation on the set of maps A → B.
(3) If f ∼ g, then f ◦ h ∼ g ◦ h and k ◦ f ∼ k ◦ g.

Proof. See [vdBM18, Theorem 2.14]. �

Example 2.4. Let C be any category with finite limits. Then we can make C a
path category by taking all maps to be fibrations, and the weak equivalences to be
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precisely the class of isomorphisms. We will refer to path categories of this form as
extensional.

Proposition 2.5. The following are equivalent:

(1) C is extensional.
(2) Two maps are homotopic iff they are equal.
(3) Every weak equivalence is an isomorphism.

Proof. For 1 implies 2, note that if every map is a fibration, then in particular for
any object B, the diagonal map B → B × B is a fibration. It follows that taking
PB = B gives a path object on B. However, this implies that for any object A, if
two maps f, g : A → B are homotopic, then they are equal.

For 2 implies 3, we recall that any weak equivalence is a homotopy equivalence by
[vdBM18, Theorem 2.16], and so by 2 any homotopy equivalence is an isomorphism.

For 3 implies 1, we recall that any map f : A → B factors as a weak equivalence
followed by a fibration by [vdBM18, Proposition 2.3]. It follows that f is a fibration,
since fibrations contain isomorphisms and are closed under composition. �

Although the above example is simple, it is a useful one. When working with
weak equivalences, it is often useful to think of them as maps that behave “like
isomorphisms.” In order to make this idea precise it is important that we can
in fact view isomorphisms as a degenerate special case of weak equivalences. By
placing categories with finite limits within the same general framework as other
examples of path categories, such as Kan complexes in simplicial and cubical sets,
we can easily compare them.

The example is also a useful one in type theory the same reason. Any locally
cartesian closed category is a model of extensional type theory [See84] and also,
since it has all finite limits an extensional path category. Many more recent exam-
ples of models of type theory coming from homotopy theory [HS96, KL21, AW09,
CCHM18] very naturally give rise to path categories, and so we can use path cat-
egories as a common framework in which to compare the two different kinds of
model.

Example 2.6. The category of fibrant objects in a model structure where every
object is cofibrant is a path category [vdBM18, Section 2.1].

Example 2.7. As a special case of Example 2.6, the category of Kan complexes
[GZ67] is a path category with fibrations given by Kan fibrations and weak equiv-
alences by homotopy equivalences.

Example 2.8. The category of groupoids is a path category, taking fibrations to
be isofibrations and weak equivalences to be equivalences. See e.g. [JT91] for more
details. This is also a special case of Example 2.6.

Example 2.9 (Gambino-Garner [GG08]). We can construct examples of path cat-
egories using type theory. We take C to be the category of contexts, fibrations to
be the closure of projections (Γ, x : A) → Γ under retracts, and weak equivalences
to be homotopy equivalences.

Example 2.10 (Avigad-Kapulkin-Lumsdaine [AKL15, Theorem 3.2.5]). For any
contextual category the underlying category of contexts can be viewed as a path
category. This is a generalisation of Example2.9, by considering the syntactic con-
textual category of type theory.
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In any path categories we can identify the important class of maps of cofibrations.
We will define them via the general notion of lifting property below.

Definition 2.11. Given two maps m : A → B and f : C → D, we say m has
the left lifting property against f and f has the right lifting property against m if
for every commutative square as in the solid lines in the diagram below, there is a
diagonal map, as in the dotted line below making two commutative triangles.

A C

B D

m f

Definition 2.12. A cofibration is a map with the left lifting property against all
trivial fibrations.

In keeping with spirit of path categories, we do not assume any “existence con-
ditions” on the class of cofibrations, so in principle it could be the case that a path
category has “very few” cofibrations. However, in any path category we can iden-
tify the class of cofibrations and talk about what properties elements of this class
must satisfy.

Having said that, most of the particular examples of path categories that we
consider here are the fibrant objects of a model structure, and as such every map
can be factored as a cofibration followed by a trivial fibration.

Example 2.13. In extensional path categories any map is a cofibration, since any
map has the left lifting property against isomorphisms. In fact the converse also
holds: If every map is a cofibration, then every trivial fibration is an isomorphism,
but every map factors as a section of a trivial fibration followed by a fibration
[vdBM18, Proposition 2.3] and so also every map is a fibration.

Example 2.14. The cofibrations in groupoids are precisely the functors that are
injective on objects.

Example 2.15 (Lumsdaine [Lum11]). We consider the path category structure on
the syntactic category of type theory (Example 2.9). Any point constructor of any
higher inductive type is a cofibration in the category of contexts, as long as the
induction principle satisfies judgemental computation rules on points.1 In fact the
judgemental computation rule precisely gives us commutativity of the upper trian-
gle for the diagonal filler. As a special case of this we can consider the truncation
map | − | for propositional truncation. We will use this idea to recover the original
version of Kraus’ paradox.

If we augment type theory with the mapping cylinder higher inductive type then
we can additionally show the following.

(1) Cofibrations, homotopy equivalences and fibrations give a model structure
on the category of contexts in type theory.2

(2) Every cofibration is a retract of a point constructor of a higher inductive
type.

1Without a general formal definition of higher inductive types, Lumsdaine presented this result
as an informal general principle that holds for all known examples of higher inductive types.

2Lumsdaine refers to this as a pre-model-structure, since the category of contexts is not com-
plete or cocomplete, and the choice of factorisation is not functorial, and these conditions are
often assumed as part of the definition of model category.
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We recall the following basic proposition for “realigning”maps using cofibrations.

Proposition 2.16. Suppose we are given a cofibration m : A → B and maps
f : A → C and g : B → C such that g ◦m ∼ f

A C

B

f

m
∼

g

Then we can find g′ : B → C such that g′ ◦m = f .

Proof. Let h : A → PC be the map witnessing the homotopy relation. In particular
p0 ◦ h = g ◦m and p1 ◦ h = f . Note that we have the commutative square given by
the solid lines in the diagram below.

A PC

B C

m

h

p0

g

j

We take j to be the diagonal filler, as in the dotted arrow in the diagram. We can
then define g′ := p1 ◦ j, giving g′ ◦m = p1 ◦ j ◦m = p1 ◦ h = f . �

3. hPropositions and propositional truncation

In many cases higher inductive types can be natural formulated in path cate-
gories. We give such a formulation for propositional truncation here. Our definition
is based on the type theoretic definition of propositional truncation with a judge-
mental computation rule for the point constructor as in [KECA17, Section 8], since
that is most relevant for our results here on Kraus’ paradox. We point out that
other, less strict versions of propositional truncation are also possible.

Definition 3.1. A fibration f : A → B in a path category is an hProposition if
the diagonal map A → A×B A is a weak equivalence.

A propositional truncation of an arbitrary fibration f : A → B is a factorisation
of f as f = f ′ ◦ i where f ′ is an hProposition and i has the left lifting property
against all hPropositions.

Proposition 3.2. If a map i : A → C has the left lifting property against all
hPropositions, then it is a cofibration.

Proof. Note that it suffices to show that every trivial fibration g : D → E is an
hProposition. However, this is easy to check: since trivial fibrations are closed
under pullback and composition, the map D ×E D → E is a trivial fibration, and
so the diagonal D → D ×E D is a weak equivalence by 3-for-2. �

Example 3.3. In any extensional path category, a map f : A → B is an hPropo-
sition if and only if it is a monomorphism. Proposition truncations exists iff the
underlying category is regular [AB04, Mai05]. We note that the truncation map
A → C can only be a monomorphism when f is already monic, and in this case the
truncation map is an isomorphism.

Example 3.4. We can explicitly describe the hPropositions in groupoids as follows.
Note that the map A → A×BA is an equivalence iff each projection map A×BA →
A is a trivial fibration. However, this is the case iff for all objects a of A, the fibre
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f−1(a) is a contractible category, which in groupoids precisely says that f is full
and faithful.

A propositional truncation of f is a factorisation of f as a bijective on objects
functor followed by a full and faithful functor, which exists by taking the groupoid
with the same objects as A, and defining a morphism a  a′ to be a morphism
f(a) f(a′) in B.

Example 3.5. In the syntactic category of type theory, as in Example 2.9, we can
use propositional truncation in type theory to construct propositional truncations
in the category of contexts. For this to work, we need to formulate propositional
truncation using an induction principle with a judgemental computation rule for
induction as in [KECA17, Section 8]. To verify that truncation maps (Γ, A) →
(Γ, ‖A‖) do have the left lifting property against all hPropositions, we first consider
the special case where the hPropositions is a projection of the form (Γ, z : ‖A‖, B) →
(Γ, ‖A‖) where Γ, z : ‖A‖ ⊢ B Type, and the lower map in the lifting problem is
the identity. Note that the induction term precisely gives a diagonal filler, with the
upper triangle commuting using the judgemental computation rule.

(Γ, A) (Γ, z : ‖A‖, B)

(Γ, ‖A‖) (Γ, ‖A‖)

f

|−| ind(B,f)

Next, note that for arbitrary lifting problems against maps of the form (∆, B) → ∆
we can pull back along the bottom map to obtain a lifting problem of the form
above, as illustrated below.

(Γ, A) (Γ, z : ‖A‖, B[σ]) (∆, B)

(Γ, ‖A‖) (Γ, ‖A‖) ∆

y

σ

Finally, note that every hProposition is a fibration, and so in particular a re-
tract of a dependent projection by [GG08, Lemma 11]. Since maps with the right
lifting property against a given map are closed under retract, we can deduce that
truncation maps have the left lifting property against all hPropositions.

It is clear that the projection map (Γ, ‖A‖) → Γ is an hProposition, and so we
are done.

4. Univalence in path categories

Definition 4.1. For a fixed fibration U̇ → U , we say a fibration f : A → B is
U-small if it is a pullback of U̇ → U along some map B → U . We say an object A
is U-small if the unique map A → 1 is U-small.

We will use the definition of univalence in path categories due to Van den Berg
[vdB20, Definition 2.13]. For completeness, we spell out below the details of the
definition and his proof that in type theory it is equivalent to the more usual one.

We first recall the following fact.

Lemma 4.2. Given any choice of path object PU on U , we can choose a path object
P U̇ on U̇ and fibration P U̇ → PU such that the following diagram commutes, and
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the canonical map P U̇ → PU ×U×U U̇ × U̇ given by the right hand commutative
square is a fibration.

U̇ P U̇ U̇ × U̇

U PU U × U

Furthermore, if we are given two such path objects P U̇ and P U̇ ′, then there is a
weak equivalence P U̇ → P U̇ ′ making the following triangles commute.

P U̇ P U̇ ′

PU

P U̇ P U̇ ′

U̇ × U̇

Proof. We first check that PU ×U×U U̇ × U̇ is a well defined object. Note that

U̇ × U̇ → U ×U factors as U̇ × U̇ → U̇ ×U → U ×U where both maps are pullbacks
of U̇ → U , and so fibrations. Hence U̇ ×U̇ → U×U is a fibration, and so its pullback
along PU → U × U exists.

We can factor the canonical map U̇ → PU ×U×U U̇ × U̇ as a weak equivalence
followed by a fibration by [vdBM18, Proposition 2.3], and this precisely gives us
the required structure by composing with the pullback projection maps.

For the second part we apply [vdBM18, Lemma 2.9] to the factorisation above
and again compose with the pullback projection maps. �

Definition 4.3 (Van den Berg). A fibration U̇ → U is univalent if it satisfies the
following. Suppose that we are given U-small maps A → C and B → C, witnessed
by pullback squares as explicitly labelled below, together with an equivalence e :
A → B over C.

(1)

A U̇

C U

i

y

f

B U̇

C U

j

y

g

A B

C

e

Then we have homotopies f ∼ g and j ◦ e ∼ i, which are coherent, in the
sense that if P U̇ is chosen as in Lemma 4.2, the homotopies can be given by maps
C → PU and A → P U̇ making the square on the right below commute.

A

U̇

B

C U

i

e ∼

j

f

∼
g

A P U̇

C PU

Proposition 4.4. The definition of univalence is independent of the particular
choice of path objects and map P U̇ → PU .
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Proof. First note that the choice of path object PU makes no difference by the
argument below [vdBM18, Corollary 2.10]. Now note that given a homotopy for the

upper triangle given relative to a path object P U̇ ′, we can use the weak equivalence
P U̇ → P U̇ ′ given in the second part of Lemma 4.2 to construct a homotopy relative
to P U̇ which is still coherent. �

Theorem 4.5 (Van den Berg). Suppose that C is a path category constructed from
a model of type theory, as in Example 2.10, and that the model satisfies function
extensionality. Then a fibration U̇ → U satisfies univalence in the sense of Defi-
nition 4.3 iff there is a term witnessing that it is univalent according to the usual
formulation in type theory.

Proof. Path categories arising from directly from models of type theory satisfy
the additional conditions of type theoretic fibration categories, as formulated by
Shulman in [Shu14]. In particular, this allows us to define the universal equivalence
between pairs of types, as in [Shu14, Section 5]. This can be used to replace the
quantification over all objects C in the definition of univalence with one particular
C. Explicitly, in type theoretic notation, we take C :=

∑
A,B:U A ≃ B with A, B

and e given by the appropriate projections.
Since the definition of univalence is independent of the choice of path object,

we can make an explicit choice of path objects that is most convenient for the
proof. We define both path objects using type theoretic notation, which can then
be interpreted into the type theoretic fibration category, following Shulman. We
take PU :=

∑
A,B:U A = B and we define P U̇ as below.

P U̇ :=
∑

A,B:U

∑

p:A=B

∑

a:A

∑

b:B

p∗(a) = b

We can now see that the homotopies precisely give us a term giving for all
A,B : U and all e : A ≃ B a choice of equality p : A = B together with an equality
q(a) : p∗(a) = e(a) for each a : A. Note that this precisely says that for every
such e, we have a path p : A ≃ B such that e is homotopic to transport along p.
Assuming function extensionality this says that we can find p such that e is equal
to transport along p, i.e. that idtoiso has a section. It is clear that this follows from
type theoretic univalence, which states that idtoiso is an equivalence. However, the
converse can also be proved in type theory, as shown by Orton and Pitts [OP19,
Theorem 3.5],3 which can then be interpreted into the model. �

Remark 4.6. It as an open problem to determine whether or not this formulation
of univalence implies function extensionality. If it does, then the assumption of
function extensionality can be dropped from Theorem 4.5.

Definition 4.7. We say a path category is univalent if for every fibration f : A → B
there is a univalent fibration U̇ → U for which f is U-small:

A U̇

B U

f
y

3This can be seen as an instance of very general constructions in type theory. See e.g. [Rij23,
Exercise 11.8(d)] and [Esc19, Section 3.27].
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We will make heavy use of the following basic fact.

Proposition 4.8. Let U̇ → U be any fibration. Every U-small object A is a subob-
ject of U̇ , witnessed by a monomorphism ιA : A → U̇ .

Proof. By the definition of U-small object, we have a pullback diagram as below.

A U̇

1 U

y

The bottom map is a monomorphism, since its domain is the terminal object. The
top map is then a pullback of a monomorphism, and so also a monomorphism. We
take ιA to be the top map. �

Remark 4.9. Although we think of U̇ → U as acting like a universe that contains
every type belonging to the fibrations A → B, this isn’t really accurate. We only
required univalence, and no other closure conditions, such as Σ or Π types or that
the universe contains any other types such as 0 and 1.

In particular, if C is a preorder then every fibration is univalent since we only
require that certain diagrams either commute or commute up to homotopy, and in
preorders every diagram commutes. Hence every preorder path category is univa-
lent. By applying this to the extensional path category on a lattice, we can see that
univalence is not strong enough to show that coproducts are disjoint.

Proposition 4.10. A path category is both extensional and univalent if and only
if it is a bounded ∧-semi lattice.

Proof. As noted in the above remark, to satisfy univalence we only require that cer-
tain diagrams commute or commute up to homotopy, and so it is vacuously true for
preorders. A preorder has all finite limits iff it is a bounded ∧-semi lattice. There-
fore we confirm that a bounded ∧-semi lattice with any path category structure is
univalent, in particular the extensional path category.

For the converse, assume that a path category C is both univalent and exten-
sional. For any B ∈ C, we consider the automorphism τ : B × B → B that swaps
the two components of the product. In extensional path categories, two maps are
homotopic iff they are equal. Hence univalence gives us a universe U̇ → U con-
taining B such that ιB×B ◦ τ = ιB . Since ιB is a monomorphism, we deduce that
τ = 1B×B. However, we can now deduce that any two maps A⇒ B are equal. �

Remark 4.11. The equivalence extension property [Sat17, Awo23] is another cat-
egorical formulation of univalence. It follows from the existence of a univalent uni-
verse, and is a useful concept to consider when constructing a univalent universe.
However, viewed strictly as a property of a path category it is much weaker than
univalence. In particular every extensional path category satisfies the equivalence
extension property.

For this paper we don’t require the full univalence condition, but only the fol-
lowing weaker version.

Proposition 4.12. Suppose U̇ → U is univalent. If we are given two U-small
fibrations f : A → C and g : B → C, witnessed by pullback squares with top maps i
and j and a weak equivalence e from A to B over C, as in (1) in the definition of
univalence, then j ◦ e ∼ i.
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Proof. This is one of the homotopies in the definition of univalence, so we simply
forget the other homotopy. �

5. Kraus’ paradox

We now have enough general theory to give the categorical version of Kraus’
paradox. We first formulate the definition of transitive type in path categories as
follows.

Definition 5.1. For a fibration U̇ → U , a U-small object (A, a0) is U-homogeneous

if the maps ιA ◦ πi : A×A → U̇ are homotopic, as illustrated below.

A

A×A ∼ U̇

A

ιAπ0

π1
ιA

We now give the main theorem, corresponding to [KECA17, Theorem 8.12].

Theorem 5.2. Suppose that a U-small object A is U-homogeneous. Let m : A → B
be a cofibration and s : B → A any map. Then m is a monomorphism.

Proof. We first observe that the map ιA ◦ s ◦m : A → U̇ is homotopic to ιA. To
see this, note that it follows from Theorem 2.3 and the U-homogeneity of A by
considering the following diagram.

A

A A×A ∼ U̇

B A

ιA

m

π0

π1

s

ιA

However, we now note that we have the following homotopy commutative triangle.

A U̇

A

B

ιA

m

∼
ιA

s

Hence by Proposition 2.16 we can find j : B → U̇ such that j ◦m is strictly equal
to the monomorphism ιA. Hence m must also be a monomorphism. �

So far we have not used univalence. However, we do need it in order to get non
trivial examples of U-homogeneous types. We show how to obtain U-homogeneous
types from the more natural notion of homogeneity below.
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Definition 5.3. A type A is homogeneous if there is a weak equivalence e : A ×
A × A → A × A × A over A × A such that for the two sections s0 := 〈π0, π1, π0〉
and s1 := 〈π0, π1, π1〉, we have π2 ◦ e ◦ s0 ∼ π2 ◦ s1.

A×A×A A×A×A

A×A

e

〈π0,π1〉 〈π0,π1〉

s0 s1

Lemma 5.4. Suppose that A is U-small and homogeneous and that U is univalent.
Then A is U-homogeneous.

Proof. We note that we have the following pullback diagram.

A×A×A A U̇

A×A 1 U

π2

y

ιA

y

Hence applying Proposition 4.12 with the equivalence e given by homogeneity, we
get the following diagram commuting up to homotopy.

A×A×A A

U̇

A×A×A A

π2

e

ιA

∼

π2

ιA

We now use Theorem 2.3 to paste the above diagram to the homotopy commu-
tative diagrams given by the remaining parts of the definition of homogeneity, as
illustrated below.

A×A×A A

A×A U̇

A×A×A A

π2

e

ιA

∼

s0

s1

π0

π1

∼

π2

ιA

�

Corollary 5.5. If A is homogeneous and U-small for some univalent fibration
U̇ → U , m : A → B is a cofibration and there is some map B → A, then m is a
monomorphism.

Proof. We apply Lemma 5.4 and Theorem 5.2. �

Corollary 5.6. If C is univalent, m : A → B is a cofibration, A is homogeneous
and there is any map at all s : B → A, then m is a monomorphism.

Proof. Since C is univalent, A is U-small for some univalent U . Hence we can apply
Corollary 5.5. �
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Corollary 5.7. If C satisfies univalence and A is an object that is homogeneous
and has a point a0 : 1 → A, then any cofibration A → B is a monomorphism.

Proof. We define s : B → A to be a0◦!B and apply Corollary 5.6. �

Corollary 5.8. Suppose that C satisfies univalence and that whenever m : A → B
is a cofibration, so is C×m : C×A → C×B for any object C. Then any cofibration
with homogeneous domain is a monomorphism.

Proof. Suppose we are given two maps f, g : C → A such that m ◦ f = m ◦ g. We
take the full subcategory of C/C consisting of fibrations. We note that this is a

path category and that C × U̇ → C ×U is univalent. Also note that C ×A → C is
pointed, e.g. by 〈1C , f〉. Hence we can apply Corollary 5.7. �

6. Some worked examples in groupoids

For this section we work in the category of groupoids as in Example 2.8, and we
will see a few simple examples to illustrate the interaction between homogeneous
types, cofibrations and univalence. We point out that many of the ideas that appear
here can be thought of as simplified special cases of group theoretic constructions
in homotopy type theory [BvDR18].

For the first example, note that using the explicit description of cofibration as
maps that are injective on objects, it is easy to see that every cofibration with
discrete domain is monic. However, assuming the law of excluded middle, we can
also view it as a special case of Kraus’ paradox. Using excluded middle, we can
show that every discrete groupoid is homogeneous. However, this allows us to
apply Corollary 5.5 together with the fact that any discrete fibration is U-small
for a univalent universe U [HS96, Section 5.4], to give another proof that such
cofibrations must be monic.

For the remaining examples, we recall that any group G can be viewed as a one
object groupoid BG, and that this defines an embedding from groups to groupoids.
We write the object of BG as ∗.

Proposition 6.1. A map BG → ‖BG‖ is monic iff G is trivial.

Proof. In an hProposition, any two paths between two objects must be equal. In
particular for g ∈ G, we must have |g| = 1|∗|, and so if |− | is monic, we can deduce
g = 1∗. �

Theorem 6.2. If G is nontrivial and abelian, then BG is not U-small for any
univalent fibration U .

Proof. By Proposition 6.1 and the assumptionG is nontrivial, the truncation BG →
‖BG‖ cannot be monic. Hence by Corollary 5.5, to show BG is not U-small for
univalent U it suffices to show that BG is homogeneous. Using the embedding from
groups to groupoids, we can instead show the corresponding property of the group
G. That is, we need an automorphism θ : G × G × G → G × G × G such that
π2 ◦ θ ◦ s0 ∼ π2 ◦ θ ◦ s1. We will in fact ensure that θ ◦ s0 = θ ◦ s1. We define θ as
follows.

θ(g, h, k) := (g, h, hg−1k)

We check that this is a group isomorphism. It is clear that θ preserves the identity.
Since G is abelian, we can see that θ preserves group multiplication, and so is a
homomorphism. It is also clear that is has an inverse defined similarly, and so is
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an isomorphism. However, we have now checked that BG is homogeneous and so
we can apply Corollary 5.5. �

On the other hand, there are examples of nonabelian G that are pullbacks of a
univalent fibration. In particular we have the following.

Theorem 6.3. If G has trivial centre and every automorphism of G is an inner
isomorphism (i.e. of the form λx.h−1xh for some h), then BG → 1 is univalent.

Proof. First note that if A → B is a pullback of BG → 1, then we have a canonical
isomorphism A ∼= B × BG, and that equivalences over A are precisely automor-
phisms of A×BG over A. Each automorphism of A×BG over A is determined by
a homomorphism θ : A×BG → A.

Note that for every object a of A, θ restricts to an automorphism θ(1a,−) of G.
By assumption, this must be an inner automorphism. That is, for all objects a of
A there must exist ha such that θ(1a, g) = h−1

a gha.
Now for any objects a, a′ of A, any path p : a  a′ and any element g of G we

have the following.

ha′θ(p, 1∗)h
−1
a g = ha′θ(p, 1∗)h

−1
a haθ(1a, g)h

−1
a

= ha′θ(p, g)h−1
a

= ha′θ(1a′ , g)h−1
a′ ha′θ(p, 1∗)h

−1
a

= gha′θ(p, 1∗)h
−1
a

We deduce that ha′θ(p, 1∗)h
−1
a belongs to the centre of G, and so ha′θ(p, 1∗)h

−1
a =

1G, since G has trivial centre. Therefore ha′θ(p, 1∗) = ha.
We now verify that h is a natural transformation from θ : A × BG → BG to

π1 : A × BG → BG. Every morphism in A × BG is of the form (p, g) where
p : a a′ in A and g ∈ G. We then calculate as follows.

ha′θ(p, g) = ha′θ(p, 1∗)θ(1a, g)

= haθ(1a, g)

= gha �

Example 6.4. S3 is univalent as an object in groupoids.

Remark 6.5. The above proof is partially based on an example due to Mike Shul-
man of a “self referential” univalent fibration in homotopy type theory, i.e. a uni-
valent family of types b : B ⊢ A : U such that B ≃ A(b0) for some b0 : B. He
observed one can show internally in HoTT that the classifying space BG has trivial
automorphism group when G is a group with trivial centre and trivial outer auto-
morphism group, and used this to construct the example as follows. Sn satisfies the
conditions for n 6= 2, 6. We take B to be n copies of BSn, and define the type A to
be equal to B on points, with its value on paths determined by the action of Sn on
n.

7. Conclusion

7.1. Variations and generalisations. Recently David Wärn [Wär24] has noticed
a variation on Kraus’ paradox that works as follows. We will present it for all
cofibrations, although following Kraus, the argument was originally phrased using
propositional truncation.
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Let m : A → B be a cofibration with A a small type. Working internally in type
theory, for each element a of A we have a contractible type C(a) :=

∑
a′:A a′ =

a, with the centre of contraction given explicitly as (a, refl). The special case of
univalence for contractible types tells us that the type of all small contractible types
is contractible. Hence we can lift to obtain for each b : B a type C(b) together with
a proof that C(b) is contractible. In particular this includes a witness that C(b) in
inhabited, say c(b) : C(b). The upper triangle in the lifting diagram tells us that for
a : A, C(m(a)) is definitionally equal to

∑
a′:A a′ = a and c(m(a)) is definitionally

equal to (a, refl). Hence we if apply the first projection we get π0(c(m(a))) ≡ a.
In some ways this argument is more general than Kraus’: it only requires the

special case of univalence for contractible types, and does not require A to be
homogeneous or inhabited. However, in at least one way it is, unfortunately, less
general. In formal treatments of type theory the projection terms π0 include type
annotations that explicitly describe the types used to construct the Σ type. In
particular, the variable a occurs in the term π0 we used above implicitly as a part
of the type annotation. In Wärn’s formalisation in the Agda proof assistant the
type annotation appears as an implicit parameter to the projection function that is
inferred automatically by Agda. This issue prevents us from adapting the argument
to arbitrary path categories.

For a specific counterexample, we can consider the extensional path category
of Set, and make the following observation, based on the cardinal model of type
theory due to Bauer and Winterhalter [Win20, Section 8.3]. We say a fibration
is semi-univalent if in Definition 4.3 we only have the “lower homotopy” f ∼ g.4

Note that in type theory semi-univalence implies propositional extensionality, and
so also univalence for contractible types.

Proposition 7.1. Assuming the axiom of choice, the extensional path category on
Set is semi-univalent.

Proof. Given a map f : A → B, we take U to be the quotient of B identifying
elements if their fibres have the same cardinality. The quotient map has a section
s : U → B by the axiom of choice, and pulling back f along s gives the required
universe. �

The author expects nonetheless that a semantic version of Wärn’s argument
is possible. Note that if we use the “standard” interpretation of Σ-types in set
theory as sets of ordered pairs we can define the first projection “uniformly.” E.g.
Using Kuratowski ordered pairs, we always define π0(z) to be

⋃⋂
z independent

of which particular Σ-type we are considering. Moreover, for the more standard
definition of universe in Set as Vκ for inaccessible κ, we can restrict this uniform
projection to an operation on small sets. However, we leave it for future work
to find a natural formulation of this property for universes in path categories, to
study which examples of path categories it applies to, and to show that under
those conditions univalence for contractible types implies that every cofibration is
a monomorphism.

The variation of Kraus’ paradox due to the author in [Swa18, Section 6] is
another example where the requirement of homogeneous domain is dropped, but
which turns out to be less general in other ways. For one thing, it requires the very

4This is a reformulation of the propositional version of the isomorphism reflection principle
from [Win20, Section 8.3].
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limiting condition that the cofibration m : A → B is also an embedding in type
theory. In addition it is very specific to the syntactic categories from type theory,
since the arguments makes use of raw terms. As such it is unlikely to generalise to
arbitrary path categories.

However, the current version of Kraus’ paradox is likely not the most power-
ful. One can naturally ask the following questions, which are all, to the author’s
knowledge, open problems:

(1) Can we say any more about cofibrations with homogeneous domain, other
than that they are monomorphisms?

(2) Can replace the requirement of homogeneity with something weaker? What
can we still say if the domain has a rich supply of automorphisms, but not
quite enough to get homogeneity?

(3) Is there a better formulation of Kraus’ paradox for higher inductive types
with recursive point constructors, such asW -types and nullification [RSS20]?

7.2. Is Kraus’ paradox surprising? We can now give another perspective on
why Kraus’ paradox is a surprising result.

In path categories we have two different notions of injective map. As in any
category we can think of monomorphisms as injective maps, following our intuition
from many natural examples of categories. The second, arguably more correct
definition is maps that are “homotopy monomorphic,” i.e. those that factor as a
weak equivalence followed by an hProposition. Certainly the latter agrees with the
internal statement in type theory that the map is injective when we work in models
of type theory.

In extensional path categories the two definitions are equivalent, so there is no
ambiguity. For non extensional path categories, we no longer expect the two classes
to coincide. For models coming from homotopy theory we have the intuition that
propositional truncation no longer identifies points, but instead “adds new paths.”
From this perspective, it is not surprising that there are at least some examples
of path categories where the truncation maps are always monomorphisms, even
though truncations are almost never homotopy monomorphisms. In Cisinski model
structures, for example, a map is a cofibration if and only if it is monic, by definition
[Cis02, Definition 2.12].

However, just as for extensional path categories, there’s no reason that our intu-
itions about one class of model should apply to every model. It is easy to think of
the choice of definition for cofibration as an “implementation detail” that is some-
what independent of the logical principles holding in a model. Hence one might
näıvely still expect some flexibility here, with path categories intermediate between
extensional ones and “homotopical” ones, where univalence holds, but truncation
maps do not have to be monic. Kraus’ paradox tells us that at least for homoge-
neous types this is wrong again: we have to take truncation maps with homogeneous
domain to be monomorphisms if we want univalence to hold.
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[KECA17] Nicolai Kraus, Mart́ın Escardó, Thierry Coquand, and Thorsten Altenkirch. Notions
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versité de Nantes, 2020.

Email address: wakelin.swan@gmail.com

http://homotopytypetheory.org/book
https://gist.github.com/dwarn/31d7002a5ca8df0443b31501056e357f

	1. Introduction
	Acknowledgements

	2. Path categories
	3. hPropositions and propositional truncation
	4. Univalence in path categories
	5. Kraus' paradox
	6. Some worked examples in groupoids
	7. Conclusion
	7.1. Variations and generalisations
	7.2. Is Kraus' paradox surprising?

	References

