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Abstract

We evidence a family X of square matrices over a field K, whose elements will be
called X-matrices. We show that this family is shape invariant under multiplication as
well as transposition. We show that X is a (in general non-commutative) subring of
Mat(n,K). Moreover, we analyse the condition for a matrix A ∈ X to be invertible in
X . We also show that, if one adds a symmetry condition called here bi-symmetry, then
the set X b of bi-symmetric X-matrices is a commutative subring of X . We propose
results for eigenvalue inclusion, showing that for X-matrices eigenvalues lie exactly on
the boundary of Cassini ovals. It is shown that any monic polynomial on R can be
associated with a companion matrix in X .
Classification (AMS/MSC2010): 15B99, 15A30, 15A21, 16S50.
Keywords: Matrices; Anti-symmetry; Matrix Rings; Eigenvalue Inclusion.

1 Introduction

Diagonal matrices are shape-invariant under all main matrix operations (sum, product,
inversion, transposition). However, other popular families of matrices do not show this
invariance property. For instance, symmetric matrices are closed with respect to sum and
transposition, but the product of two symmetric matrices may be not symmetric; triangular
matrices are not invariant under transposition (upper triangular matrices become lower
triangular). Matrix sets such as SL(n,K), O(n,R) are subgroups of the invertible matrices
which are invariant under transposition; nonetheless, they are not closed with respect to
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the sum. The purpose of this paper is to find an easy-to-handle family of matrices which
is both a sub-ring of Mat(n,K) and shape-invariant under multiplication and transposition
as well. We recall that shape invariance is important in numerical linear algebra, when one
wishes to keep the sparsity pattern intact [1]. In this respect, we also note that while shape
invariance under matrix multiplication is frequently searched for numerical purposes, the
family of matrices we are to discuss is not only invariant under matrix multiplication but
also under transposition and inversion.
After a preliminary investigation of the notion of anti-transposition, we introduce the family
of X-matrices. We prove that these matrices form a sub-ring of the square matrices of size n
invariant under transposition. Regarding inversion, we focus on the inverse of an X-matrix,
when it exists: in fact, even if the family of X-matrices is a subring of the ring of n × n
matrices, it is not obvious that the inverse of an X-matrix is still an X-matrix. However,
we show that this is indeed the case. In this result, it plays a favorable role the fact the
determinant of X-matrices can be expressed as a product of determinants of inner 2 × 2
quadratic submatrices.
The notion of anti-transposition forms a direct link to skew-symmetric and anti-commutative
matrices. These are pervading matrix theory right from its beginning: “It may be noticed
in passing, that if L, M are skew convertible matrices of the order 2, and if these matrices
are also such that L2 = −1, M2 = −1, then putting N = LM = −ML, we obtain

L2 = −1, M2 = −1, N2 = −1, (1)

L =MN = −NM, M = NL = −NL, N = LM = −ML (2)

which is a system of relations precisely similar to that in the theory of quaternions” [4, p.
32].
We then discuss the commutativity of the product between X-matrices. We are able to
find a non-trivial sub-ring of the X-matrices which is commutative. In order to do this we
will be motivated to add a symmetry conditions, called bi-symmetry, that characterizes the
sub-ring of bi-symmetric X-matrices.
Because of the determinant structure, the characteristic polynomial of an X-matrix is a
formed by products of quadratic polynomials. This structure leads to an eigenvalue inclusion
result for this type of matrices that shows that the eigenvalues of X-matrices lie exactly on
the boundary of the Cassini ovals.
The problem of locating the spectrum of a square matrix A without actually solving det(sI−
A) = 0 has attracted much attention in numerical linear algebra. The study of diagonally
dominant matrices leads to Gershgorin’s disk theorem, refining the argument gives algebraic
curves encircling the matrix spectrum like Cassini’s ovals of Brauer or the lemniscates of
Brualdi. From another viewpoint, the convex hull of the Gershgorin disks coincides with
the numerical range (or the field of values) of a matrix with respect to the ∞-norm, the set
of all Rayleigh quotients obtained from dual pairs of the ∞-norm. The largest real part of
the numerical range is an example of a matrix norm that is not an operator norm.
Finally, we show that, for any monic polynomial on R there exists a corresponding X-shaped
companion matrix. Thus, an X-matrix can be associated with any polynomial in R, a feature
which does not hold for diagonal matrices.
We note that a member of this family appears naturally in the work of [9, Equation (3), p.
4010)] in association with the fitting of a two-factor regression model with interactions.

2 Notation and preliminary remarks

We denote by K a field, e.g. K = Q, R, C. Mat(n,K) is the ring of square matrices n×n with
elements in K. We recall that the operation of transposition turns a matrix A = (ai,j) into
AT = (aj,i), and satisfies the relation (AB)T = BTAT . Here we define the anti-transpose of
a matrix and show a basic property related to this operation.

Definition 1. Let A = (ai,j) ∈ Mat(n,K). We define the anti-transpose of A, denoted by
A

T

, the matrix whose general element is given by

(A

T

)i,j = an−j+1,n−i+1.
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Example 2. Given A =

1 2 3
4 5 6
7 8 9

, its anti-transpose is A

T

=

9 6 3
8 5 2
7 4 1

 .
Let J denote the anti-identity in Mat(n,K), i.e.

J = (ji,j)i,j=1,...,n =

{
1 if j = n− i+ 1

0 otherwise
.

Lemma 3. The antitranspose and transpose of a matrix are related by A

T

= (JAJ)T .

Proof. Left-multiplication with J reorders the rows from last to first and right-multiplication
with J reorders the columns from last to first, transposition exchanges the row and column
indices.

These two immediate consequences follow.

Corollary 4. If A is symmetric then its anti-transpose is symmetric as well. Moreover the
equality AJ = JA

T

holds.

Corollary 5. For A,B ∈ Mat(n,K) it holds that (AB)

T

= B

T

A

T

.

Proof. The anti-identity J is involutory, namely J2 = I, so that

(AB)

T

= (JABJ)T = (JAJJBJ)T = (JBJ)T (JAJ)T = B

T

A

T

.

3 X-matrices

Definition 6. We say that a matrix A = (ai,j) ∈ Mat(n,K) is an X-matrix if

ai,j = 0 whenever i ̸= j and i+ j ̸= n+ 1. (3)

We denote by X the subset of Mat(n,K) whose elements are the X-matrices.

In other words, a square matrix is an X-matrix if each element which neither located on the
diagonal nor on the anti-diagonal is 0.

Example 7. The matrices
1 0 0 2
0 0 1 0
0 4 9 0
3 0 0 0

 ,

1 0 0 0 5
0 4 0 3 0
0 0 6 0 0
0 9 0 1 0
7 0 0 0 8


are 4× 4 and 5× 5 X-matrices, respectively.

We are now going to evidence some first basic properties of X-matrices, which motivate us
in studying these nice-shaped objects.

Remark 8. Any X-matrix A can be written as A1I + A2J where A1, A2 are diagonal
matrices, I is the identity matrix and J is the anti-identity defined above. Moreover, if
n is even (i.e. the matrix has no central element), A1 and A2 are uniquely determined.
Conversely, if A1 and A2 are diagonal matrices, then A = A1I +A2J is an X-matrix.

Lemma 9. If A ∈ X , then AT ∈ X , as well as A

T

∈ X .

Proof. Geometrically speaking, it should be clear that the statement is true looking at the
examples above. Anyway, assume that A ∈ X . Then

(AT )i,j = aj,i

is non-zero whenever j ̸= i and j + i ̸= n+ 1. Therefore, AT ∈ X . Similarly,

(A

T

)i,j = an−j+1,n−i+1

is non-zero if n− j + 1 ̸= n− i+ 1 and n− j + 1 + n− i+ 1 ̸= n+ 1. These conditions are
equivalent to i ̸= j and i+ j ̸= n+ 1; thus, A

T

∈ X .
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Lemma 10. Assume that A,B ∈ X . Then A+B, −A, AB are elements of X .

Proof. The fact that A + B and −A belong to X follows immediately by the definition of
matrix sum. In order to prove that AB belongs to X , use the Remark 8 to write

A = A1I +A2J, B = B1I +B2J,

where A1, A2, B1, B2 are diagonal matrices. Then, by Corollary 4,

AB = (A1I +A2J)(B1I +B2J) = (A1B1 +A2B

T

2 )I + (A2B

T

1 +A1B2)J

is still an X-matrix.

Proposition 11. X is a subring of Mat(n,K) which is closed under transposition and anti-
transposition.

Proof. The result comes from the previous lemmas, in addition to the fact that the zero
matrix and the identity matrix clearly belong to X .

The above analysis shows that X-matrices are invariant under a number of matrix operations,
including sum and product.

Corollary 12. Let m ∈ N. If A ∈ X , then Am ∈ X .

Proof. Follows by Lemma 10 and by the fact that Am is the product of A with itself m
times.

We then have the following.

Proposition 13. For A ∈ X , any matrix function

f(A) =

∞∑
i=0

aiA
i

defined via a matrix Taylor series which converges in A belongs to X .

Proof. f(A) is the limit of the evaluations at A of polynomials with coefficients in K; each
of these evaluations is an element of X by the previous results. Therefore f(A) belongs to
X , as any vector subspace of a finite dimensional vector space is closed.

These functions include function such as matrix exponentials, logarithms, harmonic func-
tions and the Cayley transformation ψ(A) = (I −A)(I +A)−1.

4 The inverse of an X-matrix

This section is split into two parts. In the first, we characterize the invertible elements of
X , providing an explicit formula for the discriminant of an X-matrix. In the second, we
determine a way to compute the inverse of an X-matrix conveniently.

4.1 Characterizing the Elements of an Inverse X-Matrix

Having proved that X is a subring of Mat(n,K) one could wonder whether for any non-zero
element of X it is possible to find a multiplicative inverse inside X itself. It is easy to find
a non-zero X-matrix which is not invertible. For instance, one can consider the matrix

1 0 . . . 0
0 0
...

. . .
...

0 . . . 0

 .
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Then, we want to understand what being invertible in X means, i.e. to characterize the set

X× = {A ∈ X | there exists B ∈ X such that AB = BA = I } .

In this respect, observe that, since X is a subring of Mat(n,K), if a matrix A ∈ X is
invertible in X , then it is also invertible in Mat(n,K), or equivalently detA ̸= 0. This is
equivalent to say that X× ⊆ GL(n,K)× ∩ X . We are going to prove that the inverse of an

X-matrix is an X-matrix. Because a square matrix is invertible if and only if detA ̸= 0, we
start characterizing the determinant of an X-matrix.

Lemma 14. Given A ∈ X ,

detA =

{∏n
2
i=1(ai,ian−i+1,n−i+1 − ai,n−i+1an−i+1,i) if n is even,∏n−1

2
i=1 (ai,ian−i+1,n−i+1 − ai,n−i+1an−i+1,i) · a(n+1)/2,(n+1)/2 if n is odd.

(4)

Proof. The proof is by induction. The cases n = 1, 2 are evident. Therefore, assume that
n ≥ 3. In order to prove the claim we observe that each X-matrix of Mat(n,K) is of the
type

A =


a1,1 0 . . . 0 a1,n
0 0
... An−2

...
0 0
an,1 0 . . . 0 an,n


where An−2 is another X-matrix of Mat(n − 2,K). Expanding the determinant with the
Laplace rule on the first column we obtain

detA = a1,1 ·

∣∣∣∣∣∣∣∣∣
0

An−2

...
0

0 . . . 0 an,n

∣∣∣∣∣∣∣∣∣+ (−)n+1an,1 ·

∣∣∣∣∣∣∣∣∣
0 . . . 0 a1,n

0

An−2

...
0

∣∣∣∣∣∣∣∣∣ .
Using another time the Laplace rule we have

detA = a1,1 · an,n · detAn−2 + (−)n+1(−)nan,1 · a1,n · detAn−2 =

= (a1,1an,n − an,1a1,n) · detAn−2,

and by induction we obtain the equality (4).

Remark 15. One can note that the determinant of a 3 × 3 X-matrix is the difference
between the product of the elements on the diagonal and the one of the elements on the
anti-diagonal:

det

a 0 d
0 b 0
e 0 c

 = abc− dbe.

Remark 16 (The characteristic polynomial of an X-matrix). So far we did not use the
fact the ring from which X-matrices take elements is a field. Hence, the formula for the
determinant of an X-matrix holds for X-matrices of Mat(n,R), where R is a commutative
ring. Using this fact applied to the ring R = K[t], we can easily find the formula for the
characteristic polynomial of an X-matrix. We recall that, given A ∈ Mat(n,K), χA(t) =
det(tI − A) ∈ K[t] is the characteristic polynomial. If A ∈ X , then tI − A is an X-matrix
of Mat(n,K[t]). By Lemma 14, the characteristic polynomial of an X-matrix can be written
as:

χA(t) = (t− an+1
2 ,n+1

2
)

n−1
2∏

i=1

[(t− ai,i)(t− an−i+1,n−i+1)− ai,n−i+1an−i+1,i]
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for n odd, or

χA(t) =

n
2∏

i=1

[(t− ai,i)(t− an−i+1,n−i+1)− ai,n−i+1an−i+1,i]

for n even.

Proposition 17. X× = GL(n,K) ∩ X .

Remark 18. While R× ⊆ GL(n,K) ∩ R holds for any subring R ⊆ Mat(n,K), we cannot
say the same about the other inclusion. For example, if K = Q, let R be Mat(n,Z), which is
a subring of Mat(n,Q). In this case the matrix A = 2I ∈ GL(n,Q) (since detA = 2n ̸= 0)
and A ∈ R (because its elements lie in Z). However, it is not true that A ∈ R×, since A−1,
the only matrix in Mat(n,Q) such that AA−1 = A−1A = I, is A−1 = 1

2I /∈ R, since not all
its elements are integers. Thus, the equality between sets that we are going to prove is a
property of the particular subring X , that holds thanks to how it is constructed.

Proof of Proposition 17. We have to prove that GL(n,K) ∩ X ⊆ X×, or equivalently that,
if A ∈ X and detA ̸= 0, then A−1 ∈ X . We proceed as follows. Firstly, we recall that the
inverse of a matrix A is unique and that A−1A = AA−1 = I. Thus, if we were able to find
an element B ∈ X such that AB = BA = I, that element would be the unique inverse of
A. Then, let us consider a generic B ∈ X and set C = AB. Note that the elements of a
product matrix C = AB with A ∈ X and B ∈ X are of the type:

• If n is even,

ci,j =


ai,ibi,i + ai,n−i+1bn−i+1,i if i = j

ai,ibi,n−i+1 + ai,n−i+1bn−i+1,n−i+1 if i+ j = n+ 1

0 otherwise

. (5)

• If n is odd,

ci,j =


ai,ibi,i + ai,n−i+1bn−i+1,i if i = j ̸= n+1

2

ai,ibi,n−i+1 + ai,n−i+1bn−i+1,n−i+1 if i+ j = n+ 1, i, j ̸= n+1
2

a(n+1)/2,(n+1)/2b(n+1)/2,(n+1)/2 if i = j = n+1
2

0 otherwise

. (6)

Then, we can impose that all the elements on the diagonal are equal to 1 and all the elements
on the anti-diagonal are equal to 0:

• If n is even,{
ai,ibi,i + ai,n−i+1bn−i+1,i = 1 for i = 1, 2, . . . , n

ai,ibi,n−i+1 + ai,n−i+1bn−i+1,n−i+1 = 0 for i = 1, 2, . . . , n
,

which is equivalent to[
ai,i ai,n−i+1

an−i+1,i an−i+1,n−i+1

] [
bi,i bi,n−i+1

bn−i+1,i bn−i+1,n−i+1

]
=

[
1 0
0 1

]
for i = 1, . . . ,

n

2
.

The idea of what we are doing is to focus on the i-th and n− i+1-th rows and columns
at the same time. We notice that the condition ai,ian−i+1,n−i+1−ai,n−i+1an−i+1,i ̸= 0
easily follows by the hypothesis A ∈ GL(n,K), i.e. detA ̸= 0, and by the equation (4)
for the determinant of an X-matrix. Thus, inverting the 2 × 2 submatrices of A, we
can find a suitable matrix B ∈ X such that AB = I.

6



• If n is odd,
ai,ibi,i + ai,n−i+1bn−i+1,i = 1 for i = 1, 2, . . . , n, i ̸= n+1

2

ai,ibi,n−i+1 + ai,n−i+1bn−i+1,n−i+1 = 0 for i = 1, 2, . . . , n, i ̸= n+1
2

a(n+1)/2,(n+1)/2b(n+1)/2,(n+1)/2 = 1

,

which is equivalent to[
ai,i ai,n−i+1

an−i+1,i an−i+1,n−i+1

] [
bi,i bi,n−i+1

bn−i+1,i bn−i+1,n−i+1

]
=

[
1 0
0 1

]
for i = 1, . . . ,

n− 1

2
,

together with the equation

a(n+1)/2,(n+1)/2b(n+1)/2,(n+1)/2 = 1.

Now the argument is exactly the same as above, once noticed that also the condition
a(n+1)/2,(n+1)/2 ̸= 0 holds.

In both cases, we found B ∈ X such that AB = I. A well known argument shows that
BA = I, too: since AB = I, we have that detA detB = 1, so that detB ̸= 0 and B−1

exists. Thus,
BA = BABB−1 = B(AB)B−1 = BIB−1 = BB−1 = I.

In particular, B ∈ X is the inverse of A and the claim is proven.

4.2 Finding the Inverse of an X-matrix

We propose another approach to find the inverse of an X-matrix, taking an empirical ap-
proach. As we observed in Remark 8, an X-matrix is the the sum of a diagonal and an
anti-diagonal term; notationwise, in this section, we write A = DI+EJ where D and E are
diagonal matrices, I is the identity and J is the anti-identity, i.e. the matrix made by ones
on the anti-diagonal, and zeros everywhere else. Observe that the choice of D,E is unique
whenever n is even, while it is not if n is odd (the diagonal and the anti-diagonal intersect
in the center of the matrix). In the second case, we impose e(n+1)/2,(n+1)/2 = 0, so that
d(n+1)/2,(n+1)/2 = a(n+1)/2,(n+1)/2. Assume that the matrixD is invertible, i.e. ai,i = di,i ̸= 0
for all i = 1, . . . , n. Then D−1A = I+FJ , where F = diag(

ei,i
di,i

) is the diagonal of quotients.

We are about to use the expression of the geometric series in an heuristic way, without
caring (at least for now) about the convergence of the series that follows. Recall that, by
Corollary 4, for F diagonal, we have that JF = F

T

J . Therefore

A−1D = I − FJ + (FJ)2 − (FJ)3 + (FJ)4 − (FJ)5 ± · · · =
= I − FJ + FF

T

J2 − FF

T

FJ3 + FF

T

FF

T

J4 − FF

T

FF

T

FJ5 ± · · · =
= I − FJ + FF

T

J2 − (FF

T

)FJ3 + (FF

T

)2J4 − (FF

T

)2FJ5 ± · · · =
= (I + FF

T

+ (FF

T

)2 + . . . )I − (I + FF

T

+ (FF

T

)2 + . . . )FJ =

= (I − FF

T

)−1I − (I − FF

T

)−1FJ = (I − FF

T

)−1(I − FJ).

Hence
A−1 = (I − FF

T

)−1(I − FJ)D−1.

For this formula to hold, we need ai,i = di,i ̸= 0 for all i = 1, . . . , n and ei,ien−i,n−i ̸=
di,idn−i,n−i. The obtained formula seems to hold only if the geometric series

(I + FJ)−1 = I − FJ + (FJ)2 − (FJ)3 + (FJ)4 − (FJ)5 ± . . .

converges. Anyway, we can verify by hands that the formula holds even if the matrix FJ
has elements big enough not to let the series converge:

(I − FF

T

)−1(I − FJ)D−1A = (I − FF

T

)−1(I − FJ)D−1(DI + EJ) =

= (I − FF

T

)−1(I − FJ)(I + FJ) = (I − FF

T

)−1(I − (FJ)2) =

= (I − FF

T

)−1(I − FF

T

) = I,
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and necessarily A(I − FF

T

)−1(I − FJ)D−1 = I, too.

Alternatively, assume E invertible (for, is n is odd impose d(n+1)/2,(n+1)/2 = 0, so that

e(n+1)/2,(n+1)/2 = a(n+1)/2,(n+1)/2). Using G = diag(
di,i

ei,i
), we find E−1A = J + GI =

(I +GJ)J and

JA−1E = I −GJ +GG

T

J2 −GG

T

GJ3 +GG

T

GG

T

J4 −GG

T

GG

T

GJ5 ± . . .

= (I −GG

T

)−1(I −GJ)

so that
A−1 = J(I −GG

T

)−1(I −GJ)E.

For this formula to hold, we need ai,i = ei,i ̸= 0 and ei,ien−i,n−i ̸= di,idn−i,n−i.

We remark that these formulas are useful since, in both cases, the only matrices that we are
inverting are diagonal matrices, which is a very easy task to accomplish. As already noticed,
if n is odd then the central entry is not uniquely decomposable. One can avoid to impose
one of e(n+1)/2,(n+1)/2 and d(n+1)/2,(n+1)/2 equal to 0, as long as the required conditions are
satisfied.

5 The bi-symmetry condition

We have already observed that X is not a commutative ring whenever n ≥ 2. However, it
would be interesting to determine at least a subring of X which is commutative. There is
a canonical way to do so: given a (possibly non-commutative) ring A, one can consider the
center of A, defined by

Z(A) = { a ∈ A | ab = ba, for all b ∈ A} .

One can easily prove that Z(A) is a subring of A which, by definition, is commutative.
However, in our particular case, this approach produces something already known: Indeed,
it can be shown that the center of X is given by the diagonal matrices which are invariant
under anti-transposition. For example, in the cases n = 3 and n = 4, Z(X ) consists of the
matrices of the shape a 0 0

0 b 0
0 0 a

 ,

a . . . 0

b
...

... b
0 · · · a

 .
As we have already said, we are looking for something wider than a subset of diagonal
matrices. Then the question is whether it is possible to impose a particular symmetry
condition on the elements of X to obtain the result we look for.

Definition 19. We denote by X b the subset of X whose elements are the X-matrices
invariant under both transposition and anti-transposition, i.e.

X b = {A ∈ X | A = AT = A

T

} .

We call the elements of X b bi-symmetric X-matrices.

Example 20. For n = 3 and n = 4 we have that bi-symmetric X-matrices are have shapes

a 0 c
0 b 0
c 0 a

 ,

a 0 0 c
0 b d 0
0 d b 0
c 0 0 a

 , respectively.

8



In particular, given A ∈ X b invariance under anti-transposition imposes

ai,i = an−i+1,n−i+1 for all i = 1, . . . , n, (7)

while invariance under transposition imposes

ai,n−i+1 = an−i+1,i for all i = 1, . . . , n. (8)

Proposition 21. X b is a commutative subring of X .

Proof. It is clear that the zero matrix belongs to X b, and that X b is closed with respect
to the sum and the additive inverse operations. Thus, X b is an additive subgroup of X .
Moreover, note that the identity matrix lies inside X b. In order to prove that X b is a
subring of X , what is left to show is that X b is closed under the product operation. Assume
that we are given A,B ∈ X b. Set C = AB; we need to prove that also for C conditions (7)
and (8) hold. Let us start from (7). From equations (5) and (6), for all off-center elements
we have

ci,i = ai,ibi,i + ai,n−i+1bn−i+1,i = an−i+1,n−i+1bn−i+1,n−i+1 + an−i+1,ibi,n−i+1.

Note that an−i+1,n−(n−i+1)+1 = an−i+1,i, as well as bn−(n−i+1)+1,n−i+1 = bi,n−i+1. Hence,

ci,i = an−i+1,n−i+1bn−i+1,n−i+1 + an−i+1,n−(n−i+1)+1bn−(n−i+1)+1,n−i+1 = cn−i+1,n−i+1.

If n is odd and i = n+1
2 ,

c(n+1)/2,(n+1)/2 = cn−((n+1)/2)−1,n−((n+1)/2)−1,

so that this peculiar case is verified, too. This proves that C = C

T

. Now we pause this
argument for a moment, and we use the results obtained so far to show that, if A,B ∈ X b,
then AB = BA. Recalling the remarks made at the very beginning of this paper about the
properties of anti-transposition, we deudce that

AB = (AB)

T

= B

T

A

T

= BA.

Lastly, we can go back and use the commutative property to show that C = CT :

CT = (AB)T = BTAT = BA = AB = C,

and this proves the claim.

We can investigate the commutativity of the ring X b further. Indeed, one can observe that
bi-symmetric matrices admit a common basis of eigenvectors (in particular, ei ± en−i+1 for
i = 1, . . . , n/2 if n is even, and ei± en−i+1 for i = 1, . . . , (n+1)/2, together with e(n+1)/2, if
n is odd). Let C be the n× n invertible matrix obtained by collecting these vectors. Then
the ring homomorphism given by the conjugation

X b → Mat(n,K), A 7→ C−1AC

is injective and has image contained inside the diagonal matrices. Thus, X b is commutative
being isomorphic to a subring of the diagonal matrices, which constitute a commutative
ring. This is a specific situation of a general result:

Proposition 22. Assume that Y is a subring of Mat(n,K) such that

• For any A ∈ Y, A is nondefective;

• For any A ∈ Y and λ ∈ K, λA ∈ Y (so that Y is a K-vector subspace of Mat(n,K)).

Then Y is commutative if and only if there is a common basis of eigenvectors for all the
elements of Y.
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Proof. Indeed, if there is a common basis of eigenvectors, the argument is the same as above:
pick C the invertible matrix obtained by collecting together these eigenvectors. The injective
morphism

Y → Mat(n,K), A 7→ C−1AC

maps Y into a subring of the diagonal matrices, which is commutative and isomorphic to
Y. On the other hand, assume Y is commutative. Choose a basis { y1, . . . , yr } of Y. Since
these elements are diagonalizable and commute with each other, we can find a common basis
of eigenvectors { x1, . . . , xn }. This is a general fact of linear algebra, and follows from the
fact that if AB = BA then B sends an eigenvector of A to an eigenvector of A relative to
the same eigenvalue. Hence, we have that

yixj = λijxj

for some λij ∈ K. Now pick a generic element α1y1 + · · ·+ αryr ∈ Y; then

(α1y1 + · · ·+ αryr)xj = (α1λ1j + · · ·+ αrλrj)xj ,

so that { x1, . . . , xn } is a common basis of eigenvectors for the whole Y.

We now show that if an X-matrix is bi-symmetric and invertible, then also its inverse is
bi-symmetric and invertible.

Proposition 23. Assume that A is a bi-symmetric invertible matrix. Then A−1 is a bi-
symmetric matrix.

Proof. We already know by Proposition 17 that A−1 ∈ X . Transposing and anti-transposing
the equation AA−1 = I we obtain

(A−1)TAT = IT = I, (A−1)

T

A

T

= I

T

= I.

By uniqueness of the inverse of a matrix, we deduce that

(A−1)T = (AT )−1 = A−1, (A−1)

T

= (A

T

)−1 = A−1.

Thus, A−1 ∈ X b.

We can summarize this results in the following statement:

(X b)× = GL(n,K) ∩ X b.

6 X-Companion Matrices and Eigenvalue Inclusion

In linear algebra, companion matrices and eigenvalue inclusion play a central role and are
subject to intensive investigation (see [8] and more recently [6, 5] on companion matrices,
and works such as [2, 7, 3] on eigenvalue inclusion). In this section, we discuss whether
X-matrices can be companion on any monic polynomial on K in the first part. We present
results for eigenvalue inclusion in the second part.

6.1 Companion Matrices in X-form

We look for a non-trivial answer to the question of whether it might be true that, given
a monic polynomial, there always exists an X-matrix whose characteristic polynomial is
f . We recall that a monic polynomial f(t) ∈ K[t] is an expression of the type f(t) =
tn + an−1t

n−1 + · · ·+ a0. We call the companion matrix of f the n× n matrix C given by

C =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

 .
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The characteristic polynomial of C coincides with f . A well known result is that whenever
K is algebraically closed (e.g. K = C), each polynomial factors into linear terms as

f(t) =

n∏
i=1

(t− αi),

so that there exists a diagonal matrix that satisfies the property. Because diagonal matrices
are a subset of X-matrices, we have immediately a trivial answer to this section starting
question. On the other hand, this is not true for other fields.
For instance, f(t) = t3 − 2 is irreducible over Q (since it is of degree 3 and without roots in
Q). We have already remarked that, whenever n is odd, any n × n matrix has at least an
eigenvalue, i.e. the characteristic polynomial has at least one root. Therefore, there cannot
exist a 3× 3 X-matrix for such an f on Q.
In the remainder, we deal with the very familiar case K = R. In this case, in spite of what
happens in C, the field is not algebraically closed, hence diagonal matrices are not enough
to cover all the monic polynomials of R[t] by taking their characteristic. However, all the
monic polynomials of R[t] can be covered by X-matrices.

Theorem 24. Given any f(t) ∈ R[t] a monic polynomial of degree n with coefficients in R,
there exists a n× n X-matrix A ∈ Mat(n,R) such that χA(t) = f(t).

Proof. Let f(t) be a monic polynomial of degree n, such that f ∈ R[t]. It is known that
every polynomial with coefficients in R can be factorized into polynomials whose degree is
at most 2. Hence we can write

f(t) =

k∏
i=1

(t− αi) ·
l∏

i=k+1

(t2 + βit+ γi) αi, βi, γi ∈ R.

That is, f is the product of l polynomials, of which k have degree 1 and the remaining l− k
have degree 2, with k+2(l− k) = n (if n is odd, k > 0 and k is odd; conversely, if n is even,
k is even, and it can also be equal to 0).
Recall that our aim is to find a n × n X-matrix whose characteristic polynomial is f . A
generic X-matrix is A = (ai,j) where ai,j = 0 whenever i ̸= j and i + j ̸= n + 1. We also
recall (Remark 16) that the characteristic polynomial of an X-matrix is the product of the
characteristic polynomials of the matrices[

ai,i ai,n−i+1

an−i+1,i an−i+1,n−i+1

]
,

multiplied by (t−an+1/2,n+1/2) if n is odd. The next task is, then, to construct the elements
ai,j to make f(t) equal to the characteristic polynomial of A.
Suppose n is even: indeed, if n is odd, we can set an+1/2,n+1/2 = αk+1/2 (it exists because
we remarked that if n is odd, k > 0 and it’s an odd number), and go on considering the
(n − 1) × (n − 1) matrix obtained ignoring the (n + 1)/2-th row and column. In this case,
k is even as well. We start building our X-matrix from its central element; place the k × k
diagonal matrix ∆k = diag(α1, . . . , αn) in the middle of our n× n matrix. This means that
for all j = 1, . . . , k/2 we set[

al+j,l+j al+j,n−l−j+1

an−l−j+1,l+j an−l−j+1,n−l−j+1

]
=

[
αj 0
0 αk+1−j

]
.

The characteristic polynomial of this matrix is (t − αj) · (t − αk+1−j). The only blocks
remaining are the external ones. Then, for all j = k + 1, . . . , l, we can consider the factor
t2 + βjt+ γj and its 2× 2 companion matrix, that is

Cj =

[
0 −βj
1 −γj

]
,
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whose characteristic polynomial is t2 + βjt+ γj , and we can set[
aj−k,j−k aj−k,n−j+k+1

an−j+k+1,j−k an−j+k+1,n−j+k+1

]
= Cj .

In conclusion, we obtain a matrix of this shape:

C =



0 . . . . . . −βk+1

...
. . . . .

. ...
0 . . . . . . −βl
... α1 0

...
. . . . .

.

. .
. . . .

... 0 αk

...
1 . . . . . . −γl

... . .
. . . .

...
1 . . . . . . −γk+1



.

This is the matrix we were looking for, because C is an n× n matrix such that

det(tI −A) =

r∏
i=1

(t− αi) ·
l∏

i=k+1

det(tI − Ci) =

r∏
i=1

(t− αi) ·
l∏

i=k+1

(t2 + βit+ γi) = f(t).

Note that A is a n× n X-matrix whose characteristic polynomial is f .

Remark 25. Alternatively, one may provide a companion matrix of the form

C =



0 . . . . . . −βk+1

...
. . . . .

. ...
0 . . . . . . −βl
... 0 −α1αk

...
. . . . .

.

. .
. . . .

... 1 α1 + αk

...
1 . . . . . . −γl

... . .
. . . .

...
1 . . . . . . −γk+1



.

which is composed of two constant blocks on the left: a zero block and an anti-identity
block.

The above result shows that for every monic polynomial in R there exists an X-companion
matrix. Still considering the case K = R, we note that a bi-symmetric X-matrix is in particu-
lar symmetric, and therefore diagonalizable. As a consequence, its characteristic polynomial
factors into linear terms, so that we cannot cover the whole set of monic polynomials over
R using bi-symmetric X-matrices only.

6.2 Eigenvalue Inclusion for X-Matrices

Gerschgorin’s Disk Theorem and the expansions to Cassini’s ovals [10] allow for locating
eigenvalues within geometrical regions (the analytical expressions of eigenvalues and eigen-
vectors of X-matrices are provided in the Appendix). For X-matrices given by A = (aij) =

12



diag(di) + diag(ei)J the disks are centered at the diagonal entries di and have radius |ei|
when considering row sums, (or |en−i+1| when considering column sums which is not per-
sued here further). The union of this disks includes the spectrum. Cassini’s ovals are
given by C(z1, z2, d) = {s ∈ C : |s − z1| |s − z2| ≤ d}. From Brualdi’s results, only
elements connected by a cycle need to be considered for covering the spectrum. For X-
matrices, rows i and n − i + 1 form nontrivial cycles. For odd n, the matrix center ele-
ment an+1

2 ,n+1
2

is already an eigenvalue. Hence, the spectrum of the X-matrix A satisfies

σ(A) ⊂ C(di, dn−i+1, |eien−i+1|). Therefore n Gerschgorin disks are replaced by n
2 ovals.

For n odd, we have n−1
2 ovals together with the point of the matrix center.

Theorem 26. Eigenvalues of real X matrices are located on the boundary of the Cassini
ovals.

Proof. The characteristic polynomial decomposes into a product of quadratic polynomial and
the possible linear part from the center element, if n is odd. These quadratic polynomials
are obtained from

det

([
t− di −ei

−en−i+1 t− dn−i+1

])
= (t− di)(t− dn−i+1)− eien−i+1,

the eigenvalues λi,1, λi,2 satisfy (λi − di)(λi − dn−i+1) = eien−i+1, so that

λi,1, λi,2 ∈ ∂C(di, dn−i+1, |eien−i+1|), i ≤
⌊n
2

⌋
.

Figure 1 shows the Cassini curves for a specific matrix, namely A = diag(3, 3,−2, 1, 1, 7) +
diag(2−,−5,−5, 7, 6, 6)J and some derived matrices. Note that the shapes vary greatly
between eights and ovals. Moreover, the eigenvalues (denoted by asterisks in the graphs)
are directly located on the the curves.

Remark 27. Letting D = diag(di) and E = diag(ei) consider fn−i+1 = −didn−i+1 +
eien−i+1, fi = 1 for i < n

2 , gn−i+1 = di + dn−i+1, gi = 0 for i < n
2 . Then Y = diag(g) +

diag(f)J has the same spectrum as X. Consider the matrices

X =


6 6

−5 −8
−4 6

−5 1

 , C =


1

1
62 1

−36 7

 .
They have the same spectrum, but different Cassini ovals.

7 Conclusions

This work has investigated the family of X-matrices that shares interesting properties: any
A ∈ X is invariant under transposition, the sum of two elements in X is in X and so is
their product. Thus, any matrix function obtained via a convergent Taylor series expansion
maps an element of X into an element of X . Also, if A ∈ X is invertible, its inverse is in
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Figure 1: Eigenvalue Inclusion via Cassini ovals for the X matrix A, its symmetric product
ATA, multiplied by the anti-diagonal, and in X companion form.
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X . We have shown that the set of bi-simmetric X-matrices (X b) is a commutative subring
of Mat(n,K). Moreover, when the inverse of an element in X b exists, it is in X b.
We have then seen that for any monic polynomial with coefficients in R, there exists an
element of X whose characteristic polynomial is the monic polynomial of interest. This is
not true for diagonal matrices in R. Bi-symmetric X-matrices are also not rich enough to
cover every polynomial with coefficients in R.
Regarding eigenvalue inclusion, for elements of X , eigenvalues lie on the boundary of Cassini’s
ovals.
Finally, we note that shape invariance has implications in numerical linear algebra, and
several families of matrices which are shape invariant under multiplication have been studied.
The present family is not only shape invariant under multiplication, but under transposition
as well.
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8 Appendix: Eigenvalues, Eigenvectors of X-matrices

The characteristic polynomial of an X-matrix is made of products of quadratic polynomials
(times the matrix center root t−an+1

2 ,n+1
2

if n is odd). When equality to zero is of interest, we

can then solve separately each of the quadratic equations obtaining the system of equations,

δi − θit+ t2 = 0, i = 1, 2, . . . , ⌊n
2
⌋

where δi = ai,ian−i+1,n−i+1−ai,n−i+1an−i+1,i and θi = ai,i+an−i+1,n−i+1 are determinant
and trace, respectively, of the 2× 2 submatrix

( ai,i ai,n−i+1
an−i+1,i an−i+1,n−i+1

)
.

When n is odd we have the eigenvalue λ(n+1)/2 = a(n+1)/2,(n+1)/2.
The remaining eigenvalues are found from Vieta’s formulas λi,1 + λi,2 = θi, λi,1 · λi,2 = δi,

so that λi,1 = θi
2 + 1

2

√
4δi − θ2i , λi,2 = θi

2 − 1
2

√
4δi − θ2i .

Now, for bi-symmetric matrices, we have ai,i = an−i+1,n−i+1 and ai,n−i+1 = an−i+1,i, so that
θi = 2ai,i and δi = a2i,i−a2i,n−i+1 = (ai,i − ai,n−i+1) (ai,i + ai,n−i+1). Thus, for bi-symmetric
X-matrices, eigenvalues have a particularly simple form, namely λi,1 = ai,i−ai,n−i+1, λi,2 =
ai,i + ai,n−i+1, Let us now have a look at the eigenvectors of X matrices. They are of the

form αiei + βien−i+1. For λi,1, setting αi = ai,n−i+1 one obtains βi =
an−i+1,n−i+1−ai,i

2 +
1
2

√
4δi − θ2i . For λi,2, setting βi = an−i+1,i one obtains αi =

ai,i−an−i+1,n−i+1

2 − 1
2

√
4δi − θ2i .

Thus, for bi-symmetric matrices this calculation simplifies to the pairs (αi, βi) = (1, 1) and
(αi, βi) = (1,−1).
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[10] R. Varga. Geršgorin and His Circles. Springer, springers edition, 2004.

15


	Introduction
	Notation and preliminary remarks
	X-matrices
	The inverse of an X-matrix
	Characterizing the Elements of an Inverse X-Matrix
	Finding the Inverse of an X-matrix

	The bi-symmetry condition
	X-Companion Matrices and Eigenvalue Inclusion
	Companion Matrices in X-form
	Eigenvalue Inclusion for X-Matrices

	Conclusions
	Appendix: Eigenvalues, Eigenvectors of X-matrices

