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Abstract

The compression driver, the standard sound source for midrange acoustic horns, contains a cylindrical
compression chamber connected to the horn throat through a system of channels known as a phase plug.
The main challenge in the design of the phase plug is to avoid resonance and interference phenomena. The
complexity of these phenomena makes it difficult to carry out this design task manually, particularly when
the phase-plug channels are radially oriented. Therefore, we employ an algorithmic technique that combines
numerical solutions of the governing equations with a gradient-based optimization algorithm that can deform
the walls of the phase plug. A particular modeling challenge here is that viscothermal losses cannot be ignored,
due to narrow chambers and slits in the device. Fortunately, a recently developed, accurate, but computationally
inexpensive boundary-layer model is applicable. We use this model, a level-set geometry description, and the Cut
Finite Element technique to avoid mesh changes when the geometry is modified by the optimization algorithm.
Moreover, the shape calculus needed to compute derivatives for the optimization algorithm is carried out in
the fully discrete case. Applying these techniques, the algorithm was able to successfully design the shape of a
set of radially-directed phase plugs so that the final frequency response surprisingly closely matches the ideal
response, derived by a lumped circuit model where wave interference effects are not accounted for. This result
may serve to resuscitate the radial phase plug design, rarely used in today’s commercial compression drivers.

Keywords: shape optimization, cut finite element method, viscothermal acoustics, compression driver

1 Introduction
We present an engineering design case study that aims to demonstrate how recent progress, both in mathematical
modeling and design optimization techniques, may potentially revive a design concept rarely used due to diffi-
culties in providing simple explicit design guidelines. The mathematical modeling progress concerns acoustic
viscothermal (also called thermoviscous) losses, and the improved design optimization technique involves a novel
shape calculus approach for CutFEM discretizations in combination with level-set geometry descriptions. The
target application we consider is the compression driver, a standard sound source for the acoustic horns that are
used in public address systems aimed at large auditoria and outdoors. In particular, we will optimize the device
in the rarely-used radial orientation of the so-called phase plugs. We will now shortly introduce these improved
techniques, introduce the device under consideration, and outline the content of the rest of the contribution.

1.1 Viscothermal design optimization
The mathematical modeling of viscothermal losses is of importance for acoustic devices in which the acoustic
waves interact with large areas of solid surfaces, for instance in waveguides, acoustic liners, and in geometrically
narrow devices. One example of a narrow device is the compression driver considered here; other examples are
miniaturized devices such as headphones, microphones, mobile phones, and hearing aids.
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It is only recently that numerical optimization of acoustic devices has been carried out using methods that can
account for viscothermal losses. To a high computational cost, particularly for the three-dimensional cases we
consider here, such losses can within the linear regime be accurately modeled using the linearized, compressible
Navier–Stokes equations. In addition to the cost, a problematic issue of using these equations in the the context
of design optimization is the extreme scale separation between the viscothermal and wave propagation effects.
The viscothermal losses are typically concentrated in exceedingly thin boundary layers close to solid walls. For
instance, for air in the audio regime 20Hz–20 kHz, the thickness of these boundary layers is smaller than the
wavelength by a factor of 10−5–10−3 [5]. Thus, to achieve reasonable computing times, it is necessary to employ
aggressive mesh refinement strategies along solid boundaries, preferably in the form of highly anisotropic meshes:
thin in the wall-normal direction and stretched-out in the tangential direction. The management of such meshes
in a shape-optimization context is challenging.

However, the scale separation between wave and viscothermal effects can also be exploited to arrive in a
simplified model of lower computational cost. Such a model, the sequential linear Navier–Stokes model, was
developed by Kapinga [26]. As for the full Navier–Stokes equations, this simplified model unfortunately still
requires accurate spatial resolution of the boundary layers. Noguchi & Yamada [30] use the Kapinga model
to optimize a sound-absorbing pipe in 2D axial symmetry, employing isotropic mesh refinements based on
approximate computations of the signed distance function. The design sensitivity analysis utilized the adjoint-
equation approach; however, the contributions from the viscothermal terms in the final gradient expressions
were ignored in the optimization algorithm.

Oneway to circumvent the need for resolution of the boundary layers is to use a boundary-element formulation,
which does not require a mesh inside the domain. Such an approach was used by Andersen, Henriquez, and
Aage [2, 3] to optimize the shape of quarter-wave and Helmholtz resonators in 2D axial symmetry. Their
viscothermal model is similar to the Kapinga model, but the resulting Helmholtz and diffusion equations are
solved using boundary-element techniques. Although the use of the boundary-element method reduces the
spatial dimensionality by 1 and circumvents the need for volume meshes, the computational cost for solving the
system of equations appears to be somewhat high.

The low reduced frequency model [35] is an even simpler and faster viscothermal model that can be used for
special geometries, such as narrow slits and tubes. Christensen [13] used such a model for material-distribution
topology optimization, where the cross-section shape of a narrow pipe was designed to maximize the viscous
losses.

A completely different class of viscothermal models is based on boundary-layer theory, such as the model
devised by three of the authors to the current contribution [5]. This model uses the standard, isentropic Helmholtz
equation in the interior of the domain and models the viscothermal losses through a generalized impedance (a
so-called Wentzell) boundary condition on solid boundaries. The computational cost is essentially the same as
for lossless acoustics, and the accuracy is comparable with the full linearized Navier–Stokes equation as long as
boundary layers from opposing walls do not overlap and as long as the wall curvatures are not too extreme. In
fact, the model seems to work surprisingly well even at really small scales, such as in the modeling of porous
materials [14]. This viscothermal model has been used for design optimization only a few times so far and
only in 2D. The model was used by Tissot, Billard, and Garbard [36] to optimize for maximum absorption
the interior shape of a Helmholtz resonator, thought of as an element to be periodically repeated to form an
acoustic liner. Similarly to what we do here, the geometry was specified using a level-set function, and a CutFEM
approach was used for discretization, whereas, in contrast to our approach, a fully discrete shape calculus
was not attempted in their contribution. Dilgen, Aage, and Jensen [19] considered topology optimization of a
hearing instrument, utilizing a vibroacoustic model for which the viscothermal losses were modeled using the
boundary-condition approach. They also employed a level-set-function geometry description in combination
with a CutFEM discretization approach. Parts of the calculations involved in the sensitivity analysis were carried
out approximately using finite differences. Recently, Mousavi et al. [29, 28] introduced the boundary-layer model
in a completely different optimization scenario, using so-called material-distribution (or density-based) topology
optimization. In this scenario, the geometry is represented as a varying density-like coefficient in the governing
equations. Such methods can produce designs with arbitrary topological complexity to the price of producing
stair-cased boundaries and needing very fine meshes to accurately approximate curved boundaries.
1.2 The target application
The most common sound source used in loudspeakers is the moving-coil dynamic transducer. When the di-
aphragm of such a driver is oscillating in free air, only a small fraction of its vibrational energy is converted
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to propagating sound waves due to the mismatch of acoustic impedance between air and the solid material in
the diaphragm. Already in the 1920s, Hanna & Slepian [25] realized that better impedance matching could be
achieved by placing the diaphragm in a cylindrical compression chamber with a narrow outlet attached to the
throat of an acoustic horn. It was soon realized that the way in which the outlet from the compression driver
is connected to the horn throat is important for acoustic performance; this part of the device is now known as
the phase plug. The electrodynamic motor, the compression chamber, and the phase plug are typically mounted
together to form a compression driver, which to this day is universally used to feed acoustic horns at mid to high
frequencies in public address systems. The book by Kolbrek and Dunker [27] contains a recent and extremely
comprehensive discussion on the history as well as theory of acoustic horns and drivers.

A main challenge in the design of the compression driver is to avoid resonance and interference phenomena,
as they cause an uneven frequency response and may aggravate nonlinearities. A first issue is radial modes
appearing in the compression chamber. In most commercially available devices, the compression chamber
contains several outlets oriented in the annular direction, relying on the ingenious design rules first introduced
by Smith [33]. Using such Smith slits, that is, placing 𝑁 circumferential channels following the guidelines, 𝑁
radial modes in the compression chamber can be suppressed. Dodd and Oclee-Brown [21, 31] modified Smith’s
guidelines to curved and Voishvillo [38] to ring-shaped diaphragms.

However, the phase plug that connects the slits to the horn throat can create additional resonances through
wave interference between the channels. A reasonable guideline for the design of the channels in the phase plug
is that these should be of equal path length. However, this requirement still does not prevent internal resonances
from occurring. Bezzola [8] briefly reported results of optimizing the channels using the commercial Comsol
Multiphysics software (likely using the lossless Helmholtz equation). In a previous contribution, three of the
authors of the current article applied numerical shape optimization to the design of the channels in the phase plug
of a compression driver equipped with Smith slits [7]. We concluded that the shape optimized channels indeed
improved the frequency response compared to the initial straight-channel design, but that multiple resonances
unfortunately remained also in the optimized device. Another conclusion from the study was that viscothermal
boundary-layer losses are quite prominent, due to the wave propagation being confined in a very narrow geometry.
To lower the complexity and computational cost of the calculations, we carried out the optimization neglecting
these losses but evaluated the performance on the final geometry accounting for the viscothermal losses. However,
thanks to recent modeling advances [5], we will here be able to include the modeling of the losses also in the
optimization step.

Here we will consider the case when the outlets from the compression chamber are oriented in the radial
direction. This design choice is rare in commercial units, and only little analysis has been carried out. The most
complete discussion is likely the chapter on radial outlets in the thesis of Oclee-Brown [31]. In order to fit to
typical geometries found in compression drivers, Oclee-Brown studies the wave propagation in the compression
chamber by expanding the solution to the Helmholtz equation for the acoustic pressure in spherical coordinates.
The analysis suggests that the number of outlets should be large enough to suppress circumferential modes in the
chamber, and that radial modes can be suppressed by a slight modification of constant annular-width channel
outlets.

Concerning the design of a phase plug that connects radially-oriented outlets into a waveguide to be fed into
a horn, there seem to be no guidelines at all based on acoustic analysis in the literature. Here we will utilize
gradient-based shape optimization for this task, based on a further development of the method we used for
designing phase plugs for circumferential Smith slits [7]. The method relies on a level-set description of the
geometry, which allows complex shapes to be treated in the optimization. In previous projects, the use of a level-set
description has allowed unexpected and nontrivial shapes to appear in acoustic shape optimization studies [6, 7].
We combine the level-set geometry description with a fictitious-domain method known as CutFEM [11] or XFEM.
That is, the boundary of the computational domain, here the phase-plug wall, is allowed to pass arbitrarily
through the computational mesh, which means that only partial contributions to the governing equations come
from the finite-element mesh elements that are intersected by the boundary. Moreover, boundary conditions
for the walls of the phase plug have to be assigned to the boundary surfaces that cut through the elements.
As opposed to the previous study [7], the calculations need here to be carried out in three space dimensions.
Previously, CutFEM/XFEM approaches have successfully been used for the shape optimization of, for instance,
elastic structures [23, 12, 9], vibroacoustic problems [17, 20, 18], and flow patterns [37, 22].
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1.3 Overview of article
In § 2 and appendixA, we review the acoustic mechanism of the compression driver and derive an expression
that gives an upper limit of the performance, an expression that will be used in our most successful optimization
formulation. Modeling details, the optimization formulation, and details of the discretization for our target
application are introduced in § 4–6. A major difference with the previous study [7] is that we here will consider
viscothermal losses also during the optimization, based on the model discussed above [5]. The viscothermal
boundary condition needs to be supplied to the walls of the phase plug subject to design, which significantly
complicates the shape calculus. For the first time, to the best of our knowledge, this calculus will be carried out
in the fully discrete case, taking into account that the derivatives of the acoustic pressure as well as the normal
field of the boundary are in general discontinuous between elements. For this calculus, we will rely on formulas
proven in a recent publication [4]. The calculus is detailed in appendix B and the formulas are summarized in § 7.
We present the results of the phase plug optimization in § 8, results which seem to indicate favorable acoustic
properties of properly shaped radially-oriented phase plugs, as discussed in the concluding § 9.

2 The compression driver mechanism
To recognize the issues faced when designing a compression drive phase plug, it is necessary first to appreciate
the fundamental mechanism of the compression driver. In any loudspeaker transducer, a vibrating diaphragm
induces the acoustic waves that will be transmitted to the surroundings. The basic function of the compression
driver is to generate a high sound pressure level while only requiring a small displacement of the diaphragm.
Hanna & Slepian [25] are generally recognized to be the first in 1924 to describe and analyze such a device.

Under a number of strong assumptions, it is possible to devise a lumped-parameter model for the acoustic
pressure generated by the movement of a diaphragm in a model compression driver. We will see that only two
geometric properties of the device, its compression ratio and the depth of the compression chamber, govern its
performance under these assumptions. These two quantities constitute the fundamental parameters to be chosen
by the designer.

Consider the simplified model of a compression driver illustrated in figure 1. A diaphragm of cross sectional
area 𝑆d is positioned in a cylindrical chamber with rest volume 𝑉0 and with an outlet attached to a waveguide
with cross sectional area 𝑆wg. We make the following idealized assumptions.
Assumptions 2.1.

(i) The diaphragm moves axially as a solid piston given a time-harmonic movement with acceleration ampli-
tude 𝑎𝑑.

(ii) The pressure is the same at each point within the compression chamber

(iii) The compression within the chamber is isentropic, and the air is an ideal gas.

(iv) Linearity of the acoustic quantities.

(v) The waveguide is perfectly terminated; that is, the waves traveling to the right in the waveguide will be
perfectly absorbed.

Due to the time-harmonic assumption, the acoustic pressure in the compression chamber and the acceleration
of the diaphragm, as a function of time, can be written

𝑃(𝑡) = Re
(
𝑝 ei𝜔𝑡

)
, 𝐴𝑑(𝑡) = Re

(
𝑎𝑑 ei𝜔𝑡

)
, (2.1)

𝑎𝑑 𝑝

𝑉0 𝑆d

𝑆wg

Figure 1. A conceptual cylindrical compression driver. Cross-section view through axis (left) and orthogonal to
axis (right).
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Figure 2. The frequency response, given a fixed diaphragm acceleration, of the lumpedmodel for various compression
ratios 𝜅 and chamber depths 𝑑. (Plots scaled by the maximum sound pressure of all graphs.)

where 𝜔 is the angular frequency of the movement and 𝑝 and 𝑎𝑑 are complex amplitudes. Under assumptions 2.1,
it can be shown that the acoustic pressure and diaphragm acceleration amplitudes are related through the equation

𝑘 (−𝑑𝑘 + i
𝜅)𝑝 = 𝜌0𝑎𝑐. (2.2)

The geometric parameters of formula (2.2) are

𝑑 =
𝑉0
𝑆d
, 𝜅 =

𝑆d
𝑆wg

, (2.3)

that is, the compression chamber depth 𝑑 in the simple geometry of figure 1 and the compression ratio 𝜅. Moreover,
𝜌0 is the static density of air and 𝑘 = 𝜔∕𝑐0 the wave number, in which 𝑐0 is the speed of sound.

Formula (2.2) is likely no surprise for the acoustician and could be extracted, for instance, from the much
more comprehensive lumped-parameter performance analysis found in Kolbrek & Dunker’s monograph [27,
§ 18.4.4]. However, the precise formulation given above will be useful in the following, and we are not aware of
any source containing this exact formula, which is why we provide a short derivation in appendixA.

To appreciate the effects of the compression chamber on the frequency response, we will consider the pressure
amplitude, which by expression (2.2) will be

|𝑝| =
𝜌0|𝑎c|

𝑘(𝑑2𝑘2 + 1∕𝜅2)1∕2
. (2.4)

Figure 2 shows the frequency response of the pressure amplitude, according to formula (2.4) with constant |𝑎c|,
for a variety of compression ratios and chamber depths. We note that an increased compression ratio has a
dramatically positive effect on the delivered sound pressure level, and that an increase in compression ratio
should be accompanied by a narrowing chamber depth in order not to worsen the dropoff for higher frequencies.
Remark 2.2. Note that no real compression driver unit will possess a frequency response like the ones in figure 2,
since the diaphragm acceleration cannot be expected to be constant throughout the frequency range. Typically, a
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moving-coil dynamic transducer supplies the diaphragmmotion, and the frequency response will then depend on
the electrical and mechanical properties of the transducer and how they interact with the compression chamber.
The reason for providing the curves in figure 2 is to clarify the effects of the compression driver geometry; to
obtain the actual frequency response of the system, a complete, coupled model is needed that also includes the
transducer and a more realistic model for the waveguide load to replace assumption 2.1 (v).

3 Violations of assumptions 2.1
In real compression drivers, assumptions 2.1 will be violated to various degrees. The sound pressure level in
the chamber can be very high in the operational regimes common in professional audio, which is why the
linearity assumption (iv) can be questionable. Although significant, this aspect is out of scope for the present
contribution. Another questionable postulate is that the diaphragm moves as a solid piston, assumption (i). In
reality, structural modes form in the diaphragm at higher frequencies, whichmeans that the effectivemovingmass
will be frequency dependent, leading to an uneven frequency response. This “break-up”mechanismmay lower the
moving mass at higher frequencies and therefore boost the high-frequency response, which, perhaps surprisingly,
sometimes is regarded as beneficial. Also this (important) aspect will not be considered here. However, violations
of assumptions (ii) and (iii) will be addressed in detail.

For real drivers, it does not hold that the acoustic pressure 𝑝 is the same at each point within the chamber.
In particular, the diameter of the diaphragm will typically be large enough so that acoustic modes form in the
compression chamber. In fact, the positioning of the outlet as in figure 1 is particularly bad, mostly spoiling the
effect of the compression chamber. To address this issue, Smith [33] developed an ingenious strategy that divides
the outlet area 𝐴wg into 𝑁 circumferential slits. If these are properly placed and sized, Smith showed that the 𝑁
lowest radial modes in the chamber will not be excited. An example with 𝑁 = 3 is shown to the left in figure 3.
Such a configuration performs very closely to the ideal responses of figure 2 in the operational range below the
first 𝑁 + 1 radial modes as long as the slits are perfectly absorbing. However, in order to mount the driver to
the mouth of a horn, which is typically cylindrical, the slits need somehow to be connected together using a
device known as a phase plug. Figure 3 displays a simple design of a phase plug for 𝑁 = 3 Smith slits attached
to the compression chamber. Unfortunately, the phase plug introduces a nonideal load at the outlets from the
compression chamber as well as interdependencies between the loads to each slit, which means that the radial
chamber modes will not be completely suppressed. Moreover, the coupling between the slits means that internal
resonances can also build up within the phase plug. In a previous contribution [7], we used gradient-based
optimization to shape the phase-plug channels, which significantly improved the frequency response compared
to a design as to the right in figure 3, although we did not succeed in removing all resonances within the device.

As we saw in § 2, high compression rates and narrow compression chambers are needed to obtain, for a
given diaphragm movement, a high sound pressure and to avoid an excessive drop at high frequencies. The
device will thus contain very narrow regions. As a consequence, the viscothermal losses generated in the
boundary layers cannot be ignored, violating the isentropic assumption. This effect was noted already in the
previous contribution [7], where viscothermal losses were taken into account a posteriori by solving the linearized,
compressible Navier–Stokes equations. That is, the optimization was carried out using the isentropic Helmholtz
equation for the acoustic pressure, but the performance of the optimized device was assessed taking viscothermal
losses into account. Even though the final design outperformed the original design, this approach is conceptually
unsatisfactory; it would be preferable to account for the losses also in the optimization step.

As discussed in the introduction, although the linearized, compressible Navier–Stokes equations accurately

𝑓 𝑓

Phase plug

Figure 3. Left: a conceptual cylindrical compression driver with annular openings, placed according to Smith’s
guidelines, to suppress radial modes in compression chamber. Right: the function of the phase plug is to guide the
sound from the slits into the throat of a horn. Cross-section view through axis.
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compute the lossy sound transmission, they are unpractical to use for shape optimization, due to extensive
computational times and the need to manage the required extreme mesh refinements in the boundary-layer
region. Here we will instead rely on the boundary-condition model discussed in the introduction. Berggren et
al. [5] demonstrated the accuracy and extreme efficiency of this model on a compression driver with the same
type of radial outlets as considered here. The output sound pressure when employing the new model agreed
closely with the one obtained from a more complete model, in which the linearized, compressible Navier–Stokes
equations were used in the compression driver and phase plug. However, the new model required about two
orders of magnitude less memory and computational time compared to the more complete model. Thus, the
access to the boundary-layer model makes it now possible to apply numerical shape optimization to design the
phase plug of a compression driver while taking viscothermal losses into account during the optimization.

4 The compression driver with radial slits
An alternative to the Smith slits is to orient the outlets from the compression chamber in the radial direction, as
in figure 4. Note that the wave propagation then is intrinsically three dimensional, whereas 2D axial symmetry
modeling is possible for circumferential slits.

The device we will consider contains 𝑁s radial slits, placed symmetrically in the circumferential direction,
and the computational domain, depicted in figure 5, contains one of these in half symmetry, with symmetry
planes Γsym placed in the radial direction. The wall Γp of the phase plug, shown in figure 5 in its initial shape, is
the part of the device subject to shape optimization. The phase plug connects the compression chamber, whose
back side is the diaphragm Γd, to the waveguide. On the spherically-shaped diaphragm Γd, we impose a uniform
oscillatory movement in the axial direction with angular frequency 𝜔. This movement generates an acoustic
pressure 𝑃(𝒙, 𝑡) = Re ei𝜔𝑡𝑝(𝒙) in the computational domain, and we require the complex pressure amplitude 𝑝
function to satisfy the following boundary-value problem for the Helmholtz equation,

−∆𝑝 − 𝑘2𝑝 = 0 in Ω, (4.1a)

i𝑘𝑝 +
𝜕𝑝
𝜕𝑛

= 0 on Γout, (4.1b)

𝜕𝑝
𝜕𝑛

= 0 on Γsym, (4.1c)

−𝛿𝑉
i − 1
2 ∆T𝑝 + 𝛿𝑇𝑘2

(i − 1)(𝛾 − 1)
2 𝑝 +

𝜕𝑝
𝜕𝑛

= {
𝜌0𝑎m 𝒏 ⋅ 𝒆a
0

on Γd,
on Γw ⧵ Γd,

(4.1d)

𝒏T ⋅∇T𝑝 = 0 on 𝜕Γw. (4.1e)

The boundary condition on the outlet Γout of the waveguide is a simple radiation condition that perfectly absorbs
planar modes. In all numerical experiments, the frequency will be chosen so that all higher waveguide modes in
the radial direction will be evanescent. Following Oclee-Brown’s recommendations [31, Ch. 7], we choose𝑁𝑠 large
enough to suppress circumferential modes in the compression chamber. The symmetry boundary condition (4.1c)

Figure 4. Cutaway drawing of a compression
driver with radial slits.

Γd

Γp

Γout

Figure 5. The computational domain with the
initial shape of the phase-plugwallΓp. Symmetry
conditions hold atΓsym, consisting of the full back
side together with the surfaces indicated with
tinted color in the figure.
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is imposed on the whole back side of the domain in figure 5 as well as on the tinted surfaces in the figure. The
purpose of the waveguide with the given boundary conditions is to impose a perfectly matched condition at the
outlet of the phase plug; in reality, the outlet of the compression driver is typically directly mounted to the throat
of a horn.

The viscothermal condition (4.1d) is imposed on all remaining large solid wall surfaces Γw of the domain:
the diaphragm Γd and the opposing surface inside the compression chamber, as well as the phase plug wall Γp.
Note, from figure 5, that lossless homogeneous Neumann boundary conditions are imposed on the top part of the
compression chamber as well as the top and bottom part of the phase plug, although viscothermal losses would
be more appropriate. This simplification streamlines the implementation and will only have a marginal acoustic
effect. In particular, the top and bottom parts of the phase plug are modeled without viscothermal losses in order
to avoid cumbersome modifications to the shape gradient in the cases where the size of these parts changes.

The coefficients in condition (4.1d) contain the viscous and thermal boundary-layer thicknesses

𝛿𝑉 =
√

2𝜈
𝜔 , 𝛿𝑇 =

√
2𝜆

𝜔𝜌0𝑐𝑝
, (4.2)

where 𝜈 and 𝜆 are the kinematic viscosity and thermal conductivity coefficient of air, respectively, and 𝑐𝑝 the
specific heat capacity of air at constant pressure. This type of boundary condition, involving the tangential
Laplacian operator ∆T, can be viewed as a generalized impedance boundary condition, and is sometimes referred
to as aWentzell boundary condition. The tangential Laplacian operator in boundary condition (4.1d) generates
diffusion in the tangential plane Γw and can be defined as

∆T𝑝 = ∇T ⋅
(
∇T𝑝

)
(4.3)

using the tangential gradient and tangential divergence operators

∇T𝑝 = ∇𝑝 − 𝒏
𝜕𝑝
𝜕𝑛
, ∇T ⋅ 𝒒 = ∇ ⋅ 𝒒 − 𝒏 ⋅

𝜕𝒒
𝜕𝑛
, (4.4)

defined for scalar and R3-valued functions 𝑝 and 𝒒, respectively.
Indeed, condition (4.1d) constitutes in itself a diffusion–reaction problem on its surface, coupled to the

bulk Helmholtz problem (4.1a) through the normal flux. The presence of the tangential Laplacian requires a
“boundary condition to the boundary condition”, that is, a condition on the interface 𝜕Γw towards neighboring
boundary surfaces, in this case Γsym. We impose here condition (4.1e), similarly as in the publication where the
viscothermal model was devised [5]. Vector 𝒏T is the conormal field at the boundary 𝜕Γw of Γw. (The conormal
field is orthogonal to the normal field on Γw, outward-directed and in the tangent plane to Γw.) The forcing given
on Γd in boundary condition (4.1d), in which 𝒆a is a unit vector in the axial direction, stems from the diaphragm’s
oscillation with the acceleration amplitude 𝑎m.

The variational formulation of boundary-value problem (4.1), on which the finite-element discretization is
based, is as follows.

Find 𝑝 ∈𝑊 such that
𝑎(𝑞, 𝑝) = 𝑙(𝑞) ∀𝑞 ∈𝑊,

(4.5)

where

𝑎(𝑞, 𝑝) = ∫
Ω
∇𝑞 ⋅∇𝑝 − 𝑘2 ∫

Ω
𝑞𝑝 + i𝑘 ∫

Γout
𝑞𝑝 + 𝛿𝑇𝑘2

(i − 1)(𝛾 − 1)
2 ∫

Γw
𝑞𝑝 + 𝛿𝑉

i − 1
2 ∫

Γw
∇T𝑞 ⋅∇T𝑝, (4.6a)

𝑙(𝑞) = ∫
Γd
𝜌0𝑞𝑎d 𝒏 ⋅ 𝒆a, (4.6b)

where𝑊, a strict subspace of𝐻1(Ω), is the closure of functions in C 1(Ω̄) with respect to the norm devised by

‖ 𝑝‖2𝑊 = 𝑘20 ∫
Ω
|𝑝|2 + ∫

Ω
|∇𝑝|2 + 𝛿𝑇(𝛾 − 1)𝑘20 ∫

Γw
|𝑝|2 + 𝛿𝑉 ∫

Γw
|∇T𝑝|2. (4.7)

Note that condition (4.1e) is a “natural condition” for the tangential Laplacian, meaning that this interface
will not enter into the variational formulation, analogously to the vanishing of the symmetry condition (4.1c).
Thus, this interface will be neither a source or sink of acoustic power. The well-posedness proof in our previous
article [5, Appendix B] also applies to problem (4.5).
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Remark 4.1. To save space, we will in this article generally leave out the measure symbols in the integrals, like in
expressions (4.6) and (4.7). The choice of integration measure will be clear from the domain of integration.

5 Optimization problem
The maximal domain 𝐷 of all feasible computational domains, the hold all, is depicted to the left in figure 6.
To describe the shape of the phase-plug boundary Γp, we employ a level-set function 𝜙 ∶ Ωp, max → R, whose
domain Ωp, max ⊂ 𝐷 is the tinted part to the left in figure 6. The complement Ω0 = 𝐷 ⧵Ωp, max, illustrated to the
right in figure 6, consists of the compression chamber, the waveguide, and a thin region on the back side of the
phase plug; Ω0 is fixed throughout the computations.

The phase-plug boundary and interior are defined through a level-set function on Ωp, max as

Γp =
{
𝒙 ∈ Ωp, max ∣ 𝜙(𝒙) = 0

}
,

Ωp =
{
𝒙 ∈ Ωp, max ∣ 𝜙(𝒙) < 0

}
.

(5.1)

The level-set function will, in turn, implicitly be defined using a 3D generalization of the approach used in
previous studies [6, 7]. That is, 𝜙 is the solution to the boundary-value problem

−∆𝜙 = �̂� in Ωp, max, (5.2a)

𝜙 = 𝜙D on 𝜕ΩD
p, max, (5.2b)

𝜕𝜙
𝜕𝑛

= 0 on 𝜕Ωp, max ⧵ 𝜕ΩD
p, max. (5.2c)

On the part of the boundary to Ωp, max facing the compression chamber, we assign the Dirichlet boundary
condition (5.2b); the values of 𝜙D are given by the design illustrated in figure 5, which also serves as the initial
design for the optimization. In this way, 𝜕ΩD

p, max will always be closed to the compression chamber, and the outlet
from the compression chamber, shown as a tinted surface in the close up of the right picture in figure 6, will be a
part ofΩ0 and thus fixed throughout the computations. Wemade this choice in order to fix a priori the compression
ratio to be determined by other considerations not considered here. (For instance, too high compression ratios and
narrow chambers may introduce excessive sound pressures and high distortion.) The homogeneous Neumann
condition (5.2c) on the rest of the boundary yields freedom for the phase-plug boundary and interior to intersect
the boundary of Ωp, max, a property that indeed will be observed in the optimized devices. The level-set function
will depend on the right-hand-side function �̂�, whose nodal values in Ωp, max, after finite-element discretization,
will be the actual design variables updated by the optimization algorithm.

The quantity of interest for the optimization is the mean sound pressure at the exit of the waveguide, that is,

𝑝out,k =
1

|Γout|
∫
Γout

𝑝, (5.3)

Figure 6. The hold-all 𝐷 is the union of the gray and tinted part in the left picture. The domain for the level
set function 𝜙 is the tinted (blue) part Ωp, max. The part of the computational domain that is fixed is the gray part,
Ω0 = 𝐷 ⧵ Ωp, max, shown to the right. The tinted surface in the close-up indicates the exit from the compression
chamber. The computational domain is Ω = Ω0 ∪ Ωp, where Ωp ⊂ Ωp, max such that 𝜙 < 0.

9



where 𝑝 is the solution to variational problem (4.5) for wave number 𝑘, and |Γout| the area of Γout. Due to the
absorbing boundary condition on Γout and the evanescence of higher waveguide modes, the transmitted acoustic
power is proportional to |𝑝out,𝑘|2. For a set𝒦 of wave numbers, we will compare the results of optimization using
the two objective functions

𝐽pow(�̂�) =
1
2
∑

𝑘∈𝒦

1
|𝑝out,𝑘|2

(5.4)

and
𝐽track(�̂�) =

1
2
∑

𝑘∈𝒦

||||𝑝out,𝑘 − 𝑝idealout,𝑘
||||
2
, (5.5)

where
𝑝idealout,𝑘 = 𝑝ideal𝑘 e−i𝑘𝐿, (5.6)

where 𝑝ideal𝑘 is the ideal pressure response as obtained from equation (2.2) and 𝑒−i𝑘𝐿 the phase factor associated
with a planar wave propagating the distance 𝐿 between the diaphragm and the waveguide outlet Γout.

Thus, by minimizing 𝐽pow, we are maximizing the harmonic mean of the output power at the considered
wave numbers, whereas by minimizing 𝐽track, we are aiming to match the frequency response to the ideal one. If
needed, a Tikhonov regularization term may be added,

𝐽𝜖(�̂�) = 𝜖𝐽T(�̂�) + 𝐽obj(�̂�), (5.7)

where 𝐽obj is either of the two objectives (5.4) or (5.5), and

𝐽T(�̂�) =
1
2 ∫
Ωd,max

(�̂� − �̂�0)2, (5.8)

in which �̂�0 is the right-hand side function in equation (5.2a) associated with the starting guess of the optimization.
Such a regularization will put a bound on how much the level-set function can change from its initial shape.
In a previous study [6], we found that this type of regularization was effective in limiting the curvature of the
design boundary. As we will see, in practice, it turns out that the Tikhonov regularization will not be necessary to
employ in this case.

6 Discretization
The cut finite element method (CutFEM) [11] is a discretization technique that is similar to the XFEM ap-
proach [24]. These techniques are particularly suitable for problems, like here, in which the shape of the domain
is unknown in the problem to be solved [23, 32, 12, 9]. We employ a 3D version of the approach used in recent
2D acoustic shape optimization studies [6, 7].

The hold all 𝐷 (figure 6) is triangulated into a mesh Tℎ of unstructured tetrahedra with maximum diameter
ℎ > 0. We require the mesh surfaces to conform with the interface between the level-set domain Ωp, max and
the rest of 𝐷. Let 𝑉𝑛

ℎ be the space of continuous functions that are polynomials of maximal degree 𝑛 on each
tetrahedron 𝐾 ∈ Tℎ. From 𝑉1

ℎ, we form the discrete space used to numerically solve the level-set boundary-value
problem (5.2). Let 𝑈ℎ = 𝑉1

ℎ
||||Ωp,max

, and let 𝑈ℎ,0 be the subspace of functions in 𝑈ℎ vanishing on 𝜕ΩD
p,max. The

discrete level set function 𝜙ℎ will then be the solution to

𝜙ℎ ∈ 𝑈ℎ such that 𝜙ℎ = 𝜙D on 𝜕ΩD
p,max, and

∫
Ωp,max

∇𝑧ℎ ⋅∇𝜙ℎ = ∫
Ωp,max

𝑧ℎ�̂�ℎ ∀𝑧ℎ ∈ 𝑈ℎ,0, (6.1)

in which �̂�ℎ ∈ Uℎ, where Uℎ is the space of design variables in the discrete case, which we choose to be equal to
the space of test functions, Uℎ = 𝑈ℎ,0.

Then, analogously as in definition (5.1), the discrete level-set function 𝜙ℎ defines the discrete phase-plug
boundary and interior as

Γp,ℎ =
{
𝒙 ∈ Ωp, max ∣ 𝜙ℎ(𝒙) = 0

}
,

Ωp,ℎ =
{
𝒙 ∈ Ωp, max ∣ 𝜙ℎ(𝒙) < 0

}
.

(6.2)
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Ωh

Γp,h

Figure 7. The domain boundary Γp,ℎ is defined by a vanishing level set function 𝜙ℎ. The computational domain Ωℎ
is here below Γp,ℎ. The nodes marked in black will affect the solution 𝑝ℎ inside Ωℎ, whereas the white nodes will not.

Note that Γp,ℎ in general will cut through the inside of the elements of the triangulation, and that Ωp,ℎ thus will
not conform to the mesh inside Ωp, max. However, since 𝜙ℎ is piecewise linear, the surface Γp,ℎ will be piecewise
planar. This property greatly simplifies both the assembly process for the acoustic finite-element matrices and
the derivation of the shape calculus formulas for optimization.

The computational domain for the acoustic problem in the discrete case is Ωℎ = Ωp,ℎ ∪ Ω0; Ωp,ℎ will be
a subset of the tinted volume (Ω̂p,max) in figure 6 and Ω0 is the part shown to the right. The finite-element
approximation of variational problem (4.5) will be carried out in the space

𝑊ℎ =
{
𝑝ℎ ∣ 𝑝ℎ = 𝑞ℎ|Ωℎ for some 𝑞ℎ ∈ 𝑉2

ℎ

}
. (6.3)

Thus, we use piecewise-quadratic functions for the acoustic problem. Note that the number of degrees of freedom
for functions in𝑊ℎ will depend on the location of Γp,ℎ. Also note that for elements that are intersected by Γp,ℎ,
there will be basis function nodes for𝑊ℎ located outside of Ωp,ℎ. This situation is illustrated in figure 7, for
simplicity of presentation in the analogous two-dimensional case.

The finite-element approximation of problem (4.5) will be as follows.

Find 𝑝ℎ ∈𝑊ℎ such that
𝑎(𝑞ℎ, 𝑝ℎ) + 𝜖s𝑠ℎ(𝑞ℎ, 𝑝ℎ) = 𝑙(𝑞ℎ) ∀𝑞ℎ ∈𝑊ℎ,

(6.4)

where 𝑎(⋅, ⋅) is defined as in expression (4.6a) but with Ω = Ωℎ. The bilinear term

𝑠ℎ(𝑝ℎ, 𝑞ℎ) =
∑

𝑆∈S
𝑔
ℎ

∫
𝑆
ℎ3J𝒏 ⋅∇𝑝ℎKJ𝒏 ⋅∇𝑞ℎK (6.5)

is a so-called ghost penalty [10, 11], which is added to combat ill-conditioning of the system matrix in cases
when only a small portion of an element intersected by Γp,ℎ is located inside Ωℎ. Here, 𝜖s > 0 is a dimensionless
stabilization parameter, S

𝑔
ℎ denotes the set of ghost penalty mesh faces, defined as the set of interior faces

belonging to elements𝐾 ∈ Tℎ that are cut the embedded boundary Γ𝑝,ℎ, while J⋅K denotes the jump of sufficiently
smooth, element-wise defined functions across a face 𝑆. More precisely, let𝒇 be a vector-valued function, satisfying
𝒇|𝐾 ∈ 𝐶0(�̄�)3 for each 𝐾 ∈ Tℎ. Moreover, let 𝐾1, 𝐾2 ∈ Tℎ be two elements sharing the mesh face 𝑆. For any
𝒙 ∈ 𝑆 and for 𝑖 = 1, 2, we define the limit functions

𝒇𝑖(𝒙) = lim
𝑡→0+

𝒇(𝒙 − 𝑡𝒏𝑖), (6.6)

where 𝒏𝑖 is the outward-directed normal to 𝐾𝑖 on 𝑆. Thus, 𝒇1(𝒙) = 𝒇2(𝒙) only if 𝒇 is continuous at 𝒙. Then the
jump expression can be defined as

J𝒏 ⋅ 𝒇(𝒙)K = 𝒏1 ⋅ 𝒇1(𝒙) + 𝒏2 ⋅ 𝒇2(𝒙). (6.7)

Since 𝒏1 = −𝒏2 on 𝑆, definition (6.7) indeed indicates a jump in the normal derivative of 𝒇 at 𝑆.
The presence of ghost-penalty term 𝑠ℎ does not affect the consistency of finite-element approximation (6.4),

since it vanishes for sufficiently smooth 𝑝, where 𝑝 is the solution to variational problem (4.5).
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Remark 6.1. Even though the number of active degrees of freedom in problem (6.4) changes with the location of
Γp,ℎ, it may be practical to keep the number of degrees fixed in the implementation. A fixed number of degrees of
freedom is easily accomplished by extending all functions in𝑊ℎ into 𝑉ℎ by enlarging the system by an identity
matrix and a zero right hand side for the degrees of freedom not affecting 𝑝ℎ|Ωℎ ; in figure 7 the solution would
then vanish at the white nodes.

Replacing 𝑝out,𝑘 in the definitions of objective functions (5.4), (5.5), and (5.7) with corresponding numerical
solution obtained from equation (6.4), we arrive at the following discrete optimization problem:

Find �̂�∗ℎ ∈ Uℎ such that

𝐽𝜖(�̂�∗ℎ) ≤ 𝐽𝜖(�̂�ℎ) ∀�̂�ℎ ∈ Uℎ.
(6.8)

7 Shape calculus
An evaluation of the function �̂�ℎ ↦→ 𝐽obj involves a composition of several operations,

�̂�ℎ ↦→ 𝜙ℎ ↦→ Ωℎ ↦→ 𝑝ℎ ↦→ 𝑝out,𝑘 ↦→ 𝐽obj. (7.1)

That is, each function �̂�ℎ gives rise to a level set function 𝜙ℎ through the solution of problem (6.1), which in
turn through definition (6.2) yields the computational domain Ωℎ for problem (6.4). Solutions to problem (6.4)
provides the acoustic pressures for each wavenumber, the quantities of interest 𝑝out,𝑘 in definition (5.3), and
finally 𝐽obj, either in terms of the power (5.4) or the tracking (5.5) objective function. To compute derivatives to
be used by the optimization algorithm, we thus need to apply the chain rule to the composition (7.1).

We have reported a shape calculus using the same kind of composition in earlier contributions [6, 7], except
that the previous studies were done in 2D and without the boundary-layer model. Apart from the mapping
Ωℎ ↦→ 𝑝ℎ, previous calculations apply with minor adjustments. However, the presence of the integrals over
Γw,ℎ arising from the boundary-layer model in bilinear form (4.6a) significantly alters the shape calculus for
this part of the mapping. Tissot, Billard, and Garbard [36] carry out shape calculus for a conceptually similar
case, that is, using a level-set geometry representation, cut elements, and the same viscothermal boundary-layer
model. However, their shape calculus relies on the classic formula (B.7) discussed in appendix B, which requires
a smoothness that does not hold in the current case. For instance, since the level-set function is continuous
and piecewise linear, the design boundary will be continuous and piecewise planar but not 𝐶2, and thus its
curvature, which enters in formula (B.7), can only be defined discretely as jumps of the normal field between
element surfaces. In addition, the smoothness assumption on the integrand, 𝑓 ∈𝑊1,1(𝐷), does not hold in our
case either.

Instead, we will rely on a more general set of formulas discussed in appendix B. Here we summarize the steps
involved in computing the derivative of the mapping from the level-set function to the average acoustic pressure
at the outlet,

𝑗(𝜙ℎ) = 𝑝out,𝑘 =
1

|Γout|
∫
Γout

𝑝ℎ, (7.2)

and refer to appendix B for the derivation of the expressions. Note that 𝑝out,𝑘 is a complex number, and that the
final objective function 𝐽obj (expression (5.4) or (5.5)) is of least-squares type, involving a sum of squares over
frequencies and over the real and imaginary parts.

The continuous, piecewise-linear level-set function 𝜙ℎ can be expanded in a Lagrangian basis
{
𝑤𝑖
}𝑀
𝑖=1

. Letting
𝑤𝑙, for 𝑙 ∈ { 1,… ,𝑀 }, be any of the basis functions of the expansion, we introduce the family of perturbations

𝜙𝑡ℎ = 𝜙ℎ + 𝑡𝑤𝑙, (7.3)

parametrized by 𝑡 ≥ 0. The perturbation generates a family of perturbed phase-plug wall boundaries and interiors

Γ𝑡p,ℎ =
{
𝒙 ∈ Ωp, max ∣ 𝜙𝑡ℎ(𝒙) = 0

}
,

Ω𝑡
p,ℎ =

{
𝒙 ∈ Ωp, max ∣ 𝜙𝑡ℎ(𝒙) < 0

}
,

(7.4)

and the directional derivative of objective function (7.2) is defined as

d𝑗(𝜙ℎ;𝑤𝑙) = lim
𝑡→0

𝑗(𝜙ℎ + 𝑡𝑤𝑙) − 𝑗(𝜙ℎ)
𝑡 . (7.5)
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In most cases, we expect Γp,ℎ to cut through the interior of the mesh cells. However, if 𝜙ℎ happens to vanish
along a mesh face, then this part of Γp,ℎ will coincide with that mesh face. This is a rather special case, where,
in fact, at most one-sided versions of directional derivative (7.5) can be expected to hold. For simplicity, we
exclude this case here as well as in the derivation in appendix B, an exclusion motivated by the fact that we did
not experience any effects of this possible nonsmoothness in the numerical studies.

Multiple times in the following, we will need to refer to the integrand for the terms in the variational form
responsible for the modeling of viscothermal losses, that is, the terms in the integral over Γw in definition (4.6a).
Thus, we will for convenience introduce the notation

𝜓(𝑞, 𝑝;𝒏) = 𝛿𝑇𝑘2
(i − 1)(𝛾 − 1)

2 𝑞𝑝 + 𝛿𝑉
i − 1
2 ∇T𝑞 ⋅∇T𝑝

= 𝛿𝑇𝑘2
(i − 1)(𝛾 − 1)

2 𝑞𝑝 + 𝛿𝑉
i − 1
2

(
∇𝑞 ⋅∇𝑝 − 𝒏 ⋅∇𝑞 𝒏 ⋅∇𝑝

)
.

(7.6)

Note that the dependency of 𝜓 on 𝒏 is due to the definition (4.4) of the tangential gradient.
As outlined in § 6, given a particular level-set function 𝜙ℎ ∈ 𝑈ℎ, the discrete acoustic pressure 𝑝ℎ ∈𝑊ℎ is the

solution of the finite-element problem

𝑎(𝑞ℎ, 𝑝ℎ) + 𝜖ℎ𝑠ℎ(𝑞ℎ, 𝑝ℎ) = 𝑙(𝑞ℎ) ∀𝑞ℎ ∈𝑊ℎ (7.7)

Letting 𝑧ℎ ∈𝑊ℎ be the solution of the adjoint equation

𝑎(𝑤ℎ, 𝑧ℎ) + 𝜖ℎ𝑠ℎ(𝑤ℎ, 𝑧ℎ) = ∫
Γout

𝑤ℎ ∀𝑤ℎ ∈𝑊, (7.8)

the directional derivative (7.5) can be computed, with a notation explained below, from

d𝑗(𝜙ℎ;𝑤𝑙) = ∫
Γp,ℎ

(
∇𝑧ℎ ⋅∇𝑝ℎ − 𝑘2𝑧ℎ𝑝ℎ

) 𝑤𝑙
|𝜕𝑛𝜙ℎ|

+ 𝛿𝑉
i − 1
2 ∫

Γp,ℎ

( (𝑃𝑇∇𝑤𝑙) ⋅∇𝑧ℎ
|𝜕𝑛𝜙ℎ|

𝜕𝑝ℎ
𝜕𝑛

+
𝜕𝑧ℎ
𝜕𝑛

(𝑃𝑇∇𝑤𝑙) ⋅∇𝑝ℎ
|𝜕𝑛𝜙ℎ|

)

+ ∫
Γp,ℎ

𝜕
𝜕𝑛
𝜓(𝑧ℎ, 𝑝ℎ;𝒏)

𝑤𝑙
|𝜕𝑛𝜙ℎ|

+
∑

𝑆∈Sℎ

∫
Γp,ℎ∩𝑆

𝒏𝑆 ⋅
q
𝜓(𝑧ℎ, 𝑝ℎ;𝒏)𝒎

y 𝑤𝑙
|𝜕𝑛𝑆𝜙ℎ|

,

(7.9)

where 𝑃𝑇 = 𝐼 − 𝒏⊗ 𝒏 is the projector on the tangent plane of Γp,ℎ, and where in the denominators, we use the
shorthand notation 𝜕𝑛 for the normal derivative. The last term in expression (7.9) is of a sum over the set Sℎ of
mesh faces, and the integral is evaluated over the intersection between the boundary with the mesh surfaces.
Since we have assumed that no mesh surface coincides with a boundary portion, these intersections are all line
segments. Figure 8 illustrates a typical case, where it is to the left and right two mesh elements 𝐾1, 𝐾2 ∈ Tℎ
sharing the mesh face 𝑆, marked gray. By assumption, the phase-plug boundary Γp,ℎ passes through the interior
of the mesh elements, and the piecewise-constant normal field 𝒏 restricted on Γp,ℎ ∩𝐾1 and Γp,ℎ ∩𝐾2 is indicated
in the figure. The integration domain Γp,ℎ ∩ 𝑆 is here the red dashed line segment. The vector 𝒏𝑆 is normal to
Γp,ℎ ∩ 𝑆 and in the plane 𝑆. The conormal𝒎1 is the vector in the plane Γp,ℎ ∩ 𝐾1 and outward-directed from
𝐾1 and normal to Γp,ℎ ∩ 𝑆; analogous conditions hold for 𝒎2. If Γp,ℎ ∩ 𝐾1 and Γp,ℎ ∩ 𝐾2 are coplanar, then
𝒎2 = −𝒎1. The conormals can be used to define limits on Γp,ℎ ∩ 𝑆 of functions on Γp,ℎ with jump discontinuities
over element boundaries. That is, for 𝑓 ∶ Γp,ℎ → R such that, for 𝑖 = 1, 2, 𝑓|Γp,ℎ∩𝐾𝑖 ∈ 𝐶0(Γp,ℎ ∩ �̄�𝑖), we define,
for each 𝒙 ∈ Γp,ℎ ∩ 𝑆

𝑓𝑖(𝒙) = lim
𝑡→0+

𝑓(𝒙 − 𝑡𝒎𝑖). (7.10)

Finally, the symbol J⋅K in the last term of expression (7.9) denotes a jump of its argument over Γp,ℎ ∩ 𝑆, defined by
q
𝜓𝒎

y
= 𝜓1𝒎1 + 𝜓2𝒎2. (7.11)

We note that the first term of 𝜓 in definition (7.6) will be continuous over Γp,ℎ ∩ 𝑆 but not, in general, the second.
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Γp,ℎ

𝒎2

𝑆

Γp,ℎ

𝒏
𝒏

𝒏𝑆

𝒎1

𝐾1
𝐾2

Figure 8. Illustration of the geometrical objects involved in the evaluation of the last term in the directional-derivative
expression (7.9).

𝑙wg

𝑟wg

𝑙p𝑑

𝑅

𝜃p
𝑟p

𝜃c

𝜃c 𝜋∕6 𝑑 0.5mm
𝑟wg 13mm 𝑙wg 33mm
𝑙c 28mm 𝑙cp 10mm
𝑟p 4.6mm 𝑙𝑝 17mm
𝑅 𝑙c∕𝜃c 𝜃p 𝑙cp∕𝑅

Figure 9. Cross section of the maximal domain.

Remark 7.1. Note that we use, with a slight abuse of notation, the same symbol J⋅K for different kinds of jumps
over a face 𝑆 shared by two neighboring elements. In definition (6.7), the jump is with respect to limits associated
with the normal to 𝑆, whereas in definition (7.11), the limits are associated with the conormals, at 𝑆, of the surface
Γp,ℎ intersecting 𝑆.

8 Test case specification and numerical results
The compression driver we consider, illustrated in figure 4, is equipped with 𝑁s = 32 identical radial channels,
and the computational domain is illustrated in figure 5. The hold-all 𝐷, illustrated in figure 6, is constructed by
rotating the planar domain in figure 9 the angle 𝜃𝐷 = 𝜋∕32 around the dotted axial line. The thin gray backside
of the phase plug visible to the right in figure 4 is obtained by rotating corresponding planar part in figure 9
the angle 𝜃0 = 9.3773 ⋅ 10−3 to fix the compression ratio to 𝜅 = 12. The depth of the compression chamber is
𝑑 = 0.5mm. The dimensions are chosen to be suitable as a driver for a horn operating in the upper midrange in
the audio spectrum. Table 1 lists the air properties that are used in all computations to define the boundary-layer
thicknesses (4.2). The computations are carried out using the FEniCS computing platform [1] in combination
with our in-house library extension libCutFEM, which implements the CutFEM-related algorithms described by
Burman et al. [12].

8.1 Baseline
For the baseline case, we fix a level set function 𝜙ℎ that yields the phase plug design of figure 5. Here, the phase-
plug wall Γp,ℎ is a surface that attaches to the edge between the compression chamber and the thin phase plug
back wall and, on the other side, to the front edge of the waveguide in figure 6. Using the air properties of table 1
and holding the diaphragm oscillation amplitude 𝑎d constant, we solve problem (6.4) in the frequency range
3.75–15 kHz with as well as without the boundary loss model, the latter achieved simply by setting 𝛿𝑇 = 𝛿𝑉 = 0,
in which case the model yields the standard hard-wall vanishing Neumann boundary condition, as is clear
from expression (4.1d). For a given, fixed value of the diaphragm acceleration 𝑎d, figure 10 shows the frequency
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Table 1. The air properties used in all computations.

Speed of sound 𝑐0 343.20m s−1
Air density 𝜌0 1.2044 kg m−3

Kinematic viscosity 𝜈 1.5061 × 10−5m2 s−1
Prantdl number 𝑁Pr 0.7078
Specific heat, constant pressure 𝑐𝑝 1.0049 kJ kg−1K−1
Heat capacity ratio 𝛾 1.4
Thermal conductivity 𝜆 𝑐𝑝𝜇∕𝑁Pr
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Figure 10. Frequency response for the baseline design of figure 5, with and without the boundary loss model.

response in terms of the absolute value of the acoustic pressure at the outlet of the waveguide, |𝑝out, 𝑘|. Two
major resonances occur at 9–10kHz and 14–15kHz, respectively, both of which are significantly damped by
viscothermal losses. Thus, viscothermal effects cannot be neglected for frequencies higher than about 9 kHz in
this case.
Remark 8.1. Similarly as already pointed out in remark 2.2, figure 10 does not show a realistic frequency response
of a full compression driver system, and neither will the response curves computed below for the optimized
designs. The calculation of realistic system frequency responses would require a coupled model including also
the electromechanics of the transducer and a more realistic load at the waveguide. However, the purpose of the
present study is to isolate the effects of the phase plug, not to simulate realistic frequency responses.

8.2 Optimization
The optimization is carried out using the BFGS quasi-Newton algorithm as implemented in the SciPy Python
library. The number of design variables, that is, the number of nodal values of the right-hand functions �̂�ℎ in
equation (6.1) is 4933.
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Figure 11. Using objective function (5.4): maximizing the harmonic mean of the output power at the 35 frequencies
marked with black dots.
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Figure 12. Using objective function (5.5): tracking the ideal frequency response at the 35 frequencies marked with
black dots.

Figure 11 shows the frequency response of the optimized device when using objective function (5.4), that
is, when maximizing the harmonic mean of the sound pressure |𝑝out,𝑘| at the waveguide outlet. The mean is
calculated over the 35 frequencies indicated with black dots in figure 11 in the frequency range [3.75, 15] kHz;
each frequency is 21∕17 times the previous frequency. The evaluation of the performance was done with the
tighter frequency span of 69 frequencies, each pair spaced by the factor 21∕34. The same frequency values for
optimization and evaluation are used in all the subsequent cases below. We note that the sound-pressure level
is generally improved in the optimized device compared to the baseline. However, the two resonances of the
baseline are still clearly noticeable also in the optimized device.

This result indicates that a pure maximization of the sound pressure level may not be entirely satisfactory. A
better strategy could be to somehow give the optimization algorithm an incentive to reduce resonance and inter-
ference effects. Therefore, it makes sense to consider the tracking approach, to minimize objective function (5.5).
Since the frequency response based on formula (2.2) is the best that can be achieved under the idealized condition
of ignoring wave interference effects, we expect the optimization to counteract the interference effects in order to
be able to track the idealized response. Figure 12 shows the response of the baseline design in dotted green, the
target frequency response 𝑝ideal𝑘 from expression (5.6) in dashed red, and the response of the optimized device in
solid blue using the tracking objective function (5.5). The result is rather remarkable; the frequency response
follows very closely the ideal one, without any noticeable resonance effects.

In the previous 2D study using radial phase plug slits [7], the optimization was performed neglecting the
viscothermal losses; these losses were accounted for only afterwards when evaluating the performance of the
optimized device. In order to evaluate the necessity of the viscothermal model during optimization, we carried
out the analogous strategy here. We consider again the more successful tracking approach, optimizing using
objective function (5.5). The dash-dotted orange curve in figure 12 shows the frequency response, evaluated
using the viscothermal model but optimized without it. We note a significant deviation from the ideal response,
particularly at the highest frequencies.

The shapes of all the considered phase plugs are visualized in figure 13, where the design is mirrored along
the symmetry plane. The use of the homogeneous Neumann condition (5.2c) in the boundary-value problem for
the level-set function implies that the level-set function may intersect the boundary of Ωp, max. From figure 13,
we see that this freedom is indeed utilized in all of the optimized designs. In all of the optimized designs, note
that neighboring phase plugs will be acoustically connected at the planar sections of the phase plug walls shown
in figure 13.

9 Discussion and conclusions
The radial phase plug concept is rarely used in today’s commercially available compression drivers, likely due to a
lack of design guidelines as straightforward as for annular channels. Therefore, the use of numerical optimization
techniques for shaping phase plugs is particularly interesting for this case. Perhaps surprisingly, when comparing
with the results of shape optimization of annular channels [7], it seems like it may be easier for the optimization
to find an essentially resonance free design for radial channels, which may serve as an incentive for the industry
to take a new interest in this arrangement.

Crucially important in obtaining the current results are the rather recent advances in basic modeling and
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Figure 13. Phase plug shapes. Baseline (top left), optimized for maximum acoustic pressure at the waveguide outlet
(top right), optimized by tracking the ideal response (bottom left), optimized by tracking the ideal response while
ignoring the viscothermal losses during the optimization phase. For clarity, the waveguide has been shortened in the
pictures.

optimization techniques. For acoustic wave propagation in the narrow geometries inside a compression driver, it
is necessary to account for viscothermal losses, also during the optimization, as shown by our reported results.
The recent popularization of the use of the Wentzell, or generalized impedance, condition to model viscothermal
losses [5], is therefore a crucial component to be able to carry out the current studywith a reasonable computational
effort. Another advance utilized in this study is the combination of CutFEMmethods with level-set geometry
descriptions. In an earlier publication addressing the design of acoustic horns, we have shown that this approach
gives exceptional design flexibility and may therefore find better designs than competing approaches [6]. To
obtain accurate gradient directions for rapid convergence of the optimization algorithm, we aim for an exact
shape calculus for the discrete objective function, taking into account the lack of full regularity in the phase-plug
wall geometry as well as the computed acoustic pressures. However, the fact that the viscothermal losses need to
be modeled on the surfaces subject to design leads to complications in the shape calculus. As far as we are aware,
a fully discrete shape calculus involving the viscothermal boundary integral terms has not previously been carried
out. The analysis reported in appendix B uses a recent publication proving the relevant basic differentiation
formulas [4].
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Appendix A Compression driver lumped-parameter model
We here provide a derivation of formula (2.4) under assumptions 2.1. The geometry of the compression driver is
characterized by its rest volume 𝑉0 and the areas 𝑆d, 𝑆wg of its diaphragm and outlet. The easiest realization is
the one of figure 1, although much more general geometries are admissible due to the lumped-parameter nature
of the model.

Imagine a stiff massless membrane of area 𝑆wg positioned at the outlet of the chamber to the waveguide (the
dashed tinted line in the cross-section view to the left in figure 1). The velocity 𝑈wg of this membrane will then
be the same as the air velocity at the outlet. Under a movement of the diaphragm, the volume of the enclosed air
between the piston and outlet membrane can be written as the sum of the rest volume 𝑉0 plus an unsteady part
𝑉′,

𝑉(𝑡) = 𝑉0 + 𝑉′(𝑡), (A.1)
where the time derivative of the unsteady part satisfies

�̇�′ = 𝑈wg𝑆wg −𝑈d𝑆d, (A.2)

in which 𝑈d and 𝑈wg are the velocities of the diaphragm and the massless membrane, respectively. The values
𝑈wg(𝑡) and 𝑈d(𝑡) are positive and negative, respectively, for velocities increasing the volume of the compression
chamber.

By assumption 2.1(ii), the chamber will hold a uniform (but unsteady) pressure 𝑃, which satisfies, according
to assumption 2.1(iii), the isentropy condition

𝑃𝑉𝛾 = Const, (A.3)

where 𝛾 is the heat capacity ratio. Partitioning the pressure in the chamber into a steady and an unsteady part,

𝑃(𝑡) = 𝑝0 + 𝑃′(𝑡), (A.4)

substituting expansions (A.1) and (A.4) into formula (A.3), differentiating with respect to time, ignoring quadratic
unsteady terms due to assumption 2.1(iv), and using expression (A.2), we find that

�̇�′ + 𝛾
𝑝0
𝑉0

(𝑈wg𝑆wg −𝑈d𝑆d) = 0. (A.5)

Using that the speed of sound in an ideal gas (assumption 2.1(iii)) satisfies

𝑐20 = 𝛾
𝑝0
𝜌0
, (A.6)

and definitions
𝑑 =

𝑉0
𝑆d
, 𝜅 =

𝑆d
𝑆wg

, (A.7)

where 𝑑 is the depth of the chamber in the simple geometry of figure 1 and 𝜅 the compression ratio, expression (A.5)
can be written

�̇�′ +
𝜌0𝑐20
𝑑

(
𝑈wg

𝜅 −𝑈d) = 0. (A.8)

Under time-harmonic excitation with frequency 𝜔 (assumption 2.1(i)),

𝑃′(𝑡) = Re
(
𝑝ei𝜔𝑡

)
, 𝑈wg(𝑡) = Re

(
𝑢wgei𝜔𝑡

)
, 𝑈d(𝑡) = Re

(
𝑢dei𝜔𝑡

)
, (A.9)

expression (A.8) becomes

i𝜔𝑝 +
𝜌0𝑐20
𝑑𝜅

𝑢wg =
𝜌0𝑐20
𝑑

𝑢d =
𝜌0𝑐20
𝑑 i𝜔

𝑎𝑑, (A.10)

replacing velocity with acceleration amplitude in the last equality. Due to the perfect termination of the waveguide
(assumption 2.1(v)), the acoustic pressure and velocity in the waveguide are proportional with proportionality con-
stant the specific characteristic impedance 𝜌0𝑐0. Substituting 𝑝 = 𝜌0𝑐0𝑢wg into equation (A.10) and multiplying
with i𝜔𝑑∕𝑐20, we find the requested formula

(−𝑑𝑘2 + i𝑘𝜅 )𝑝 = 𝜌0𝑎𝑑, (A.11)

where 𝑘 = 𝜔∕𝑐0 is the wave number.
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Appendix B Shape calculus details
Here we detail the calculations that yields expression (7.9), that is, the directional derivative of functional (7.2)
with respect to the perturbation (7.3) of the level-set function.

B.1 Basic formulas for volume and surface integrals
The basic toolbox of shape calculus contains expressions of directional derivatives of integrals over a domain
Ω ⊂ R𝑑 or its boundary 𝜕Ω. The directional derivatives are defined with respect to domain paths 𝑡 → Ω𝑡, where
Ω𝑡 is a family of domains parametrized by a scalar 𝑡 in which Ω0 = Ω. In the literature, such as in the classic
monographs by Delfour & Zolésio [15] and Sokolowski & Zolésio [34], shape calculus is typically carried out
assuming that the domain path is generated by a smooth homeomorphism 𝑇𝑡 ∶ 𝐷 → R𝑑, where 𝐷 ⊂ R𝑑 is
a hold-all containing all admissible domains. Thus, Ω𝑡 = 𝑇𝑡(Ω), and using a change of variables based on 𝑇𝑡,
integrals over Ω𝑡 and 𝜕Ω𝑡 can be converted into integrals over Ω and 𝜕Ω. The transformation parameters then
appears explicitly in the integrands, which therefore can be differentiated using ordinary calculus. A particularly
popular choice to generate the transformation is through a perturbation of identity, so that for any 𝒙 ∈ Ω,
𝑇𝑡(𝒙) = 𝒙 + 𝑡𝑽(𝒙), where 𝑽 ∶ 𝐷 → R𝑑 is a vector field. The use of this type of transformation marries well with
the need to modify a computational mesh to changes in the domain boundary. The so-called velocity field 𝑽
can then be used to displace the boundary mesh nodes as well as the internal nodes, the latter to preserve mesh
quality.

The use of transformations to generate domain paths is less natural, however, in the current context. All
admissible phase-plug shapes are confined within the hold-all 𝐷 in figure 6, but the computational mesh is fixed,
the phase-plug wall is a boundary internal to 𝐷, and there are no transformations involved in the movement
of the phase-plug wall. Nevertheless, from perturbation (7.3), a (nonunique) artificial velocity field 𝑽 can be
defined locally on the mesh elements that are cut by the zero set of the level-set function (cf. figure 7). The shape
calculus carried out in our previous work using a 2D CutFEM approach [7, 6] relied on such an approach.

However, it is not necessary to invoke transformations and artificial velocity fields in this case. An alternative
is to generalize a method introduced by Delfour [16] and consider dilations, generated by perturbation (7.3),
of surface patches defined by the level-set function. We will here rely on formulas for the shape derivative of
domain and boundary integrals as derived, using such a method, in a recent contribution by the first author [4].
These formulas assume minimal smoothness and takes into account that the design boundary will contain edges
and a discontinuous normal field when the design boundary intersects mesh surfaces, as illustrated in figure 8.
The presence of such discontinuities did not affect the shape calculus in our previous work, due to the natural
boundary condition assumed there. Here, however, the viscothermal boundary terms in the bilinear form (4.6a)
contains discontinuities that need to be handled.

We thus consider a continuous, piecewise-linear level-set function 𝜙ℎ, defined on a fixed triangulation Tℎ on
𝐷, generating the computational domain Ωℎ, defined by the condition 𝜙ℎ < 0. Consider then a perturbation

𝜙ℎ,𝑡 = 𝜙ℎ + 𝑡𝑤, (B.1)

where 𝑤 is a Lagrangian basis function and 𝑡 > 0. This perturbation generates a perturbed domain Ωℎ,𝑡 ⊂ Ωℎ;
the inclusion is due to that each basis function 𝑤 for continuous, piecewise-linear functions satisfies 𝑤 ≥ 0. The
following formula for the shape derivative of volume integrals over Ωℎ holds.

Theorem B.1. Under perturbation (B.1) and for 𝑡 ↦→ 𝑓(𝑡) and 𝑡 ↦→ 𝑓′(𝑡) continuous in some nonempty interval
[0, 𝑡max] such that 𝑓(𝑡), 𝑓′(𝑡) ∈ 𝐶0(T̄ℎ) on (0, 𝑡max), the directional semiderivative of volume integral

𝐽1(𝜙ℎ,𝑡) = ∫
Ωℎ,𝑡
𝑓𝑡 dV (B.2)

at 𝑡 = 0 satisfies

d𝐽1(𝜙ℎ;𝑤) = lim
𝑡→0+

1
𝑡
(
𝐽1(𝜙ℎ,𝑡) − 𝐽1(𝜙ℎ)

)
= ∫

Ωℎ
𝑓′ dV − ∫

𝜕Ωℎ
𝑓 𝑤
|𝜕𝑛𝜙ℎ|

dS. (B.3)

Remark B.2. The notation 𝑔 ∈ 𝐶𝑘(T̄ℎ)means that 𝑔|𝐾 ∈ 𝐶𝑘(�̄�) for each element 𝐾 ∈ Tℎ.
TheoremB.1 is an immediate consequence of the same theoremproven for a fixed𝑓 ∈ 𝐶0(T̄ℎ) [4, Theorem 6.7].

Note that the theorem only refers to a one-sided derivative; the limits 𝑡 → 0+ and 𝑡 → 0− both exist but may be
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𝜙ℎ < 0

𝜙ℎ > 0

𝜙ℎ < 0

𝜙ℎ > 0

Figure 14. Examples in 2D of a meshed rectangular hold-all 𝐷 and domains Ωℎ generated by level-set functions 𝜙ℎ
defined on the mesh in the figure. Both types of domains are admissible for theorem B.1, although only one-sided
derivatives exists for domains like the one to the left, where a mesh face is contained in the boundary. However, the
proof [4, Theorem 6.11] of theorem B.3 requires domains like the one to the right, where the domain boundary does
not intersect any mesh nodes.

different. The reason for this lack of strong differentiability is that 𝑓 as well as 𝜕𝑛𝜙ℎ are allowed to contain jump
discontinuities across mesh faces. These discontinuities become an issue for domains like the one to the left
in figure 14, where ∫𝑆∩𝜕Ω dS > 0 for some mesh face 𝑆. For basis functions 𝑤 associated with the end points of
such an 𝑆, formula (B.3) holds for the limit of 𝑓 and 𝜕𝑛𝜙ℎ on 𝑆 from the interior of Ωℎ; (Recall that Ωℎ,𝑡 ⊂ Ωℎ for
𝑡 ≥ 0.) When the limit 𝑡 → 0− is considered, it will be the limit of the values from the exterior that should be
employed, since Ωℎ,𝑡 ⊃ Ωℎ for 𝑡 ≤ 0. However, when 𝜕Ωℎ only cuts through the interior of the mesh elements,
as in the right picture of figure 14, the limits as 𝑡 → 0+ and 𝑡 → 0− will agree, since then 𝑓 and 𝜕𝑛𝜙ℎ will vary
continuously under small enough perturbations of the boundary.

To carry out the shape calculus, we will need, in addition to formula (B.3), also the corresponding formula for
integrals over 𝜕Ωℎ. Note that any nonempty boundary segment 𝜕Ωℎ ∩ 𝐾, for some tetrahedral element 𝐾 ∈ Tℎ,
will either be a triangle or a quadrilateral. At the edges of each such 𝜕Ωℎ ∩ 𝐾, we will need to use the concept of
conormals, introduced in § 7. These will be used to define limits and jumps of functions across line segments
𝜕Ωℎ ∩ 𝑆, where 𝑆 is a mesh face, as illustrated in figure 8.

The following theorem is an immediate consequence of the same theorem proven for a fixed 𝑓 ∈ 𝐶1(T̄ℎ) [4,
Theorem 6.11]. Similarly as for theorem B.1, nondifferentiability can be expected when some mesh face 𝑆 aligns
with 𝜕Ωℎ, like in the domain to the left in figure 14. However, the ambiguities due to the discontinuities in the
integrand of the last term in the expression for d𝐽2 below are not as easily resolved as in theorem B.1. Thus, the
proof of theorem B.3 ([4, Theorem 6.11]) is restricted to domains where the boundary does not intersect any mesh
nodes, such as the one to the right in figure 14.

Theorem B.3. Assume that the boundary 𝜕Ωℎ of the domain Ωℎ does not intersect with any mesh nodes. Then,
under perturbation (B.1) and for 𝑡 ↦→ 𝑓(𝑡) and 𝑡 ↦→ 𝑓′(𝑡) being continuous in some nonempty interval [0, 𝑡max]
such that 𝑓(𝑡), 𝑓′(𝑡) ∈ 𝐶1(T̄ℎ) on (0, 𝑡max), the directional derivative of surface integral

𝐽2(𝜙ℎ,𝑡) = ∫
𝜕Ωℎ,𝑡
𝑓𝑡 dS (B.4)

at 𝑡 = 0 satisfies

d𝐽2(𝜙ℎ, 𝑤) = ∫
𝜕Ωℎ

(
𝑓′ −

𝜕𝑓
𝜕𝑛

𝑤
|𝜕𝑛𝜙ℎ|

)
dS −

∑

𝑆∈Sℎ

∫
𝜕Ωℎ∩𝑆

𝒏𝑆 ⋅ J𝑓𝒎K
𝑤

|𝜕𝑛𝑆 𝜙ℎ|
d𝛾, (B.5)

where𝒏𝑆 is the normal vector to 𝜕Ωℎ∩𝑆, located in𝑆 and outward-directed fromΩℎ, andwhere J𝑓𝒎K = 𝑓1𝒎1+𝑓2𝒎2.
Here, for 𝑘 = 1, 2,𝒎𝑘 are the conormals to 𝜕Ω ∩ 𝐾𝑘 at 𝜕Ω ∩ 𝑆, where 𝐾1, 𝐾2 ∈ Tℎ such that �̄� = �̄�1 ∩ �̄�2. Each
𝒎𝑘 lies in the plane of and is directed outward from 𝜕Ωℎ ∩ 𝐾𝑘 , and 𝑓𝑘 is the limit 𝑓 on 𝑆 defined by 𝑓𝑘(𝒙) =
lim𝜖→0+ 𝑓(𝒙 − 𝜖𝒎𝑘) , for any 𝒙 ∈ 𝑆.
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It is illuminating to compare directional derivatives (B.3) and (B.5) with the traditional expressions, that is,
the formulas obtained when utilizing domain transformations through a perturbation of identity. For domain
integrals, the classical formula is

J1(Ω;𝑽) = ∫
Ω
𝑓′ d𝑉 + ∫

𝜕Ω
𝑓𝑽 ⋅ 𝒏 d𝑆 (B.6)

The proof by Delfour & Zolésio [15, Ch. 9, Theorem 4.2] holds for Lipschitz domains Ω, velocity fields satisfying
𝑽 ∈ 𝐶1(𝐷)𝑑 and for functions 𝑡 ↦→ 𝑓𝑡 continuous with values in𝑊1,1(𝐷) and differentiable with values in 𝐿1(𝐷).
For boundary integral, the classical formula is

J2(Ω;𝑽) = ∫
𝜕Ω
𝑓′ d𝑆 + ∫

𝜕Ω
(
𝜕𝑓
𝜕𝑛

+ 𝜅𝑓)𝑽 ⋅ 𝒏 d𝑆, (B.7)

where 𝜅 is the local summed curvature (twice the mean curvature) of the boundary. The conditions for the
boundary integral formula is quite restrictive. The proof by Delfour & Zolésio [15, Ch. 9, Theorem 4.2] holds for
Ω of class 𝐶2 and for continuous functions 𝑡 ↦→ 𝑓𝑡 with values in𝐻2(𝐷).

Comparing our formulas (B.3) and (B.5)with the classical (B.6) and (B.7), wefirst note that the term−𝑤∕|𝜕𝑛𝜙ℎ|
corresponds to the normal velocity 𝑽 ⋅ 𝒏 in the classical formulas. Secondly, we note that the last integral in
expression (B.5) is a discrete counterpart to the curvature term in expression (B.7). Note that the requirement for
formula (B.7) of a 𝐶2-regular domain and and integrand 𝑓 ∈ 𝐻2(𝐷) is violated in our case.

B.2 Calculation of directional derivative (7.9)
Based on basic formulas of theorems (B.1) and (B.3), we here provide the details of the calculation of directional
derivative (7.9). Due to the differentiability subtleties associated with theorem B.3, we will for the calculations
below assume that the boundary 𝜕Ωℎ does not intersect any mesh nodes, as in the domain to the right in figure 14.

Recall from § 6 that the solution space𝑊ℎ to problem (6.4) will not be fixed throughout the optimization,
since it is spanned by the basis functions whose support intersect domainΩℎ with positive measure. As illustrated
in figure 7, the nodal degrees of freedom for𝑊ℎ, marked black in the figure, are located not just insideΩℎ but also
outside the domain for the elements whose interior intersects the boundary. Considering now perturbation (7.3)
for 𝑡 ≥ 0, we note the nodal degrees of freedom for𝑊ℎ only changes when the domain boundary moves away
from an intersection with a mesh node. Thus, under the assumption made above — that the boundary 𝜕Ωℎ does
not intersect any mesh node — we conclude that when starting with 𝑡 sufficiently small,𝑊ℎ will not change
during the limit process 𝑡 → 0.

Thus, given the solution space𝑊ℎ, there is a 𝑡max > 0 such that for each 𝑡 ∈ [0, 𝑡max], the discrete acoustic
pressure on the perturbed domain will satisfy the following problem.

Find 𝑝𝑡ℎ ∈𝑊ℎ such that ∀𝑞ℎ ∈𝑊ℎ,

∫
Ω𝑡ℎ

∇𝑞ℎ ⋅∇𝑝𝑡ℎ − 𝑘2 ∫
Ω𝑡ℎ

𝑞ℎ𝑝𝑡ℎ + i𝑘 ∫
Γout
𝑞ℎ𝑝𝑡ℎ + ∫

Γ𝑡w,ℎ

𝜓(𝑞ℎ, 𝑝𝑡ℎ;𝒏
𝑡) + 𝜖ℎ𝑠ℎ(𝑞ℎ, 𝑝𝑡ℎ) = ∫

Γd
𝜌0𝑞ℎ𝑎d 𝒏 ⋅ 𝒆a.

(B.8)

where 𝜓 is defined in expression (7.6). Consequently, the average acoustic pressure at the outlet becomes

𝑗(𝜙𝑡ℎ) =
1

|Γout|
∫
Γout
𝑝𝑡ℎ. (B.9)

Note that outlet boundary Γout is unchanged by the perturbation. The shape derivative of 𝑝𝑡ℎ at 𝑡 = 0, defined by

𝑝′ℎ = lim
𝑡→0

1
𝑡
(
𝑝𝑡ℎ − 𝑝0ℎ

)
, (B.10)

is also an element in𝑊ℎ, since 𝑝𝑡ℎ ∈𝑊ℎ for each 𝑡 ∈ [0, 𝑡max], Differentiating objective function (B.9) at 𝑡 = 0
yields

d𝑗(𝜙ℎ;𝑤𝑙) = ∫
Γout
𝑝′ℎ. (B.11)
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To determine an explicit expressions for directional derivative d𝑗 in terms of 𝑤𝑙, we start by differentiating
equation (B.8) at 𝑡 = 0, utilizing formulas (B.3) and (B.5), to find that, for each 𝑞ℎ ∈𝑊ℎ,

∫
Ωℎ
∇𝑞ℎ ⋅∇𝑝′ℎ − 𝑘2 ∫

Ωℎ
𝑞ℎ𝑝′ℎ − ∫

𝜕Ωℎ

(
∇𝑞ℎ ⋅∇𝑝ℎ − 𝑘2𝑞ℎ𝑝ℎ

) 𝑤𝑙
|𝜕𝑛 𝜙ℎ|

+ i𝑘 ∫
Γout
𝑞ℎ𝑝′ℎ

+ ∫
Γw,ℎ
𝜓′(𝑞ℎ, 𝑝ℎ;𝒏) − ∫

Γw,ℎ

𝜕
𝜕𝑛
𝜓(𝑞ℎ, 𝑝ℎ;𝒏)

𝑤𝑙
|𝜕𝑛 𝜙ℎ|

−
∑

𝑆∈Sℎ

∫
Γw,ℎ∩𝑆

𝒏𝑆 ⋅
q
𝜓(𝑞ℎ, 𝑝ℎ;𝒏)𝒎

y 𝑤𝑙
|𝜕𝑛𝑆𝜙ℎ|

+ 𝜖ℎ𝑠ℎ(𝑞ℎ, 𝑝′ℎ) = 0.

(B.12)

Here, similarly as previously observed in the analogous 2D case [7], we have used that the mapping 𝑡 ↦→
𝑠ℎ(𝑞ℎ, 𝑝𝑡ℎ) is differentiable, which is a consequence of our assumption that the boundary 𝜕Ω

𝑡
ℎ does not intersect

any mesh node. Differentiating 𝜓, using definition (7.6), we find that

𝜓′(𝑞ℎ, 𝑝ℎ;𝒏) =
d
d𝑡
𝜓(𝑞ℎ, 𝑝𝑡ℎ;𝒏

𝑡)||||𝑡=0

= 𝛼𝑇𝑞ℎ𝑝′ℎ + 𝛼𝑉
(
∇𝑞ℎ ⋅∇𝑝′ℎ − 𝒏′ ⋅∇𝑞ℎ

𝜕𝑝ℎ
𝜕𝑛

−
𝜕𝑞ℎ
𝜕𝑛

𝒏′ ⋅∇𝑝ℎ −
𝜕𝑞ℎ
𝜕𝑛

𝜕𝑝′ℎ
𝜕𝑛

)

= 𝛼𝑇𝑞ℎ𝑝′ℎ + 𝛼𝑉∇T𝑞ℎ ⋅∇T𝑝′ℎ − 𝛼𝑉
(
𝒏′ ⋅∇𝑞ℎ

𝜕𝑝ℎ
𝜕𝑛

+
𝜕𝑞ℎ
𝜕𝑛

𝒏′ ⋅∇𝑝ℎ
)
.

(B.13)

Notice that 𝒏′ vanishes everywhere except on the part of the phase-plug boundary affected by the perturbation,
Γp,ℎ , on which the perturbed normal field satisfies

𝒏𝑡 =
∇(𝜙ℎ + 𝑡𝑤𝑙)
||||∇(𝜙ℎ + 𝑡𝑤𝑙)

||||
on Γ𝑡p,ℎ. (B.14)

We will differentiate the right side of expression (B.14), starting with the denominator

d
d𝑡
||||∇(𝜙ℎ + 𝑡𝑤𝑙)

||||
|||||𝑡=0

= d
d𝑡
(
∇(𝜙ℎ + 𝑡𝑤𝑙) ⋅∇(𝜙ℎ + 𝑡𝑤𝑙)

)1∕2|||||𝑡=0

=
(
∇(𝜙ℎ + 𝑡𝑤𝑙) ⋅∇(𝜙ℎ + 𝑡𝑤𝑙)

)−1∕2
∇(𝜙ℎ + 𝑡𝑤𝑙) ⋅∇𝑤𝑙

|||||𝑡=0

=
∇𝜙ℎ ⋅∇𝑤𝑙
|∇𝜙ℎ|

,

(B.15)

from which it follows that

d
d𝑡

∇(𝜙ℎ + 𝑡𝑤𝑙)
||||∇(𝜙ℎ + 𝑡𝑤𝑙)

||||

|||||||||𝑡=0
=
|∇𝜙ℎ|∇𝑤𝑙 − ∇𝜙ℎ

∇𝜙ℎ⋅∇𝑤𝑙
|∇𝜙ℎ|

|∇𝜙ℎ|2
= (1 −

∇𝜙ℎ
|∇𝜙ℎ|

⊗
∇𝜙ℎ
|∇𝜙ℎ|

)
∇𝑤𝑙
|∇𝜙ℎ|

. (B.16)

From expressions (B.14) and (B.16) and the fact that ∇𝜙ℎ
||||Γp,ℎ

= 𝜕𝑛𝜙ℎ
||||Γp,ℎ

almost everywhere on Γp,ℎ follows that

𝒏′ =
𝑃𝑇∇𝑤𝑙
|𝜕𝑛𝜙ℎ|

a. e. on Γp,ℎ, (B.17)

where
𝑃𝑇 = 𝐼 − 𝒏⊗ 𝒏 (B.18)

is the projector on the tangent plane of Γp,ℎ. Substituting expression (B.17) into formula (B.13), we find that

𝜓′(𝑞ℎ, 𝑝ℎ;𝒏) =
⎧

⎨
⎩

𝜓(𝑞ℎ, 𝑝′ℎ;𝒏) on Γw,ℎ ⧵ Γp,ℎ.

𝜓(𝑞ℎ, 𝑝′ℎ;𝒏) − 𝛼𝑉
( (𝑃𝑇∇𝑤𝑙) ⋅∇𝑞ℎ

|𝜕𝑛𝜙ℎ|
𝜕𝑝ℎ
𝜕𝑛

+
𝜕𝑞ℎ
𝜕𝑛

(𝑃𝑇∇𝑤𝑙) ⋅∇𝑝ℎ
|𝜕𝑛𝜙ℎ|

)
on Γp,ℎ,

(B.19)
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which, substituted in expression (B.12), yields that ∀𝑞ℎ ∈𝑊ℎ,

∫
Ωℎ
∇𝑞ℎ ⋅∇𝑝′ℎ − 𝑘2 ∫

Ωℎ
𝑞ℎ𝑝′ℎ − ∫

Γp,ℎ

(
∇𝑞ℎ ⋅∇𝑝ℎ − 𝑘2𝑞ℎ𝑝ℎ

) 𝑤𝑙
|𝜕𝑛 𝜙ℎ|

+ i𝑘 ∫
Γout
𝑞ℎ𝑝′ℎ

+ ∫
Γw,ℎ
𝜓(𝑞ℎ, 𝑝′ℎ;𝒏) − 𝛼𝑉 ∫

Γp,ℎ

( (𝑃𝑇∇𝑤𝑙) ⋅∇𝑞ℎ
|𝜕𝑛𝜙ℎ|

𝜕𝑝ℎ
𝜕𝑛

+
𝜕𝑞ℎ
𝜕𝑛

(𝑃𝑇∇𝑤𝑙) ⋅∇𝑝ℎ
|𝜕𝑛𝜙ℎ|

)

− ∫
Γp,ℎ

𝜕
𝜕𝑛
𝜓(𝑞ℎ, 𝑝ℎ;𝒏)

𝑤𝑙
|𝜕𝑛 𝜙ℎ|

−
∑

𝑆∈Sℎ

∫
Γp,ℎ∩𝑆

𝒏𝑆 ⋅
q
𝜓(𝑞ℎ, 𝑝ℎ;𝒏)𝒎

y 𝑤𝑙
|𝜕𝑛𝑆𝜙ℎ|

+ 𝜖ℎ𝑠ℎ(𝑞ℎ, 𝑝′ℎ) = 0,

(B.20)

where we, for integral terms 3, 7 and 8, also have used that 𝑤𝑙 vanishes on 𝜕Ωℎ ⧵ Γp,ℎ.
Now let 𝑧ℎ ∈𝑊ℎ satisfy the adjoint equation

∫
Ωℎ
∇𝑤ℎ ⋅∇𝑧ℎ − 𝑘2 ∫

Ωℎ
𝑤ℎ𝑧ℎ + i𝑘 ∫

Γout
𝑤ℎ𝑧ℎ + ∫

Γw,ℎ
𝜓(𝑤ℎ, 𝑧ℎ;𝒏) + 𝜖ℎ𝑠ℎ(𝑤ℎ, 𝑧ℎ) = ∫

Γout
𝑤ℎ ∀𝑤ℎ ∈𝑊ℎ. (B.21)

In particular, evaluating the adjoint equation for 𝑤ℎ = 𝑝′ℎ yields that

∫
Ωℎ
∇𝑝′ℎ ⋅∇𝑧ℎ − 𝑘2 ∫

Ωℎ
𝑝′ℎ𝑧ℎ + i𝑘 ∫

Γout
𝑝′ℎ𝑧ℎ + ∫

Γw,ℎ
𝜓(𝑝′ℎ, 𝑧ℎ;𝒏) + 𝜖ℎ𝑠ℎ(𝑝′ℎ, 𝑧ℎ) = ∫

Γout
𝑝′ℎ. (B.22)

Substituting expression (B.22) into expression (B.20) with 𝑞ℎ = 𝑧ℎ, the resulting expression reduces to

∫
Γout
𝑝′ℎ − ∫

Γp,ℎ

(
∇𝑧ℎ ⋅∇𝑝ℎ − 𝑘2𝑧ℎ𝑝ℎ

) 𝑤𝑙
|𝜕𝑛 𝜙ℎ|

− 𝛼𝑉 ∫
Γp,ℎ

( (𝑃𝑇∇𝑤𝑙) ⋅∇𝑧ℎ
|𝜕𝑛𝜙ℎ|

𝜕𝑝ℎ
𝜕𝑛

+
𝜕𝑧ℎ
𝜕𝑛

(𝑃𝑇∇𝑤𝑙) ⋅∇𝑝ℎ
|𝜕𝑛𝜙ℎ|

)

− ∫
Γp,ℎ

𝜕
𝜕𝑛
𝜓(𝑧ℎ, 𝑝ℎ;𝒏)

𝑤𝑙
|𝜕𝑛 𝜙ℎ|

−
∑

𝑆∈Sℎ

∫
Γp,ℎ∩𝑆

𝒏𝑆 ⋅
q
𝜓(𝑧ℎ, 𝑝ℎ;𝒏)𝒎

y 𝑤𝑙
|𝜕𝑛𝑆𝜙ℎ|

= 0,
(B.23)

where we also have used that 𝑠ℎ is symmetric and 𝜓 is symmetric in its first two arguments.
Finally, from expressions (B.11) and (B.23) we obtain the directional derivative expression

𝑑𝑗(𝜙ℎ;𝑤𝑙) = ∫
Γp,ℎ

(
∇𝑧ℎ ⋅∇𝑝ℎ − 𝑘2𝑧ℎ𝑝ℎ

) 𝑤𝑙
|𝜕𝑛 𝜙ℎ|

+ 𝛼𝑉 ∫
Γp,ℎ

( (𝑃𝑇∇𝑤𝑙) ⋅∇𝑧ℎ
|𝜕𝑛𝜙ℎ|

𝜕𝑝ℎ
𝜕𝑛

+
𝜕𝑧ℎ
𝜕𝑛

(𝑃𝑇∇𝑤𝑙) ⋅∇𝑝ℎ
|𝜕𝑛𝜙ℎ|

)

+ ∫
Γp,ℎ

𝜕
𝜕𝑛
𝜓(𝑧ℎ, 𝑝ℎ;𝒏)

𝑤𝑙
|𝜕𝑛 𝜙ℎ|

+
∑

𝑆∈Sℎ

∫
Γp,ℎ∩𝑆

𝒏𝑆 ⋅
q
𝜓(𝑧ℎ, 𝑝ℎ;𝒏)𝒎

y 𝑤𝑙
|𝜕𝑛𝑆𝜙ℎ|

,

(B.24)

under perturbation (7.3), where 𝑝ℎ solves state equation (B.8) for 𝑡 = 0 and 𝑧ℎ adjoint equation (B.21).
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