
ANTIMAGIC LABELING OF GRAPHS USING PRIME NUMBERS

Arafat Islam
Department of Computer Science

American International University-Bangladesh (AIUB)
19-39377-1@student.aiub.edu

Md. Imtiaz Habib
Department of Computer Science

American International University-Bangladesh (AIUB)
19-39389-1@student.aiub.edu

March 28, 2024

ABSTRACT

Graph labeling is a technique that assigns unique labels or weights to the vertices or edges of a graph, often used
to analyze and solve various graph-related problems. There are few methods with certain limitations conducted by
researchers previously on this topic. This research paper focuses on antimagic labeling of different types of graphs
and trees. It entails the assignment of distinct prime values to edges in a manner that ensures the cumulative sum of
edge labels at each vertex remains unique. This research proposes a conjecture on antimagic labeling of any graphs
and proves two theories. Firstly, we tried to give weights to the edges randomly, as some exceptions are faced in
particular phases in this way, we followed a whole new way to mitigate this problem. This research paper demonstrates
computational and mathematical verification to prove that antimagic labeling of any perfect binary tree and complete
graph is possible.

Keywords: Graph; Antimagic; Graph Labeling; Binary Tree; Complete Graph; Prime Number

1 Introduction

In recent years, graph labeling has become a prominent research
topic in the field of graph theory and algorithm. Previously, many
researches have been conducted over different kind of labeling
for different kind of graph.

In [1], researchers have demonstrated that antimagic labeling is
possible for canonical decomposition graphs. Nevertheless, very
few researches have been conducted over antimagic labeling for
graphs and no research is not found where there is no exception.
Hartsfield and Ringel’s research [2] demonstrated the antimagic
nature of graph types Pn (path graphs), Sn (star graphs), Cn (cy-
cle graphs), Km (complete graphs), Wm (wheel graphs), and K2,
m (complete graphs with m ⩾ 3). Additionally, they proposed
two conjectures concerning antimagic labeling of graphs which
are still open. It says,Every connected graph except graphs with
two vertices has an antimagic labeling. Also, every tree except
trees with two vertices has an antimagic labeling [2].

According to [3], antimagic labeling for any perfect binary tree
is possible except for some specific situations. This research
paper focuses to demonstrate the proof both mathematically and
practically of antimagic labeling of any perfect binary and pro-
vide possibility of antimagic labeling on other graphs based upon
certain criteria. This research paper aims to provide comprehen-

sive understanding of antimagic labeling of various graph types,
focusing on the use of prime numbers and the importance of
pattern-based labeling. By building our understanding of these
labeling techniques, we contribute to the expanding landscape of
graph theory and offer potential directions for further exploration
in algorithm and graph theory.

In this research, we have proposed a conjecture regarding an-
timagic labeling for almost every graph following an order using
prime numbers.

2 Background

A graph is a non-linear data structure consisting of vertices and
edges. A graph, denoted as G = (V,E), also has endpoints that
connect two vertices with each edge [4]. In other words, a graph
can be represented using two finite sets, V and E, where V is
referred to as the set of vertices, and E as the set of edges. Graphs
are categorized into various types based on their properties, such
as Trees, Complete Graphs, Cycle Graphs, Path Graphs, Bipartite
Graphs, among others [5].

A graph, denoted as G, can be specifically classified as a Bipartite
Graph when its vertices can be divided into two separate and
independent sets, labeled as U and V . The defining feature of a
Bipartite Graph is that each edge (u, v) connects either a vertex

ar
X

iv
:2

40
3.

17
96

9v
1 

 [
cs

.D
M

] 
 1

6 
M

ar
 2

02
4



A PREPRINT - MARCH 28, 2024

from set U to a vertex from set V or vice versa, linking a vertex
from set V to a vertex in set U . To clarify the concept further,
as mentioned in [6], a graph Gu1,u2 is also considered bipartite
if its vertex set can be partitioned into two disjoint sets, U1 and
U2, in such a way that for any pair of vertices (u1i, u1k ∈ U1)
and (u2i, u2k ∈ U2), no edge e ∈ E exists where e is of the form
(u1i, u1k) or (u2i, u2k). Moreover, it has been portrayed in [7]
that a graph G can exclusively be classified as bipartite if and
only if it contains no odd cycles as subgraphs. This condition
serves as a decisive criterion for determining the bipartite nature
of a given graph. In simpler terms, for every edge (u, v), either u
belongs to set U and v to set V , or u belongs to set V and v to
set U .

A tree is a connected graph without cycles. Particularly, the tree
is a highly researched and practically used class of graphs that
has gathered significant attention in numerous studies [8]. A con-
nected acyclic graph is considered as a tree [4]. Also, a forest is a
graph whose components are all trees [7]. Every two vertices of
a tree are connected by exactly one unique path. In other words,
a graph is a tree if and only if it does not contain any loop and
precisely has single unique path.

Binary trees are distinguished by a defining attribute where every
node has precisely two children: a left child and a right child [9].
In other words, a tree is called a binary tree if the parent nodes
of the tree contain no more than two children. The children are
denoted as left child and right child based upon their positions
[9]. In binary trees, a node is considered as leaf if it does not
carry any child node. Binary trees can be classified into various
types, such as, Balanced Binary Tree, Full Binary Tree, Complete
Binary Tree and Perfect Binary Tree. A binary tree is balanced if
the difference of height between left sub-tree and right sub-tree
is either 0 or 1. Both left and right sub-tree of that node is bal-
anced. A binary tree is said to be a complete binary tree when
all the levels of the tree are filled except for deepest level nodes
which are apparently leaves and filled accordingly from left to
right [10]. Another type of tree is full binary tree, where it is not
mandatory for a tree to have leaves at the lowest level. A full
binary tree exactly has 0 or 2 child nodes. Lastly, a perfect binary
tree represents a special type of binary tree where all the nodes of
the tree are filled with exactly 2 child nodes except for the leaves
which are at the same deepest and same level of other leaves in
that tree. A perfect binary tree has cousins that share a common
grandfather and ancestor only if the father is not the root node.
Also, a perfect binary tree contains at least one brother.

Antimagic labelling is a type of labeling scheme used in graph
theory. A graph G is considered as anti-magic if it consists an
antimagic labeling [2]. A graph is considered planar if it pos-
sesses the property of being amenable to representation within
the two-dimensional plane in such a manner that no two edges
intersect in a nontrivial manner, except at a common vertex to
which they are both directly connected [11].

3 Related Works

Hartsfield and Ringel introduced the concept of antimagic label-
ing for graphs. They demonstrated that paths, 2-regular graphs,
and complete graphs possess anti-magic properties, and they also

proposed two concepts related to the labeling of graphs with anti-
magic properties [2]. It involves assigning unique numbers or
labels to the edges or vertices of a graph in a way that ensures
that the sums of the labels on the edges incident to each vertex
are all different. In other words, the sum of the labels on the
edges connected to any vertex in the graph will be a distinct num-
ber. This unique property makes the graph antimagic, and it has
been studied by researchers in graph theory due to its interesting
properties and applications.

Previously, few notable researches have explored diverse methods
of implementing antimagic labeling on various types of graphs.
Nevertheless, most of them have some limitations and exceptions.
For instance, in [3], positive real numbers were used orderly to
label the edges in order satisfy the conditions of antimagic label-
ing. But there was one exception mentioned in [3] that antimagic
labeling is possible except for the levels that follow 3,7,11. . . .
series. After applying a swap operation between those edges
with particular edges, they were able to satisfy the conditions to
maintain antimagic labeling. An example of this swap is given
below.

Figure 1: Swap Edges Labels of Perfect Binary Tree

We have proved by implementing antimagic labelling of any bi-
nary tree using only prime numbers without exception. A prime
number is defined as a positive integer that is irreducible to every
natural number which is less than itself. In simpler terms, a prime
number is a number that cannot be divided by any smaller natural
number except for 1 and itself. This definition is different from
the traditional definition of prime numbers based on divisibility
[12]. Another example would be cubic graphs, which are graphs
where every vertex has a degree of three, signifying that each
vertex is connected to precisely three edges. In [13], the authors
have demonstrated the antimagic nature of cubic graphs. They
have established a direct relationship between the edges of a cu-
bic graph and the integers ranging from 1 to the total number of
edges. This relationship ensures that the sums of labels assigned
to edges connected to different vertices are distinct. However, it’s
important to note that their work is specifically focused on cubic
graphs and does not address the potential for antimagic labeling
in graphs other than the cubic graphs.

In graph theory a regular bipartite graph is a graph in which the
vertices can be separated into two separate sets, and every edge in
the graph links a vertex from one set to a vertex in the other set.
According to [14], Regular bipartite graphs are characterized by
having a balanced structure, with an equal number of vertices in
each set and an equal number of edges connecting the two sets.
The authors demonstrated that every regular bipartite graph with
a degree of at least 2 is antimagic, using the Marriage Theorem
as a key technique. Although it does not mention about the pos-
sibility of antimagic labeling on different types of graphs based

2



A PREPRINT - MARCH 28, 2024

upon their methodology, it indicates that different types of regular
graphs may require different approaches in their analysis and it
explicitly mentions that the proof for 4-regular graphs is more
complicated than for 6-regular graphs [14]. In addition to that,
the paper does not provide a proof for the antimagic property
of regular bipartite graphs with degrees larger than 2. Also, A
regular graph with an even degree that is not bipartite is a specific
kind of graph. This regular graph has all its vertices with the same
degree, and it is non-bipartite, implying that it cannot be divided
into two separate sets of vertices in a way that all edges connect
vertices from different sets [15].

According to [16], A generalized pyramid graph is formed by
connecting every vertex of a base graph to a central vertex known
as the apex. The base graph can be any graph with a consistent
degree of k and p vertices. This resulting graph is represented
as P(G, m), with G referring to the base graph and m indicating
the pyramid’s level. Research conducted by Alon, Kaplan, Lev,
Roditty, and Yuster, initially proved that all the complete partite
graphs (excluding K2) and graphs that contain a maximum de-
gree of at least (n-2) possess antimagic properties [17]. Later, the
authors fixed the error in the initial proof, affirming the validity
of the anti-magic labeling theorem for trees that include at most
one vertex with a degree of 2 in [18].

Apart from that, researches have been conducted over antimagic
labeling on are various types of graphs. Such as, the authors of
[19] determine the local antimagic total chromatic number, for
amalgamation graphs of complete graphs. Similarly, in [20] the
existence of distance antimagic labeling in the ladder graph is
investigated.

4 Conjecture

Inspired from the characteristics of prime numbers, we have pro-
posed a conjecture about the possibilities of antimagic labeling.

Conjecture 1: Every graph is antimagic when it follows an
order of edge labeling using prime numbers except graphs with
less than 3 nodes.

In the following sections, the proof of the above conjecture for
different graphs have been discussed.

5 Perfect Binary Tree

To prove antimagic labeling is possible for a perfect binary tree,
we have approached with a distinct way. Using prime numbers
as weights of the edges of a perfect binary tree, satisfies all the
conditions that antimagic labeling has. First, we implemented a
function to generate prime numbers to label the edges. In this
research paper we have proved that antimagic labeling is possi-
ble for any perfect binary tree using prime numbers without any
exception both mathematically and implemented the algorithm
using python.

In this section, we have discussed about algorithm. We have initi-
ated our work by traversing the perfect binary in a bottom-to-top
manner. In this way, the leaves of the tree come first to get labeled

then all the way to root. This traversal method is one of the most
crucial part of our approach. After that, Left-to-right horizontal
strategy is used to label the perfect binary tree. This strategy
completely aligns with our goal and guarantees the uniqueness of
labels. To generate prime numbers, we have applied two distinct
algorithms that ensure the prime numbers used to label the edges
are unique and suitable. Furthermore, another algorithm is used
to label the edges in left-to-right, bottom-to-top approach which
also ensures that weights of all the edges in the perfect binary
tree are distinctive. Next, the mathematical verification will be
analyzed with algorithms.

Figure 2: Antimagic labeling for perfect binary tree of level 5

5.1 Pseudocode:

5.1.1 Algorithm 1: Pseudocode for generating prime
numbers

Algorithm 1 Generate Primes
1: procedure GENERATEPRIMES(limit)
2: primes← [ ]
3: is_prime← True× (limit + 1)
4: is_prime[0]← False
5: is_prime[1]← False
6: num← 2
7: while length of primes < no_of_edges do
8: if is_prime[num] is True then
9: append num to primes

10: for multiple in range(num2, limit + 1, num) do
11: is_prime[multiple]← False
12: end for
13: end if
14: num← num + 1
15: end while
16: return primes
17: end procedure

3



A PREPRINT - MARCH 28, 2024

5.1.2 Algorithm 2: Pseudocode for generating prime
numbers

Algorithm 2 Generate Primes
1: function GENERATEPRIMES(level)
2: function ISPRIME(n)
3: if n < 2 then
4: return false
5: end if
6: for i from 2 to

√
n (inclusive) do

7: if n mod i = 0 then
8: return false
9: end if

10: end for
11: return true
12: end function
13: primes← []
14: Initialize n to 0
15: Set target_count = (2level × 2)− 2
16: while length of primes < target_count do
17: if IsPrime(n) then
18: Append n to primes
19: end if
20: Increment n by 1
21: end while
22: return primes
23: end function

5.1.3 Algorithm 3: Pseudocode for generating perfect
binary trees

Algorithm 3 PerfectBinaryTree
1: procedure PERFECTBINARYTREE(level)
2: if level ≤ 0 then
3: return 0
4: end if
5: edges← generateprimes(level)
6: new_edges, latest_lower_edges, latest_nodes ←

lastlevelnode(edges, level)
7: all_nodes.extend(latest_lower_edges)
8: p← level− 1
9: while p ≥ 0 do

10: if p > 0 then
11: new_edges, latest_upper_edges ←

generateedge(new_edges, p)
12: nodes← generatenode(latest_upper_edges,

latest_lower_edges)
13: latest_lower_edges← latest_upper_edges
14: p← p− 1
15: end if
16: if p = 0 then
17: root_node← getrootnode(new_edges)
18: break
19: end if
20: end while
21: end procedure

5.2 Mathematical Verification:

In this section, we present a mathematical demonstration of the
feasibility of an anti-magic labeling scheme for perfect binary
trees, using prime numbers as labels.

The essence of our approach lies in the systematic labeling of
all edges within the tree. By following a sequential left-to-right
and bottom-to-up order, we assign unique prime number labels
ranging from 1toel, where l represents the level of the tree, and
el signifies the total count of edges at that specific level.

Throughout the research we have created four distinct formulas.
These formulas enable us to determine the value and position
of vertices and edges within a perfect binary tree relative to its
level. Our established methodology not only underscores the
plausibility of anti-magic labeling but also underpins the logical
foundation upon which our proof is constructed. Through a
comprehensive analysis of these formulas, we substantiate the
viability of our proposed anti-magic labeling approach.

Number of potential vertices within a perfect binary tree of level,

vl = 2l + 2l−1 + 2l−2 + · · ·+ 20 (1)

Number of potential edges within a perfect binary tree of level,

el = (2l ∗ 2)− 2 (2)

To establish the feasibility of antimagic labeling for all perfect
binary trees, our initial step involves categorizing such trees into
four distinct groups based on their vertex characteristics.

• Root Node:

r(l) = P1[(2
l ∗ 2)− 3]th + P2[(2

l ∗ 2)− 2]th (3)

• Second-To-Last:

n(l, k) = P1(2n−1)th+P2(2n)
th+P3[(2

l)+n]th (4)

• Last Level:
P (n) = 1 ≥ n ≤ 2l (5)

• Internal Levels: (when k < 1)

n(l, k) =P1

[
(2n− 1) +

k−2∑
i=0

2l−i

]th

+

P2

[
(2n) +

k−2∑
i=0

2l−i

]th

+

P3

[
k−1∑
i=0

2l−i + n

]th

(6)

Where,
l= Number of levels of the tree.
n= Position of the node within a level (Left-To-Right).
k= Targeted level within the tree (Bottom-To-Top).
n(l, k)= This represents the value of the node located in the level

4



A PREPRINT - MARCH 28, 2024

K of the L-level perfect binary tree at position n, considering the
edge position P1, P2 and P3 (Left-To-Right from the edge list).
P1, P2, P3= These terms are used to weight the contribution of
the node in the left, right and path from the root to the target node
respectively.

5.2.1 Level l = 0

Number of vertices of a l=0 perfect binary tree is, v0 = 20 = 1
And number of edges of a l=0 perfect binary tree is, el =
(2l ∗ 2)− 2; e0 = (20 ∗ 2)− 2 = 0
In a l = 0 perfect binary tree, there is only one vertex and no
edges. Since, there is no edge in this graph, we cannot label this
graph. Therefore, it is not possible to label a l = 0 perfect binary
tree.

5.2.2 Level l = 1

In a l = 1 perfect binary tree, there are v1 = 21 = 2 vertices and
e1 = (21 ∗ 2)− 2 = 2 edges. l = 1 perfect binary tree consists
only a root and leaves. According to our approach, a list of prime
numbers needs to be built with the same length of edge. Our edge
list is, [2, 3]. Since this perfect binary tree only contains one level,
(1) and (6) cannot be applied here. For last level, according to (5)
leaves will be, in range 1 ≥ n ≤ 2l.

For root calculation, according to (3):

r(1) = P1[(2
1 · 2)− 3]th + P2[(2

1 · 2)− 2]th

r(1) = P1(1
st value from edge list)

+ P2(2
nd value from edge list)

r(1) = 2 + 3 = 5

Apparently, the weights of the vertices are unique Thus, for a
l = 1 perfect binary tree antimagic labeling is validated by our
approach.

5.2.3 Level l = 2

For a l = 2 perfect binary tree, there are v2 = 22 = 4 vertices
and e2 = (22 ∗ 2) − 2 = 6 edges. l = 2 perfect binary tree
consists 4 vertices and 6 edges. According to our previously
stated approach, a list of prime numbers needs to be created
which will have the same length as the edge list. Our edge list is,
[2, 3, 5, 7, 11, 13]. As, a l = 2 level perfect binary tree consists
of two levels, equation (6) cannot be applied here. For last level,
according to (5) leaves will be, in range 1 ≥ n ≤ 2l.

For root calculation. According to (3):

r(2) = P1[(2
2 · 2)− 3]th + P2[(2

2 · 2)− 2]th

r(2) = P1(5)
th + P2(6)

th

r(2) = 11 + 13 = 24

For calculating the value of the second node of the second-to-last
level (where n = 2 and k = 1), according to (4):

2(2, 1) = P1(2 · 2− 1)th + P2(2 · 2)th

+ P3[(2
2) + 2]th

2(2, 1) = P1(3)
rd + P2(4)

th + P3[6]
th

2(2, 1) = 5 + 7 + 13

2(2, 1) = 25

Figure 3: Antimagic labeling for perfect binary tree of level 2

Apparently, the weights of the vertices are unique Thus, for a
l = 1 perfect binary tree antimagic labeling is validated by our
approach.

5.2.4 Level l = 3 and beyond

In a l=3 perfect binary tree, there will be a root level, last
level, second-to-last level and an internal level. From l=3 we
can use all of our equations. There are v3 = 23 = 8 vertices
and e3 = (23 ∗ 2) − 2 = 14 edges. Similarly, as level 1
and level 2, a list of prime numbers needs to be created as
the exact same length of edge list. Therefore, our edge list is,
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43].

For root calculation, according to (3):

r(3) = P1[(2
3 · 2)− 3]th + P2[(2

3 · 2)− 2]th

r(3) = P1(13)
th + P2(14)

th

r(3) = 41 + 43

r(3) = 84

For Calculating second-to-last level: (k = 1), according to (4)

2(3, 1) = P1 (2 · 2− 1)
th

+ P2 (2 · 2)th

+ P3

(
23 + 2

)th
2(3, 1) = P1(3)

rd + P2(4)
th + P3(10)

th

2(3, 1) = 5 + 7 + 29

2(3, 1) = 41

5



A PREPRINT - MARCH 28, 2024

For Calculating Internal level(where n = 1 and k = 2), according
to (6):

1(3, 2) =P1

[
(2 · 1− 1) +

0∑
i=0

23−0

]th

+

P2

[
(2 · 1) +

0∑
i=0

23−0

]th

+

P3

[
1∑

i=0

23−0 + 1

]th

1(3, 2) = P1(9)
th + P2(10)

th + P3(13)
th

1(3, 2) = 23 + 29 + 41 = 93

Likewise, from level 3 and beyond, all the formulas will be ap-
plicable. Similarly, a graph of level 4 and level 5 are shown
below.

Figure 4: Antimagic labeling for perfect binary tree of level 3

Figure 5: Antimagic labeling for perfect binary tree of level 4

5.3 Proof:

Theory-1: A perfect binary tree with its edges labeled using
prime numbers, the summation of any three edges of a node is
never equal to the sum of another three edges of a different node
within the levels between the root and leaves if:

1. The edges are ordered in ascending prime values within
each node.

2. At most one prime-numbered edge is shared between
the nodes or none.

3. The sum of the two smaller prime edges in the first node
is always less than the sum of the two smaller prime
edges in the second node.

4. The two smaller prime edges within each node are
unique.

Proof by Contradiction: Assume a perfect binary tree with an-
timagic labeling using prime numbers, and we want to prove that
the summation of any three edges of a node is never equal to
the sum of another three edges of a different node in the levels
between root and leaves.

Figure 6: Antimagic labeling for perfect binary tree of level l

With regards to contradiction, that there exist two distinct nodes,
node A and node B, such that the summation of three edges of
node A is equal to the sum of three edges of node B:

Node A’s edges are labeled as P1, P2, and Z, where P1 <
P2 < Z

Node B’s edges are labeled as Q1, Q2, and Z, where Z <
Q1 < Q2

Equality Assumption:

P1 + P2 + Z = Q1 +Q2 + Z . . . . . . . . . . . . (I)

Inequality in Edge Labels:
Since the edges are labeled in increasing order, we know that,

P1 < P2 < Z < Q1 < Q2 . . . . . . . . . . . . . . . (II)

Now, let’s compare the sums of edges.
For Node A:

P1 + P2 + Z < P2 + P2 + Z(sinceP1 < P2)

P1 + P2 + Z < 2P2 + Z . . . . . . . . . . . . (III)

For Node B:

Q1 +Q2 + Z < Q2 +Q2 + Z (since Q1 < Q2)

6



A PREPRINT - MARCH 28, 2024

Q1 +Q2 + Z < 2Q2 + Z . . . . . . . . . . . . (IV )

Now, comparing (III) and (IV ),

P1 + P2 + Z < 2P2 + Z < 2Q2 + Z

Since Q2 is greater than P2,

2Q2 + Z > 2P2 + Z . . . . . . . . . . . . (V )

This comparison leads to a contradiction because we initially
assumed that P1 + P2 + Z equals Q1 +Q2 + Z, but the above
inequalities demonstrate that P1 + P2 + Z is strictly less than
Q1 +Q2 + Z.
Since our initial assumption led to a contradiction, we conclude
that the summation of any three edges of a node is never equal to
the sum of another three edges of a different node.

6 Complete Graph

To demonstrate the feasibility of achieving an antimagic labeling
for complete graphs, we have adopted a unique approach likewise
perfect binary tree, except it has been proved only by practical
implementation. By assigning prime numbers as weights to the
tree’s edges, we can fulfill all the requirements of antimagic
labeling.

Theory-2: In a complete graph with n nodes, where each node’s
value is the sum of all edges connected to that node, and the edges
are labeled with prime numbers starting from 2 up to the (n-1)-th
prime number, the resulting node values are unique.

Figure 7: Antimagic labeling of K4 (left) and K5 (right) complete
graph

6.1 Pseudocode:

Algorithm 4 Generate Complete Graph With Antimagic Labeling
1: G← create_complete_graph(n)
2: prime_edges← get_prime_edges(n)
3: for i from 1 to n do
4: for j from i+ 1 to n do
5: add_edge(G, i, j)
6: label_edge(G, i, j, prime_edges[i− 1])
7: end for
8: end for
9: for i from 1 to n do

10: node_value← 0
11: for each edge (u, v) in edges_of(G) do
12: if u is i or v is i then
13: label← get_edge_label(G, u, v)
14: node_value← node_value+ label
15: end if
16: end for
17: end for

6.2 Proof:

Proof by Contradiction:
Let’s assume the opposite, that there exist two distinct nodes,
Node A and Node B, with the same node value in such a complete
graph. We denote the set of edges connected to Node A as
2, 3, 5, ..., p, where p is the (n − 1)th prime number. Similarly,
the set of edges connected to Node B is denoted as 2, 3, 5, ..., q,
where q is also the (n− 1)th prime number.

Since Node A and Node B have the same node value, we
can express this as:
Node A′s Value = Node B′s Value
Mathematically, this can be written as below:
p∑

i=2

i =

q∑
i=2

i

Where p and q are both equal to the (n-1)th prime number.
Now, let’s consider the sum of all edges connected to Node A
minus the sum of all edges connected to Node B:
p∑

i=2

i−
q∑

i=2

i = 0

Mathematically, this can be written as:
p∑

i=2

(i− j) = 0

However, since each edge is labeled with a unique prime number
starting from 2, we have:
(i− j) ̸= 0

So, for each i ̸= 0, we have:
p∑

i=2

i−
q∑

i=2

i ̸= 0

This means that there must be at least one term (i-j) in the

7



A PREPRINT - MARCH 28, 2024

sum that is not equal to 0.

This contradicts our initial assumption that the node values
of Node A and Node B are equal. Therefore, our assumption is
false, and we conclude that in a complete graph with n nodes,
where each node’s value is the sum of all edges connected to that
node, and the edges are labeled with prime numbers starting from
2 up to the (n− 1)th prime number, the resulting node values are
indeed unique.

7 Antimagic Labeling of Other Graphs

While doing this research a noteworthy issue has come to our
attention. We found that sometimes multiple nodes end up
with the same values when we try to label the edges arbitrar-
ily, which doesn’t meet the antimagic labeling criteria. This
issue is most pronounced when nodes in a graph are connected
by three edges.We propose a solution that avoids the issue of
overlapping values across graphs. If edges of the graphs are
labeled in an orderly fashion, the conditions of antimagic la-
beling are not violated. It can be ascending or descending in
order. With this approach, we ensure that no two nodes have the
same value, satisfying the conditions for antimagic labeling. In
case of non-regular bipartite graph, if it is labeled using prime
numbers, it will always be antimagic labeling and it does not
require to follow any order while giving weights to the edges
(see figure:12). Another exceptional case arises in ladder graph,
when the number of nodes less than or equal four (n ≤ 4), it
will always follow the conditions of antimagic labeling (see
figure:12). However, if the number of nodes of a ladder graph
are less than or equal to two (n ≤ 4), maintain the conditions of
antimagic labeling will not be feasible. Our research not only
identifies all these issues and offers a practical solution, especially
when nodes have three edges connecting them in the graph. Few
examples of various graphs with their problems and solutions are
graphically illustrated below. For each graph figure at the left rep-
resents with its problem and at the right it is shown with solutions.

Graphs With Problems(left) and Solutions(right):

Figure 8: Complete binary trees of level 3

Figure 9: W7 pyramid graphs.

Figure 10: K4 Cubic graphs

Figure 11: Q3 cubic graphs.

Figure 12: K2,3 cubic bipartite graph (special case)

8



A PREPRINT - MARCH 28, 2024

Figure 13: K3,3 complete bipartite graphs.

Figure 14: 1P2 (left) and 2P2 (right) ladder graphs (special cases).

Figure 15: 3P2 ladder graphs.

8 Results and Analysis

In this paper, we have mathematically verified that antimagic la-
beling is possible for any perfect binary tree using prime numbers.
From the table, we can see that the values of the roots are abso-
lutely unique. Thus, we can say that, if a perfect binary tree of
level l is labeled from 1 to el progressively from left-to-right and
bottom-to-top using prime numbers, antimagic labeling is possi-
ble for any perfect binary tree. In the table, weights of nodes’,
roots and total number of nodes of specific level are provided. All
the weights of any nodes of any level are completely distinctive.
Additionally, the number of edges and nodes increase exponen-
tially with the number of levels. Values of only 24 levels are
provided because of compact area. Beyond the empirical results,
this research significantly contributes to the broader comprehen-
sion of antimagic labelling within the context of perfect binary
trees. Furthermore, it expands the existing body of knowledge in
the expansive field of graph labelling, accentuating its relevance
and significance within the realm of mathematics and computer
science.

In the table: 1, first three leftmost vertices of level (l − 1), first 2
leftmost vertices of level (l−2) and the leftmost vertices of l = 3
are given along with the values of root nodes and total number of
nodes.

9 Applications of Antimagic Labeling for Graphs

Graph Theory: Prime-number-based antimagic labeling allows
for the study of unique properties and advantages, particularly in
the study of graph structures. For instance, it opens the window
to study of graph isomorphism, a fundamental problem in graph
theory. Consider two non-isomorphic graphs, G1 and G2. By
applying prime-number-based antimagic labeling to them, G1

receives labels like 2, 3, 5, and 7, while G2 is labeled differently,
say, 11, 13, 17, and 19. The distinctiveness of the prime labels
signifies that G1 and G2 are structurally different, providing valu-
able information in graph isomorphism testing. This technique
may also be helpful for the study of Hamiltonian cycles and
Eulerian circuits.

Binary Search Trees: Antimagic labeling using prime numbers
optimizes the efficiency of binary search trees (BSTs), reducing
search complexity and improving data retrieval efficiency. For ex-
ample, in a perfect binary search tree labeled with prime numbers,
the labels may represent the magnitude of elements stored in the
tree, leading to efficient data retrieval, particularly in database
systems.

Cryptography: Prime numbers have been a cornerstone of
cryptographic methods for their unpredictability and difficulty
to factor. Antimagic labeling using primes can provide an extra
layer of security by creating prime-labeled structures that are
challenging for adversaries to decipher. The inherent properties
of prime numbers can make encrypted data even more resistant to
attacks, providing a level of security that other approaches might
not achieve.

Parallel Computing: Today there is a sharp increase in the
demand for faster and more efficient processing of complex
tasks. Antimagic labeling with prime numbers can assist in load
balancing and task distribution in parallel and distributed com-
puting environments. Prime-number-based labels can signify the
computational load of individual nodes in a distributed computing
system, facilitating balanced load distribution. Algorithm Design:
Antimagic labeling using prime numbers can influence algorithm
design by offering a unique labeling scheme with interesting
arithmetic properties. Algorithms for optimization, sorting, or
search problems can incorporate prime-number-based labels for
improved efficiency and robustness.

Artificial Intelligence: In AI, prime-number-based antimagic
labeling can be applied to decision tree-based machine learning
algorithms. Prime-number-based labels on nodes in a decision
tree can represent the significance of different features in a dataset,
allowing for more efficient and accurate classification in AI ap-
plications. Prime-number-based labels can be integrated into the
training data for supervised learning tasks. Models can learn to
utilize these labels for better feature discrimination and improved
classification or regression outcomes.

Graph Neural Networks (GNNs): In the context of GNNs,
prime-number-based antimagic labeling using prime numbers
can be used to enhance graph representation learning. GNNs
can leverage prime-number-based node labels to improve node

9



A PREPRINT - MARCH 28, 2024

Table 1: Weights of certain vertices of particular levels of perfect binary tree.

Level, l w1, l-1 w2, l-1 w3, l-1 w1, l-2 w2, l-2 w3, l-2 w1, l-3 Root value No. of Nodes
0 - - - - - - - 2 1
1 - - - - - 5 3
2 16 25 - - - - - 24 7
3 28 41 55 93 111 - - 84 15
4 64 73 91 217 239 255 307 222 31
5 142 151 173 503 529 553 725 576 63
6 318 329 355 1139 1189 1219 1647 1392 127
7 732 745 763 2631 2663 2695 3779 3216 255
8 1626 1639 1661 5907 5957 6001 8491 7280 511
9 3678 3689 3715 13201 13245 13271 18685 16240 1023
10 8172 8183 8203 29249 29287 29347 41177 35676 2047
11 17886 17903 17927 63955 64013 64043 89871 77712 4095
12 38896 38915 38941 138755 138839 138863 194431 267970 8191
13 84052 84065 84083 299643 299681 299737 418823 360964 16383
14 180516 180545 180563 642763 642817 642857 896883 772098 32767
15 386122 386131 386153 1372939 1372987 1373043 1911961 1643124 65535
16 821652 821663 821687 2919047 2919091 2919267 4058611 3485014 131071
17 1742544 1742575 1742603 6184563 6184641 6184689 8586745 7362108 262143
18 3681154 3681163 3681215 13056451 13056553 13056643 18107685 15508020 524287
19 7754086 7754125 7754143 27481693 27481769 27481885 38069135 32580032 1048575
20 16290078 16290101 16290143 57697399 57697481 57697523 79843061 68272008 2097151
21 34136064 34136089 34136107 120840189 120840259 120840355 167071827 142757070 4194303
22 71378608 71378633 71378665 252538565 252538645 252538709 348849659 297896236 8388607
23 148948146 148948169 148948195 526748179 526748251 526748303 727091047 620496456 16777215
24 310248256 310248355 310248371 1096697093 1096697219 1096697297 1512761729 1290310356 33554431

embeddings and community detection in complex networks,
leading to better graph analysis and prediction.

10 Limitations

As the number of levels increase the number of nodes and edges
also increase exponentially. Google Colab version 3 is used to
implement in this research. Therefore, after executing 24 levels,
google collab restricts us from using it. Because of having limited
memory, the execution could not be carried out further. In simpler
terms, the main limitation we faced was that our computations
couldn’t run indefinitely on the free version of Google Colab.
The next limitation is, we could not build a universal formula for
any level, rather, we have built 4 distinguish formulas. In the con-
text of cubic graphs, it is observed that the arbitrary assignment
of labels to the edges may lead to a violation of the conditions
for antimagic labeling, resulting in the inadvertent occurrence of
edge-label collisions between two distinct nodes. For instance, if
we label the edges of a node (11, 5, 2) and (13, 3, 2) for the other
node, the values of two nodes become the same.

11 Conclusions

This exploration of antimagic labeling utilizing prime numbers
represents a promising approach to addressing graph labeling
problems. The use of prime numbers offers a versatile and poten-
tially efficient method for assigning labels to graphs. We have
shown antimagic labeling of any perfect binary tree and com-

plete graphs using prime without any exception. We also demon-
strated antimagic labeling for bipartite graphs, cubic graphs, lad-
der graphs, binary trees, complete binary trees and pyramid graphs
with few exceptions. However, we have shown that those prob-
lems can be solved by following a sequential order. This research
also highlights the potential of antimagic labeling for broader
applications in various fields, such as artificial intelligence and
cryptography, among others. As the study of antimagic label-
ing continues to evolve, it opens new areas for solving complex
problems in diverse mathematical and computational domains.

References

[1] Michael D Barrus. Antimagic labeling and canonical de-
composition of graphs. Information Processing Letters,
110(7):261–263, 2010.

[2] Nora Hartsfield and Gerhard Ringel. Pearls in graph theory:
a comprehensive introduction. Courier Corporation, 2013.

[3] Md Manzurul Hasan. Antimagic labelling of any perfect
binary tree. In Proceedings of the International Conference
on Computing Advancements, pages 1–6, 2020.

[4] Douglas Brent West et al. Introduction to graph theory,
volume 2. Prentice hall Upper Saddle River, 2001.

[5] Robin J Wilson. Introduction to graph theory. Pearson
Education India, 1979.

[6] Michael Jackanich. Antimagic labeling of graphs. PhD
thesis, San Francisco State University, 2011.

10



A PREPRINT - MARCH 28, 2024

[7] Tero Harju. Lecture notes on graph theory. Department of
Mathematics University of Turku, 2011.

[8] Auparajita Krishnaa. A study of the major graph labelings
of trees. Informatica, 15(4):515–524, 2004.

[9] Erkki Mäkinen. A survey on binary tree codings. The
Computer Journal, 34(5):438–443, 1991.

[10] Md. Rafiqul Islam and M.A. Mottalib. Data Structures Fun-
damentals. Research, Extension, Advisory Services and
Publication, Gazipur, Bangladesh, 2011.

[11] Richard J Trudeau. Introduction to graph theory. Courier
Corporation, 2013.

[12] Anthony Gardiner. The mathematical olympiad handbook:
An introduction to problem solving based on the first 32
British Mathematical Olympiads 1965-1996. Oxford Sci-
ence Publications, 1997.

[13] Khairannisa Al Azizu, Lyra Yulianti, Narwen Narwen, and
Syafrizal Sy. On super (a, d)-edge antimagic total labeling
of branched-prism graph. Indonesian Journal of Combina-
torics, 5(1):11–16, 2021.

[14] Gil Kaplan, Arieh Lev, and Yehuda Roditty. On zero-
sum partitions and anti-magic trees. Discrete Mathematics,
309(8):2010–2014, 2009.

[15] Subramanian Arumugam, Mirka Miller, Oudone Phanalasy,
and Joe Ryan. Antimagic labeling of generalized pyramid
graphs. Acta Mathematica Sinica, English Series, 30:283–
290, 2014.

[16] Yu-Chang Liang and Xuding Zhu. Antimagic labeling of
cubic graphs. Journal of graph theory, 75(1):31–36, 2014.

[17] Yu-Chang Liang, Tsai-Lien Wong, and Xuding Zhu. Anti-
magic labeling of trees. Discrete mathematics, 331:9–14,
2014.

[18] Feihuang Chang, Yu-Chang Liang, Zhishi Pan, and Xud-
ing Zhu. Antimagic labeling of regular graphs. Journal of
Graph Theory, 82(4):339–349, 2016.

[19] Daniel W Cranston. Regular bipartite graphs are antimagic.
Journal of Graph Theory, 60(3):173–182, 2009.

[20] Gee-Choon Lau and Wai-Chee Shiu. On local antimagic
total labeling of amalgamation graphs. arXiv preprint
arXiv:2203.06337, 2022.

11


	Introduction
	Background
	Related Works
	Conjecture
	Perfect Binary Tree
	Pseudocode:
	Algorithm 1: Pseudocode for generating prime numbers
	Algorithm 2: Pseudocode for generating prime numbers
	Algorithm 3: Pseudocode for generating perfect binary trees

	Mathematical Verification:
	Level l=0
	Level l=1
	Level l=2
	Level l=3 and beyond

	Proof:

	Complete Graph
	Pseudocode:
	Proof:

	Antimagic Labeling of Other Graphs
	Results and Analysis
	Applications of Antimagic Labeling for Graphs
	Limitations
	Conclusions

