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ABSTRACT. In this paper, we tackle unresolved inquiries by Ferreira et al. [3] in their

recent publication, “Functional Identity on Division Algebras”. We delve into the intri-

cate behavior of additive functions on matrix algebras over division rings through rigorous

analysis and theorem-proving. Our findings offer valuable insights into the nature of these

functions and their implications for algebraic structures.
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1. INTRODUCTION

Over the decades, research in functional equations and identities has been pivotal in

understanding the properties of mappings in algebraic structures and their relevance across

various mathematical disciplines.

In a pioneering study in 1987, Vukman [4] studied a result on Cauchy’s functional

equations in division rings. He established conditions under which any additive mapping

on a division ring with certain characteristics must be identically zero. He showed that if

D is a division ring with characteristics different from 2 and f : D → D is an additive

function satisfying:

(1) f(x) = −x2f(x−1)

for all x 6= 0, then f(x) = 0 for all x ∈ D. This result, while fundamental, left addi-

tional questions to be explored regarding functional identities in more general algebraic

structures.

Subsequently, Brešar [1] expanded this line of inquiry by investigating functional iden-

tities involving two additive mappings, F and G, in a division ring. He presented a charac-

terization theorem, revealing specific forms that these mappings must adhere to, enriching

our understanding of the structure of these mappings.

Motivated by Brešar’s results and intending to extend these investigations further, this

article sets out to resolve the questions raised by Catalano [2] in 2018. Catalano explored

functional identities in division rings, relating additive mappings to derivations and shed-

ding light on their underlying properties.

In 2023, Ferreira et al. [3] studied the functional equation:

(2) x−1f(x) + g(x−1) = 0

and proved the following theorem.

Theorem 1.1. Let A = Mn(D) be the algebra of n × n square matrices over a division

ring D with characteristics different from 2. Let f, g : A → A be additive functions,

satisfying identity (2) for every invertible x. Then f(x) = g(x) = 0, for all x ∈ A.

The first author was supported by FAPESP number 2022/14579-0.
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This work aims to address and resolve the open questions raised in the article [3], which

delves into the investigation of functional identities in algebra. They posed the following

two questions:

Question 1.1. Let D be an algebra such that there exist additive functions f, g : D → D

satisfying the following equation:

(3) x−nf(x) + g(x−1) = 0

for every invertible x, where n is an integer such that n > 2. Is it possible to characterize

the functions f and g?

Question 1.2. If D is a field of characteristic 2 and there exist additive functions f, g :
D → D satisfying identity (2) for every x 6= 0, is D a perfect field?

Note that Vukman’s article deals with the particular case of equation (3) where n = 2
and f = g, and the main results of Ferreira et al. article [3] deal with the particular case of

equation (3) where n = 1.

The central focus of this work is to provide solutions to a modified version of Vukman’s

functional identity, specifically x−1f(x) + g(x−1) = 0, where f and g are additive map-

pings on a division algebra. Our approach aims to characterize the additive mappings that

preserve the identity (3), exploring theoretical aspects.

Furthermore, we extend our investigation to matrix algebras over division algebras, ex-

amining analogous functional equations and providing characterizations for additive map-

pings that preserve these identities. We hope that this study will contribute not only to the

understanding of functional equation theory but also to the advancement of knowledge in

various areas of mathematics.

2. MAIN RESULTS

In this section, we present our main theorems, which address open questions left by the

recent article published by Ferreira et al. [3]. Before presenting our primary results, it is

pertinent to revisit the well-known identity attributed to Hua, an important element for the

development of this paper.

Consider any two elements a, b ∈ A, ensuring ab 6= 0, 1. We encounter the pivotal

Hua’s identity:

a−
[

a−1 +
(

b−1 − a
)−1

]−1

= aba.

Theorem 2.1. Let n be an odd integer and m a positive integer. Let D be a division ring

with Char(D) 6= 2. Let A = Mm(D) be the algebra of m×m matrices with entries in D.

Let A∗ be the set of invertible matrices. Let f, g : A → A be additive functions such that:

(4) x−nf(x) + g(x−1) = 0 if x ∈ A∗

Then f(x) = g(x) = 0 for all x ∈ A.

Proof. We proceed by delineating several steps.

Step 1: To begin, we show that f(x) = 0 for all x ∈ A∗. Let x ∈ A∗. Utilizing (4)

with x 7→ x and x 7→ −x, where n is odd, yields:

x−nf(x) + g(x−1) = 0,

x−nf(x)− g(x−1) = 0,

implying 2x−nf(x) = 0, and thus f(x) = 0.
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Step 2: Next, we establish that g(x) = 0 for all x ∈ A∗. For x ∈ A∗, employing (4)

with x 7→ x−1 yields:

0 = xnf(x−1) + g(x) = g(x),

confirming g(x) = 0.

Step 3: Consider h ∈ {f, g}. We aim to prove that h(x) = 0 for all x ∈ A such that

x2 = x. For x ∈ A satisfying x2 = x, observe:

(1 − 2x)2 = 1− 4x+ 4x2 = 1,

thus 1− 2x ∈ A∗. Additionally, 1 ∈ A∗, hence:

0 = h(1− 2x) = −2h(x),

leading to h(x) = 0.

Step 4: We conclude the proof. Let h ∈ {f, g}. For each (i, j), let eij ∈ A denote the

matrix with the (i, j) entry being 1 and the others 0. Then, for each i, e2ii = eii, implying

h(eii) = 0.

• For i and a ∈ D, if a 6= 0, then 1+ (a− 1)eii ∈ A∗, hence h(1+ (a− 1)eii) = 0,

and consequently h(aeii) = 0. Furthermore, as h is additive, h(0eii) = h(0) = 0.

• For each (i, j) with i 6= j and for a ∈ D, 1 + aeij ∈ A∗, thus h(1 + aeij) = 0,

and hence h(aeij) = 0.

Let x ∈ A, then x takes the form x =
∑

i,j aijeij where aij ∈ D, yielding:

h(x) = h





∑

i,j

aijeij



 =
∑

i,j

h (aijeij) = 0

Therefore, h(x) = 0 for all x ∈ A. �

And what about the scenario when n is even? We have obtained fragmented results.

Theorem 2.2. Let n be an even integer such that n > 2. Let D be a division ring with

Char(D) > n. Let f, g : D → D be additive functions such that:

(5) x−nf(x) + g(x−1) = 0 if x 6= 0

Then f(x) = g(x) = 0 for all x ∈ D.

Proof. Once again, we proceed with the proof of Theorem 4.1 by delineating several steps.

Step 1: Let x 6= 0. Then, utilizing (5) with x 7→ x and x 7→ x−1, we have:

(6) x−nf(x) + g(x−1) = 0

and also:

xnf(x−1) + g(x) = 0

implying:

(7) x−ng(x) + f(x−1) = 0

Consequently, from (6) and (7), we obtain:

x−n(f + g)(x) + (f + g)(x−1) = 0

x−n(f − g)(x)− (f − g)(x−1) = 0

Step 2: Let h ∈ {f + g, f − g}. Taking e = −1 if h = f + g and e = 1 if h = f − g,

we have:

(8) h(x) = exnh(x−1) if x 6= 0
3



Let a 6= 0 and a 6= 1, then by Hua’s identity, we have:

(9) a2 = a− (a−1 + (1− a)−1)−1

thus:

h(a2) = h(a− (a−1 + (1− a)−1)−1)
= h(a)− h((a−1 + (1− a)−1)−1)
= h(a)− e(a−1 + (1− a)−1)−nh(a−1 + (1− a)−1)
= h(a)− ean(1− a)nh(a−1 + (1− a)−1)
= h(a)− ean(1− a)n(h(a−1) + h((1− a)−1))
= h(a)− ean(1− a)nh(a−1)− ean(1− a)nh((1− a)−1)
= h(a)− e2an(1− a)na−nh(a)− e2an(1 − a)n(1− a)−nh(1− a)
= h(a)− (1− a)nh(a)− anh(1− a)
= h(a)− (1− a)nh(a)− an(h(1)− h(a))
= h(a)− (1− a)nh(a)− anh(1) + anh(a)
= (1 + an − (1− a)n)h(a)− anh(1),

thus:

h(a2) = (1 + an − (1− a)n)h(a)− anh(1).

The above equation also holds for a = 0 and a = 1 as well. As n is even and n ≥ 4, we

may express this as:

(

h(a2)− nah(a)
)

+

n−1
∑

k=3

(−1)k−1

(

n

k − 1

)

ak−1h(a) +
(

−nan−1h(a) + anh(1)
)

= 0

Now, let:

t0(x) = 0
t1(x) = 0
t2(x) = h(x2)− nxh(x)
tk(x) = (−1)k−1

(

n
k−1

)

xk−1h(x) se 3 ≤ k ≤ n− 1

tn(x) = −nxn−1h(x) + xnh(1)

Each tk(x) is homogeneous with degree k in x. Therefore, for all a ∈ D, we have:

(10) t0(a) + t1(a) + · · ·+ tn(a) = 0

Let a ∈ D, then for all m ∈ 0, . . . , n, by applying (10) with ma instead of a, we derive:

m0t0(a) +m1t1(a) + · · ·+mntn(a) = 0,

hence, if we set:

V =











00 01 · · · 0n

10 11 · · · 1n

...

n0 n1 · · · nn











, X =











t0(a)
t1(a)

...

tn(a)











,

then the matrix identity V X = 0 holds. Thus, if U is the adjoint1 of V , we have UVX = 0,

and since UV = det(V )I , we get det(V )X = 0. By Vandermonde’s determinant identity,

we have:

det(V ) =
∏

0≤i<j≤n

(j − i),

1The adjoint matrix of A is the transpose of the cofactor matrix of A.

4



but also Char(D) > n, so X = 0, particularly t2(a) = tn(a) = 0, thereby yielding:

(11) h(a2) = nah(a)

(12) nan−1h(a) = anh(1)

Utilizing (12) with 1 in place of a, we obtain (n−1)h(1) = 0, yet Char(D) > n, implying

h(1) = 0. Hence, for all a ∈ D with a 6= 0, by (12), we have nan−1h(a) = anh(1) = 0,

yet Char(D) > n, hence h(a) = 0. Moreover, as h is additive, we have h(0) = 0 as well.

Step 3: Consequently, we conclude that h(x) = 0 for all x ∈ D. Therefore, for all

x ∈ D, we have f(x) + g(x) = f(x) − g(x) = 0, implying 2f(x) = 0, hence f(x) = 0
and also g(x) = 0, completing the proof. �

Remark 2.1. It is essential to consider the conditions on the characteristic of the ring D.

This necessity becomes evident in the following example.

Example 2.1. Let n be any integer, and p be a prime such that p−1 divides n−2. Consider

D = Zp, the ring of integers modulo p, and the functions:

f(x) = x and g(x) = −x.

Then D is a division ring and f, g : D → D are additive functions satisfying equation

(3) for every x 6= 0, for the Fermat’s little theorem implies xp−1 = 1 for every x 6= 0.

However, f(1) 6= 0.

Example 2.1 illustrates the necessity of the condition Char(D) 6= 2 in Theorem 2.1,

as for any integer n, the prime number p = 2 satisfies p − 1 | n − 2. Furthermore, it

underscores the significance of retaining the condition Char(D) > n in Theorem 2.2. A

division ring always has a prime or infinite characteristic. Moreover, for even integers

n such that n > 2, there may exist several prime numbers p satisfying p − 1 | n − 2.

For instance, if n = 4 or n = 6, then every prime number p such that p ≤ n satisfies

p− 1 | n− 2.

Now, we endeavor to provide a negative response to Question 1.2, illustrating that within

the non-perfect field D = Z2(t) of rational functions with coefficients in Z2, numerous

solutions (f, g) to the functional equation (2) exist, where f and g are additive.

Theorem 2.3. Let D = Z2(t) denote the field of rational functions with coefficients in

Z2. For any A,B ∈ D, there exists a unique pair (f, g) consisting of additive functions

f, g : D → D satisfying f(1) = A, f(t) = B, and equation (2) for every x ∈ D such that

x 6= 0.

Proof. 1) Uniqueness: Let f, g : D → D be additive functions satisfying f(1) = A,

f(t) = B, and equation (2) for all x 6= 0. Then, for every a, b ∈ D such that ab 6= 0, 1,

using the Hua identity and the fact that Char(D) = 2, we have:

aba = a+ (a−1 + (b−1 + a)−1)−1.
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This yields:

f(aba) = f(a+ (a−1 + (b−1 + a)−1)−1)

= f(a) + f((a−1 + (b−1 + a)−1)−1)

(2)
= f(a) + (a−1 + (b−1 + a)−1)−1g(a−1 + (b−1 + a)−1)

= f(a) + (aba+ a)g(a−1 + (b−1 + a)−1)

= f(a) + (aba+ a)(g(a−1) + g((b−1 + a)−1))

= f(a) + (aba+ a)g(a−1) + (aba+ a)g((b−1 + a)−1)

(2)
= f(a) + (aba+ a)a−1f(a) + (aba+ a)(b−1 + a)−1f(b−1 + a)

= f(a) + (ab+ 1)f(a) + ab(a+ b−1)(b−1 + a)−1f(b−1 + a)

= abf(a) + abf(b−1 + a)

= abf(a) + ab(f(b−1) + f(a))

= abf(a) + abf(b−1) + abf(a)

= abf(a) + abb−1g(b) + abf(a)

= abf(a) + ag(b) + abf(a)

= ag(b),

which simplifies to:

(13) f(aba) = ag(b).

By f(0) = g(0) = 0 and (2), equation (13) also holds for a, b ∈ D such that ab = 0
or ab = 1. Thus, (13) holds for all a, b ∈ D. By (13) with a = 1, for all b ∈ D, we have

f(b) = g(b). So f = g, and for all a ∈ D, we have:

(14) f(aba) = af(b).

For every n ∈ Z, by (14) with a = t and b = tn, we have:

(15) f(tn+2) = tf(tn).

Therefore, by using induction on n and (15), for all n ∈ Z, we have:

f(t2n) = tnA, f(t2n+1) = tnB.

Moreover, if P (t) is a polynomial with coefficients in Z2 and p ∈ Z, then it’s evident

that:

(16) f(P (t2)t2p) = P (t)tpA, f(P (t2)t2p+1) = P (t)tpB.

Any element x ∈ D can be represented as:

x =
P (t2) +Q(t2)t

R(t2) + S(t2)t
,

where P (t), Q(t), R(t), S(t) are polynomials with coefficients in Z2. Hence, by repre-

senting:

P (t) =

p̂
∑

p=0

Ppt
p, Q(t) =

q̂
∑

q=0

Qqt
q,

6



where Pp, Qq ∈ Z2, we have:

f(x) = f

(

P (t2) +Q(t2)t

R(t2) + S(t2)t

)

=

p̂
∑

p=0

Ppf

(

t2p

R(t2) + S(t2)t

)

+

q̂
∑

q=0

Qqf

(

t2q+1

R(t2) + S(t2)t

)

(2)
=

p̂
∑

p=0

Ppt
2p

R(t2) + S(t2)t
f

(

R(t2) + S(t2)t

t2p

)

+

q̂
∑

q=0

Qqt
2q+1

R(t2) + S(t2)t
f

(

R(t2) + S(t2)t

t2q+1

)

=

p̂
∑

p=0

Ppt
2pf(R(t2)t−2p + S(t2)t−2p+1)

R(t2) + S(t2)t
+

q̂
∑

q=0

Qqt
2q+1f(R(t2)t−2q−1 + S(t2)t−2q)

R(t2) + S(t2)t

(16)
=

p̂
∑

p=0

Ppt
p(R(t)A+ S(t)B)

R(t2) + S(t2)t
+

q̂
∑

q=0

Qqt
q(R(t)B + S(t)tA)

R(t2) + S(t2)t

=
P (t)(R(t)A+ S(t)B)

R(t2) + S(t2)t
+

Q(t)(R(t)B + S(t)tA)

R(t2) + S(t2)t

=
P (t)R(t) +Q(t)S(t)t

R(t2) + S(t2)t
A+

P (t)S(t) +Q(t)R(t)

R(t2) + S(t2)t
B,

thus:

(17) f

(

P (t2) +Q(t2)t

R(t2) + S(t2)t

)

=
P (t)R(t) +Q(t)S(t)t

R(t2) + S(t2)t
A+

P (t)S(t) +Q(t)R(t)

R(t2) + S(t2)t
B.

2) Existence: It remains to show that for any A,B ∈ D, there exists a function f :
D → D such that (17) holds for any polynomials P (t), Q(t), R(t), S(t) with coefficients

in Z2, and to prove that indeed f is additive, f(1) = A, f(t) = B, and if g = f , then f

and g satisfy (2) for all x 6= 0.

This task can be divided into steps. Notice that for every polynomial P (t), we have:

(18) P (t2) = P (t)2,

because the coefficients are in Z2.

Step 1: We will prove the existence of a function f : D → D satisfying (17) for any

polynomials P (t), Q(t), R(t), S(t) with coefficients in Z2. In other words, we will show

that the function f as described in (17) is well-defined.

Let P (t), P̂ (t), Q(t), Q̂(r), R(t), R̂(t), S(t), Ŝ(t) be polynomials such that:

P (t2) +Q(t2)t

R(t2) + S(t2)t
=

P̂ (t2) + Q̂(t2)t

R̂(t2) + Ŝ(t2)t
.

Then:

(P (t2) +Q(t2)t)(R̂(t2) + Ŝ(t2)t) = (P̂ (t2) + Q̂(t2)t)(R(t2) + S(t2)t).

Hence:

(P (t2)R̂(t2) +Q(t2)Ŝ(t2)t2) + (P (t2)Ŝ(t2) +Q(t2)R̂(t2))t

= (P̂ (t2)R(t2) + Q̂(t2)S(t2)t2) + (P̂ (t2)S(t2) + Q̂(t2)R(t2))t.
7



Both sides of the above equality are polynomials over t, so we can compare their coef-

ficients and obtain the following equalities:

(19) P (t)R̂(t) +Q(t)Ŝ(t)t = P̂ (t)R(t) + Q̂(t)S(t)t

(20) P (t)Ŝ(t) +Q(t)R̂(t) = P̂ (t)S(t) + Q̂(t)R(t)

Multiplying (19) by R(t)R̂(t) and by S(t)Ŝ(t)t, and multiplying (20) by R(t)Ŝ(t)t and

by S(t)R̂(t)t, we obtain respectively:

P (t)R(t)R̂(t)2 +Q(t)R(t)R̂(t)Ŝ(t)t = P̂ (t)R̂(t)R(t)2 + Q̂(t)R̂(t)R(t)S(t)t

P (t)S(t)R̂(t)Ŝ(t)t+Q(t)S(t)Ŝ(t)2t2 = P̂ (t)Ŝ(t)R(t)S(t)t+ Q̂(t)Ŝ(t)S(t)2t2

P (t)R(t)Ŝ(t)2t+Q(t)R(t)R̂(t)Ŝ(t)t = P̂ (t)Ŝ(t)R(t)S(t)t+ Q̂(t)Ŝ(t)R(t)2t

P (t)S(t)R̂(t)Ŝ(t)t+Q(t)S(t)R̂(t)2t = P̂ (t)R̂(t)S(t)2t+ Q̂(t)R̂(t)R(t)S(t)t

By summing up the above four equations, and using Char(D) = 2 and (18), we obtain:

(P (t)R(t) +Q(t)S(t)t)(R̂(t2) + Ŝ(t2)t) = (P̂ (t)R̂(t) + Q̂(t)Ŝ(t)t)(R(t2) + S(t2)t)

so that:

(21)
P (t)R(t) +Q(t)S(t)t

R(t2) + S(t2)t
=

P̂ (t)R̂(t) + Q̂(t)Ŝ(t)t

R̂(t2) + Ŝ(t2)t

Now, multiplying (19) by S(t)R̂(t) and by R(t)Ŝ(t), and multiplying (20) by S(t)Ŝ(t)t

and by R(t)R̂(t), we obtain respectively:

P (t)S(t)R̂(t)2 +Q(t)S(t)R̂(t)Ŝ(t)t = P̂ (t)R̂(t)R(t)S(t) + Q̂(t)R̂(t)S(t)2t

P (t)R(t)R̂(t)Ŝ(t) +Q(t)R(t)Ŝ(t)2t = P̂ (t)Ŝ(t)R(t)2 + Q̂(t)Ŝ(t)R(t)S(t)t

P (t)S(t)Ŝ(t)2t+Q(t)S(t)R̂(t)Ŝ(t)t = P̂ (t)Ŝ(t)S(t)2t+ Q̂(t)Ŝ(t)R(t)S(t)t

P (t)R(t)R̂(t)Ŝ(t) +Q(t)R(t)R̂(t)2 = P̂ (t)R̂(t)R(t)S(t) + Q̂(t)R̂(t)R(t)2

By adding the above four equations, and using Char(D) = 2 and (18), we have:

(P (t)S(t) +Q(t)R(t))(R̂(t2) + Ŝ(t2)t) = (P̂ (t)Ŝ(t) + Q̂(t)R̂(t))(R(t2) + S(t2)t)

so that:

(22)
P (t)S(t) +Q(t)R(t)

R(t2) + S(t2)t
=

P̂ (t)Ŝ(t) + Q̂(t)R̂(t)

R̂(t2) + Ŝ(t2)t

Multiplying (21) by A, multiplying (22) by B, and summing, we obtain:

P (t)R(t) +Q(t)S(t)t

R(t2) + S(t2)t
A+

P (t)S(t) +Q(t)R(t)

R(t2) + S(t2)t
B

=
P̂ (t)R̂(t) + Q̂(t)Ŝ(t)t

R̂(t2) + Ŝ(t2)t
A+

P̂ (t)Ŝ(t) + Q̂(t)R̂(t)

R̂(t2) + Ŝ(t2)t
B

Step 2: Let’s prove that f is additive. Take x and y from D. By bringing the fractions

to a common denominator, we can express them as polynomials P (t), P̂ (t), Q(t), Q̂(t),
R(t), and S(t) as follows:

x =
P (t2) +Q(t2)t

R(t2) + S(t2)t
, y =

P̂ (t2) + Q̂(t2)t

R(t2) + S(t2)t
,

resulting in:
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x+ y =
(P (t2) + P̂ (t2)) + (Q(t2) + Q̂(t2))t

R(t2) + S(t2)t
.

Therefore,

f(x+ y)
(17)
=

(P (t) + P̂ (t))R(t) + (Q(t) + Q̂(t))S(t)t)

R(t2) + S(t2)t
A

+
(P (t) + P̂ (t))S(t) + (Q(t) + Q̂(t))R(t)

R(t2) + S(t2)t
B

=
P (t)R(t) +Q(t)S(t)t

R(t2) + S(t2)t
A+

P (t)S(t) +Q(t)R(t)

R(t2) + S(t2)t
B

+
P̂ (t)R(t) + Q̂(t)S(t)t

R(t2) + S(t2)t
A+

P̂ (t)S(t) + Q̂(t)R(t)

R(t2) + S(t2)t
B

(17)
= f(x) + f(y).

Step 3: Let’s establish that f(1) = A and f(t) = B. Indeed, we have:

1 =
1 + 0t

1 + 0t
,

thus,

f(1)
(17)
=

1 · 1 + 0 · 0t

1 + 0t
A+

1 · 0 + 0 · 1

1 + 0t
B = A.

Moreover:

t =
0 + 1t

1 + 0t
,

therefore,

f(t)
(17)
=

0 · 1 + 1 · 0t

1 + 0t
A+

0 · 0 + 1 · 1

1 + 0t
B = B.

Step 4: Let’s show that if g = f , then (f, g) satisfy (2) for all x 6= 0. Let x 6= 0, then

we have polynomials P (t), Q(t), R(t), and S(t) such that:

x =
P (t2) +Q(t2)t

R(t2) + S(t2)t
,

hence,

x−1 =
R(t2) + S(t2)t

P (t2) +Q(t2)t
,

thus,

xf(x−1)
(17)
=

P (t2) +Q(t2)t

R(t2) + S(t2)t
·

(

R(t)P (t) + S(t)Q(t)t

P (t2) +Q(t2)t
A+

R(t)Q(t) + S(t)P (t)

P (t2) +Q(t2)t
B

)

=
P (t)R(t) +Q(t)S(t)t

R(t2) + S(t2)t
A+

P (t)S(t) +Q(t)R(t)

R(t2) + S(t2)t
B

(17)
= f(x),
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so, using Char(D) = 2, we find:

x−1f(x) + f(x−1) = 0.

Hence, if g = f , then (f, g) satisfy (2) for all x 6= 0.

Conclusion: Thus, given any A,B ∈ D, we have proven both uniqueness and existence

of the additive functions f, g : D → D satisfying (2) for every x 6= 0. Therefore, the

theorem is established. �
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E-mail: daniel.kawai@usp.br

BRUNO LEONARDO MACEDO FERREIRA, FEDERAL UNIVERSITY OF TECHNOLOGY-PARANÁ-BRAZIL,
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