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ON THE UNIT GROUP AND THE 2-CLASS NUMBER OF

Q(
√
2,
√
p,
√
q)

MOHAMED MAHMOUD CHEMS-EDDIN, MOHA BEN TALEB EL HAMAM,
AND MOULAY AHMED HAJJAMI

Abstract. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two prime numbers.
The purpose of this paper is to compute the unit group of the fields L =
Q(

√
2,
√
p,
√
q) and give their 2-class numbers.

1. Introduction

Let k be a number field of degree n (i.e., [k : Q] = n). Denote by Ek the unit
group of k that is the group of the invertible elements of the ring Ok of algebraic
integers of the number field k. By the well known Dirichlet’s unit theorem, if
n = r + 2s, where r is the number of real embeddings and s the number of
conjugate pairs of complex embeddings of k, then there exist r = r + s− 1 units
of Ok that generate Ek (modulo the roots of unity), and these r units are called
the fundamental system of units of k. Therefore, it is well known that

Ek ≃ µ(k)× Zr+s−1,

where µ(k) is the group of roots of unity contained in k.
One major problem in algebraic number theory (more precisely in theory of

units of number fields which is related to almost all areas of algebraic number
theory) is the computation of the fundamental system of units. For quadratic
fields, the problem is easily solved. An early study of unit groups of multiquadratic
fields was established by Varmon [10]. For quartic bicyclic fields, Kubota [13]
gave a method for finding a fundamental system of units. Wada [14] generalized
Kubota’s method, creating an algorithm for computing fundamental units in any
given multiquadratic field. However, in general, it is not easy to compute the
unit group of a number field especially for number fields of degree more than 4.
Actually, in literature there are only few examples of computation of the unit
group of a given number field k of degree 8 (see [6, 7, 8]). In the present work,
we focus on the computation of the unit group of the real triquadratic fields of
the form L = Q(

√
2,
√
p,
√
q), where p ≡ 1 (mod 8) and q ≡ 7 (mod 8), and

furthermore, we give the class number of these fields.
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Notice that the motivation behind the computations of the unit group of these
fields is the fact that L is the first layer of the cyclotomic Z2-extension of the
biquadratic field Q(

√
p,
√
q) (cf. [6, 7]). Furthermore, computing the unit group

of the fields L is also first step to find the unit group of all fields of the form
L(

√
−ℓ), where ℓ ≥ 1 is a positive square-free integer (cf. [2]). We note that the

unit group of these fields are useful for the study of the Hilbert 2-class field tower
of the subfields L(

√
−ℓ) (see for example [8]). We note also that this paper is a

continuation of the the paper [5] and for further works in the same direction we
refer the reader to [4, 10, 12].

Let εℓ (resp. h2(ℓ)) denote the fundamental unit of (resp. the 2-class number

of ) a real quadratic field Q(
√
ℓ), where ℓ > 1 is a positive square-free integer. Let

h2(k) denote the 2-class number of a number fields k.

2. Preliminaries

Let us start this section by recalling the method given in [14], that describes a
fundamental system of units of a real multiquadratic field K0. Let σ1 and σ2 be
two distinct elements of order 2 of the Galois group of K0/Q. Let K1, K2 and K3

be the three subextensions of K0 invariant by σ1, σ2 and σ3 = σ1σ3, respectively.
Let ε denote a unit of K0. Then

ε2 = εεσ1εεσ2(εσ1εσ2)−1,

and we have, εεσ1 ∈ EK1
, εεσ2 ∈ EK2

and εσ1εσ2 ∈ EK3
. It follows that the unit

group of K0 is generated by the elements of EK1
, EK2

and EK3
, and the square

roots of elements of EK1
EK2

EK3
which are perfect squares in K0.

This method is very useful for computing a fundamental system of units of a
real biquadratic number field, however, in the case of real triquadratic number
field the problem of the determination of the unit group becomes very difficult
and demands some specific computations and eliminations, as what we will see in
the next section. We shall consider the field L = Q(

√
2,
√
p,
√
q), where p and q

are two distinct prime numbers. Thus, we have the following diagram:

L = Q(
√
2,
√
p,
√
q)

OO hh

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘66

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

k1 = Q(
√
2,
√
p)

hh

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

k2 = Q(
√
2,
√
q)

OO

k3 = Q(
√
2,
√
pq)

55

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

Q(
√
2)

Figure 1. Intermediate fields of L/Q(
√
2)
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Let τ1, τ2 and τ3 be the elements of Gal(L/Q) defined by

τ1(
√
2) = −

√
2, τ1(

√
p) =

√
p, τ1(

√
q) =

√
q,

τ2(
√
2) =

√
2, τ2(

√
p) = −√

p, τ2(
√
q) =

√
q,

τ3(
√
2) =

√
2, τ3(

√
p) =

√
p, τ3(

√
q) = −√

q.

Note that Gal(L/Q) = 〈τ1, τ2, τ3〉 and the subfields k1, k2 and k3 are fixed by
〈τ3〉, 〈τ2〉 and 〈τ2τ3〉 respectively. Therefore, a fundamental system of units of L
consists of seven units chosen from those of k1, k2 and k3, and from the square
roots of the elements of Ek1Ek2Ek3 which are squares in L. With these notations,
we have:

Lemma 2.1 ([5], Lemma 2.1). Let p ≡ 1 (mod 8) be a prime number. Put
ε2p = β + α

√
2p with β, α ∈ Z. If N(ε2p) = 1, then

√
ε2p =

1√
2
(α1 + α2

√
2p), for

some integers α1, α2 such that α = α1α2. It follows that:

σ 1 + τ2 1 + τ1τ2 1 + τ1τ3 1 + τ2τ3 1 + τ1√
ε2p

σ (−1)u −ε2p (−1)u+1 (−1)u (−1)u+1 (1)

for some u in {0, 1} such that 1

2
(α2

1 − 2pα2
2) = (−1)u.

Lemma 2.2 ([1], Lemma 5). Let d > 1 be a square-free integer and εd = x+y
√
d,

where x, y are integers or semi-integers. If N(εd) = 1, then 2(x + 1), 2(x − 1),
2d(x+ 1) and 2d(x− 1) are not squares in Q.

Lemma 2.3 ([3], Theorem 6). Let p ≡ 1 (mod 4) be a prime number. We have

1) If N(ε2p) = −1, then {ε2, εp,√ε2εpε2p} is a fundamental system of units of

k1 = Q(
√
2,
√
p).

2) If N(ε2p) = 1, then {ε2, εp,√ε2p} is a fundamental system of units of k1 =

Q(
√
2,
√
p).

Now we recall the following useful lemmas:

Lemma 2.4 ([11]). Let K be a multiquadratic number field of degree 2n, n ∈ N,
and ki the s = 2n − 1 quadratic subfields of K. Then

h(K) =
1

2v
(EK :

s
∏

i=1

Eki)

s
∏

i=1

h(ki),

with

v =

{

n(2n−1 − 1); if K is real,
(n− 1)(2n−2 − 1) + 2n−1 − 1 if K is imaginary.

Lemma 2.5. Let q ≡ 3 (mod 4) and p ≡ 1 (mod 4) be two distinct primes. Then

1) By [9, Corollary 18.4], we have h2(p) = h2(q) = h2(2q) = h2(2) = h2(−2) =
h2(−q) = h2(−1) = 1.

2) If

(

p

q

)

= −1, then h2(pq) = h2(2pq) = h2(−pq) = 2, else h2(pq), h2(2pq) and

h2(−pq) are divisible by 4 (cf. [9, Corollaries 19.6 and 19.7]).
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3) If q ≡ 3 (mod 8), then h2(−2q) = 2 (cf. [9, Corollary 19.6]).

3. Unit groups computation

We close this section with the following lemmas that are very useful in what
follows.

3.1. The case: p ≡ 1 (mod 8), q ≡ 7 (mod 8) and

(

p

q

)

= −1.

The following lemmas are very useful in what follows to prove our first main
theorem.

Lemma 3.1. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= −1.

1) Let x and y be two integers such that ε2pq = x+ y
√
2pq. Then we have

i. (x+ 1) is a square in N,
ii.

√

2ε2pq = y1 + y2
√
2pq and 2 = y21 − 2pqy22, for some integers y1 and y2.

2) Let v and w be two integers such that εpq = v + w
√
pq. Then we have

i. (v + 1) is a square in N,
ii.

√

2εpq = w1 + w2

√
pq and 2 = w2

1 − pqw2
2, for some integers w1 and w2.

Proof. As it is known that N(ε2pq) = 1, then, by the unique factorization in Z

and Lemma 2.2 there exist some integers y1 and y2 (y = y1y2) such that

(1) :

{

x± 1 = y21
x∓ 1 = 2pqy22,

(2) :

{

x± 1 = py21
x∓ 1 = 2qy22,

or (3) :

{

x± 1 = 2py21
x∓ 1 = qy22,

∗ System (2) can not occur since it implies −1 =
(

2qy2
1

p

)

=
(

x∓1

p

)

=
(

x±1∓2

p

)

=
(

∓2

p

)

=
(

2

p

)

= 1, which is absurd.

∗ We similarly show that System (3) can not occur.

∗ Assume that

{

x− 1 = y21
x+ 1 = 2pqy22

. So 1 =
(

y2
1

q

)

=
(

x−1

q

)

=
(

x+1−2

q

)

=
(

−2

q

)

=

−1, which is a contradiction.

Therefore

{

x+ 1 = y21
x− 1 = 2pqy22

which gives the first item. The proof of the second

item is analogous. �

Lemma 3.2. Let q ≡ 7 (mod 8) be a prime number.

1) Let c and d be two integers such that ε2q = c + d
√
2q. Then we have

i. c+ 1 is a square in N,
ii.

√

2ε2q = d1 + d2
√
2q and 2 = d21 − 2qd22, for some integers d1 and d2.

2) Let α and β be two integers such that εq = α + β
√
q. Then we have

i. α + 1 is a square in N,
ii.

√

2εq = β1 + β2

√
q and 2 = β2

1 − qβ2
2 , for some integers β1 and β2.



ON THE UNIT GROUP AND THE 2-CLASS NUMBER OF Q(
√

2,
√

p,
√

q) 5

Furthermore, for any prime number p ≡ 1 (mod 4) we have:

ε ε2 εp
√
εq

√
ε2q

ε1+τ1 −1 ε2p −εq −1
ε1+τ2 ε22 −1 εq ε2q
ε1+τ3 ε22 ε2p 1 1
ε1+τ1τ2 −1 −1 −εq −1
ε1+τ1τ3 −1 ε2p −1 −ε2q
ε1+τ2τ3 ε22 −1 1 1

(2)

Proof. For the two items see [8, Lemma 4.1]. The computations in the table
follows from the definitions of τi and the two items. �

Theorem 3.3. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= −1. Put L = Q(
√
2,
√
p,
√
q). Then

1) If N(ε2p) = −1, we have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2εpε2p,

√√
εq
√
ε2q

√
εpq

√
ε2pq〉.

• The 2-class group of L is cyclic of order 1

2
h2(2p).

2) If N(ε2p) = 1, we have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√

εa2ε
a
p

√
εq
√
εpq

√
ε2p,

√

εa2ε
a
p

√
ε2q

√
ε2pq

√
ε2p〉,

where a ∈ {0, 1} such that a ≡ u + 1 (mod 2) and u is defined in Lemma
2.1.

• The 2-class group of L is cyclic of order h2(2p).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.1, we check that
{ε2,√εq,

√
ε2q} and {ε2,√εpq,

√
ε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Let ξ
is an element of L which is the square root of an element of Ek1Ek2Ek3 . We
can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

e√ε2pq
f√ε2εpε2p

g,

where a, b, c, d, e, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have

√
εpq

1+τ2 = 1,√
ε2pq

1+τ2 = 1 and
√
ε2εpε2p

1+τ2 = (−1)vε2, for some v ∈ {0, 1}. Thus, by (2)
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we have:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv ≡ 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√εpq

e√ε2pq
f .

➠ Let us apply the norm NL/k5 = 1 + τ1τ2, with k5 = Q(
√
q,
√
2p). We have√

εpq
1+τ1τ2 = −1 and

√
ε2pq

1+τ1τ2 = −ε2pq. Thus, by (2) we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · (−1)e · (−1)f · εf2pq

= (−1)a+c+d+e+fεcq · εf2pq.
Thus a+ c+ d+ e+ f = 0 (mod 2) and f = c. Thus, a+ d+ e = 0 (mod 2).
Therefore,

ξ2 = εa2
√
εq

c√ε2q
d√εpq

e√ε2pq
c.

➠ Let us apply the norm NL/k6 = 1 + τ1τ3, with k6 = Q(
√
p,
√
2q). We have√

εpq
1+τ1τ3 = −1 and

√
ε2pq

1+τ1τ3 = −ε2pq. Thus, by (2) we have:

NL/k5(ξ
2) = (−1)a · (−1)c · (−1)d · εd2q · (−1)e · (−1)c · εc2pq

= (−1)a+d+eεd2qε
c
2pq.

Thus a+ d+ e = 0 (mod 2) and d = c. Therefore

ξ2 = εa2
√
εq

c√ε2q
c√εpq

e√ε2pq
c.

➠ Let us apply the norm NL/k3 = 1 + τ2τ3, with k3 = Q(
√
2,
√
pq). We have√

εpq
1+τ2τ3 = εpq and

√
ε2pq

1+τ2τ3 = ε2pq. Thus, by (2) we have:

NL/k3(ξ
2) = ε2a2 · 1 · 1 · εepq · εc2pq

= ε2a2 εcpqε
c
2pq.

We have nothing to deduce from this. Therefore, we apply another norm.
➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(

√
p,
√
q). We have√

εpq
1+τ1 = −εpq and

√
ε2pq

1+τ1 = −1. Thus, by (2) we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)c · (−1)e · εepq · (−1)c ·

= (−1)a+c+eεcqε
e
pq.

Thus a+ c + e = 0 (mod 2) and c = e. Hence, a = 0 and

ξ2 =
√
εq

c√ε2q
c√εpq

c√ε2pq
c.

Let us show that the square root of
√
εq
√
ε2q

√
εpq

√
ε2pq is an element of L.

Note that one can easily check that the 2-class group of k5 = Q(
√
2p,

√
q) is

cyclic and by Lemmas 2.4 and 2.5, we have h2(k5) =
1

4
q(k5)h2(2p)h2(q)h2(2pq) =

1

2
q(k5)h2(2p). Using Lemmas 3.1 and 3.2 (and the algorithm given in page 2),
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we easily deduce that that q(k5) = 2. Thus h2(k5) = h2(2p). Since L/k5 is an
unramified quadratic extension, then

h2(L) =
1

2
· h2(k5) =

1

2
· h2(2p). (3)

Assume by absurd that
√
εq
√
ε2q

√
εpq

√
ε2pq is not a square in L. Then q(L) =

25. By Lemma 2.4, we have:

h2(L) =
1

29
q(L)h2(2)h2(p)h2(q)h2(2p)h2(2q)h2(pq)h2(2pq) (4)

=
1

29
· 25 · 1 · 1 · 1 · h2(2p) · 1 · 2 · 2 =

1

4
· h2(2p).

Which is a contradiction with (3). Therefore c = 1 and
√
εq
√
ε2q

√
εpq

√
ε2pq is

a square in L. So the first item.
2) Assume that N(ε2p) = 1. Then by Lemma 2.3, {ε2, εp,√ε2p} is a funda-

mental system of units of k1 and from Lemmas 3.1 and 3.2 we deduce that
{ε2,√εq,

√
ε2q} and {ε2,√εpq,

√
ε2pq} are respectively fundamental systems of

units of k2 and k3. So we have:

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2p〉.

Put

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

e√ε2pq
f√ε2p

g,

where a, b, c, d, e, f and g are in {0, 1}. We shall proceed as in the first item.
Assume that ξ ∈ L.
➠ Let us start by applying the norm map NL/k2 = 1 + τ2. We have

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.

Thus, b+ gu ≡ 0 (mod 2).
➠ Let us apply the norm map NL/k5 = 1 + τ1τ2, with k5 = Q(

√
q,
√
2p). We

have

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · (−1)e · (−1)f · εf2pq · (−1)g · εg2p

= εg2p(−1)a+b+c+d+e+f+g · εcqεf2pqεg2p.
Thus, a + b + c + d + e + f + g ≡ 0 (mod 2) and c + f + g ≡ 0 (mod 2).
Therefore, a+ b+ d+ e ≡ 0 (mod 2).
➠ Let us apply the norm map NL/k6 = 1 + τ1τ3, with k6 = Q(

√
p,
√
2q). We

have

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · (−1)e · (−1)f · εf2pq · (−1)gu+g

= ε2bp · (−1)a+c+d+e+f+ug+g · εd2qεf2pq.
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Thus, a+c+d+e+f+ug+g ≡ 0 (mod 2) and d = f . Then, a+c+e+ug+g ≡ 0
(mod 2) and

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

e√ε2pq
d√ε2p

g,

➠ By applying the norm map NL/k3 = 1 + τ2τ3, with k3 = Q(
√
2,
√
pq), we

deduce nothing new.
➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(

√
p,
√
q). We have

NL/k5(ξ
2) = (−1)a · ε2bp · (−1)c · εcq · (−1)d · (−1)e · εepq · (−1)d · (−1)gu+g

= ε2bp (−1)a+c+e+gu+gεcqε
e
pq.

Thus, a+ c+ e+ gu+ g ≡ 0 (mod 2) and c = e. Then, a+ gu+ g ≡ 0 (mod 2)
and

ξ2 = εa2ε
b
p

√
εq

e√ε2q
d√εpq

e√ε2pq
d√ε2p

g,

with

b+ gu ≡ 0 (mod 2) (5)

e+ d+ g ≡ 0 (mod 2) (6)

a + b+ d+ e ≡ 0 (mod 2) (7)

a+ ug + g ≡ 0 (mod 2) (8)

On the other hand, as in the proof of the first item, we show that h2(L) = h2(2p)
and that q(L) = 27. So if g = 0, then (5) and (8) a = b = 0 and so by (7), d = e.
Thus, ξ2 =

√
εq

e√ε2q
e√εpq

e√ε2pq
e, with e = 0 or 1. In the two cases we have

q(L) 6= 27. Therefore, g = 1 and so by (6) e 6= d. By (5) and (8), b = u 6= a and
a ≡ u + 1 (mod 2). Hence, necessarily the two equations following equations
have solution in L: ξ2 = εa2ε

u
p
√
ε2q

√
ε2pq

√
ε2p and ξ2 = εa2ε

u
p
√
εq
√
εpq

√
ε2p, where

a ≡ u + 1 (mod 2) and u is defined in Page 3. Since, q(L) = 27, these two
equations are necessarily solvable in L, since . Which completes the proof.

�

3.2. The case: p ≡ 1 (mod 8), q ≡ 7 (mod 8) and

(

p

q

)

= 1.

Lemma 3.4. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1.

1) Let x and y be two integers such that ε2pq = x+ y
√
2pq. Then

i. (x+ 1), p(x+ 1) or 2p(x+ 1) is a square in N,
ii. Furthermore, we have

a) If (x+ 1), then
√

2ε2pq = y1 + y2
√
2pq and 2 = y21 − 2pqy22.

b) If p(x+ 1), then
√

2ε2pq = y1
√
p + y2

√
2q and 2 = py21 − 2qy22.

c) If 2p(x+ 1), then
√

2ε2pq = y1
√
2p+ y2

√
q and 2 = 2py21 − qy22.

Where y1 and y2 are two integers such that y = y1y2.
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2) Let v and w be two integers such that εpq = v + w
√
pq. Then we have

i. (v + 1), p(v + 1) or 2p(v + 1) is a square in N,
ii. Furthermore, we have

a) If (v + 1), then
√

2εpq = w1 + w2

√
pq and 2 = w2

1 − pqw2
2.

b) If p(v + 1), then
√

2εpq = w1

√
p+ w2

√
q and 2 = pw2

1 − qw2
2.

c) If 2p(v + 1), then
√
εpq = w1

√
p+ w2

√
q and 1 = pw2

1 − qw2
2.

Where w1 and w2 are two integers such that w = w1w2 in a) and b), and
w = 2w1w2 in c).

Proof. We proceed as in the proof of 3.1. �

ε Conditions ε1+τ2 ε1+τ1τ2 ε1+τ1τ3 ε1+τ2τ3 ε1+τ1

√
ε2pq

(x+ 1) is a square in N 1 −ε2pq −ε2pq ε2pq −1

p(x+ 1) is a square in N −1 ε2pq −ε2pq −ε2pq −1

2p(x+ 1) is a square in N −1 −ε2pq ε2pq −ε2pq 1

√
εpq

(v + 1) is a square in N 1 −1 −1 εpq −εpq

p(v + 1) is a square in N −1 1 −1 −εpq −εpq

2p(v + 1) is a square in N −1 −1 1 −εpq εpq

Table 1. Norms maps on units

Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that

(

p

q

)

= 1.

Then, by Lemmas 2.4 and 2.4, we have:

1

29
q(L) · h2(2p) · h2(pq) · h2(2pq). (9)

The above lemma shows that we have nine cases as we distinguished in the fol-
lowing theorems.

Theorem 3.5. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that x+1 and v+1 are

squares in N, where x and v are defined in Lemma 3.4.
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1) If N(ε2p) = −1, we have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2εpε2p,

√√
εq

a√ε2q
a√εpq

a√ε2pq
1+b〉

where a, b ∈ {0, 1} such that a 6= b and a = 1 if and only if
√
εq
√
ε2q

√
εpq

√
ε2pq

is a square in L.
• The 2-class number of L equals 1

24−ah2(2p)h2(pq)h2(2pq).
2) If N(ε2p) = 1 and let a ∈ {0, 1} such that a ≡ 1 + u (mod 2). we have

• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√

εar
′

2 εar′p

√
εq

r′√εpq
r′√ε2p

1+s′,
√

εar2 εarp
√
ε2q

r√ε2pq
1+s√ε2p

r〉

where r, r′, s, s′ ∈ {0, 1} such that r 6= s (resp. r′ 6= s′) and r = 1 (resp.
r′ = 1) if and only if εa2ε

a
p
√
ε2q

√
ε2pq

√
ε2p (resp. εa2ε

a
p
√
εq
√
εpq

√
ε2p) is a

square in L.
• The 2-class number of L equals 1

24−r−r′
h2(2p)h2(pq)h2(2pq).

Proof. The same computations as in the proof of Theorem 3.3 give the result. �

Theorem 3.6. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that x+ 1 and p(v + 1)

are squares in N, where x and v are defined in Lemma 3.4. We have

1) If N(ε2p) = −1, then
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of L equals 1

24
h2(2p)h2(pq)h2(2pq).

2) If N(ε2p) = 1 and let a ∈ {0, 1} such that a ≡ 1 + u (mod 2). We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√

εaα2 εuαp
√
ε2q

α√ε2pq
α√ε2p

1+γ〉

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if εa2ε
u
p
√
ε2q

√
ε2pq

√
ε2p

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, εpq,√ε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
ε2pq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, εpq is a square in L. Let ξ is an element of L which is the
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square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√ε2pq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have

√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv ≡ 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√ε2pq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · (−1)f · εf2pq

= (−1)a+c+d+fεcq · εf2pq.
Thus a+ c + d+ f = 0 (mod 2) and f = c. Thus, a = d. Therefore,

ξ2 = εa2
√
εq

c√ε2q
a√ε2pq

c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)c · (−1)a · εa2q · (−1)c · εc2pq

= εa2qε
c
2pq.

Thus a = c. Therefore

ξ2 = εa2
√
εq

a√ε2q
a√ε2pq

a.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · (−1)a · εaq · (−1)a · (−1)a

= εaq .

Thus a = 0. It follows that the only element of Ek1Ek2Ek3 that is a square in
L is εpq. So the first item.

2) Assume that N(ε2p) = 1. By Lemma 2.3, {ε2, εp,√ε2p} is a fundamental
system of units of k1. Using Lemmas 3.2 and 3.4, we check that {ε2,√εq,

√
ε2q}

and {ε2, εpq,√ε2pq} are respectively fundamental systems of units of k2 and k3.
It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
ε2pq,

√
ε2p〉.
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Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Note
that εpq is a square in L. Let ξ is an element of L which is the square root of
an element of Ek1Ek2Ek3 . Assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√ε2pq

f√ε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1 + τ2. By means of (1),
(2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.

Thus b+ gu ≡ 0 (mod 2).
➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(

√
q,
√
2p). By (1), (2)

and Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · (−1)f · εf2pq · (−1)g · εg2p

= (−1)a+b+c+d+f+gεcq · εf2pq · εg2p.

Thus a + b + c + d + f + g = 0 (mod 2) and c + f + g = 0 (mod 2). So
a+ b+ d = 0 (mod 2).
➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(

√
p,
√
2q). By (1), (2)

and Table 1, we have:

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · (−1)f · εf2pq · (−1)gu+g

= ε2bp (−1)a+c+d+f+gu+gεd2q · εf2pq
Thus a + c + d + f + gu + g = 0 (mod 2) and d = f . So a + c + gu + g = 0
(mod 2). Therefore,

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√ε2pq

d√ε2p
g,

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (1), (2)

and Table 1, we have:

NL/k4(ξ
2) = (−1)a · ε2bp · (−1)c · εcq · (−1)d · (−1)d · (−1)gu+g

= ε2bp (−1)a+c+gu+gεcq

Thus c = 0 and so a+ gu+ g = 0 (mod 2). Since c+ f + g = 0 (mod 2), this
implies that g = f = d. As b+ gu = 0 = b+ du (mod 2), then we have:

ξ2 = εa2ε
du
p

√
ε2q

d√ε2pq
d√ε2p

d,

where a+ du+ d = 0 (mod 2). So we have the second item.
�
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Theorem 3.7. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that x+1 and 2p(v+1)

are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(ε2p) = −1. We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of L equals 1

24
h2(2p)h2(pq)h2(2pq).

2) Assume that N(ε2p) = 1 and let a ∈ {0, 1} such that a ≡ 1 + u (mod 2). We
have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√

εaα2 εuαp
√
ε2q

α√ε2pq
α√ε2p

1+γ〉
where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if εa2ε

a
p
√
ε2q

√
ε2pq

√
ε2p

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, εpq,√ε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
ε2pq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, εpq is a square in L. Let ξ is an element of L which is the
square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√ε2pq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have

√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv ≡ 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√ε2pq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · (−1)f · εf2pq

= (−1)a+c+d+fεcq · εf2pq.



14 M. M. CHEMS-EDDIN, M.B.T. EL HAMAM, AND M. A. HAJJAMI

Thus a+ c + d+ f = 0 (mod 2) and f = c. Thus, a = d. Therefore,

ξ2 = εa2
√
εq

c√ε2q
a√ε2pq

c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)c · (−1)a · εa2q · (−1)c · εc2pq

= εa2qε
c
2pq.

Thus a = c. Therefore

ξ2 = εa2
√
εq

a√ε2q
a√ε2pq

a.

2) To check that we have the same computations as in the previous theorem
�

Theorem 3.8. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that p(x+ 1) and v + 1

are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(ε2p) = −1. We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of L equals 1

24
h2(2p)h2(pq)h2(2pq).

2) Assume that N(ε2p) = 1 and let a ∈ {0, 1} such that a ≡ 1 + u (mod 2). We
have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√

εaα2 εuαp
√
εq

α√εpq
α√ε2p

1+γ〉
where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if εa2ε

u
p
√
εq
√
εpq

√
ε2p

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, ε2pq,√εpq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, ε2pq,

√
εpq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, ε2pq is a square in L. Let ξ is an element of L which is the
square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
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➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have
√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv = 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√εpq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · (−1)f

= (−1)a+c+d+fεcq.

Thus a + c + d + f = 0 (mod 2) and c = 0. Thus, a + d + f = 0 (mod 2).
Therefore,

ξ2 = εa2
√
ε2q

d√εpq
f .

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)d · εd2q · (−1)f

= (−1)a+d+fεd2q.

Thus d = 0 and a = f . Therefore,

ξ2 = εa2
√
εpq

a.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · (−1)a · εapq = εapq.

Thus a = 0. It follows that the only element of Ek1Ek2Ek3 that is a square in
L is ε2pq and so we have the first item.

2) Assume that N(ε2p) = 1. So we have:

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, ε2pq,

√
εpq,

√
ε2p〉.

To determine the elements of Ek1Ek2Ek3 which are squares in L, let us consider
ξ an element of L which is the square root of an element of Ek1Ek2Ek3. As ε2pq
is a square in L, we can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

f√ε2p
g,

where a, b, c, d, f and g are in {0, 1}.
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➠ Let us start by applying the norm map NL/k2 = 1 + τ2. By (1), (2) and
Table 1, we have:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.

Thus b+ gu = 0 (mod 2).
➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(

√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · (−1)f · (−1)g · εg2p

= (−1)a+b+c+d+f+gεcq · εg2p.
Thus c = g and so a + b + d + f = 0 (mod 2). Thus, a + d + f = 0 (mod 2).
Therefore,

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

f√ε2p
c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · (−1)f · (−1)cu+c

= ε2bp (−1)a+d+f+cuεd2q.

Thus d = 0 and so a+ f + cu = 0 (mod 2). Therefore,

ξ2 = εa2ε
b
p

√
εq

c√εpq
f√ε2p

c.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · ε2bp · (−1)c · εcq · (−1)f · εfpq · (−1)cu+c,

= ε2bp (−1)a+f+cuεcqε
f
pq.

Thus c = f . Since b+ gu = 0 = b+ cu (mod 2), we have

ξ2 = εa2ε
cu
p

√
εq

c√εpq
c√ε2p

c,

with a+ c + cu = 0 (mod 2).
�

Theorem 3.9. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that p(x+1) and p(v+1)

are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(ε2p) = −1. We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p〉.

• The 2-class number of L equals 1

24
h2(2p)h2(pq)h2(2pq).
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2) Assume that N(ε2p) = 1 and let a ∈ {0, 1} such that a ≡ 1 + u (mod 2). We
have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√

εaα2 εuαp
√
εq

α√ε2q
α√εpqε2pq

α√ε2p
1+γ〉

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if εa2ε
u
p
√
εq
√
ε2q

√
εpqε2pq

√
ε2p

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, εpq,√εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, εpq is a square in L. Let ξ is an element of L which is the
square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have

√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv = 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√εpqε2pq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · εf2pq

= εf2pq(−1)a+c+dεcq.

Thus c = 0 and so a = d. Therefore,

ξ2 = εa2
√
ε2q

a√εpqε2pq
f .

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)a · εa2q · εf2pq

= εa2qε
f
2pq.
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Thus a = f . Therefore,

ξ2 = εa2
√
ε2q

a√εpqε2pq
a.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · (−1)a · εapq = εapq.

Thus a = 0. It follows that the only element of Ek1Ek2Ek3 that is a square in
L is εpq and so we have the first item.

2) Assume that N(ε2p) = 1. So we have:

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2p〉.

To determine the elements of Ek1Ek2Ek3 which are squares in L, let us consider
ξ an element of L which is the square root of an element of Ek1Ek2Ek3. As εpq
is a square in L, we can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1 + τ2. By (1), (2) and
Table 1, we have:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.

Thus b+ gu = 0 (mod 2). So b = gu.
➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(

√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · εf2pq · (−1)g · εg2p

= εf2pq(−1)a+b+c+d+gεcqε
g
2p.

Thus c = g and so a + b+ d = 0 (mod 2). Therefore,

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2p
c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · εf2pq · (−1)cu+c

= ε2bp (−1)a+d+cuεd2qε
f
2pq.

Thus a+ d+ cu = 0 (mod 2) and d = f . Therefore,

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

d√ε2p
c.
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➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · ε2bp · (−1)c · εcq · (−1)d · εdpq · (−1)cu+c

= ε2bp (−1)a+d+cuεcqε
d
pq.

Thus d = c and so a+ c+ cu = 0 (mod 2). It follows that

ξ2 = εa2ε
cu
p

√
εq

c√ε2q
c√εpqε2pq

c√ε2p
c,

where a+ cu+ c = 0 (mod 2).
�

Theorem 3.10. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that p(x + 1) and

2p(v + 1) are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(ε2p) = −1. We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
εpq,

√
ε2pq,

√
ε2εpε2p,

√√
ε2q

1+γ√εpqε2pq
α〉,

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if
√
ε2q

√
εpqε2pq

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).
2) Assume that N(ε2p) = 1. We have

• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
εpq,

√
ε2pq,

√
ε2p,

√√
ε2q

1+γ√εpqε2pq
α〉

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if
√
ε2q

√
εpqε2pq

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, εpq,√εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, εpq is a square in L. Let ξ is an element of L which is the
square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
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➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have
√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv = 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√εpqε2pq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · (−1)f · εf2pq

= εf2pq(−1)a+c+d+fεcq.

Thus c = 0 and so a+ d+ f = 0 (mod 2). Therefore,

ξ2 = εa2
√
ε2q

d√εpqε2pq
f .

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)d · εd2q · (−1)f · εf2pq

= (−1)a+d+fεd2qε
f
2pq.

Thus d = f and a = 0. Therefore,

ξ2 =
√
ε2q

d√εpqε2pq
f .

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)d · (−1)f · εfpq

= εfpq(−1)d+f .

Thus d = f . Therefore,

ξ2 =
√
ε2q

d√εpqε2pq
d.

2) Assume that N(ε2p) = 1. So we have:

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2p〉.

To determine the elements of Ek1Ek2Ek3 which are squares in L, let us consider
ξ an element of L which is the square root of an element of Ek1Ek2Ek3. As εpq
is a square in L, we can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2p
g,

where a, b, c, d, f and g are in {0, 1}.
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➠ Let us start by applying the norm map NL/k2 = 1 + τ2. By (1), (2) and
Table 1, we have:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.

Thus b+ gu = 0 (mod 2). So b = gu.
➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(

√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · (−1)f · εf2pq · (−1)g · εg2p

= εf2pq(−1)a+b+c+d+f+gεcqε
g
2p.

Thus c = g and so a + b+ d+ f = 0 (mod 2). Therefore,

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2p
c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · (−1)f · εf2pq · (−1)cu+c

= ε2bp (−1)a+d+f+cuεd2qε
f
2pq.

Thus d = f and so a + cu = 0 (mod 2). As a + b + d + f = 0 (mod 2), then
a = b = cu. Therefore,

ξ2 = εcu2 εcup
√
εq

c√ε2q
d√εpqε2pq

d√ε2p
c.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)cu · ε2cup · (−1)c · εcq · (−1)d · (−1)d · εdpq · (−1)cu+c

= ε2cup εdpq · εcq.
Thus c = 0. It follows that

ξ2 =
√
ε2q

d√εpqε2pq
d,

�

Theorem 3.11. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that 2p(x+1) and v+1

are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(ε2p) = −1. We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p〉,

• The 2-class number of L equals 1

24
h2(2p)h2(pq)h2(2pq).
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2) Assume that N(ε2p) = 1 and let a ∈ {0, 1} such that a ≡ 1 + u (mod 2). We
have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√

εaα2 εuαp
√
εq

α√εpq
α√ε2p

1+γ〉

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if εa2ε
u
p
√
εq
√
εpq

√
ε2p

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, ε2pq,√εpq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, ε2pq,

√
εpq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, ε2pq is a square in L. Let ξ is an element of L which is the
square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have

√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv = 0 (mod 2) and g = 0. So b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√εpq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · (−1)f

= (−1)a+c+d+fεcq.

Thus c = 0 and so a+ d+ f = 0 (mod 2). Therefore,

ξ2 = εa2
√
ε2q

d√εpq
f .

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)d · εd2q · (−1)f

= (−1)a+d+fεd2q.
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Thus d = 0 and a = f . Therefore,

ξ2 = εa2
√
εpq

a.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · (−1)a · εapq = εapq.

Thus a = 0. So we have the first item.
2) Assume that N(ε2p) = 1. So we have:

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, ε2pq,

√
εpq,

√
ε2p〉.

To determine the elements of Ek1Ek2Ek3 which are squares in L, let us consider
ξ an element of L which is the square root of an element of Ek1Ek2Ek3. As ε2pq
is a square in L, we can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

f√ε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1 + τ2. By (1), (2) and
Table 1, we have:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.

Thus b+ gu = 0 (mod 2). So b = gu.
➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(

√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · (−1)f · (−1)g · εg2p

= (−1)a+b+c+d+f+gεcqε
g
2p.

Thus c = g and so a + b+ d+ f = 0 (mod 2). Therefore,

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpq

f√ε2p
c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · (−1)f · (−1)cu+c

= ε2bp (−1)a+d+f+cuεd2q.

Thus d = 0 and so a + f + cu = 0 (mod 2). As a + b + d + f = 0 (mod 2),
then a+ b+ f = 0 (mod 2). Therefore,

ξ2 = εa2ε
b
p

√
εq

c√εpq
f√ε2p

c.
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➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · ε2bp · (−1)c · εcq · (−1)f · εfpq · (−1)cu+c

= ε2bp (−1)a+f+cuεcqε
f
pq.

Thus c = f and a+ c + cu = 0 (mod 2). Therefore,

ξ2 = εa2ε
cu
p

√
εq

c√εpq
c√ε2p

c.

�

Theorem 3.12. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that 2p(x + 1) and

p(v + 1) are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(ε2p) = −1. We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p,

√√
εq

1+γ√εpqε2pq
α〉,

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if
√
εq
√
εpqε2pq is

a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).
2) Assume that N(ε2p) = 1. We have

• The unit group of L is :

EL = 〈−1, ε2, εp,
√
ε2q,

√
εpq,

√
ε2pq,

√
ε2p,

√√
εq

1+γ√εpqε2pq
α〉

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if
√
εq
√
εpqε2pq is

a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, εpq,√εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, εpq is a square in L. Let ξ is an element of L which is the
square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
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➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have
√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv = 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√εpqε2pq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · (−1)f · εf2pq

= (−1)a+c+d+fεcqε
f
2pq.

Thus c = f and a+ c + d+ f = 0 (mod 2). Therefore, a = d and

ξ2 = εa2
√
εq

c√ε2q
a√εpqε2pq

c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)c · (−1)a · εa2q · (−1)c · εc2pq

= εc2pq · εa2q.
Thus a = 0. Therefore,

ξ2 =
√
εq

c√εpqε2pq
c.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)c · εcq · (−1)c · εcpq = εcqε

c
pq.

We deduce nothing.
2) Assume that N(ε2p) = 1. So we have:

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2p〉.

To determine the elements of Ek1Ek2Ek3 which are squares in L, let us consider
ξ an element of L which is the square root of an element of Ek1Ek2Ek3. As εpq
is a square in L, we can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1 + τ2. By (1), (2) and
Table 1, we have:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.
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Thus b+ gu = 0 (mod 2). So b = gu.
➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(

√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · (−1)f · εf2pq · (−1)g · εg2p

= (−1)a+b+c+d+f+gεcqε
f
2pqε

g
2p.

Thus a+ b+ c+ d+ f + g = 0 (mod 2) and c+ f + g = 0 (mod 2). Therefore,
a+ b+ d = 0 (mod 2).
➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(

√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · (−1)f · εf2pq · (−1)gu+g

= ε2bp ε
f
2pq(−1)a+c+d+f+gu+gεd2q.

Thus d = 0 and so a+ c+ f + gu+ g = 0 (mod 2). As a+ b+ d = 0 (mod 2),
then a = b. Therefore,

ξ2 = εa2ε
a
p

√
εq

c√εpqε2pq
f√ε2p

g.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · ε2ap · (−1)c · εcq · (−1)f · εfpq · (−1)gu+g

= ε2bp (−1)a+c+f+gu+gεcqε
f
pq.

Thus a + c + f + gu+ g = 0 (mod 2) and c = f . So a + gu+ g = 0 (mod 2).
As c+ f + g = 0 (mod 2), then g = 0 and so a = 0. Therefore,

ξ2 =
√
εq

c√εpqε2pq
c.

So the second item.
�

Theorem 3.13. Let p ≡ 1 (mod 8) and q ≡ 7 (mod 8) be two primes such that
(

p

q

)

= 1. Put L = Q(
√
2,
√
p,
√
q). Assume furthermore that 2p(x + 1) and

2p(v + 1) are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(ε2p) = −1. We have
• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√
ε2εpε2p〉,

• The 2-class number of L equals 1

24
h2(2p)h2(pq)h2(2pq).

2) Assume that N(ε2p) = 1 and let a ∈ {0, 1} such that a ≡ 1 + u (mod 2). We
have
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• The unit group of L is :

EL = 〈−1, ε2, εp,
√
εq,

√
ε2q,

√
εpq,

√
ε2pq,

√

εaα2 εuαp
√
εpqε2pq

α√ε2p
1+γ〉

where α, γ ∈ {0, 1} such that α 6= γ and α = 1 if and only if εa2ε
u
p
√
εpqε2pq

√
ε2p

is a square in L.
• The 2-class number of L equals 1

24−αh2(2p)h2(pq)h2(2pq).

Proof. 1) Assume that N(ε2p) = −1. By Lemma 2.3, {ε2, εp,√ε2εpε2p} is a fun-
damental system of units of k1. Using Lemmas 3.2 and 3.4, we check that
{ε2,√εq,

√
ε2q} and {ε2, εpq,√εpqε2pq} are respectively fundamental systems of

units of k2 and k3. It follows that,

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2εpε2p〉.

Thus we shall determine elements of Ek1Ek2Ek3 which are squares in L. Notice
that by Lemma 3.4, εpq is a square in L. Let ξ is an element of L which is the
square root of an element of Ek1Ek2Ek3. We can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2εpε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1+τ2. We have

√
ε2εpε2p

1+τ2 =
(−1)vε2, for some v ∈ {0, 1}. By means of (2) and Table 1, we get:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gvεg2

= ε2a2 εcqε
d
2q · (−1)b+gvεg2.

Thus b+ gv = 0 (mod 2) and g = 0. Therefore, b = 0 and

ξ2 = εa2
√
εq

c√ε2q
d√εpqε2pq

f .

➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(
√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)c · εcq · (−1)d · εf2pq

= (−1)a+c+dεcqε
f
2pq.

Thus c = f and a+ c + d = 0 (mod 2). Therefore,

ξ2 = εa2
√
εq

c√ε2q
d√εpqε2pq

c.

➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(
√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · (−1)c · (−1)d · εd2q · εc2pq

= εc2pq(−1)a+c+d · εd2q.
Thus d = 0 and a+ c+ d = 0 (mod 2). Therefore, a = c and

ξ2 = εa2
√
εq

a√εpqε2pq
a.
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➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · (−1)a · εaq · εapq = εapq · εaq .

Thus, a = 0. So we have the first item.
2) Assume that N(ε2p) = 1. So we have:

Ek1Ek2Ek3 = 〈−1, ε2, εp,
√
εq,

√
ε2q, εpq,

√
εpqε2pq,

√
ε2p〉.

To determine the elements of Ek1Ek2Ek3 which are squares in L, let us consider
ξ an element of L which is the square root of an element of Ek1Ek2Ek3. As εpq
is a square in L, we can assume that

ξ2 = εa2ε
b
p

√
εq

c√ε2q
d√εpqε2pq

f√ε2p
g,

where a, b, c, d, f and g are in {0, 1}.
➠ Let us start by applying the norm map NL/k2 = 1 + τ2. By (1), (2) and
Table 1, we have:

NL/k2(ξ
2) = ε2a2 · (−1)b · εcq · εd2q · 1 · (−1)gu

= ε2a2 εcqε
d
2q · (−1)b+gu.

Thus b+ gu = 0 (mod 2). So b = gu.
➠ Let us apply the norm NL/k5 = 1+ τ1τ2, with k5 = Q(

√
q,
√
2p). By (2) and

Table 1, we have:

NL/k5(ξ
2) = (−1)a · (−1)b · (−1)c · εcq · (−1)d · εf2pq · (−1)g · εg2p

= (−1)a+b+c+d+gεcqε
f
2pqε

g
2p.

Thus a+ b+ c+ d+ g = 0 (mod 2) and c+ f + g = 0 (mod 2).
➠ Let us apply the norm NL/k6 = 1+ τ1τ3, with k6 = Q(

√
p,
√
2q). By (2) and

Table 1, we have:

NL/k6(ξ
2) = (−1)a · ε2bp · (−1)c · (−1)d · εd2q · εf2pq · (−1)gu+g

= ε2bp ε
f
2pq(−1)a+c+d+gu+gεd2q.

Thus d = 0 and so a+ c+ gu+ g = 0 (mod 2). Therefore,

ξ2 = εa2ε
b
p

√
εq

c√εpqε2pq
f√ε2p

g.

➠ Let us apply the norm NL/k4 = 1 + τ1, with k4 = Q(
√
p,
√
q). By (2) and

Table 1, we have:

NL/k4(ξ
2) = (−1)a · ε2ap · (−1)c · εcq · εfpq · (−1)gu+g

= ε2bp ε
f
pq(−1)a+c+gu+gεcq.

Thus c = 0 and so a + gu+ g = 0 (mod 2). Since c + f + g = 0 (mod 2), we
have f = g. Therefore,

ξ2 = εa2ε
gu
p

√
εpqε2pq

g√ε2p
g,
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with a+ gu+ g = 0 (mod 2). So we have the second item.
�
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