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ON THE UNIT GROUP AND THE 2-CLASS NUMBER OF
Q(V2, \/p, V1)

MOHAMED MAHMOUD CHEMS-EDDIN, MOHA BEN TALEB EL HAMAM,
AND MOULAY AHMED HAJJAMI

ABSTRACT. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two prime numbers.
The purpose of this paper is to compute the unit group of the fields L =
Q(V2, /P, /q) and give their 2-class numbers.

1. Introduction

Let k& be a number field of degree n (i.e., [k : Q] = n). Denote by Ej. the unit
group of k that is the group of the invertible elements of the ring Oy of algebraic
integers of the number field k. By the well known Dirichlet’s unit theorem, if
n = r + 2s, where r is the number of real embeddings and s the number of
conjugate pairs of complex embeddings of k, then there exist r = r + s — 1 units
of Oy that generate Ej (modulo the roots of unity), and these r units are called
the fundamental system of units of k. Therefore, it is well known that

By, ~ p(k) x 271,

where p(k) is the group of roots of unity contained in k.

One major problem in algebraic number theory (more precisely in theory of
units of number fields which is related to almost all areas of algebraic number
theory) is the computation of the fundamental system of units. For quadratic
fields, the problem is easily solved. An early study of unit groups of multiquadratic
fields was established by Varmon [10]. For quartic bicyclic fields, Kubota [13]
gave a method for finding a fundamental system of units. Wada [14] generalized
Kubota’s method, creating an algorithm for computing fundamental units in any
given multiquadratic field. However, in general, it is not easy to compute the
unit group of a number field especially for number fields of degree more than 4.
Actually, in literature there are only few examples of computation of the unit
group of a given number field &k of degree 8 (see [6, 7, 8]). In the present work,
we focus on the computation of the unit group of the real triquadratic fields of
the form L = Q(v/2, /P, /q), where p = 1 (mod 8) and ¢ = 7 (mod 8), and
furthermore, we give the class number of these fields.
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Notice that the motivation behind the computations of the unit group of these
fields is the fact that L is the first layer of the cyclotomic Zs-extension of the
biquadratic field Q(/p,/q) (cf. [6, 7]). Furthermore, computing the unit group
of the fields L is also first step to find the unit group of all fields of the form
L(v/—¢), where ¢ > 1 is a positive square-free integer (cf. [2]). We note that the
unit group of these fields are useful for the study of the Hilbert 2-class field tower
of the subfields L(v/—¢) (see for example [8]). We note also that this paper is a
continuation of the the paper [5] and for further works in the same direction we
refer the reader to [4, 10, 12].

Let ¢ (resp. ho(f)) denote the fundamental unit of (resp. the 2-class number
of ) a real quadratic field Q(v/¢), where £ > 1 is a positive square-free integer. Let
ho(k) denote the 2-class number of a number fields k.

2. Preliminaries

Let us start this section by recalling the method given in [14], that describes a
fundamental system of units of a real multiquadratic field Ky. Let o; and o5 be
two distinct elements of order 2 of the Galois group of Ky/Q. Let K7, K3 and K3
be the three subextensions of K| invariant by o1, 09 and o3 = 0103, respectively.
Let ¢ denote a unit of Ky. Then

€2 = ee7ee2(e71e%2) 7,
and we have, ee?' € Ey,, €€”? € Eg, and €7'¢?? € Eg,. It follows that the unit
group of Kj is generated by the elements of Fk,, Fk, and Eg,, and the square
roots of elements of Ex, E'x, Fx, which are perfect squares in K.

This method is very useful for computing a fundamental system of units of a
real biquadratic number field, however, in the case of real triquadratic number
field the problem of the determination of the unit group becomes very difficult
and demands some specific computations and eliminations, as what we will see in
the next section. We shall consider the field L = Q(v/2, /P> 1/q), where p and g
are two distinct prime numbers. Thus, we have the following diagram:

L =Q(V2,y/p: /7

i

ki =Q(V2, VD) ke = Q(V2, V) ks = Q(V2, VP4)

Q(v2)

FIGURE 1. Intermediate fields of L/Q(+/2)
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Let 71, 72 and 73 be the elements of Gal(L/Q) defined by

n(vV2) =—v2, n(yp) =vp 1D =4

n(V2) =v2, 7n(/b) =—vD (D =i

(V2) =v2, 7w(/p)=vh 1 D =—-Vi
Note that Gal(L/Q) = (7,7, 73) and the subfields ki, ks and k3 are fixed by
(13), (T2) and (To73) respectively. Therefore, a fundamental system of units of L
consists of seven units chosen from those of ki, ky and k3, and from the square
roots of the elements of Ej, Ey, Py, which are squares in .. With these notations,
we have:

Lemma 2.1 ([5], Lemma 2.1). Let p = 1 (mod 8) be a prime number. Put
gop = B+ ay/2p with B, € Z. If N(gap) = 1, then /3, = %(al + ao+/2p), for

some integers aq, an such that a = ajas. It follows that:

o l+n|l+nn|l+nr|l4+mm| 147 (1)
B | (D" —ey [ (=D [ (=D

for some u in {0,1} such that (i — 2pa3) = (—1)".

Lemma 2.2 ([1], Lemma 5). Let d > 1 be a square-free integer and eq = x+yV/d,
where x, y are integers or semi-integers. If N(eq) = 1, then 2(x + 1), 2(z — 1),
2d(x + 1) and 2d(z — 1) are not squares in Q.

Lemma 2.3 ([3|, Theorem 6). Let p =1 (mod 4) be a prime number. We have
1) If N(eqp) = —1, then {cq,ep, \/E2EpE2} 1S a fundamental system of units of

kl = Q(\/?> \/]_9)
2) If N(eqp) = 1, then {eq,e,, \/E2p} is a fundamental system of units of ki =

QV2,vp).
Now we recall the following useful lemmas:

Lemma 2.4 ([11]). Let K be a multiquadratic number field of degree 2", n € IN,
and k; the s = 2" — 1 quadratic subfields of K. Then

M(K) = 5 (Exc [T 50 [T htko.

with
B n(2"t —1); if K is real,
v (n—1)(2"2—=1)+2"t—1 if K is imaginary.

Lemma 2.5. Let ¢ =3 (mod 4) and p =1 (mod 4) be two distinct primes. Then
1) By |9, Corollary 18.4], we have ha(p) = ha(q) = h2(2q) = ha(2) = hy(—2) =
ha(—q) = ha(=1) = 1.

2) 17 (£) = =1 then ) = af20) = a(—pa) = 2, els (o), ha(2pe) and
ha(—pq) are divisible by 4 (cf. |9, Corollaries 19.6 and 19.7]).
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3) If ¢ =3 (mod 8), then hy(—2q) = 2 (cf. |9, Corollary 19.6]).

3. Unit groups computation

We close this section with the following lemmas that are very useful in what
follows.

3.1. The case: p=1 (mod 8), ¢ =7 (mod 8) and (]—)) =-1.
q
The following lemmas are very useful in what follows to prove our first main

theorem.

Lemma 3.1. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

o

1) Let x and y be two integers such that e9g = T + y+/2pq. Then we have

i. (z+1) is a square in N,

. \/2e9p, = 11 + Y2v/2pq and 2 = yi — 2pqy3, for some integers y; and ys.
2) Let v and w be two integers such that ey, = v + w./pq. Then we have

i. (v+1) is a square in N,

. \/26pq = w1 + w2y/pq and 2 = w? — pquw3, for some integers wy and ws.
Proof. As it is known that N(eg,,) = 1, then, by the unique factorization in Z
and Lemma 2.2 there exist some integers y; and ys (y = y1y2) such that

rt1=y? r+1=py} r+1=2py}
1) 1 2) - 1 or (3): !

2
% System (2) can not occur since it implies —1 = <2qi> = (ﬁl) = (M) =

P p p
<£2) — (%) =1, which is absurd.

p
* We similarly show that System (3) can not occur.

S () () - (45 () -
*Assumethat{x_i_l:quy%.Sol-(q = (%) = ; =(2) =

—1, which is a contradiction.

r — 1= 2pqy;
item is analogous. U

.2
Therefore { rHl=u which gives the first item. The proof of the second

Lemma 3.2. Let ¢ =7 (mod 8) be a prime number.
1) Let ¢ and d be two integers such that €2, = ¢ + dv/2q. Then we have
i c+ 1 is a square in N,
/29, = dy + dav/2q and 2 = d3 — 2qd3, for some integers d; and ds.
2) Let a and B be two integers such that ¢, = o+ B./q. Then we have
i a—i—l 15 a square in N,

V2eq = P1+ Bo/q and 2 = B} — qf33, for some integers By and fs.
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Furthermore, for any prime number p =1 (mod 4) we have:

g E9 €p | vV/Eq | V€2

I+71 _ 2 _ _

€ 1] e, Eq 1

et a3 [ =1 ¢, | o

et g leal l 1 (2)
emm [ 1 -1]—¢,] —1

I+mi7m3 | _ 2 _ _
€ 1] e, 1 €9q
eltmms [ a2 1] 1 1

Proof. For the two items see [8, Lemma 4.1]. The computations in the table
follows from the definitions of 7; and the two items. [

Theorem 3.3. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

<Z_’) = —1. Put L = Q(V2, /D, /7). Then

q
1) If N(egp) = —1, we have
o The unit group of I is :

By, = (—1,e9,¢), VEa VE2qs \/Epas \/E2EpE2p; \/\/@\/ 52qv5pqv52pq>-

e The 2-class group of L is cyclic of order $ha(2p).
2) If N(eqp,) = 1, we have
o The unit group of L is :

By = (—1,e2,€p,/Eq: VE20: VEpas \/5[2152\/@\/ Epgv/E2p> \/5[215;\/52(1\/52Pq\/52p>>

where a € {0,1} such that @ = u+ 1 (mod 2) and u is defined in Lemma
2.1.
o The 2-class group of IL is cyclic of order hy(2p).

Proof. 1) Assume that N(eq,) = —1. By Lemma 2.3, {e9,¢,, \/€28,E2,} is a fun-
damental system of units of k;. Using Lemmas 3.2 and 3.1, we check that

{62, \/Eq» /E2q) and {€a, \/Epg, \/E2pq} are respectively fundamental systems of
units of &y and k3. It follows that,

By By By = (—1, €2, €ps \/Eq> VE205 V/Epas /E2pas /E2EpE) -

Thus we shall determine elements of Ej, Fy, E, which are squares in L. Let £
is an element of L which is the square root of an element of Ey, Ey, Ey,. We
can assume that

& = e5epv/Ee VB2 Vo Ve Ve
where a, b, c,d, e, f and g are in {0, 1}.
w Let us start by applying the norm map Ny i, = 1+72. We have | [Eog T2 =1,
Ve T =1 and /635,85, T™ = (—1)ey, for some v € {0,1}. Thus, by (2)
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we have:
Nijo(€2) = 3" (=1)"-eg-e5, - 1-1- (=1)7¢}
e5'eieg, - (—1)"79%].
Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and

& = &5 Ve Ve Ve /oo
m Let us apply the norm Ny, = 1+ 77y, with ks = Q(\/q, v/2p). We have
VEpe 17 = —1 and /&5y T = —eyp,. Thus, by (2) we have:

Nup (€)= (1) (=1 -e5- (=) (=1)°- (=1) - &,

_ atctdtetf c S
= (—1) Eq * E2pg-

Thus a+c+d+e+ f =0 (mod 2) and f =c¢. Thus, a+d+e =0 (mod 2).
Therefore,

a c d e c
€ = e5/E V2" \VEr Ve
m Let us apply the norm Ny, = 1+ 773, with kg = Q(\/p, v2¢). We have
vV Epg ' = —1 and /By, '™ = —&9,,. Thus, by (2) we have:

Nijs(€9) = (1) (=1)°- (=1)" 5, - (=1)° - (=1)° - €5

( . 1)a+d+e€gq€§pq )

Thus a +d+e =0 (mod 2) and d = ¢. Therefore

52 = 5‘5\/50\/ 62qc\/ 5pqev E2pg -
w Let us apply the norm Ny, = 1 + 7573, with k3 = Q(V2, VPq). We have
vV Epg 2T = £y and | /Eopy ™ = £9,,. Thus, by (2) we have:

Ny, (€2) = &% 1-1- €00 E5oq

2a _c _c
&y gpq€2pq’

We have nothing to deduce from this. Therefore, we apply another norm.
w Let us apply the norm Ny, = 14 7, with k4 = Q(\/p, /q). We have
Vepr T = —g,, and | /Egpe ™ = —1. Thus, by (2) we have:

Nijes(€2) = (1) (1) &5 - (=1)°- (=1)° - &5, - (=1)°
= (—1)“*‘3*65;5;[1.

Thus a4+ c+e =0 (mod 2) and ¢ = e. Hence, a = 0 and

& = Ve Ve Ve Ve
Let us show that the square root of /g, /E24\/Epg\/E2pq 15 an element of L.
Note that one can easily check that the 2-class group of ks = Q(v/2p, \/q) is
cyclic and by Lemmas 2.4 and 2.5, we have hy(ks) = 1q(ks)ha(2p)ha(q)ho(2pq) =
%q(k5)h2(2p). Using Lemmas 3.1 and 3.2 (and the algorithm given in page 2),
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we easily deduce that that ¢(ks) = 2. Thus hg(k;) = ho(2p). Since L/k; is an
unramified quadratic extension, then

Ma(L) = 5 - halks) = 5 - ha(2). (3)

Assume by absurd that /g, /Z24+/Epg\/E2pq 18 N0t a square in L. Then ¢(L) =
2°. By Lemma 2.4, we have:

1
ho(L) = 5a(L)ha(2)ha(p)ha(a)ha(2p)ha(29) ha (pa) ha(2p4) (4)
1 . 1
= 552111 ha(2p) - 1-2-2= 1 ha(2p).
Which is a contradiction with (3). Therefore ¢ = 1 and /€4, /E2¢\/Epq\/F2pq 19
a square in L. So the first item.
2) Assume that N(eg,) = 1. Then by Lemma 2.3, {eq,¢,,,/E3,} is a funda-
mental system of units of k; and from Lemmas 3.1 and 3.2 we deduce that

{€2, /) /E2q} and {€a, \/Epq, /E2pq} are respectively fundamental systems of
units of ko and k3. So we have:

Ep Ep,Ery = (—1, 9, ¢, VEaq VE2¢> V/Epa» \/E2pa> @)
Put
& = 235, Ve VeV e Vo,
where a,b,¢,d, e, f and g are in {0,1}. We shall proceed as in the first item.

Assume that £ € L.
w Let us start by applying the norm map Ny, = 1+ 7. We have

Nij,(€%) = &% (=1)" e -5, 1-1- (=)™

53“525% - (—1)bFo,

Thus, b+ gu =0 (mod 2).
m Let us apply the norm map Npj,, = 1+ 772, with ks = Q(/g,/2p). We
have

Nio(€) = (Z1) (<1 (=1 wep - (<1) - (<1)° - (=1) - e, (=1) -4,

9 (_1)\otbtcetdtetf+g | c g
= &5,(-1) EaE2paCp-

Thus, a+b+c+d+e+ f+g =0 (mod 2) and c+ f + g = 0 (mod 2).
Therefore, a +b+d+e =0 (mod 2).

m Let us apply the norm map Npjp, = 1+ 7173, with k¢ = Q(/p, v/2¢q). We
have

Nuig(€) = (F1)"- - (=1)°- (=1)"- g, - (=1)° - (=1) - &, - (= 1)+

_ 2b (_1\atctdtetftugtg  d f
e, - (—1) €94E2pq-
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Thus, a+c+d+e+ f+ug+g =0 (mod 2) and d = f. Then, a+c+e+ug+g =0
(mod 2) and

&= 5;5;\/57116\/ 52qdv5pqev52pqdv52pgv
w By applying the norm map Ny, = 1+ 773, with k3 = Q(V2, /pq), we

deduce nothing new.
m Let us apply the norm Ny, = 1+ 71, with ky = Q(/p, \/q). We have

N (€2) = (1) - (=1) g (=) (=1)% - ep, - (1) - (=1)7H
Eib(_l)a-i-c-l-e-i-gu-i-ggquq

Thus, a+c+e+gu+g =0 (mod 2) and ¢ = e. Then, a+gu+¢g =0 (mod 2)

and
with
b+gu=0 (mod 2) (5)
e+d+g=0 (mod 2) (6)
a+b+d+e=0 (mod2) (7)
at+ug+g=0 (mod 2) (8)
)

On the other hand, as in the proof of the first item, we show that ho(IL) = ho(2p
and that ¢(IL) = 27. Soif g = 0, then (5) and (8) a = b = 0 and so by (7), d = e.
Thus, £ = |/6,°\/E24\/Epa"/E2pq"> With e = 0 or 1. In the two cases we have
q(L )%27 Therefore, g = 1 and so by (6) e # d. By (5) and (8), b = u # a and
a =u+1 (mod 2). Hence, necessarily the two equations following equations
have solution in IL: £ = £§el, /624, /Eapq/E2p and £ = €8¢l /84 /Epq\/E2p, Where
a =u+1 (mod 2) and u is defined in Page 3. Since, ¢(L) = 27, these two
equations are necessarily solvable in IL, since . Which completes the proof.

O

3.2. The case: p=1 (mod 8), ¢ =7 (mod 8) and (]3) = 1.
q

Lemma 3.4. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

oK

1) Let x and y be two integers such that €9,y = x + yv/2pq. Then
i (x+1), p(x+1) or2p(x + 1) is a square in N,
ii. Furthermore, we have
a) If (z + 1), then \/2e9p, = y1 + y2/2pq and 2 = y? — 2pqy3.
b) If p(z + 1) then \/2e9pq = y11/D + Y21/2q and 2 = py3 — 2qy3.

c¢) If 2p(x + 1), then \/2c9p0 = y11/2p + y2/q and 2 = 2py} — qu3.
Where vy, and yo are two integers such that y = y1ys.
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2) Let v and w be two integers such that ey, = v+ w./pq. Then we have
i. (v+1), plv+1) or2p(v+1) is a square in N,
ii. Furthermore, we have
a) If (v+1), then \/2e,, = w1 + way/Pq and 2 = wi — pqu3.
b) If p(v+ 1), then \/2e,g = wi/D + w2/q and 2 = pwi — qu3.
c) If 2p(v + 1), then \/Epq = wi/p + wa/q and 1 = pwi — qu3.
Where wy and we are two integers such that w = wywsy in a) and b), and
w = 2wiwsy in c).

Proof. We proceed as in the proof of 3.1. O
£ Conditions gt | gt | glinm | glinn | 14n
(x +1) is a square in N 1| —€opg | —€2pg | €2p¢ | —1

VEwa | p(z+1)isasquare in N | —1 | &9y, | —€2pg | —C2pg | —1

2p(r+1)isasquare in N| —1 | —egp, | €2pg | —E€2pg 1
(v+1) is a square in N 1 -1 -1 €pg | —Epg
VEra | p(v+1)isasquarein N | —1 1 -1 —Epg | —Epg
2p(v+1)is a square in N | —1 —1 1 —Epg | Epg

TABLE 1. Norms maps on units

Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that (B) = 1
q

Then, by Lemmas 2.4 and 2.4, we have:

1
554(L) - ha(2p) - ha(pa) - ha(2pq). (9)
The above lemma shows that we have nine cases as we distinguished in the fol-

lowing theorems.

Theorem 3.5. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

<Z—)> = 1. PutL = Q(v2, VP> 1/Q). Assume furthermore that v +1 and v+ 1 are
q
squares in N, where x and v are defined in Lemma 3.4.
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1) If N(eqp) = —1, we have
o The unit group of L is :

By = (=1, 3, 8p, /g, V/E2q5 V/Epqs /E2EpE2p, \/\/‘?qav €20 VEpg v Eopg )
where a, b € {0,1} such that a # b and a = 1 if and only if \ /€4 /F2g\/Epar/E2pq

18 a square in L.
e The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).
2) If N(egp) =1 and let a € {0,1} such that a =1+ u (mod 2). we have
o The unit group of IL is :

By = (—1,€2,&p, vEq: V/E20) V/Epg> \/ag”agr’ Ve el \/ag"agr\/af\/@m\/@w
where r,r' s, 8 € {0,1} such that r # s (resp. ' # §') and r = 1 (resp.

' = 1) if and only if €5€5. /E2q\/Eopgr/E2p (TESP. E5E0/Eq\/Epar/E2p) 15 @
square n L.
e The 2-class number of . equals 247—LT,h2(2p)h2 (pq)h2(2pq).

Proof. The same computations as in the proof of Theorem 3.3 give the result. [
Theorem 3.6. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

(E) =1. Put L =Q(V2, /D, /7). Assume furthermore that x + 1 and p(v + 1)
q
are squares in N, where x and v are defined in Lemma 5.4. We have

1) If N(egp) = —1, then
o The unit group of L is :
by = <_17 €2, Ep, \/@7 VE2q5 \V/Epgs VE2pq>r \/ 525p52p>-

e The 2-class number of L equals 2i4hg(2p)h2(pq)hg(2pq).
2) If N(egp) =1 and let a € {0,1} such that a =1+ u (mod 2). We have
o The unit group of L is :

Ep = <_17 €2,Ep, \/Za vV €2¢5 V/Epgr v/ E2pq> \/81210%;;04\/ 52qa\/ 52pqa\/ 52p1+ﬂy>
where a, v € {0, 1} such that o # v and o = 1 if and only if €3¢}, /Eag\/E2pg\/E2p

18 a square in L.
e The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).

Proof. 1) Assume that N(eq,) = —1. By Lemma 2.3, {e9,¢,, \/E28,E2,} is a fun-
damental system of units of k. Using Lemmas 3.2 and 3.4, we check that

{€2, /) B2} and {€3,pq, \/Eapq} are respectively fundamental systems of
units of &y and k3. It follows that,

By Eyy By = (—1, €2, €py \/Eq5 /€205 Epa> \/E2pas \/E2EpE2p) -

Thus we shall determine elements of Ej, Ey, P, which are squares in L. Notice
that by Lemma 3.4, ¢,, is a square in L. Let £ is an element of I which is the
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square root of an element of Ly, Ey, Ey,. We can assume that

& = 5(2152\/516\/ 52qd\/ 52quv E28pC2p’ s
where a, b, c,d, f and g are in {0,1}.
w Let us start by applying the norm map Ny, = 1+7,. We have | [EaEpEay T =
(—1)Yey, for some v € {0,1}. By means of (2) and Table 1, we get:
N, (§%) = &3 (=1)" g5, - 1 (=1)""e]
e3teceq, - (1)l

Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and

&= €3vEq v 52qdv 52qu'
m Let us apply the norm Ny, = 1+ 77, with ks = Q(,/g,v/2p). By (2) and
Table 1, we have:

Nijs(€2) = (1) (=1)°-e- (=) (1) - &f,

_ +etd+f f
— (_1)(1 ¢ Eg * 62;0(]'

Thus a +c¢+d+ f =0 (mod 2) and f = ¢. Thus, a = d. Therefore,

N AN AN
m Let us apply the norm Ny, = 14 773, with ks = Q(y/p, v/2¢). By (2) and
Table 1, we have:
Nujkg(€9) = (1) (=1 (=1)" - &5, - (=1)° - &5,
€54E9pq-
Thus a = ¢. Therefore

& = 5 VEr' VEn" Ve

m Let us apply the norm N, = 14 7, with k4 = Q(y/p, /q). By (2) and
Table 1, we have:

N (€%) = (1) (=1)" g (=1)" - (=1)"

Thus a = 0. It follows that the only element of Ej, E), Ey, that is a square in
L is £p4. So the first item.

2) Assume that N(eg) = 1. By Lemma 2.3, {e3,¢,,/2,} is a fundamental
system of units of k;. Using Lemmas 3.2 and 3.4, we check that {es, /25, \/Z2¢}
and {e2, €pq, 1/E2pq} are respectively fundamental systems of units of ky and k;.
It follows that,

By, By, By, = (—1, €2, €p, \/Eq /E2¢> Epas \/E2pg> \/E2p) -
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Thus we shall determine elements of Ej, Ey, E), which are squares in L. Note
that €,, is a square in L. Let £ is an element of I which is the square root of
an element of Ey, By, Fi,. Assume that

5_5 \/5\/52:04\/@7

where a, b, c,d, f and g are in {0,1}.
m Let us start by applying the norm map Ny, = 1 + 7. By means of (1),
(2) and Table 1, we get:

Ny (€2) = 3"+ (=1)"-eg-egy - 1+ (1)

53“605% (—1)0Foe,

Thus b+ gu =0 (mod 2).
m Let us apply the norm Ny, = 1+ 77, with ks = Q(\/g, v/2p). By (1), (2)
and Table 1, we have:

Nejip(€) = (=) (~1) - (1) 5 (1) (<1)f e, (~1)7 -,

a+btctd+f+g c  f g
(—1) €q " E2pg " Edp-

Thus a+b+c+d+ f+9g =0 (mod2) and c+ f+¢g = 0 (mod 2). So
a+b+d=0 (mod 2).

w Let us apply the norm Ny, = 1+ 7173, with kg = Q(\/p, v2¢q). By (1), (2)
and Table 1, we have:

Nuig(€) = (=)&) (=1)°- (=1)" - 5, - (=1) - e - (=1)7F

26(_1)a+c+d+f+gu+g€gq o

€p €2pq

Thus a+c+d+ f+gu+g=0 (mod2)andd=f. Soa+c+gu+g=0
(mod 2). Therefore,

—52 \/7\/52 \/521711 Ve,
m Let us apply the norm Ny, = 1+ 7, with k4 = Q(\/p, /q). By (1), (2)

and Table 1, we have:

N (&) = (=) (1) g (1) (=1)7- (=1)*9
€b( 1)a+c+gu+9€

Thus ¢ =0 and so a + gu+ g =0 (mod 2). Since ¢+ f+ g =0 (mod 2), this
implies that g = f =d. Asb+ gu=0= b+ du (mod 2), then we have:

é- —5a du\/52 \/52pq \/521) )

where a + du+ d =0 (mod 2). So we have the second item.
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Theorem 3.7. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

<]—9) =1. PutL = Q(V2,\/p, /7). Assume furthermore that +1 and 2p(v+1)
q
are squares in N, where x and v are defined in Lemma 5.4.

1) Assume that N(eqp) = —1. We have
o The unit group of I is :
E]L = <_1> €2, 51)7 \/@7 V <C:2q> V qu> V <C:2pqa vV 825105210>-

e The 2-class number of L equals 2i4hg(2p)h2(pq)hg(2pq).

2) Assume that N(eqp) =1 and let a € {0,1} such that a =1+ u (mod 2). We
have
o The unit group of L is :

Ep = <_17 €2,Ep, \/Za vV E€2¢5 V/Epgr v/ E2pq> \/5§a5$a\/ 52qa\/ 52pqa\/ 62p1+7>
where a, v € {0, 1} such that o # v and o = 1 if and only if e3¢5 /E24\/E2pg\/E2p

18 a square in L.
e The 2-class number of L equals 5= ha(2p)ha(pq)ha(2pg).

Proof. 1) Assume that N(eq,) = —1. By Lemma 2.3, {e9,¢,, \/€28,€2,} s a fun-
damental system of units of k;. Using Lemmas 3.2 and 3.4, we check that

{62, \/Eq» B2} and {€a,€pq, \/Eapq} are respectively fundamental systems of
units of ko and ks. It follows that,

Ek‘lEk:zEk:3 - <_1a €2, Ep, \/ETI, vV €2¢5 Epgs V/E2pq» AV 825105210>-
Thus we shall determine elements of Ej, i, P, which are squares in L. Notice

that by Lemma 3.4, ¢,, is a square in L. Let £ is an element of I which is the
square root of an element of Ej, Ey, Ey,. We can assume that

¢ = 5552\/572 /52qd« /52qu, /€2EpE27,
where a,b, ¢, d, f and g are in {0, 1}.
w Let us start by applying the norm map Ny i, = 1+72. We have | /62€p52p1+72 =
(—1)%ey, for some v € {0,1}. By means of (2) and Table 1, we get:
Nujo(€2) = &3+ (=1)0 e g5, - 1+ (=1)%e]
e3teteq, - (1)l

Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and

&= 5(21\/50v52qdv52qu'
m Let us apply the norm Ny, = 1+ 77, with ks = Q(,/g,+/2p). By (2) and
Table 1, we have:
N (€)= (=) (=15 (=1)*- (=1) - &4,

_ (_1)a+c+d+f6; . 6§pq'
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Thus a +c¢+d+ f =0 (mod 2) and f = ¢. Thus, a = d. Therefore,

52 = 55\/50\/ 52qa\/€2pqc.
w Let us apply the norm Ny, = 1+ 77, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:
Nujks(€2) = (1) (=1)°- (=1)* - €5, - (—1)° - &5,
€5¢Epg-

Thus a = ¢. Therefore
62 — 8%\/@&@&@&.

2) To check that we have the same computations as in the previous theorem
O

Theorem 3.8. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

(B) =1. Put L =Q(V2, /D, /q). Assume furthermore that p(x + 1) and v+ 1
q
are squares in N, where x and v are defined in Lemma 5.4.

1) Assume that N(eqp) = —1. We have
o The unit group of IL is :

E]L = <_1> €2, Ep, \/@7 V' €2q5 \/Epgs \/E2pgr \/ 825105210>-
e The 2-class number of L equals %hg(Qp)hQ(pq)hg(qu).
2) Assume that N(eqp) = 1 and let a € {0,1} such that a = 1+ u (mod 2). We
have
o The unit group of I is :

B = (-1,¢e3,¢, VEa VE245 \/Epas /E2pg> \/5gagga¢?qav5pqav 52p1+7>
where o, v € {0, 1} such that o # v and o = 1 if and only if €3¢\ /Eq\/Epqr/E2p

18 a square in L.
o The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).

Proof. 1) Assume that N(eg,) = —1. By Lemma 2.3, {9, &), \/E28,E2,} is a fun-
damental system of units of k. Using Lemmas 3.2 and 3.4, we check that
{62, /Eqs /E2q} and {e2, €2y, /Epq} are respectively fundamental systems of

units of ko and k3. It follows that,
By, By, By = (—1, €2, €p, \/E45 \/E2¢> €2pg> \/Epa> /E2EpE2p)-

Thus we shall determine elements of Ej, Ey, P, which are squares in L. Notice
that by Lemma 3.4, €9, is a square in L. Let £ is an element of I which is the
square root of an element of Ej, Ey, Ey,. We can assume that

&= 5%52\/516\/ E2qd\/ 5qu\/ E28pC2p’ s
where a,b, ¢, d, f and g are in {0, 1}.
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w Let us start by applying the norm map Ny, = 1+7,. We have | [EgEpEay T =
(—1)%ey, for some v € {0,1}. By means of (2) and Table 1, we get:
Nijo(€7) = 3" (=1)" - eg ey - 1+ (=1)7¢}
e3teteq, - (1)l

Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and

£ = e5\/E y 52qdv Zpa -
m Let us apply the norm Ny, = 1+ 77, with ks = Q(,/g,+/2p). By (2) and
Table 1, we have:

Nopo(€2) = (1) (=1)°- 8- (=1)?- (=1)

_ (—1)a+c+d+fé‘;.

Thus a +c¢+d+ f =0 (mod 2) and ¢ = 0. Thus, a+d+ f = 0 (mod 2).
Therefore,

&= €3/ 52qdv 5qu'
m Let us apply the norm Npjp, = 1+ 773, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:

Nig(€2) = (1) (=1)?-e5, - (=1)7
_ (—1)a+d+f5§lq~

Thus d = 0 and a = f. Therefore,

&= €5v/Epq -
m Let us apply the norm Ny, = 14 7, with k4 = Q(y/p,/q). By (2) and
Table 1, we have:
Nk (€)= (1) (=1)" -5y = €5

Thus a = 0. It follows that the only element of Ej, Ey, Ey, that is a square in
L is 95, and so we have the first item.
2) Assume that N(eq,) = 1. So we have:

By By Eyy = (—1, 2, €p, \/Eq: \/E2¢> E2pg> v/Epas \/E2p) -

To determine the elements of Ej, Fy, F), which are squares in L, let us consider
¢ an element of I which is the square root of an element of Ey, By, Ey,. As €9y,
is a square in L, we can assume that

¢ = 5%52\/@0\/ 62qd\/ 6qu\/ Eap’,
where a,b, ¢, d, f and g are in {0, 1}.
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m Let us start by applying the norm map Ny, = 1+ 7. By (1), (2) and
Table 1, we have:

Npmo(€?) = 3"+ (=1)" g5, - 1- (1)

53“525% - (=1)bFo,

Thus b+ gu =0 (mod 2).
m Let us apply the norm Ny = 1+ 77, with ks = Q(,/g,v/2p). By (2) and
Table 1, we have:

Nujs (€)= (=1 (=1)" - (=1)%- e - (=) (=1)7 - (=1)7 - 5,

_q1\a+btctd+f+g c | -9
(—1) Eq " Enpr

Thus c=gandsoa+b+d+ f =0 (mod 2). Thus, a +d+ f =0 (mod 2).

Therefore,
& = e3eb /e /28" Era’ /E2"-
m Let us apply the norm Ny, = 1+ 773, with ks = Q(/p, v/2¢). By (2) and
Table 1, we have:
Nk (&) = (=1)%- & (=1)°- (=1)7-eg, - (1) - (=1)F
_ 612)b(_1>a+d+f+cu

d
E9¢-
Thus d =0 and so a + f + cu = 0 (mod 2). Therefore,

& = e3eb /e /Epa’ /E2"-
m Let us apply the norm Ny, = 1+ 7, with &y = Q(y/p,/q). By (2) and
Table 1, we have:

Neo(€) = (D)% (=) g (=) - gfy - (1),
3

q

+f+ f
(=1)*HiTetelel

=0=0b+ cu (mod 2), we have

52 — 5555,“\/516 /_5qu /—62pc’
with a + ¢+ cu =0 (mod 2).

S Sy

Thus ¢ = f. Since b+ g

U
Theorem 3.9. Let p = 1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

(E) =1. PutL = Q(v2, /P, \/q). Assume furthermore that p(z+1) and p(v+1)
q
are squares in N, where x and v are defined in Lemma 5.4.

1) Assume that N(eq,) = —1. We have
o The unit group of L is :

E]L = <_1> €2, Ep, \/@7 V' €2q5 v/ Epgs \/E2pgyr \/ 825105210>-
e The 2-class number of L equals 5:ha(2p)ha(pq)he(2pq).
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2) Assume that N(egp) =1 and let a € {0,1} such that a =1+ u (mod 2). We

have
o The unit group of L is :

ao ~uo (e} (e% Q 1
By = (-1,e2,€p, v/Zq: V€20, V/Epa» V2> \/52 €3°VEq V24 EpiEara VE2p )
where o, v € {0, 1} such that o # v and o = 1 if and only if €3¢\ /E4\/E2q\/EpaC2par/F2p

18 a square in L.
e The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).

Proof. 1) Assume that N(eg,) = —1. By Lemma 2.3, {e9, &), \/E28,E2,} is a fun-
damental system of units of k;. Using Lemmas 3.2 and 3.4, we check that

{62, \/Eq» /E2q) and {€9, €pg, \/EpgEapq} are respectively fundamental systems of
units of ko and ks. It follows that,

By, B, By = (=1, €2, €p, /24 /229> Epas \/EpaC2pgs \/E2EpE2p)-

Thus we shall determine elements of Ej, Ey, Fy, which are squares in L. Notice
that by Lemma 3.4, €,, is a square in L. Let £ is an element of L. which is the
square root of an element of Ly, Ey, Ey,. We can assume that

&= 555;\/56\/ 52qd\/5pq52qu\/525p52pgv
where a, b, c,d, f and g are in {0,1}.
w Let us start by applying the norm map Ny, = 1+7,. We have | [EaEpEay T =
(—1)%ey, for some v € {0,1}. By means of (2) and Table 1, we get:

Nijo(€7) = 3" (=1)"-eg g5, - 1+ (=1)7¢}
esteteq, - (1)1l
Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and
&= VIR 62qd\/ 5pq52qu’
m Let us apply the norm Ny, = 1+ 77, with ks = Q(,/g,v/2p). By (2) and

Table 1, we have:

Nijs(€2) = (=1 (=1)°-e- (~1)% &),

_ 5£pq ( . 1)a+c+d

C

q

Thus ¢ = 0 and so a = d. Therefore,

& = E5v/E2q" v/ 5pq52qu'
m Let us apply the norm Ny, = 1+ 7173, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:

Nik(€®) = (=1)*- (=1)"-e5, - eh,

f

_ a
= €2q62pq‘
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Thus a = f. Therefore,

&= €524 /EpaCapg -
m Let us apply the norm Ny, = 14 7, with &y = Q(y/p,/q). By (2) and
Table 1, we have:
N (§7) = (1) (=1)" - 5, = &5

Thus a = 0. It follows that the only element of Ej, Ey, Ey, that is a square in
L is €,, and so we have the first item.
2) Assume that N(eg,) = 1. So we have:

By By By = (=1, 62,6, VEa V24> Epgr v/Epa€2pgs \/521))’

To determine the elements of Ej, Fy, E, which are squares in L, let us consider
¢ an element of L which is the square root of an element of Ej, Ey, Ey,. As €y,
is a square in I, we can assume that

52 = 555;\/57110\/ 62qd\/ 5pq€2qu\/ €27,

where a,b, ¢, d, f and g are in {0, 1}.
m Let us start by applying the norm map Ny, = 1+ 7. By (1), (2) and
Table 1, we have:
Nijo(€) = & (=1)" g egy - 1 (1)
e3teieg, - (—1)Tom.

Thus b+ gu =0 (mod 2). So b = gu.
m Let us apply the norm Ny i = 1+ 77, with ks = Q(,/g,+/2p). By (2) and
Table 1, we have:

Nops(€) = (=1 (=1) - (<15 (~1)% e, (<1)7 -,

- +btetd+
= (1)

g
€2pq 52;0‘

Thus ¢ =g and so a+b+d =0 (mod 2). Therefore,

&= 5552\/@0\/ 52qd\/ Epqg?qu\/ Eap -
m Let us apply the norm Ny, = 1+ 773, with ks = Q(/p, v/2¢). By (2) and
Table 1, we have:

Nuo(€) = (=1 (=1)°- (1) -5, eh, - (=)™
_ 612)b(_1)a+d+cu€§lq6§pq.

Thus a +d+ cu =0 (mod 2) and d = f. Therefore,
52 = 5;52\/50\/ 62qd\/ 61%1“'52pqd\/ E2p'-
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m Let us apply the norm Ny, = 1+ 7, with k4 = Q(y/p,/q). By (2) and
Table 1, we have:

NL/k4(€2) = 1)a (—1)C -eC. (—1)d Led o (_l)cu—i-c

q pq

(—
E2b( 1)a+d+cu5252q

Thus d = c and so a + ¢+ cu =0 (mod 2). It follows that

= €56, VEqd V/E2g V/EpaFapg VER'
where a + cu+c = O (mod 2).
U

Theorem 3.10. Let p =1 (mod 8) and g = 7 (mod 8) be two primes such that

(B) = 1. PuL = QW2 p,q). Assume furthermore that p(z + 1) and
q
2p(v + 1) are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(eq,) = —1. We have
o The unit group of L is :

EL = (—1,€2,2p, v/Z4, V/Epas V/E20a) /E2EpE 20 \/v 52ql+yv5pq52pqa>>
where o, v € {0,1} such that o # v and o = 1 if and only if \/E24\/EpeEapq

18 a square in L.
e The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).
2) Assume that N(gq,) = 1. We have
o The unit group of L is :

EL = (=126, vZq) vVEpe» VE2pa: Ve, \/v 52q1+7v5pq52pqa>
where a, v € {0,1} such that o # v and a = 1 if and only if \/Eag\/EpeE2pq

18 a square in L.
e The 2-class number of L equals 52— h2(2p)ha(pq)ha(2pq).

Proof. 1) Assume that N(eg,) = —1. By Lemma 2.3, {e9, &), \/E28,E2,} is a fun-
damental system of units of k;. Using Lemmas 3.2 and 3.4, we check that

{62, \/Eq» /E2q) and {€9, €pg; \/EpgEapq} are respectively fundamental systems of
units of ko and ks. It follows that,

By, B, By = (—1,€2,p, \/Eq, /229> Epgs \/EpaC2pas \/E2EpE2p)-

Thus we shall determine elements of Ej, Ey, Fy, which are squares in L. Notice
that by Lemma 3.4, €,, is a square in L. Let £ is an element of L. which is the
square root of an element of Ly, Ey, Ey,. We can assume that

& = 555;\/ g v 52qd\/5pq52qu\/525p52pgv
where a,b, ¢, d, f and g are in {0, 1}.
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w Let us start by applying the norm map Ny, = 1+7,. We have | [EaEpEay T =
(—1)%ey, for some v € {0,1}. By means of (2) and Table 1, we get:
N, (€%) = &5 (=1)"-ef - €5, - 1+ (=1)7¢3
a_c_d b+gv
exteleq, - (—1)"9ved.

Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and

¢ = E9vES Y 62qd\/ 5pq52qu’
m Let us apply the norm Ny = 1+ 77, with ks = Q(,/g,v/2p). By (2) and
Table 1, we have:

Nujo(€) = (1) (=1)°- €& (1) (=1)] -,

_ Egpq(—l)a+c+d+f52-

Thus ¢ =0 and so a+d+ f =0 (mod 2). Therefore,

&= €3/ 52qd\/ 5pq52qu'
m Let us apply the norm Ny, = 1+ 7173, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:

Nije(€)) = (1) (-1)¢ el - (-1)F -],

= (_ 1)a+d+f€gq6£pq :

Thus d = f and a = 0. Therefore,

& = Veu'vEuEam
w Let us apply the norm Ny, = 1+ 7, with by = Q(y/p, /7). By (2) and
Table 1, we have:
New(€%) = (=) (=17 -],
5£q(—1)d+f.

Thus d = f. Therefore,
&=y 62qd\/ G
2) Assume that N(eg,) = 1. So we have:

By By By = (=1, 62,6, V€4 /€295 Epgy V/Epa€2pg> \/5217)-

To determine the elements of Ej, Ey, E, which are squares in L, let us consider
¢ an element of L which is the square root of an element of Ej, Ey, Ex,. As €,
is a square in I, we can assume that

52 = 5552\/57116\/ 52qdv5pq52quv52pgv
where a,b, ¢, d, f and g are in {0, 1}.
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m Let us start by applying the norm map Ny, = 1+ 7. By (1), (2) and
Table 1, we have:
Nij,(€%) = &% (=1)" -5 €5, - 1+ (1)
e5teces, - (—1)"om.

Thus b+ gu =0 (mod 2). So b = gu.
m Let us apply the norm Ny g, = 1+ 77, with ks = Q(,/g,+/2p). By (2) and
Table 1, we have:

Nujis(€) = (=) (=1 (=) -5 - (1) (=1) - ehyy - (-1)7 - €5,

_ A f (_1)a+b+c+d+f+ggg

g
€2pq €2p‘

Thus c=g andso a+b+d+ f =0 (mod 2). Therefore,

52 = 5(2152\/56\/ 52qd\/5pq52qu\/52pc'
m Let us apply the norm Ny, = 14 773, with ks = Q(y/p, v/2¢). By (2) and
Table 1, we have:
Nujig(€) = (F1)" -2 (1) (1) ey (1) ey (1)

. 2b a+d+f+cu_d _f
= ¢, (1) €942

Thus d = f and so a+cu =0 (mod 2). Asa+b+d+ f =0 (mod 2), then
a = b = cu. Therefore,
&= £5'ey Ve v 52qdv5pq52pqd\/ E2p -

m Let us apply the norm Ny, = 1+ 7, with &y = Q(y/p,/q). By (2) and
Table 1, we have:

N]L/k4(§2) — (_l)cu . €2cu . (_l)c . Ec . (—l)d . (_1)d X €d . (_1)cu+c

p q pq
2cu d c
Efp pq qu :

Thus ¢ = 0. It follows that

52 = 52qd\/ 5pq52pqd’
L]

Theorem 3.11. Let p =1 (mod 8) and ¢ = 7 (mod 8) be two primes such that

(E) =1. Put L = Q(V2, /D, /7). Assume furthermore that 2p(z +1) and v+1
q
are squares in N, where x and v are defined in Lemma 53.4.

1) Assume that N(eqp) = —1. We have
o The unit group of I is :

E]L = <_17 €2, gpv \/@7 vV 62(]7 vV éjpt]7 vV 62pq7 vV 526p52p>7
e The 2-class number of L equals 5:ha(2p)ha(pq)ha(2pq).
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2) Assume that N(egp) = 1 and let a € {0,1} such that a =1+ u (mod 2). We
have
o The unit group of L is :

By, = (—1,€2,¢p,\/Zq: V2 /Epa: V/E2a» \/550{5;&\/510‘\/51%10‘\/ 52p1+ﬁ/>
where o, v € {0, 1} such that o # v and o = 1 if and only if e3¢\ /E4\/Epqg\/E2p

18 a square in L.
e The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).

Proof. 1) Assume that N(eg,) = —1. By Lemma 2.3, {e9, &), \/E28,E2,} is a fun-
damental system of units of k. Using Lemmas 3.2 and 3.4, we check that

{62, \/Eq» B2} and {€a, €9y, \/Epg} are respectively fundamental systems of
units of ky and k3. It follows that,

By Ep, Er, = (—1,e9,¢), VEa V€245 E2pgs V/Epy> v525p52p>'

Thus we shall determine elements of Ej, Ey, P, which are squares in L. Notice
that by Lemma 3.4, €5, is a square in L. Let & is an element of I which is the
square root of an element of Ly, Ey, Ey,. We can assume that

¢ = 5352\/5746\/ 52qdv quf\/ E2EpE2p s
where a,b, ¢, d, f and g are in {0, 1}.
w Let us start by applying the norm map Ny i, = 1+72. We have | /525;,,521,1”2 =
(—1)Yey, for some v € {0,1}. By means of (2) and Table 1, we get:

Nijo(€7) = 3" (=1)"-eg ey - 1+ (=1)7¢3
= ejteleq, - (—1)"19ved.
Thus b+ gv =0 (mod 2) and g =0. So b =0 and
&= 5%\/57qcv52qdv5qu'

m Let us apply the norm Ny, = 1+ 77, with ks = Q(,/g,v/2p). By (2) and
Table 1, we have:

NL/ks(gz) = (=D (-1)°- 52 . (_1)d . (_1)f

_ (_1)a+c+d+f52.

Thus ¢ =0 and so a+d+ f =0 (mod 2). Therefore,

&= €3/ 62qd\/‘€zmlf'
m Let us apply the norm Ny jp, = 1+ 773, with k¢ = Q(,/p, v/2¢). By (2) and
Table 1, we have:

Nej(€) = (1) (=1)" ey, (-1)7

— (_1)a+d+f€§lq'
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Thus d = 0 and a = f. Therefore,

&= €5v/Epq -
m Let us apply the norm N, = 14 7, with k4 = Q(y/p,/q). By (2) and
Table 1, we have:
N (€%) = (=1)" (=1)" &5, = &3

Thus a = 0. So we have the first item.
2) Assume that N(eg,) = 1. So we have:

By, By, By, = (—1, €2, €p, \/Eq: \/E29> E2pq> \/Epas \/E2p) -

To determine the elements of Ej, Ey, E, which are squares in L, let us consider
¢ an element of L which is the square root of an element of Ej, Ey, Ej,. As €9y,
is a square in L., we can assume that

& = esepy/Ea Var"Ven Ve,

where a,b, ¢, d, f and g are in {0, 1}.
m Let us start by applying the norm map Ny, = 1+ 7. By (1), (2) and
Table 1, we have:

N (€%) = 3"+ (=1)"-eg-egy - 1- (1)

= eyteleq, - (—1)"To

Thus b+ gu =0 (mod 2). So b = gu.
m Let us apply the norm Ny, = 1+ 77, with k5 = Q(,/g,+/2p). By (2) and
Table 1, we have:

Nups (€)= (=1 (=1)" - (=1)%- e - (=) (=1)7 - (=1)7 - 5,
(_1>a+b+c+d+f+g€;€gp

Thus c=gandsoa+b+d+ f =0 (mod 2). Therefore,

& = e5ed /e, 1NN

m Let us apply the norm Ny jp, = 1+ 7173, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:

Nu(€) = (1) (=1)°- (1) e5,- (=) - (=)
€

2b( 1)a+d+f+cu€d

Thus d =0andsoa+ f+cu=0 (mod 2). Asa+b+d+ f =0 (mod 2),
then a +b+ f =0 (mod 2). Therefore,

2 = 6562@6\/61,[1/[«/821,0.
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m Let us apply the norm Ny, = 14 7, with k4 = Q(y/p,/q). By (2) and
Table 1, we have:
Numi(§?) = (1) g (=1) g (1)) - epy - (=1)F°

_ +f+ f
= 5 ( 1)® MecEd

Thus ¢ = f and a + ¢+ cu =0 (mod 2). Therefore,

= e
UJ
Theorem 3.12. Let p =1 (mod 8) and ¢ =7 (mod 8) be two primes such that
P 1. Put L = Q(vV2,/p,\/q). Assume furthermore that 2p(z + 1) and

p(v+ 1) are squares in N, where x and v are defined in Lemma 3.4.

1) Assume that N(eq,) = —1. We have
o The unit group of L is :

B = (—1,e9,5), V€2 \/Epg> \/E2pqr \/E2EpE2p; \/\/@H“/vgpq@pqa%
where v, v € {0,1} such that a # v and a = 1 if and only if |/24\/EpgEapq 15

a square in L.
e The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).
2) Assume that N(gq,) = 1. We have
o The unit group of I is :

B = (—1,¢e2,¢, VvV €2q5 v/ €pgs /E2pgs \/E2ps \/\/@Hvapqg?pqa)

where a, v € {0,1} such that o # v and o = 1 if and only if \/24\/EpgEapq 5
a square in L.
e The 2-class number of L equals 1= ha(2p)ha(pq)ha(2pq).

Proof. 1) Assume that N(ey,) = —1. By Lemma 2.3, {e9,¢,, \/€28,€2,} 15 a fun-
damental system of units of k;. Using Lemmas 3.2 and 3.4, we check that

{€2, /) /E2q} and {ea, €pg, \/EpgEapq} are respectively fundamental systems of
units of &y and k3. It follows that,

By, Epy Egy = (—1,€2,8p, \/Eq, \/E29) Epa> v/EpaE2pas /E2EpE2p)-

Thus we shall determine elements of Ej, Ej, Fy, which are squares in L. Notice
that by Lemma 3.4, €,, is a square in L. Let £ is an element of . which is the
square root of an element of Ej, Ey, Ey,. We can assume that

2= e3¢ \/_ V&2 \/5pq52pq Ve,
where a,b, ¢, d, f and g are in {0, 1}.
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w Let us start by applying the norm map Ny, = 1+7,. We have | [EgEpEay T =
(—1)%ey, for some v € {0,1}. By means of (2) and Table 1, we get:
Nijo(€2) = 3" (=1)"-eg g5, - 1+ (=1)7¢}
extetes, - (1)l

Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and

&= E5vEq v 62qd\/ 5pq52qu’
m Let us apply the norm Ny = 1+ 77, with ks = Q(,/g,v/2p). By (2) and
Table 1, we have:
Nups (€)= (D)% (=15 - (1) (1) - &,
_ (_1)a+c+d+f525£pq'

Thus ¢c= fand a+c+d+ f =0 (mod 2). Therefore, a = d and

€ = e3VE Ve e
w Let us apply the norm Ny, = 1+ 77, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:
Nio(6%) = (1" (1) (=1)" -5y (-1)° - 5,
- {:‘gpq ’ ggq'

Thus a = 0. Therefore,

¢ = V& VEpeE2pg -
m Let us apply the norm Ny, = 14 7, with k4 = Q(y/p,/q). By (2) and
Table 1, we have:
Nujr(€3) = (=1)-e8- (—1)° &5, = elel,.

We deduce nothing.
2) Assume that N(eq,) = 1. So we have:

By By By = (—1, 62,6, V€a> V€295 Epgr \/Epa€2pg> \/521))’

To determine the elements of Ej, Fy, E, which are squares in L, let us consider
¢ an element of L which is the square root of an element of Ej, Ey, Ey,. As €y,
is a square in L, we can assume that

52 = 5552\/57116\/ 52qdv5pq52quv52pgv
where a, b, c,d, f and g are in {0,1}.
m Let us start by applying the norm map Ny, = 1+ 7. By (1), (2) and
Table 1, we have:
N, (€)= &3 (=1)"-eg-e5, - 1+ (=1)

e5tetes, - (—1)"om.
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Thus b+ gu =0 (mod 2). So b = gu.
m Let us apply the norm Ny, = 1+ 77, with ks = Q(,/g,+/2p). By (2) and
Table 1, we have:

Nupol€) = (A1 (1 (-1 g5 (1) (1) ey, (17
(_1)a+b+c+d+f+g€;

€2paEop-
Thus a+b+c+d+ f+9g=0 (mod 2) and c+ f+ g =0 (mod 2). Therefore,
a+b+d=0 (mod 2).

m Let us apply the norm Ny, = 1+ 7173, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:

Nie(€3) = (=1 (=1 (=) 5, - (=1 - e, - (-1)70

2 f a+c+d+f+gutg d
= &, g9,(—1) €94°

Thusd=0andsoa+c+ f+gu+g=0 (mod2). Asa+b+d=0 (mod 2),
then a = b. Therefore,

&= 5;5;\/57110\/ 5pq€2quv Eap’

m Let us apply the norm Ny, = 14 7, with k4 = Q(y/p,/q). By (2) and
Table 1, we have:

Nepeo(€2) = (1) (1) g (1) e, - (=1)F
3

2b(__1\a+c+fH+gutg c_f
p ( 1) gquq'

Thusa+c+ f+gu+¢g=0 (mod 2) and c= f. So a+ gu+ g =0 (mod 2).
Asc+ f+¢g=0 (mod 2), then g =0 and so a = 0. Therefore,

52 = vgqcvgpq@pqc'
So the second item.

U
Theorem 3.13. Let p =1 (mod 8) and g = 7 (mod 8) be two primes such that

<Z—9> = 1. Put L = Q(v2,/p.\/q). Assume furthermore that 2p(x + 1) and
q

2p(v + 1) are squares in N, where  and v are defined in Lemma 3.4.

1) Assume that N(eq,) = —1. We have
o The unit group of L is :

E]L = <_1> €2, 51)7 \/@7 V 52q> vV qu> vV 52pqa vV 825105210>>

e The 2-class number of L equals %hg(Qp)hQ(pq)hg(qu).
2) Assume that N(eqp) = 1 and let a € {0,1} such that a = 1+ u (mod 2). We
have
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o The unit group of L is :

B = (—1,63,¢, VEa VE24 V/Epas \/E2pqs \/5ga5§av5pq‘€2pqav 52p1+7>
where a, v € {0, 1} such that o # v and o = 1 if and only if €3¢, /EpgEapqr/E2p

18 a square in L.
e The 2-class number of L equals 24L,ahg(2p)h2(pq)hg(2pq).

Proof. 1) Assume that N(eg,) = —1. By Lemma 2.3, {e9, &), \/E28,E2,} is a fun-
damental system of units of k. Using Lemmas 3.2 and 3.4, we check that

{62, \/Eq» /E2q) and {€9, €pg, \/EpgEapq} are respectively fundamental systems of
units of ko and ks. It follows that,

By, B, By = (=1, €2, €p, /24 /229> Epas \/EpaC2pgs \/E2EpE2p)-
Thus we shall determine elements of Ej, Ey, F, which are squares in L. Notice

that by Lemma 3.4, €,, is a square in L. Let £ is an element of L. which is the
square root of an element of Ly, Ey, Ey,. We can assume that

&= 5552\/56\/ 52qd\/5pq52qu\/525p52pgv
where a,b, ¢, d, f and g are in {0, 1}.
 Let us start by applying the norm map Ny, = 1+7,. We have | [E2EpEa0p 1T =
(—1)%ey, for some v € {0, 1}. By means of (2) and Table 1, we get:

Nijo(€) = & (=1)" g ey, - 1+ (—1)"e]
egaegegq - (—=1)bT9ved,
Thus b+ gv =0 (mod 2) and g = 0. Therefore, b = 0 and
&= Egﬁc@dv G
m Let us apply the norm Ny, = 14 7172, with ks = Q(1/q, v/2p). By (2) and
Table 1, we have:

N (€)= (F1)" (=1)° g5 (=1)" - &y,
_ (_1)a+c+d6;€£pq'

Thus ¢ = f and a + ¢+ d = 0 (mod 2). Therefore,
& =3VEy 52qdv EpaCapq -

m Let us apply the norm Ny, = 1+ 773, with ks = Q(,/p, v/2¢). By (2) and
Table 1, we have:

Nume(§2) = (=1)*-(=1)°- (=1)7 - €5, - €5,

E;pq ( . 1)a+c+d X €§lq )

Thus d =0 and a + ¢+ d =0 (mod 2). Therefore, a = ¢ and
€% = €5\/24" \/EreFora"
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m Let us apply the norm Ny, = 14 7, with k4 = Q(y/p,/q). By (2) and
Table 1, we have:

Nepa(§%) = (=1)"- (=1)" &g -y = g5 - €5

Thus, a = 0. So we have the first item.
2) Assume that N(eq,) = 1. So we have:

By By By = (=1, 62,6, VEa V24> Epar v/ Epa€2pgs \/521))’

To determine the elements of Ej, Fy, F), which are squares in L, let us consider
¢ an element of L which is the square root of an element of Ej, Ey, Ey,. As €y,
is a square in L, we can assume that

—52 \/7 V€2 vgqu?pq Ve,
where a,b, ¢, d, f and g are in {0, 1}.
m Let us start by applying the norm map Ny, = 1+ 7. By (1), (2) and
Table 1, we have:

N (€%) = 3"+ (=1)"-eg-egy - 1+ (1)
= eyteleq - (—1)"1o,
Thus b+ gu =0 (mod 2). So b = gu.

m Let us apply the norm Ny, = 1+ 77, with k5 = Q(,/g,+/2p). By (2) and
Table 1, we have:

Nops(€) = (=1 (=1 (<1 5 (~1)" ey (<17,

_ a+b+ct+d+g c f
- ( 1) € €2pq€2p

Thusa+b+c+d+¢g=0 (mod 2) and c+ f 4+ g =0 (mod 2).

m Let us apply the norm Ny, = 1+ 773, with ks = Q(/p, v/2¢). By (2) and
Table 1, we have:

Nupe(€®) = (1) g (Z1)°- (=) &5, - o5, - (— 1)

_ 2 f atctd+gutg .d
= &, g9p,(—1) €9q°

Thus d = 0 and so a +c+ gu+ g = 0 (mod 2). Therefore,

52 = 5%5;\/56\/ éj1%1“'521%1]6\/52:Dg'
m Let us apply the norm Ny, = 14 7, with k4 = Q(y/p, /q). By (2) and
Table 1, we have:

Npj(€2) = (=1)7-e2. (1) e¢-ef - (—1)9ut9

P a" “py
Eibg;z{q( 1)a+c+gu+9€g.

Thus ¢ =0 and so a + gu+ g =0 (mod 2). Since ¢+ f + g =0 (mod 2), we

have f = g. Therefore,

§2 = 5‘565“\/ 61%1“'521%19\/ €2,
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with @ + gu+ ¢ = 0 (mod 2). So we have the second item.
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