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Abstract

The behavior of a dynamical system can exhibit abrupt changes when it crosses a tipping point. To prevent catastrophic events, it is
useful to analyze indicators of the incoming bifurcation, as the divergence of the relaxation time of the system when approaching
the critical point. However, this phenomenon, called critical slowing down (CSD), is hardly measurable in real physical systems.
In this paper we provide experimental evidence of CSD in a laser system crossing the emission threshold and we analyze how it is
affected by a time changing parameter and by noise.
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1. Introduction

Mankind has always been fascinated by the possibility of pre-
dicting the future. Precursor signs of the future were believed
to appear in natural phenomena, as in the flight of birds (Or-
nithomancy), in the configuration of planets and stars (Astrol-
ogy) and in the entrails of animals (Haruspicy) to cite few exam-
ples. Beyond magic and divination, common wisdom suggests
to ”Study the past if you would divine the future”, to quote Con-
fucius. In quantitative sciences, until the middle of the last cen-
tury, the notion of predictability was associated to the knowl-
edge of the equations ruling a dynamical system and of its ini-
tial condition. Unfortunately, this information is not available
in real systems where noise is always present. Moreover, in
1963, Lorenz revealed the existence of chaotic systems, where
determinism does not imply predictability [1, 2]. In the last fifty
years, the question of what could be predicted in the evolution
of real dynamical systems has attracted a great deal of attention
in science. Great emphasis was placed on systems evolving to-
wards a dramatic behavioral change [3, 4, 5, 6] in order to iden-
tify some precursor sign of the incoming bifurcation. The moti-
vation of these studies is evident: such indicators would enable
to avoid or, at least, to get prepared to catastrophic behavioral
changes in real dynamical systems. In the eighties, the study
of trajectories in phase space of a dynamical system during the
transition between two stable solutions allowed to identify a
phenomenon called critical slowing down (CSD) when points
of marginal stability are approached [7]. Critical slowing down
refers to the divergence of the relaxation time of a dynamical
system when approaching a bifurcation and it is the key indi-
cator for incoming behavioral change in all dynamical systems.
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Unfortunately, measuring CSD requires the possibility of per-
turbing a variable of the system and of analyzing its relaxation
in time, which is often difficult to implement. Hence, other in-
dicators based on the time series of the dynamical system are
often preferred, like the autocorrelation, the variance, the skew-
ness, and the kurtosis [8, 9, 10, 11]. These indicators, called
early warning signs (EWS) of an incoming bifurcation, tipping
point or catastrophe, have been studied in various mathematical
models representing a very wide variety of systems in different
science area, including ecology [8, 9], climatology[12], physics
[3], psychiatry [13, 14, 15], medicine [16, 17, 18, 19], economy
[20] or neurology [21, 22, 23]. Similar indicators have been
also used in spatio-temporal systems [24, 25, 26, 27] or in net-
works [28, 29]. Lately, other indicators were also sought, such
as the evaluation of the spectrum of Lyapunov exponents which
vary when approaching a tipping point [30, 31, 32]. Other stud-
ies tried to obtain a normal form describing the incoming bifur-
cation through the statistical study of the variables [12, 33, 34].
Recently, a method based on machine learning was used to pre-
dict the existence of a drastic change in the behavior of a system
[35, 36, 37, 38].

However, these indicators are based on statistical analysis of
the dynamic evolution of a given variable of the system whose
variations may not necessarily linked to the proximity of a bi-
furcation. This lack of specificity in early warning signals have
already been discussed in some papers [39, 40, 41, 42, 43, 44].

A possible strategy for measuring directly CSD in real sys-
tems when the variables cannot be perturbed experimentally
consists in perturbing an accessible control parameter. From
this point of view, laser systems are a promising bench-test for
CSD as several parameters are experimentally accessible and
one of the variables, the intensity of the emitted electromag-
netic field, can be readily measured by fast detectors and visual-
ized on instruments. Class B lasers are dynamical systems with
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Figure 1: Laser platform for the measurement of CSD. The A section is the pump stabilization and output power control. AOM: Acousto-Optic Modulator, BS:
Beam Splitter. Ramps of pump power with various speeds can be realised by an external control of the voltage applied to AOM1. The B section is the Nd:YAG
laser cavity. Short square perturbations in the intracavity field are applied via the modulation of the voltage across AOM2. A longpass filter allows to eliminate the
unwanted pumping light from the detection part.
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Figure 2: a,b,c) Examples of time traces of the intensity pulses emitted by the laser (blue) when a sequence of 100 perturbations of 1 µs duration is applied to the
cavity losses. The traces are obtained for a normalized pump power of respectively 0.99, 1.005 and 1.15. From these traces the average and maximum width of the
pulse is estimated. d) Average (black trace) width of the laser response as a function of the normalized pump power A and its variance (blue trace). The duration of
the perturbation is 1 µs. e) Same as d) with a duration of the perturbation of 2.5 µs.

two active variables, the population inversion and the intensity
output. They undergo to bifurcate when the pump parameter
crosses the threshold and the nil solution of the intensity be-
comes unstable [45, 46, 47]. Previous attempts to measure CSD
in a laser approaching threshold by perturbing the pump param-
eter failed [48] because this parameter is decoupled from the
intensity variable below the bifurcation.

In this work we analyze experimentally and theoretically the
response of a laser to a perturbation applied to a parameter
which has a direct impact on both the variables of the system.
Accordingly, we give experimental evidence of CSD and we
evaluate how it is affected by the presence of a time variable
pump parameter that drives the laser towards the bifurcation. In
addition, we show how the noise present in the system affects
the measurement of CSD.

2. Experimental evidence of the critical slowing down in a
class-B laser

2.1. Experimental setup
The experimental setup is displayed in Fig. 1. We consider a

laser composed by a Nd:YAG rode where the back plane facet

HR coated at 1064 nm. A polished concave mirror having a
100 mm focal length is placed in front of the rode to define
a plano-concave cavity having a length of 18 cm. The cavity
contains an AOM crystal aligned in the cavity at the order zero.
The AOM enables variation of the cavity losses from a bottom
level given by the optical elements of the cavity and a maxi-
mum level when the AOM deviates the largest part of the beam
toward the first order. The rode is pumped by a laser diode emit-
ting at 811 nm whose intensity is controlled by a second AOM.
The intracavity AOM is used to perturb the cavity losses with
pulses having a duration of few microseconds and a repetition
rate of 1 KHz. Timescales of the laser can be obtained from the
relaxation oscillations characteristics and we obtain that popu-
lation inversion recovery time is of the order of 200 µs, while
the photon lifetime is about 200 ns.

2.2. Measurement of the critical slowing for a stationary pump
parameter

In order to define an experimental scheme for revealing the
occurrence of CSD, we analyze the response time of the laser
intensity τ when perturbing the cavity losses. By definition,
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for a stationary situation of parameters, CSD occurs at the bi-
furcation point, i.e. at the laser threshold A = Ath. Then, the
reliability of our experimental procedure can be tested accord-
ingly. In Fig.2 we show a typical time trace of the intensity
output of the laser when a set of periodic kicks having a du-
ration of ∆t = 1µs are applied to the cavity losses for a fixed
value of the pump parameter. While no response of the laser
is observed far below threshold (panel a), a random response
is observed close to threshold. Laser intensity pulses induced
by a sudden variation of cavity losses are different in amplitude
and in duration at every kick. These variations are maximal at
A = Ath (panel b) and they tend to decrease when increasing
the pump (panel c). The time series of Fig. 2 suggests that a
statistical analysis of the laser intensity pulse is necessary for
extracting a reliable indicator of the laser response. In Fig. 2d)
we plot the average duration of the laser pulse intensity (τ) as a
function of the pump parameter together with its variance. De-
spite the spread of the laser response around threshold shown by
the variance, the average value of ⟨τ⟩, ⟨τ⟩, exhibits a maximum
value at A = Ath and then it decreases as A is increased above
threshold. The variance τ decreases strongly above threshold
and tends to negligeable values for A > 1.1Ath. This result sug-
gests that the value of A at which ⟨τ⟩ is maximum is a valuable
indicator of CSD. The large value of the variance around the
bifurcation point is quite common in dynamical systems with
stochastic terms. Lasers feature several sources of noise both
additive (spontaneous emission noise) and multiplicative (noise
in the pump and/or in the cavity losses) which can affect its re-
sponse to perturbations and smooth out the asymptotic growth
of τ at the bifurcation point.

An important ingredient of our experiment is the perturba-
tion kick to the cavity losses. The measure of CSD requires
a perturbation that can be considered as a sudden variation of
the initial condition of the dynamical system without affecting
its parameters. While this perturbation can be done simply in
numerical simulation, in the experiment its implementation is
critical. In our set-up, for technical limitations, the perturbation
cannot be shorter than 0.2 µs. The results shown in Fig. 2d)
with ∆t = 1µs enables to locate CSD but they give no indica-
tions of the vicinity of the bifurcation point when the laser is in
the off state. In order to extract a warning signal below the bi-
furcation point, we increase the kick duration to 2.5 µs and we
show τ and its variance in fig. 2e). In this condition, the laser
does respond to perturbations below threshold and ⟨τ⟩ increases
as A approaches the threshold. ⟨τ⟩ reaches a maximum slightly
before the bifurcation point (A = 0.98Ath) and then it decreases
abruptly to reach for a constant value at A = Ath where also
the variance becomes negligeable. Hence, for this kick dura-
tion, the maximum value of ⟨τ⟩ fails in indicating the location
of CSD. However, the increasing of ⟨τ⟩ indicates the approach-
ing of a bifurcation that will happen just after ⟨τ⟩ reaches a
maximum.

To gain insights on the role of noise in the laser response
and on the effects of kick duration, we compare our experimen-
tal findings with numerical simulations that include stochastic
terms.

3. Theoretical model and results
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Figure 3: a) Average decay time ⟨τ⟩ of the laser response as a function of the
pump parameter A for two different duration of the kicks and in presence of
noise. ∆k = 0.2, β = 10−5. b) Average decay time ⟨τ⟩ of the laser response as
a function of the pump parameter A for two noise levels. ∆k = 0.2, ∆t = 5. In
both panels γ = 10−4 and the average has been calculated using 100 events.

A single mode Class B laser [49] can be modeled by the fol-
lowing first-order differential equations:

Ė = −(1 − ∆k + δ)E + EN + β, (1)
Ṅ = −γ[N − (A + ψ) + E2N], (2)

where E and N are the electromagnetic field and the popu-
lation inversion, respectively; γ is the loss rate of N, and A
is the pump parameter. The time t is normalized to the field
loss rate. ∆k takes into account a perturbation in the loss
rate of the field and β, δ and ψ are random terms of zero av-
erage. If ∆k and β are neglected, the steady state solutions
are (E1,N1) = (0, A) and (E2,N2) = (

√
A − 1, 1). A trivial

linear stability analysis of the (E1,N1) solution gives us the
following eigenvalues (λ1, λ2) = (A − 1,−γ). λ1 is associ-
ated to a perturbation on the field E and λ2 to a perturbation
on the population inversion N. (E1,N1) solution is stable for
A < 1. At A = 1 a transcritical bifurcation takes place and,
for A > 1 the solution (E2,N2) becomes stable with eigenvalues
(λ′1, λ

′
2) = −γA/2 ± [γ2A2/4 − 2γ(A − 1)]1/2. Clearly, for both

solutions, one eigenvalue vanishes at A = 1. Therefore there is
a critical slowing down because at that point the decay time of
a perturbation diverges. Following the method used in the ex-
periment, we perturbed the cavity losses with short pulses. The
choice of this parameter is explained by the equations describ-
ing the laser. If we consider the zero intensity solution, (E1,N1),
every change ∆k will induce a perturbation in the field values.
The intensity (I = E2) will then decay to the steady state value
and such decay will take longer as the parameter A approaches
the bifurcation point. It is worth remembering that a perturba-
tion of pump parameter, as realized in [48], does not affect the
field value but only the variable N, which always decays in a
time given by τ = 1/γ. Then, CSD cannot be observed in this
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case. On the other hand, the CSD will always be observable
as the bifurcation point is approached from the (E2,N2) solu-
tion. As evidenced in the experimental observations, noise in
the dynamical system can affect the laser response to a pertur-
bation. We introduced into the model both multiplicative noise
and additive noise in order to compare theoretical results with
experimental ones. However, multiplicative noise had no rele-
vant influence on the results, thus we focus on additive noise.

We realize numerically laser kicking by perturbing the losses
through the parameter ∆k. For a short time interval ∆t, ∆k takes
a finite value and we analyze the laser intensity pulse induced
by this kick. In presence of a stochastic term, the response of
the laser is quite fluctuating and the degree of randomness de-
pends on the noise level and on the distance of the parameter
A to the bifurcation value. Numerical time series are similar to
the experimental ones and they suggest the need of a statistical
analysis of the laser response. In Fig. 3 we plot, as a function of
the pump parameter A, the average value of the relaxation time
of the laser intensity (⟨τ⟩) after a kick in the laser losses for dif-
ferent duration of the kicks ∆t and for different noise levels β.
For a pulse duration of ∆t = 5, we observe that, regardless the
presence of stochastic term, the relaxation time grows asymp-
totically in the proximity of the bifurcation point (A = 1). This
shows that noise level does not impact significantly the mea-
sure of CSD, provided that a statically analysis is performed on
the system response. We repeat the above described numerical
experiment with a kick duration of ∆t = 20. As in the exper-
iment, when the perturbation duration exceeds a critical value,
the maximum value of ⟨τ⟩ occurs slightly before the bifurca-
tion point and ⟨τ⟩ decreases abruptly to reach a minimum at
the bifurcation point. The analysis of the time series associ-
ated to this phenomenology enables to explain the effect of an
exceedingly long perturbation pulse. The perturbation applied
decreases the level of the cavity losses and therefore it decreases
transiently the threshold value of the laser. If the perturbation
is short enough, the laser does not integrate this change and the
kick can be considered as a sudden variation of the initial con-
dition rather than a change in the parameters. Hence, the laser
intensity relaxes slowly and the maximum of the decay time
happens at the position where the CSD occurs. If the perturba-
tion is longer than a critical value, then the laser has the time to
integrate the transiently threshold change and, when A is close
to Ath, it responds with a high intensity peak corresponding to
the laser switch dynamics. Then, the (fast) decay time of the
laser pulse is not related anymore with the relaxation process
to the kick. Accordingly, the maximum of the decay time is
reached before the point where the CSD must happen.

In conclusion, our experimental and numerical analysis of
laser reveal that the noise present in a real system does not hin-
der the observation of CSD but it makes necessary multiple re-
alizations of the system’s perturbation and a statistical descrip-
tion of the response.

3.1. Measurement of the critical slowing down with a time
evolving parameter

The indications obtained above for measuring CSD in a real
system when parameters are stationary can be used for measur-

ing CSD in a system with time evolving parameters, a situa-
tion which is common in real world. In a recent paper [48] we
have shown theoretically that, in these situations, CSD may take
place for a pump parameter value, that we call ACS D, beyond the
threshold value Ath, thus making CSD an useless indicator for
anticipating the incoming bifurcation. The shift between ACS D

and Ath depends on the variation speed of the evolving param-
eter [48] and it is shown analytically and numerically that CSD
is taking place at the time value at which population inversion
N reaches the value of N = 1. The offset between ACS D and Ath

increases with the speed of the ramp: Ac ≈ Ath(1 + v/γ), where
v is the speed ramp in unit of A/Ath normalized to the photon
lifetime. This claim has not been experimentally demonstrated
in [48] because the only accessible parameter for kicking the
laser was its pump parameter and, as explained above, this is
not useful for evidencing CSD. Here we exploit the results for
static values of A which indicate that CSD can be successfully
evidenced by perturbing laser losses.

To this aim, we modulate the pump parameter A across the
threshold value Ath = 1 with a triangular function which in-
creases and decreases linearly the pump (A = A0 ± vt). A is
varied in the interval 0.9 < A < 1.6 with variation speeds be-
tween 60s−1 and 500s−1, which, normalized to photon lifetime,
are speeds in the range 1.3×10−5 < v < 1.1×10−4. During this
modulation of A, the cavity losses are kicked by a short pulse
applied at different values of the pump, i.e. at different positions
on the ramp. This position can be controlled by changing the
delay between the application of the perturbation and the begin-
ning of the ramp. We evaluate the average duration of the laser
response ⟨τ⟩ for each kick position with respect to the pump
value. As shown in Fig. 1, A parameter is modulated thanks
to AOM which controls the power of the pump beam, while
the intracavity AOM is used for kicking the cavity losses. In
Fig.4 we plot ⟨τ⟩ as the pump parameter A is linearly evolving
across the laser threshold Ath = 1 for positive speeds [panels a),
b) and c)] and for negative speeds [panels d), e) and f)]. The
curve of the laser intensity output versus A is also shown (blue
curve). It is worth remembering that, when the pump is linearly
increased with a speed v, the laser emission is delayed with re-
spect to the time at which A = Ath, as shown experimentally and
theoretically in [45, 50, 51]. Laser emission starts at a value of
A, that we call ”dynamical” threshold Ath,dyn, whose offset with
respect to Ath increases with v, as we can observe in Fig. 4. Be-
cause of the energy accumulated, at A = Ath,dyn, the laser emits
an intensity pulse followed by relaxation oscillations. Instead,
for negative speed of pump change, i.e. when bifurcating from
the lasing solution to the off solution, the offset between Ath

and the value of A at which the laser switches off is negligi-
ble. This dynamical hysteresis has been already described and
explained [45]. Fig. 4 shows that, for positive values of v, the
maximum value of ⟨τ⟩ is obtained when kicking the laser at the
time for which the pump reaches the dynamical threshold, i.e.,
A = Ath,dyn. If the laser is kicked after A = Ath,dyn, ⟨τ⟩ decreases
progressively as the position of the perturbation in terms of A
increases with respect to A = Ath,dyn. For low speed of the
ramp v, [(panel a)], there is no relevant difference between Ath

and Ath,dyn but, as v is increased (panels b) and c) Ath,dyn takes
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Figure 4: Laser response (blue curve) as the pump parameter is linearly increased with a speed v (top row panels) or decreased with a speed −v (low panel). Black
spots: Average duration of the laser response to a kick of 1 µs in the cavity losses when the perturbation is applied at different as a function of the values of the
pump A at which the perturbation is applied. a) v = 70s−1 (50 Hz), b) v = 140s−1 (100 Hz), c) v = 280s−1 (200 Hz). d) v = −70s−1 (50 Hz), e) v = −140s−1 (100
Hz), f) v = −280s−1 (200 Hz). ⟨τ⟩ has been measured by taking the average value of the pulse width over 10 events in panels a) and d), 20 events in panels b) and
e) and 40 events in panels c) and f)

place beyond the threshold value. Hence, the maximum value
of ⟨τ⟩, which indicates the position of CSD, occurs beyond the
bifurcation point. The calculated values for ACS D, according
to [48], are: ACS D ≈ 1.016 (panel a) ACS D ≈ 1.032 (panel b)
ACS D ≈ 1.064 (panel c), in partial agreement with the values of
ACS D displayed in Fig. 4. For negative values of v, i.e. when the
laser is crossing the bifurcation from the on state to the off state,
there is no dynamical hysteresis and Ath = Ath,dyn. We observe
that ⟨τ⟩ progressively increases as the laser is kicked closer and
closer to the time when laser switch off. It reaches a maximum
for kicks at A = 1 and it decreases for increasing delay between
the kick and the time at which A = 1. Hence, for negative speed
of the ramp, CSD occurs at the A = Ath, as predicted theoret-
ically and the increasing in the time ⟨τ⟩ is a good indicator of
the incoming bifurcation.

In order to gain insights on the experimental observations,
we implement numerical simulation using the model described
above with a time evolving pump parameter: A = A0 + vt, for
v > 0. In Fig. 5, we plot the average relaxation time ⟨τ⟩ of
the laser response after a kick in the cavity losses in presence
of the additive noise term β and for different value of the ramp
speed v. The value for A for which CSD occurs (ACS D) is cal-
culated by using the analytical formula in [48] and Fig. 5a)
shows that ⟨τ⟩ indeed increases asymptotically when the kick
is applied approaching A = ACS D. As shown in Fig. 5b), the
presence of noise does not affect the value of A at which ⟨τ⟩
increased asymptotically, thus demonstrating the reliability of
our measurement for the determination of ACS D.

Noise affects instead the value of A at which the laser starts
to emit when v > 0, i.e. the position of the dynamical threshold
Ath,dyn. This is shown in Fig. 5c and in Fig. 6 where we plot the
intensity of the laser as a function of the pump A when the pump
is linearly increased and it crosses the threshold value A = 1.
The time series in Fig. 6 compare with the experimental ones
shown in Fig. 4 and they show that the laser starts to emit with
a large intensity peak followed by relaxation oscillations. The
position of Ath,dyn in absence of noise is indicated by a blue line,
thus revealing how noise affects the value of Ath,dyn. In panel
c) we analyze the position of Ath,dyn as a function of the noise
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Figure 5: Average decay time ⟨τ⟩ of the laser response to a kick in the cavity
losses (20%) when A = A0 + vt, v > 0 as a function of A for two values of
v, β = 10−5 (panel a) and for different noise levels β (panel b) for v = 10−5.
Averaging has been performed on 100 events. Kick duration is ∆t = 40 and
γ = 10−4. Dashed lines indicate the value of A at which CSD is supposed to
occur by using the analytical formula. Panel c) position of Ath,dyn as a function
of the speed v of change of A in absence of stochastic term and for a finite noise
level.

5



I I

I

300

200

100

0

I

600

400

200

0

1.1 1.15 1.2 1.3

1.5

1

0.5

0

6

4

2

0

1.25

1.3 1.4 1.5 1.71.6
A

β = 10-5β = 0
a

b

c

10-50 10-40 10-30 10-20 10-10

1.4

1.2

1

β

Adyn CSD

CSD
Ath

v = 5 x 10-5

v = 1 x 10-5
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Ath,dyn calculated as a function of noise level for two speeds of the ramp (green
curve v = 5 × 10−5, magenta curve v = 1 × 10−5). The position of ACS D is
indicated by a dashed line.

level for two different speeds. We notice how Ath,dyn approaches
ACS D as noise level is increased and this effect is more and more
visible as the speed v is increased.

4. Conclusions

Our analysis is devoted the possibility of predicting an in-
coming bifurcation in a dynamical system by measuring the
decay time of a perturbation applied to one of the control pa-
rameters. Such decay time must diverge at a bifurcation point,
according to the so-called critical slowing down phenomenon.
However, in presence of an evolving parameter, CSD may occur
beyond the bifurcation point, thus becoming unsuitable as early
warning indicator. In this paper we have tested this circum-
stance in a low-dissipation dynamical system, namely a class
B laser. We have shown that the noise present into the system
makes a statistical analysis of the laser response to the perturba-
tion compelling for measuring CSD. When the pump parameter
of the laser is evolving in time across the laser threshold, the lo-
cation of CSD with respect to the bifurcation point is different
depending on the speed and on the direction of the parameter
variation. While CSD occurs at the bifurcation point when the
laser is switched off, it occurs at a pump value larger than the

threshold when the laser is switched on and this gap increases
with the speed of the pump variation. This result indicates that,
in systems with a time evolving parameter, CSD may fail as
early warning of an incoming bifurcation. Thanks to numer-
ical simulations, we show that the value of the parameters at
which the CSD happens is not affected by noise. However,
noise affects significantly the pump value at which the dynam-
ical threshold takes place. For typical noise levels in our laser
experiment, this pump value tends towards the value at which
CSD occurs.
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