
Fast quantum integer multiplication with zero ancillas

Gregory D. Kahanamoku-Meyer1, 2, ∗ and Norman Y. Yao1, 3

1Department of Physics, University of California at Berkeley, Berkeley, CA 94720
2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139

3Department of Physics, Harvard University, Cambridge, MA 02139

The multiplication of superpositions of numbers is a core operation in many quantum algorithms.
The standard method for multiplication (both classical and quantum) has a runtime quadratic in
the size of the inputs. Quantum circuits with asymptotically fewer gates have been developed,
but generally exhibit large overheads, especially in the number of ancilla qubits. In this work, we
introduce a new paradigm for sub-quadratic-time quantum multiplication with zero ancilla qubits—
the only qubits involved are the input and output registers themselves. Our algorithm achieves an
asymptotic gate count of O(n1+ϵ) for any ϵ > 0; with practical choices of parameters, we expect
scalings as low as O(n1.3). Used as a subroutine in Shor’s algorithm, our technique immediately
yields a factoring circuit with O(n2+ϵ) gates and only 2n+O(logn) qubits; to our knowledge, this
is by far the best qubit count of any factoring circuit with a sub-cubic number of gates. Used in
Regev’s recent factoring algorithm, the gate count is O(n1.5+ϵ). Finally, we demonstrate that our
algorithm has the potential to outperform previous proposals at problem sizes relevant in practice,
including yielding the smallest circuits we know of for classically-verifiable quantum advantage.

I. INTRODUCTION

Quantum circuits that perform arithmetic on superpo-
sitions of numbers are the fundamental building block of
many quantum algorithms, from factoring to protocols
for certifiable random number generation and efficiently-
verifiable quantum computational advantage [1–8]. The
feasibility of realizing these applications depends on the
efficiency with which this arithmetic, and in particular
multiplication, can be implemented. The standard way
of performing multiplication, in both the classical and
quantum setting, is via the “schoolbook” algorithm using
O(n2) gates, where n is the size of the input. Asymptoti-
cally sub-quadratic-time algorithms have been known for
over half a century, but have overheads that make them
useful only for the multiplication of very large values.1 In
the quantum setting, the reversibility constraint imposed
by unitarity generally makes these overheads even worse.

Despite this challenge, several works have explored the
implementation of quantum circuits for sub-quadratic-
time multiplication, largely focusing on the Karatsuba
algorithm which exhibits an asymptotic run-time of
roughly O(n1.58) [9–13]. A significant obstacle to this
effort is the recursive structure of fast multiplication
algorithms—making them reversible involves storing in-
termediate data, which ultimately requires utilizing a
large number of ancilla qubits. Notable recent work has,
for the first time, reduced the number of ancillas required
for quantum Karatsuba multiplication to linear in the
size of the inputs [11]. However, in practice, the number
of ancillas still dominates the total qubit cost. Moreover,
it has remained an open question whether sub-quadratic-

∗ Corresponding author. Email: gkm@berkeley.edu
1 For a classical example, the GNU multiple-precision arithmetic
library uses a threshold of 2176 bit inputs to switch away from
the schoolbook method.

time quantum multiplication with fewer than O(n) an-
cillas is even possible.
In this work, we introduce a new paradigm for sub-

quadratic-time multiplication on a quantum computer,
that requires zero ancilla qubits (Fig. 1): the only qubits
needed are those used to store the input and output data.
In terms of gate counts, our algorithms achieve asymp-
totic scaling as low as O(n1+ϵ) for any ϵ > 0 (see Table I).
Our approach combines ideas from classical fast multi-
plication with an inherently quantum technique where
arithmetic is performed in the phase of a quantum state.
Using our algorithm as a subroutine in Shor’s algorithm
for factoring yields circuits that require only 2n+O(log n)
total qubits, where n is the length of the integer to be
factored, while obtaining an asymptotic gate count of
O(n2+ϵ) for arbitrarily small ϵ; to the best of our knowl-
edge, this represents by far the fewest qubits required
to perform Shor’s algorithm in fewer than O(n3) gates.2

Moreover, used as a subroutine in a space-optimized ver-
sion of Regev’s recent factoring algorithm, our multiplica-
tion algorithm yields quantum circuits for factoring with
as few as O(n1.5+ϵ) gates and O(n) qubits [8, 15].
One might naturally wonder whether our algorithm’s

elimination of ancilla qubits comes at the cost of signif-
icant overhead in constant factors. This is not the case.
Indeed, for multiplication of a quantum integer register
by a classical value (the key operation for implementing
Shor’s algorithm), we find it is possible to construct cir-
cuits for which the number of qubits required is dramat-
ically reduced, while the gate count remains small (see
Table II). Intuitively, this gate efficiency comes from a
fundamental feature of our algorithm’s structure: that a
substantial portion of the overhead implicit in fast mul-
tiplication can be performed in classical precomputation.

2 See Table 1 of [14] for a recent comparison of proposals for the
implementation of Shor’s algorithm.

ar
X

iv
:2

40
3.

18
00

6v
2

 [
qu

an
t-

ph
]

 1
5

A
pr

 2
02

4

mailto:Corresponding author. Email: gkm@berkeley.edu

2

Q
FT

IQ
FT

Q
FT

IQ
FT

Q
FT

IQ
FT

FIG. 1: Recursive structure of the quantum multiplication circuit, for k = 3 classical-quantum mul-
tiplication. The green boxes represent phase rotations proportional to the product of registers (the PhaseProduct
operation described in Section III), which are recursively decomposed; the unlabeled tall, narrow unitaries represented
by white boxes are in-place quantum addition circuits. The qubits of the input and output registers are interleaved;
the top pair of qubits corresponds to the least significant bit of the input and output registers, the next pair the
second least significant bits of each, and so on. At the last level of recursion, phase rotations on individual pairs of
qubits can be implemented directly as two-qubit controlled phase rotation gates (represented here by green circles).
Note that the locality of the gates improves as the recursion proceeds.

Highlighting the versatility of our algorithm, we also in-
vestigate its application to an efficiently-verifiable proof
of quantumness [6] (see Table III).

II. BACKGROUND AND FRAMEWORK

We focus on the implementation of two related uni-
taries, which are defined by their action on product states
(and can be extended by linearity to superpositions of in-
puts):

Uc×q(a) |x⟩ |w⟩ = |x⟩ |w + ax⟩ (1)

Uq×q |x⟩ |y⟩ |w⟩ = |x⟩ |y⟩ |w + xy⟩ . (2)

The classical-quantum multiply, Uc×q(a), corresponds to
the multiplication of an integer stored in a quantum reg-
ister, |x⟩, by a classical number, a. The result is added to
an output register that initially contains the value |w⟩.
Similarly, the quantum-quantum multiply, Uq×q, corre-
sponds to the multiplication of a quantum integer |x⟩ by
another quantum integer |y⟩. The value is again added
to an output register |w⟩.
In order to perform both of the above unitaries in

sub-quadratic-time without ancillas, we draw inspiration
from two key ideas: (i) the classical fast (sub-quadratic)
multiplication algorithm of Toom and Cook and (ii) the
quantum Fourier transform based multiplication algo-
rithm of Draper. At first glance, these two seem entirely
incompatible. Toom-Cook gains its speed from the reuse
of intermediate values that have already been computed;
however, Draper arithmetic is performed via quantum
phase rotations, which, once applied, cannot be reused.
The crux of our result uses an inexpensive classical pre-
computation to obviate the reuse of intermediate values;
this simultaneously removes the need to store intermedi-

ate values, while also reducing the size of the quantum
circuit.

A. Classical Toom-Cook multiplication

The most straightforward algorithm for multiplication
is known as the schoolbook algorithm and has a runtime of
O(n2). It decomposes the product as xy =

∑
i,j b

i+jxiyj
for a base b, where xi is the ith base-b digit of x (and
yj is defined similarly). With b = 2, the circuit is quite
simple, because the binary product xiyj is an AND gate.
Starting in the 1960s, it was realized that multipli-

cation could be performed faster than O(n2) by break-
ing the inputs into pieces, and carefully combining lin-
ear combinations of those pieces. To establish the nota-
tion that we will use throughout this work, we begin by
expressing the classical Toom-Cook multiplication algo-
rithm in the language of linear algebra [16, 17].
Consider an n-bit value x written in base b = 2n/k

for some integer k, such that x =
∑k−1

i=0 xib
i. In this

representation, each of the k digits, xi, corresponds to
n/k bits of the binary representation of x. The above
sum can be expressed as the inner product of two length-k
vectors: x = (xk−1, · · · , x1, x0) and eb = (bk−1, · · · , b, 1),

x =

k−1∑
i=0

xib
i = x⊺eb. (3)

Allowing b to vary, Eq. 3 defines a polynomial x(b)
whose coefficients are the elements of x. Letting y(b) be
the polynomial corresponding to another integer y, one
can define a third polynomial p(b) = x(b)y(b) for which
p(2n/k) equals the numerical value of the integer product
p = xy. Thus, the problem of integer multiplication can
be expressed as polynomial multiplication.

3

The key insight of the Toom-Cook algorithm is that
the polynomial p(b) is uniquely determined by its value
at q = 2k−1 points wℓ, where ℓ ∈ {0, · · · , q−1}, and that
each value, p(wℓ), can be computed as the pointwise mul-
tiplication x(wℓ)y(wℓ). With an appropriate choice of wℓ,
the values x(wℓ) and y(wℓ) are integers of roughly n/k
bits. Thus p(b) can be computed via only q = 2k−1 mul-
tiplications (compare to the k2 required by the school-
book algorithm) of size ∼ n/k. By recursively applying
this construction to the smaller products of size n/k, and
then the resulting products of size n/k2 (and so on), the
Toom-Cook algorithm achieves an asymptotic runtime of
O(nlogk q), which is sub-quadratic for all k ≥ 2.
The evaluation of the polynomial x(b) at the points wℓ

can be expressed via the matrix A whose ℓth row is ewℓ

(which is known as a Vandermonde matrix):

A =

wq−1

0 · · · w2
0 w0 1

wq−1
1 · · · w2

1 w1 1
...

. . .
...

...
...

wq−1
q−1 · · · w2

q−1 wq−1 1

 . (4)

Then, the vector x̃ containing the values x(wℓ) is given
by x̃ = Ax, and the vector p̃, containing the values p(wℓ),
can be expressed as p̃ = x̃◦ỹ = Ax◦Ay, where ◦ denotes
the pointwise product of vectors. (We implicitly extend
the vectors x and y to length q elements by inserting
zeros for all indices larger than k − 1).
As long as the points wℓ are chosen such that A is in-

vertible, the vector of polynomial coefficients p can be
computed as A−1p̃. This polynomial can then be eval-
uated at b = 2n/k by taking the inner product of p and
e2n/k , yielding the integer product p. Putting it all to-
gether, the integer value p = xy can be computed as

xy = e⊺
2n/kA

−1(Ax ◦Ay). (5)

For clarity of intuition, we provide an explicit instantia-
tion of this expression for k = 2—corresponding to the
Karatsuba algorithm—in Appendix A.

B. Quantum multiplication via the QFT

Many quantum circuits for multiplication mirror clas-
sical ones, with clever optimizations to account for uni-
tarity [11, 18–23]. Here, we describe an early result by
Draper, which stands out as an example of a quantum
arithmetic circuit that has no classical analogue [24].
Consider the quantum Fourier transform (QFT) of the
output register in Eq. 1, before and after the application
of the classical-quantum multiply unitary Uc×q(a),

|x⟩ |w⟩ (I⊗QFT)−−−−−→
∑
z

|x⟩ exp
(
2πiwz/22n

)
|z⟩

|x⟩ |w + ax⟩ (I⊗QFT)−−−−−→
∑
z

|x⟩ exp
(
2πi(w + ax)z/22n

)
|z⟩ .

The two only differ by a phase, 2πaxz/22n, on each el-
ement of the superposition over |z⟩. This suggests the
following strategy for implementing Uc×q(a): (i) apply a
QFT to the output register, (ii) apply the diagonal uni-
tary

Ũc×q(a) |x⟩ |z⟩ = exp(2πiaxz/22n) |x⟩ |z⟩ (6)

and then (iii) apply an inverse QFT. In effect, this
decomposes the original unitary as: Uc×q(a) = (I ⊗
IQFT)Ũc×q(a)(I⊗QFT). For the quantum-quantum mul-
tiplication unitary Uq×q [Eq. 2], the strategy is identical,
with the diagonal unitary being,

Ũq×q |x⟩ |y⟩ |z⟩ = exp(2πixyz/22n) |x⟩ |y⟩ |z⟩ (7)

To date, the phase rotation unitaries, Ũc×q(a) and

Ũq×q, have been constructed via the binary schoolbook
decomposition of the products xz and xyz:

exp(2πiaxz/22n) =
∏
ik

exp(2πia2i+kxizk/2
2n) (8)

exp(2πixyz/22n) =
∏
ijk

exp(2πi2i+j+kxiyjzk/2
2n). (9)

Since the products xizk and xiyjzk are over binary val-
ues, they are 0 if any of the bits are zero (corresponding to
no phase shift) and 1 if all the bits are 1. Thus, the phases
can be implemented as a series of either singly-controlled
or doubly-controlled phase rotations, for Ũc×q(a) and

Ũq×q, respectively. For the classical-quantum case, the
number of controlled phase rotations is O(n2), while for
the quantum-quantum case, one has to perform O(n3)
phase rotations; the difference comes from the fact that
one can scale the entire phase rotation by a since it is
a classical value.3 In both cases, the number of ancilla
qubits required is zero.

III. SUB-QUADRATIC QUANTUM
MULTIPLICATION WITHOUT ANCILLAS

Our main result is that it is possible to implement
the phases of Eqs. 6 and 7 via a construction based on
the Toom-Cook algorithm, without ancilla qubits. As a
corollary, we also find an algorithm for the exact quan-
tum Fourier transform using a sub-quadratic number of
gates and no ancillas. Taken together, these results yield
ancilla-free algorithms for fast quantum integer multipli-
cation, whose explicit asymptotic scalings for are shown
in Table I.

3 In both cases, the quantum Fourier transforms (and their in-
verses) can be performed in O(n2) time with no ancilla qubits.
Thus, they do not affect the asymptotic complexity.

4

Algorithm Gate count O(nlogk(2k−1))

Eq. 8 O(n2)

k = 2 O(n1.58···)

k = 5 O(n1.37···)

k = 8 O(n1.30···)

(a) Classical-quantum multiplication

Algorithm Gate count O(nlogk(3k−1))

Eq. 9 O(n3)

k = 2 O(n2)

k = 3 O(n1.77···)

k = 6 O(n1.55···)

k = 9 O(n1.46···)

(b) Quantum-quantum multiplication

TABLE I: Asymptotic scaling of gate counts for
various selected k. Note that the constant factors
(which are not visible in big-O notation) become worse
as k increases, resulting in a tradeoff. The values of k
shown here are practical for input integers up to a few
thousand bits (see Sec. V).

Phase rotation algorithms—Consider a generaliza-
tion of the phase rotation of Eq. 6, which we denote the
PhaseProduct and define as follows:

PhaseProduct (ϕ) |x⟩ |z⟩ = exp(iϕxz) |x⟩ |z⟩ . (10)

Note that PhaseProduct(2πa/22n) = Ũc×q(a). Our goal is
to decompose the phase ϕxz into a sum of many phases,
that are each easier to implement. At first glance, the
Toom-Cook construction does not seem helpful: it in-
volves both recursion and a complicated linear algebra
expression (Eq. 5) that does not obviously decompose
into a single sum. Our key observation is that e⊺

2n/k

and A−1 are classically-known values, and thus a vec-

tor ϕ⃗ = ϕe⊺
2n/kA

−1 can be pre-computed. Using this in
Eq. 5 for the product xz yields

ϕxz =

q−1∑
ℓ=0

ϕℓ(Ax)ℓ(Az)ℓ, (11)

where ϕℓ are the elements of ϕ⃗. To implement this de-
composition, the only linear algebra that needs to be
done by the quantum circuit is the computation of (Ax)ℓ
and (Az)ℓ. As in the classical Toom-Cook algorithm,
by choosing wℓ appropriately, these values can be com-
puted using only a small number of additions. Further-
more, each term of the sum in Eq. 11 has the form of a
PhaseProduct itself, but applied to values of size roughly
n/k—thus, the decomposition can be applied recursively
(Fig. 1). Doing so yields a decomposition of ϕxz into
O(nlogk q) phase rotations that can each be implemented
in a constant number of gates, plus an asymptotically
negligible number of gates to compute (and uncompute)

each (Ax)ℓ and (Az)ℓ. Thus, the total number of gates
is O(nlogk q) matching the asymptotic complexity of the
classical Toom-Cook algorithm.
Naively, ancilla registers would be needed to store the

values (Ax)ℓ and (Az)ℓ. We use the fact that addition is
reversible to instead overwrite parts of the input registers
|x⟩ and |z⟩ with those values—for example, to compute
|x0 + x1⟩ we may simply sum x1 into the part of the |x⟩
register already containing x0.

4 Because (Ax)ℓ and (Az)ℓ
may take on slightly larger values than the registers they
overwrite, there will be some “overflow” carry bits. We
avoid having to store those in ancillas by devising a way
to directly implement the part of the PhaseProduct that
involves the overflow bits, without ever explicitly storing
their value in ancillas (see Appendix C). Thus, no ancilla
qubits are needed for any part of the algorithm.
Next, we discuss quantum-quantum multiplication,

which requires only a small modification. We define an
operation analogous to PhaseProduct, but which operates
on three registers instead of two:

PhaseTripleProduct (ϕ) |x⟩ |y⟩ |z⟩
= exp(iϕxyz) |x⟩ |y⟩ |z⟩ . (12)

In a less constrained setting, no special algorithm is re-
quired for the product of three integers—one would sim-
ply take the product of two and then multiply the third
by the result. However, we cannot make use of intermedi-
ate values like this in the phase; instead, the entire prod-
uct must be decomposed into a single sum. To this end,
we introduce a modified version of the Toom-Cook con-
struction: we define three polynomials x(b), y(b), z(b),
and compute their product p(b) = x(b)y(b)z(b) by evalu-
ating the polynomials at a set of points {wℓ}, finding
their pointwise product, and then interpolating. The
only difference from the conventional Toom-Cook con-
struction is that p(b) will now have degree 3(k−1) and is
uniquely determined by q = 3k−2 points. Aside from the
slightly larger value of q, the structure of the quantum
algorithm is the same. We may decompose ϕxyz as

ϕxyz =

q−1∑
ℓ=0

ϕℓ(Ax)ℓ(Ay)ℓ(Az)ℓ (13)

and recursively apply PhaseTripleProduct to each of the
terms on the right hand side. The larger value of q leads
to a slightly worse asymptotic scaling, but still outper-
forms O(n2) for k ≥ 3 [Table I]. Again, overwriting parts
of the input register to compute the linear combinations,
and performing the phase rotations corresponding to the
overflow bits directly, our algorithm requires no ancilla
qubits.

4 The idea of using the reversibility of addition to avoid allocating
extra ancilla registers was proposed in [11] in the context of the
Karatsuba algorithm, however the overflow bits were not con-
sidered in that work because O(n) ancilla qubits were already
otherwise being used.

5

Before moving on, we note two generalizations to
Uc×q(a) and Uq×q. Firstly, we observe that a classical-
quantum-quantum product Uc×q×q(a) may be imple-
mented via our quantum-quantum multiplication algo-
rithm with no extra cost, by simply scaling ϕ by a. Sec-
ondly, we note that the classical value a does not need
to be an integer—it can be an arbitrary real number. Of
course, for an exact answer, the product must be rep-
resentable by the output qubits, but even if it is not,
the final state will be a superposition of values near the
correct value (see Section 5.2.1 of [25]).

Fast exact quantum Fourier transform—Our al-
gorithm for PhaseProduct can be directly used to imple-
ment an exact quantum Fourier transform with the same
sub-quadratic gate count as classical-quantum multipli-
cation, and again no ancilla qubits. It is known that
the exact quantum Fourier transform with modulus 2n,
QFT2n , can be implemented via the following three steps
for any positive integer m < n [26]:

1. Apply QFT2m to the first m qubits

2. Apply PhaseProduct(2π/2n−m) to |x⟩ |y⟩, where x
is the value of the first m qubits and y is the value
of the remaining n−m qubits

3. Apply QFT2n−m to the final n−m qubits.

Setting m = 1 corresponds to the standard construction
for the QFT, using O(n2) gates. By setting m = n/2
and using recursion to perform steps 1 and 3, the asymp-
totic runtime can be improved. Prior to this work, the
proposed implementation for step 2 was to directly com-
pute the product xy into an ancilla register, via a classi-
cal fast multiplication algorithm that has been compiled
into a quantum circuit (at the cost of many ancillas).
Single-qubit phase rotations are then applied to the bits
of the product, after which it must be uncomputed. In-
stead, using our algorithm for PhaseProduct in step 2
yields an algorithm for the exact QFT whose asymptotic
runtime matches that of our implementation of Phase-
Product without any ancillas.

IV. SPACE-TIME TRADE-OFFS

In the previous sections, we have shown that sub-
quadratic quantum multiplication can be performed with
zero ancillas. However, we find that the use of just a
few ancillas is helpful for improving the practical per-
formance of our algorithm. As an example, explicitly
storing the overflow bits eliminates the extra work re-
quired to implement that portion of the phase rotation
(see Appendix C), and requires at most a few dozen extra
qubits for inputs of even several thousand bits. In what
follows, we discuss three other space-time trade-offs: (i)
improving the base case of the recursion, (ii) implement-
ing arbitrary phase rotations with low overhead, and (iii)
achieving sub-linear circuit depth.

Base case optimization—One instance where a few
extra ancillas can improve performance considerably is in
the base case of PhaseTripleProduct. In particular, when
the recursion has reached a sufficiently small size, de-
noted nbase, the phase rotation is performed directly. For
PhaseTripleProduct, implementing the base case via Eq. 9
requires n3base doubly-controlled phase gates. Instead, we
propose a “semi-digital” implementation which requires
only ∼ n2base gates and is structured as follows. To im-
plement the base-case phase rotation of ϕ′x′y′z′, start by
explicitly computing |x′y′⟩ into an ancilla register using
a standard multiplication circuit. Next, use 2n2base con-
trolled phase rotations (off of the ancilla register) to ap-
ply a phase of ϕ(x′y′)z′. Finally, uncompute the ancilla
register. This procedure requires at most 2nbase ancilla
qubits.5 We note that for PhaseProduct, the above op-
timization is less important, since its base case can be
implemented directly with Eq. 8 using only n2base singly
controlled phase rotations.
Implementing CRϕ gates with low overhead via

a phase gradient—In settings where only a discrete
gate set is native (such as in the logical qubits of quantum
error correcting codes), arbitrary phase rotations cannot
be directly implemented [27–29]. However, the overall
cost of synthesizing them can be dramatically reduced by
using a few ancilla qubits to store a so-called phase gra-

dient state: |Φ⟩ =
∑2m−1

ω=0 e−2πiω/2m |ω⟩ [30–33].6 Here,
m = ⌈log2 1/η⌉ where η is the desired precision and ω are
integers. To apply an arbitrary phase ϕ, one can simply
use a quantum addition circuit to increment the ω reg-
ister by a = ⌈2mϕ/2π⌋, where ⌈·⌋ denotes rounding to
the nearest integer. This yields a phase shift of ϕ, up to
precision η = 2−m:

2m−1∑
ω=0

e−2πiω/2m |ω + a⟩ = e2πia/2
m

|Φ⟩ ≈ eiϕ |Φ⟩ . (14)

Thus, the CRϕ gates of our algorithm can be imple-
mented via doubly-controlled addition circuits. Because
|Φ⟩ is an eigenstate of the addition circuit, it is not de-
stroyed by this process and can be reused an arbitrary
number of times.
As discussed earlier, the base case of both Phase-

Product and PhaseTripleProduct can be implemented via
∼ n2base CRϕ gates. A naive use of the phase gradient
state to implement these ∼ n2base CRϕ gates yields a total
cost of ∼ n2base log(1/η) Toffoli gates. Instead, by again
applying the semi-digital optimization introduced above,
one can convert the ∼ n2base CRϕ gates to ∼ n2base Tof-
foli gates and ∼ nbase Rϕ gates. Putting everything to-
gether, this technique implements the required rotations

5 We may even reduce the qubit count further by reusing a smaller
number of qubits to compute and uncompute small chunks of x′y′

in sequence.
6 For a pedagogical exposition of the use of phase gradients to
implement the quantum Fourier transform, see [31].

6

in PhaseProduct and PhaseTripleProduct using a total of
only ∼ (n2base + nbase log(1/η)) Toffoli gates (plus some
Clifford gates). Since one expects log2(1/η) < nbase, this
represents a considerable improvement in the overall cost.

Circuit depth—The recursive tree structure of our
algorithms lends itself well to parallelization, as multiple
branches of the tree can be performed simultaneously
(Fig. 1). Since each register is divided into k parts,
ostensibly it is possible to perform k recursive calls in
parallel without the need for ancillas. The challenge
is that the k linear combinations (Ax)ℓ must be simul-
taneously computed in-place. We do not know of any
generic way to compute many specific linear combina-
tions reversibly and in-place like this; instead we have
designed sequences of operations by hand that are opti-
mal or nearly optimal, which we record in Appendix F.
By parallelizing in this way (and using sub-linear-depth
circuits for the additions [21]), PhaseProduct can be im-
plemented in depth O(nlogk 2) and PhaseTripleProduct in
O(nlogk 3). These scalings are sublinear for k > 2 and
k > 3 respectively. This sublinear-depth construction
uses O(n) ancilla qubits because the sublinear depth ad-
ditions require O(n) ancillas. We also note that although
the PhaseProduct and PhaseTripleProduct can be imple-
mented in sublinear depth, surprisingly, for the full mul-
tiplication circuit we seem to be limited by the depth
of the quantum Fourier transforms; indeed, as far as we
are aware, achieving a sub-linear depth QFT requires a
super-linear number of ancilla qubits.

V. APPLICATIONS

We now explore the use of our fast quantum multipli-
cation algorithm as a subroutine in two specific applica-
tions: Shor’s algorithm for factoring, and a cryptographic
proof of quantum computational advantage. While we
leave the explicit construction and optimization of quan-
tum circuits to future work, here, we perform careful es-
timates of the resources required and find promising gate
counts along with a dramatic reduction in the number of
ancilla qubits (see Tables II and III).7 The constructions
we have presented so far implement multiplication over
all integers. Many applications, including both that we
discuss in this section, instead require multiplication over
the integers modulo some n-bit integer N .
Modular multiplication—It is straightforward to

use generic multiplication to implement modular multi-
plication [34], but doing so increases the size of the circuit
considerably and also requires the allocation of a 2n-bit
register to store the full product.8 Here, we propose to

7 The code used to estimate these gates counts is available online:
https://zenodo.org/doi/10.5281/zenodo.10871109

8 In some cases, Zalka’s coset representation allows approximate
quantummodular multiplication to be performed with essentially

utilize an alternate strategy that leverages the cyclic na-
ture of the quantum phase to perform the modulo oper-
ation automatically [6]. That is, we replace Eqs. 6 and 7
with

Ũ ′
c×q(a) |x⟩ |z⟩ = exp(2πiaxz/N) |x⟩ |z⟩ (15)

Ũ ′
q×q |x⟩ |y⟩ |z⟩ = exp(2πixyz/N) |x⟩ |y⟩ |z⟩ (16)

such that multiples of N in the product become multi-
ples of 2π in the phase. The only challenge with this
strategy is that performing (inverse) quantum Fourier
transforms modulo arbitrary N is too expensive. In-
stead, we propose to still perform the QFT modulo
2n, which will yield a state heavily weighted on the bi-
nary fraction that most closely approximates the rational
value ax/N (classical-quantum multiplication) or xy/N
(quantum-quantum multiplication); this binary fraction
then uniquely identifies the integer value. From quantum
phase estimation, it is known that an output register of
n+O(log(1/η)) qubits is sufficient to ensure that the final
state is within η of ax/N or xy/N , respectively [25].

A. Classical-quantum multiplication: Shor’s
algorithm

Perhaps the most obvious application of our result is
to Shor’s algorithm for integer factorization, which can
be implemented via O(n) controlled, in-place classical-
quantum modular multiplications. In particular, it is
possible to implement these multiplications to precision η
using a total of 2n+O(log(1/η)) qubits (see Appendix D
for details). Thus, asymptotically, our technique yields
a circuit for factoring with O(n2+ϵ) gates (for arbitrarily
small ϵ) and only 2n + O(log n) qubits. To our knowl-
edge, this is by far the best qubit count of any factoring
circuit with a sub-cubic number of gates.
In order to get a sense of circuit sizes in practice,

we perform a detailed analysis of the gate and qubit
counts for the out-of-place multiplication of 2048-bit in-
puts (which is used to construct the in-place multipli-
cations described above). Specifically, we build the re-
cursive tree (Fig. 1) and carefully tabulate the number
and type of gates in each layer. Via a careful choice of
the points wℓ, we are able to devise efficient addition
sequences that minimize the overhead of forming linear
combinations such as (Ax)ℓ. Moreover, at each layer,
we explicitly optimize over k, the number of pieces into
which we divide the inputs (see e.g. Sec. II A and Table I).
Interestingly, we find that it is sometimes optimal to use
different values of k even at the same level of recursion
(see Appendix E).

no overhead compared to standard multiplication [35]; fast mul-
tipliers like the one presented in this paper and the Karatsuba
circuits of [11, 36] seem to have a structure that is fundamentally
incompatible with Zalka’s trick.

https://zenodo.org/doi/10.5281/zenodo.10871109

7

Algorithm
Asymptotic Gate count (millions)

Ancillas
scaling Toffoli CRϕ H,X,CNOT

This work (standard QFT) O(n1.29)∗ 0.6 0.3 1.9 79

This work (phase gradient QFT) O(n1.29)∗ 0.9 0.1 3.2 80

Karatsuba [36] O(n1.58) 5.6 — 34 12730

Windowed [36] O(n2/ log2 n) 1.8 — 2.5 4106

Schoolbook [36] O(n2) 6.4 — 38 1∗∗

TABLE II: Circuit size estimates for one classical-quantum multiplication of 2048 bit numbers. Results
from this work in bold, previous works in non-bold. All estimates are in the “abstract circuit model” (no error
correction or routing costs included). Costs of previous works were computed using the Q# code from [36]. Note that
that code implements a regular multiplication rather than a multiplication modN ; using Zalka’s coset representation
of integers [35] the cost of modular multiplication is expected to be roughly the same as standard multiplication
(except in the case of Karatsuba, for which it does not seem possible to apply Zalka’s optimization and thus modular
multiplication may be considerably more expensive). Results for “this work” are reported for modular multiplication,
and include the quantum Fourier transforms before and after the PhaseProduct, performed to a precision of η = 10−12

per qubit. Note also that the “phase gradient QFT” estimates here do not perform the arbitrary phase rotations in
the base case of the PhaseProduct via phase gradient state, only the QFTs. ∗We vary the parameter k throughout
the recursion; this is the asymptotic scaling for k = 9 which is the value at the top level of recursion. ∗∗An ancilla
count of 2048 was reported in [36] and by the associated code; via qubit reuse it should be possible to reduce this to
1. We did not explore how qubit reuse could be applied to the other two constructions from [36].

Our results are depicted in Table II. For context, we
compare to recent work which implements quantum cir-
cuits for classical-quantum multiplication, including via
the sub-quadratic Karatsuba algorithm [36].9 As dis-
cussed in the previous section, we have used a small
number of extra ancillas to reduce the constant factors
on the gate count. Even with this optimization, the an-
cilla counts are orders of magnitude less than compara-
ble implementations! Moreover, the gate counts are very
promising, although impossible to compare directly to al-
ternate strategies without compiling to a common native
gate set. We note that the majority of the CRϕ gates oc-
cur not in the PhaseProduct but in the QFTs performed
on either side of it. As shown in Table II, implement-
ing these QFTs using a phase gradient state reduces the
total number of CRϕ gates considerably.

B. x2 mod N : cryptographic proofs of quantum
computational advantage

Recently, much excitement has centered on the
experimental realization of quantum computational
advantage—specifically, the performance of random sam-
pling tasks that are infeasible for even the world’s fastest
classical supercomputers [37–41]. So far, such exper-
iments have had the subtle characteristic that check-
ing the results classically is as hard as, if not harder
than, generating the solution. However, recent theoret-
ical work has explored the use of cryptography to de-

9 Note that the estimates from [36] are for non-modular arithmetic.

sign “test of quantum computational advantage” proto-
cols which are classically efficiently verifiable, yet remain
hard to spoof [4–6]. When instantiated with quantum-
secure cryptographic assumptions, this class of protocols
is also potentially useful for other cryptographic tasks
such as certifiable random number generation, remote
state preparation, and classical delegation of quantum
computations to untrusted devices [2–4, 7, 42]. Because
much of the underlying cryptography involves arithmetic,
our algorithm for multiplication is directly relevant to the
protocols’ implementation.
Here, we focus specifically on a recent proposal for a

test of quantum computational advantage in which the
quantum computer must evaluate the function f(x) =
x2 mod N on a superposition of inputs x [6]. This func-
tion, and the protocol it is used in, permit a number
of helpful optimizations. For our multiplication algo-
rithm, computing a square instead of a general quantum-
quantum multiplication is less costly because the lin-
ear combinations like (Ax)ℓ need only be computed on
two registers (x and z) instead of three. The protocol
also has a built-in measurement based uncomputation
scheme, which allows ancilla qubits to be discarded by
measuring them in the Hadamard basis and recording
the measurement results, avoiding the need for explicit
uncomputation of garbage bits [6].
We perform analogous estimates of the gate and qubit

counts for computing f(x) with 1024-bit x and N .10

We explore three constructions (“fast”, “balanced”, and

10 This is a problem size we expect to be infeasible for modern
supercomputers: the protocol’s hardness is based on the hardness

8

Algorithm
Asymptotic Gate count (millions) Total

scaling Toffoli CRϕ Measmt. H,X,CNOT qubits

This work, “fast” O(n1.49)∗ 0.6 0.7 0.4 0.8 2937

This work, “balanced” O(n1.49)∗ 0.7 0.7 0.4 1.1 2140

This work, “narrow” O(n1.55)∗ 1.9 1.4 1.0 2.7 1583

Prev. Fourier 1 [6] O(n3) — 539∗∗ — — 1025

Prev. Fourier 2 [6] O(n2 logn) — 35 — — 2062

“Digital” Karatsuba [6] O(n1.58) 1.6 — 1.1 1.6 6801

“Digital” Schoolbook [6] O(n2) 3.5 — 2.2 2.9 4097

TABLE III: Circuit size estimates for x2 mod N in the context of the proof of quantumness protocol, for
1024-bit N . Results from this work in bold, previous results in non-bold. All estimates are in the “abstract circuit
model” (no error correction or routing costs included). ∗We vary the parameter k throughout the recursion; these are
the asymptotic scalings for the values of k used at the top level of the recursions (k = 6 for “narrow” and k = 8 for
“balanced” and “fast”). ∗∗These gates are doubly, rather than singly, controlled Rϕ gates.

“narrow”), with varying trade-offs between qubit and
gate count, and our results are shown in Table III.
The “fast” version of our circuits aggressively uses the
measurement-based uncomputation scheme to reduce
gate counts at the expense of a moderate number of ancil-
las. The “balanced” version computes and uncomputes
the sums in-place, requiring a few more gates but many
fewer ancillas. Finally, the “narrow” version never stores
the entire output and instead reuses a register of n/2
qubits twice, further reducing qubit counts at the ex-
pense of a few more gates.

We observe that all three constructions reduce the to-
tal qubit counts substantially when compared to previous
“digital” implementations of the Karatsuba and School-
book algorithms. When compared with two other algo-
rithms optimized for qubit count (at the expense of gate
count), our algorithms achieve similarly low qubit counts
while reducing gate counts by orders of magnitude.

VI. OUTLOOK

The optimization of quantum circuits for performing
arithmetic on superpositions of inputs has been the sub-
ject of study for decades. In this work, we have intro-
duced a technique for performing quantum multiplication

in a sub-quadratic number of gates with zero ancillas.

Our results open the door to a number of intriguing
open questions. First, can factoring be performed in un-
der O(n3) gates with even fewer than the 2n+O(log n)
qubits reported here? One obvious path towards achiev-
ing this would be to devise a new way to implement
modular arithmetic in our algorithm without requiring
O(log n) extra qubits [35]. Another path is to apply our
multiplication algorithm to a space-efficient version of
Regev’s recent fast factoring algorithm [8, 15]; however,
it seems that further space optimization would be re-
quired. Second, we note that there are likely more clever
constructions for implementing the controlled arbitrary
phase rotations of the base case, which avoid the need
to compute and uncompute an intermediate ancilla reg-
ister. Finally, it is worth exploring whether our strat-
egy is compatible with even faster classical multiplication
algorithms, such as the O(n log n log log n) Schonhage-
Strassen algorithm [17, 44].

The authors would like acknowledge the insights of
and discussions with Tanuj Khattar, Craig Gidney, Isaac
Chuang, Seyoon Ragavan, Katherine van Kirk, and John
Blue. This work was supported by the NSF QLCI Award
OMA-2016245 and the NSF STAQ II program. N.Y.Y.
acknowledges support from a Simons Investigator Award.

[1] P. W. Shor. “Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quan-
tum Computer.” SIAM Journal on Computing, 26(5),
1484–1509, October 1997. ISSN 0097-5397. doi:
10.1137/S0097539795293172.

of factoring N , and the largest publicly-known factorization of
an integer without a special form is of length 829 bits [43].

[2] U. Mahadev. “Classical Verification of Quantum Com-
putations.” In “2018 IEEE 59th Annual Sympo-
sium on Foundations of Computer Science (FOCS),”
pp. 259–267. October 2018. ISSN 2575-8454. doi:
10.1109/FOCS.2018.00033.

[3] A. Gheorghiu and T. Vidick. “Computationally-Secure
and Composable Remote State Preparation.” In “2019
IEEE 60th Annual Symposium on Foundations of Com-
puter Science (FOCS),” pp. 1024–1033. November 2019.
ISSN 2575-8454. doi:10.1109/FOCS.2019.00066.

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1109/FOCS.2019.00066

9

[4] Z. Brakerski, P. Christiano, U. Mahadev, et al. “A Cryp-
tographic Test of Quantumness and Certifiable Random-
ness from a Single Quantum Device.” Journal of the
ACM (JACM), August 2021. doi:10.1145/3441309.

[5] Z. Brakerski, V. Koppula, U. Vazirani, and T. Vidick.
“Simpler Proofs of Quantumness.” In S. T. Flammia
(Editor), “15th Conference on the Theory of Quantum
Computation, Communication and Cryptography (TQC
2020),” volume 158 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 8:1–8:14. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
2020. ISBN 978-3-95977-146-7. ISSN 1868-8969. doi:
10.4230/LIPIcs.TQC.2020.8.

[6] G. D. Kahanamoku-Meyer, S. Choi, U. V. Vazirani, and
N. Y. Yao. “Classically-Verifiable Quantum Advantage
from a Computational Bell Test.” Nature Physics, 18(8),
918–924, August 2022. ISSN 1745-2473, 1745-2481. doi:
10.1038/s41567-022-01643-7.

[7] Z. Brakerski, A. Gheorghiu, G. D. Kahanamoku-Meyer,
et al. “Simple Tests of Quantumness Also Certify
Qubits.” In H. Handschuh and A. Lysyanskaya (Edi-
tors), “Advances in Cryptology – CRYPTO 2023,” Lec-
ture Notes in Computer Science, pp. 162–191. Springer
Nature Switzerland, Cham, 2023. ISBN 978-3-031-38554-
4. doi:10.1007/978-3-031-38554-4˙6.

[8] O. Regev. “An Efficient Quantum Factoring Algorithm.”,
August 2023. doi:10.48550/arXiv.2308.06572.

[9] A. Parent, M. Roetteler, and M. Mosca. “Improved re-
versible and quantum circuits for Karatsuba-based in-
teger multiplication.” In M. M. Wilde (Editor), “12th
Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2017),” vol-
ume 73 of Leibniz International Proceedings in In-
formatics (LIPIcs), pp. 7:1–7:15. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2018. ISBN 978-3-95977-034-7. ISSN 1868-8969. doi:
10.4230/LIPIcs.TQC.2017.7.

[10] S. Dutta, D. Bhattacharjee, and A. Chattopadhyay.
“Quantum circuits for Toom-Cook multiplication.” Phys-
ical Review A, 98(1), 012311, July 2018. doi:
10.1103/PhysRevA.98.012311.

[11] C. Gidney. “Asymptotically Efficient Quantum Karat-
suba Multiplication.” arXiv:1904.07356 [quant-ph], April
2019.

[12] H. T. Larasati, A. M. Awaludin, J. Ji, and H. Kim.
“Quantum Circuit Design of Toom 3-Way Multiplica-
tion.” Applied Sciences, 11(9), 3752, January 2021. ISSN
2076-3417. doi:10.3390/app11093752.

[13] L. Kowada, R. Portugal, and C. Figueiredo. “Reversible
Karatsuba’s Algorithm.” J. UCS, 12, 499–511, January
2006.

[14] C. Gidney and M. Eker̊a. “How to factor 2048 bit RSA
integers in 8 hours using 20 million noisy qubits.” Quan-
tum, 5, 433, April 2021. doi:10.22331/q-2021-04-15-433.

[15] S. Ragavan and V. Vaikuntanathan. “Space-Efficient and
Noise-Robust Quantum Factoring.”, February 2024. doi:
10.48550/arXiv.2310.00899.

[16] M. Bodrato. “Towards Optimal Toom-Cook Multipli-
cation for Univariate and Multivariate Polynomials in
Characteristic 2 and 0.” In C. Carlet and B. Sunar (Ed-
itors), “Arithmetic of Finite Fields,” Lecture Notes in
Computer Science, pp. 116–133. Springer, Berlin, Heidel-
berg, 2007. ISBN 978-3-540-73074-3. doi:10.1007/978-3-
540-73074-3˙10.

[17] D. E. Knuth. The Art of Computer Programming,
Volume II: Seminumerical Algorithms, 3rd Edition.
Addison-Wesley, 1998. ISBN 0-201-89684-2.

[18] V. Vedral, A. Barenco, and A. Ekert. “Quantum net-
works for elementary arithmetic operations.” Phys-
ical Review A, 54(1), 147–153, July 1996. doi:
10.1103/PhysRevA.54.147.

[19] C. Zalka. “Fast versions of Shor’s quantum factoring
algorithm.” arXiv:quant-ph/9806084, June 1998.

[20] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P.
Moulton. “A new quantum ripple-carry addition circuit.”
arXiv:quant-ph/0410184, October 2004.

[21] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore.
“A logarithmic-depth quantum carry-lookahead adder.”
Quantum Information & Computation, 6(4), 351–369,
July 2006. ISSN 1533-7146.

[22] T. Häner, M. Roetteler, and K. M. Svore. “Factoring
using 2n + 2 qubits with Toffoli based modular multipli-
cation.” Quantum Information & Computation, 17(7-8),
673–684, June 2017. ISSN 1533-7146.

[23] C. Gidney. “Factoring with n+2 clean qubits and n-
1 dirty qubits.” arXiv:1706.07884 [quant-ph], January
2018.

[24] T. G. Draper. “Addition on a Quantum Computer.”
arXiv:quant-ph/0008033, August 2000.

[25] M. A. Nielsen and I. L. Chuang. Quantum Computation
and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, USA, 10th anniversary ed
edition, 2011. ISBN 978-1-107-00217-3.

[26] R. Cleve and J. Watrous. “Fast parallel circuits for the
quantum Fourier transform.” In “Proceedings 41st An-
nual Symposium on Foundations of Computer Science,”
pp. 526–536. November 2000. ISSN 0272-5428. doi:
10.1109/SFCS.2000.892140.

[27] R. W. Heeres, P. Reinhold, N. Ofek, et al. “Implement-
ing a universal gate set on a logical qubit encoded in an
oscillator.” Nature Communications, 8(1), 94, July 2017.
ISSN 2041-1723. doi:10.1038/s41467-017-00045-1.

[28] R. Acharya, I. Aleiner, R. Allen, et al. “Suppressing
quantum errors by scaling a surface code logical qubit.”
Nature, 614(7949), 676–681, February 2023. ISSN 1476-
4687. doi:10.1038/s41586-022-05434-1.

[29] D. Bluvstein, H. Levine, G. Semeghini, et al. “A quantum
processor based on coherent transport of entangled atom
arrays.” Nature, 604(7906), 451–456, April 2022. ISSN
1476-4687. doi:10.1038/s41586-022-04592-6.

[30] A. Kitaev, A. Shen, and M. Vyalyi. Classical and
Quantum Computation, volume 47 of Graduate Studies
in Mathematics. American Mathematical Society, May
2002. ISBN 978-0-8218-3229-5 978-1-4704-0927-2 978-1-
4704-2011-6 978-1-4704-1800-7. doi:10.1090/gsm/047.

[31] C. Gidney. “Turning Gradients into Additions into
QFTs.” https://algassert.com/post/1620, July 2016.

[32] C. Gidney. “Halving the cost of quantum addition.”
Quantum, 2, 74, June 2018. doi:10.22331/q-2018-06-18-
74.

[33] Y. Nam, Y. Su, and D. Maslov. “Approximate quan-
tum Fourier transform with O (n log(n)) T gates.”
npj Quantum Information, 6(1), 1–6, March 2020. ISSN
2056-6387. doi:10.1038/s41534-020-0257-5.

[34] P. L. Montgomery. “Modular multiplication without
trial division.” Mathematics of Computation, 44(170),
519–521, 1985. ISSN 0025-5718, 1088-6842. doi:
10.1090/S0025-5718-1985-0777282-X.

https://doi.org/10.1145/3441309
https://doi.org/10.4230/LIPIcs.TQC.2020.8
https://doi.org/10.4230/LIPIcs.TQC.2020.8
https://doi.org/10.1038/s41567-022-01643-7
https://doi.org/10.1038/s41567-022-01643-7
https://doi.org/10.1007/978-3-031-38554-4_6
https://doi.org/10.48550/arXiv.2308.06572
https://doi.org/10.4230/LIPIcs.TQC.2017.7
https://doi.org/10.4230/LIPIcs.TQC.2017.7
https://doi.org/10.1103/PhysRevA.98.012311
https://doi.org/10.1103/PhysRevA.98.012311
https://doi.org/10.3390/app11093752
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.48550/arXiv.2310.00899
https://doi.org/10.48550/arXiv.2310.00899
https://doi.org/10.1007/978-3-540-73074-3_10
https://doi.org/10.1007/978-3-540-73074-3_10
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1109/SFCS.2000.892140
https://doi.org/10.1109/SFCS.2000.892140
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1090/gsm/047
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.1038/s41534-020-0257-5
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X

10

[35] C. Zalka. “Shor’s algorithm with fewer (pure) qubits.”
arXiv:quant-ph/0601097, January 2006.

[36] C. Gidney. “Windowed quantum arithmetic.”, May 2019.
doi:10.48550/arXiv.1905.07682.

[37] F. Arute, K. Arya, R. Babbush, et al. “Quantum
supremacy using a programmable superconducting pro-
cessor.” Nature, 574(7779), 505–510, October 2019. ISSN
1476-4687. doi:10.1038/s41586-019-1666-5.

[38] H.-S. Zhong, H. Wang, Y.-H. Deng, et al. “Quan-
tum computational advantage using photons.” Science,
370(6523), 1460–1463, December 2020. ISSN 0036-8075,
1095-9203. doi:10.1126/science.abe8770.

[39] Y. Wu, W.-S. Bao, S. Cao, et al. “Strong
Quantum Computational Advantage Using a Su-
perconducting Quantum Processor.” Physical Re-
view Letters, 127(18), 180501, October 2021. doi:
10.1103/PhysRevLett.127.180501.

[40] Q. Zhu, S. Cao, F. Chen, et al. “Quantum computa-
tional advantage via 60-qubit 24-cycle random circuit
sampling.” Science Bulletin, 67(3), 240–245, February
2022. ISSN 2095-9273. doi:10.1016/j.scib.2021.10.017.

[41] A. Morvan, B. Villalonga, X. Mi, et al. “Phase tran-
sition in Random Circuit Sampling.”, December 2023.
doi:10.48550/arXiv.2304.11119.

[42] A. Natarajan and T. Zhang. “Bounding the Quantum
Value of Compiled Nonlocal Games: From CHSH to
BQP Verification.” In “2023 IEEE 64th Annual Sym-
posium on Foundations of Computer Science (FOCS),”
pp. 1342–1348. November 2023. ISSN 2575-8454. doi:
10.1109/FOCS57990.2023.00081.

[43] F. Boudot, P. Gaudry, A. Guillevic, et al. “The
State of the Art in Integer Factoring and Breaking
Public-Key Cryptography.” IEEE Security & Privacy,
20(2), 80–86, March 2022. ISSN 1558-4046. doi:
10.1109/MSEC.2022.3141918.

[44] A. Schönhage and V. Strassen. “Schnelle Multiplikation
großer Zahlen.” Computing, 7(3), 281–292, September
1971. ISSN 1436-5057. doi:10.1007/BF02242355.

[45] A. Barenco, C. H. Bennett, R. Cleve, et al. “El-
ementary gates for quantum computation.” Physical
Review A, 52(5), 3457–3467, November 1995. doi:
10.1103/PhysRevA.52.3457.

[46] S. Beauregard. “Circuit for Shor’s algorithm using 2n+3
qubits.” Quantum Information & Computation, 3(2),
175–185, March 2003. ISSN 1533-7146.

https://doi.org/10.48550/arXiv.1905.07682
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1016/j.scib.2021.10.017
https://doi.org/10.48550/arXiv.2304.11119
https://doi.org/10.1109/FOCS57990.2023.00081
https://doi.org/10.1109/FOCS57990.2023.00081
https://doi.org/10.1109/MSEC.2022.3141918
https://doi.org/10.1109/MSEC.2022.3141918
https://doi.org/10.1007/BF02242355
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457

11

Appendix A: The Karatsuba algorithm in the
notation of Section IIA

Here for pedagogical purposes we briefly describe the
Karatsuba algorithm, of which Toom-Cook is a general-
ization, and show how it can be expressed in the linear
algebra notation introduced in Section IIA.

We begin by introducing the Karatsuba algorithm. It
is an instance of Toom-Cook with k = 2, meaning that
the input values are split into two pieces, corresponding
to the low and high halves of the bits: x = 2n/2x1 +
x0. A product xy of values expressed in this way can be
expanded to

xy = 2nx1y1 + 2n/2(x1y0 + x0y1) + x0y0 (A1)

which replaces the product of n-bit values with four prod-
ucts of n/2-bit values. The key to the Karatsuba algo-
rithm is to observe that the quantity in parentheses can
be written as

x1y0 + x0y1 = (x0 + x1)(y0 + y1)− x1y1 − x0y0 (A2)

and since the second two products there can be reused
from the other terms of Eq. A1, the entire product can be
computed using only three products of size n/2 instead
of four (plus a few additions). By recursively applying
this technique, one may compute the product xy in only
O(nlog2 3) = O(n1.58···) operations.
In the notation of Section IIA, Karatsuba corresponds

to setting k = 2 and using the evaluation points wℓ ∈
{0, 1,∞}. For the sake of gaining intuition, it may be
helpful for the reader to work through Eq. 5 using these
values—the result should be the Karatsuba decomposi-
tion of the product xy:

2nx1y1 + 2n/2 [(x0 + x1)(y0 + y1)− x1y1 − x0y0] + x0y0
(A3)

Note that arriving at the correct expression is easiest if
one considers the point ∞ as the unit fraction 1/0; see
Appendix B.

Appendix B: Use of fractional wℓ

In both classical Toom-Cook and in our algorithms,
it is common to take some of the evaluation points wℓ

to be unit fractions 1/c for some c (frequently one such
point is ∞, which we may consider as a unit fraction
with c = 0). In this section we describe how careful
maneuvering allows us to maintain a Vandermode matrix
A of integer values, even when using such unit fractional
wℓ.
Consider a length-q vector e1/c (which is row ℓ of the

matrix A for some ℓ):

e1/c = (1/cq−1, 1/cq−2, · · · , 1/c2, 1/c, 1) (B1)

Then the ℓth element of x̃ = Ax is e1/c · x, where the
length-k vector x has been padded to length q by insert-
ing zero elements on the left.

The Toom-Cook algorithm is built on the fact that
the ℓth element of the product vector p̃ is the pointwise
product of the ℓth elements of x̃ and ỹ, that is,

e1/c · p = (e1/c · x)(e1/c · y) (B2)

Now, the key is to scale both sides of the expression by
c2k−2 and then distribute that constant across the e vec-
tors:

c2k−2e1/c · p = (ck−1e1/c · x)(ck−1e1/c · y) (B3)

Now we define e′′1/c = c2k−2e1/c and (noting that q =

2k − 1) see that is has the form

e′′1/c = (1, c, c2, · · · , cq−2, cq−1) (B4)

all of which are integers. Similarly (dropping the ele-
ments that are multiplied by padded zeros of x) we have

e′1/c = (1, c, c2, · · · , ck−2, ck−1) (B5)

In summary, we may perform Toom-Cook using
slightly adjusted matrices A′ and A′′ which have only
integer elements, as follows. Let the first m evaluation
points wℓ be integers, and the remaining q−m points be
unit fractions 1/cℓ. Then we construct the q × k matrix

A′ =

wk−1
0 wk−2

0 · · · w0 1
...

...
...

...
...

wk−1
m−1 wk−2

m−1 · · · wm−1 1

1 cm · · · ck−2
m ck−1

m

...
...

...
...

...

1 cq−1 · · · ck−2
q−1 ck−1

q−1

(B6)

and the q × q matrix

A′′ =

wq−1
0 wq−2

0 · · · w0 1
...

...
...

...
...

wq−1
m−1 wq−2

m−1 · · · wm−1 1

1 cm · · · cq−2
m cq−1

m

...
...

...
...

...

1 cq−1 · · · cq−2
q−1 cq−1

q−1

. (B7)

Finally, we use them in a slightly modified version of
Eq. 5:

xy = e⊺
2n/k(A

′′)−1(A′x ◦A′y). (B8)

Now for a couple of remarks. In the previous para-
graphs we have discussed only the standard Toom-Cook
decomposition, but this strategy applies equally well to
our modified Toom-Cook decomposition of xyz. In that
case, the appropriate rows of A′ get scaled by ck−1

ℓ , and
because there are three factors, this matches a factor of

12

cq−1 = c3(k−1) in the corresponding rows of the A′′ ma-
trix.

Finally, we note that while A′′ has integer entries, that
does not imply that (A′′)−1 will. Indeed, it has been
shown that no choice of wℓ can avoid the need for division
if k > 2 [16]. For our algorithm this is not a problem at
all—the entries of (A′′)−1 get wrapped up into the ϕℓ in
classical precomputation, and thus the fact that they are
not always integers does not affect the quantum circuit.
This is actually a big challenge for fast multiplication
circuits other than ours, however, because it is necessary
to perform division during the interpolation step, which
can be expensive. This issue was encountered by a recent
work which explored a quantum implementation of k = 3
Toom-Cook, and found that the division operation led to
a large Toffoli count [12].

Appendix C: Overflow bit phase application

As described in the main text, we avoid allocating ex-
tra registers to store the linear combinations (Ax)ℓ =
x⊺ewℓ

by performing addition in-place, reusing existing
qubits to store the summed values.11 However, because
the value (Ax)ℓ may be a few bits larger than the portion
of the input it is overwriting, without additional tricks
this technique would yield a multiplication algorithm re-
quiring O(1) ancillas at each level of the recursive tree.

Here we describe a construction by which these extra an-
cillas can be avoided.

1. Simple case

For pedagogical purposes, let us first consider a sim-
ple example: the implementation of a PhaseProduct cor-
responding to a phase rotation of ϕ(x0 + x1)(z0 + z1),
where ϕ is a classically-known phase factor, and we have
as input the four registers |x0⟩ |x1⟩ |z0⟩ |z1⟩. For simplic-
ity in this first example, we will assume that all four
registers are of the same length, which we can denote as
m bits. The straightforward method for implementing
this phase rotation is to use a quantum adder to map
|x0⟩ |x1⟩ → |x0⟩ |x0 + x1⟩ (and similarly on the z reg-
isters), and then use a recursive call to our PhaseProd-
uct algorithm on the registers now holding |x0 + x1⟩ and
|z0 + z1⟩. The issue is that the value x0 + x1 (resp. z)
takes one more bit to represent than x1, so naively we
need to use an ancilla qubit to hold the “carry bit” pro-
duced at the top of the adder. This can be avoided as
follows.
Observe that we can split up the value x0+x1 into the

carry bit which we denote xc and the remaining m bits
of the sum, such that x0+x1 = 2mxc+(x0+x1 mod 2m)
(and same for the z values). Then with some rearrange-
ment the product can be written as follows (the reason
for the precise form of which will become clear promptly):

ϕ(x0 + x1)(z0 + z1) = ϕ2mxcz0 + ϕ2mxcz1 + ϕ2mzc(x0 + x1 mod 2m) + ϕ(x0 + x1 mod 2m)(z0 + z1 mod 2m) (C1)

Thus we can implement our desired phase rotation by
implementing separate rotations for each of the terms on
the right hand side of Eq. C1.

Cuccaro’s quantum adder [20] has a variant that takes
two length m quantum integers, plus an “incoming carry
bit” (of the same value as the least significant bits of the
input), and computes the sum of the integers plus the in-
coming carry bit, writing the result into one of the input
registers. It only requires one extra qubit, which is the
qubit in which the outgoing carry (e.g. xc) is ultimately
stored. Conveniently, the value of that outgoing carry is
set simply with a CNOT from one of the other qubits,
which temporarily holds the value xc. This means that if
we pause the Cuccaro adder mid-execution, we can forego
the extra qubit needed to store the carry, as well as the
CNOT setting it, instead using the value directly. Cru-
cially, we have designed the first three terms of Eq. C1
such that they consist of the product of a single bit value
by an m bit value—and thus their phase rotation can be

11 See footnote 4

implemented directly via m CRϕ gates, which is asymp-
totically negligible compared to the superlinear cost of
the recursive call that is used to complete the last term
in the sum.

But what about the “incoming carry bit” into the Cuc-
caro adder? We don’t have any incoming carry value
here, but that qubit is crucial to the adder, so we cannot
simply get rid of it (normally when there is no incom-
ing carry, the Cuccaro adder uses an ancilla initialized
to zero as the incoming carry). Instead we replace this
incoming carry with a dirty qubit—a qubit of unknown
state, which we guarantee will be returned to its initial
state after use. Dirty qubits are useful because they can
be borrowed from idle parts of the computation, avoiding
the allocation of an ancilla [22, 23, 45]. By linearity, if
we can show that the correct operation is implemented
with the dirty qubit in the |0⟩ basis state and in the |1⟩
basis state, the correct operation will be implemented
using a dirty qubit in any state (even some complicated
entangled one). The Cuccaro construction automatically
returns the incoming carry to its original state, so we sim-
ply need to ensure that we can apply the correct phase
rotation. The case in which the dirty qubit is in the

13

FIG. 2: A circuit for implementing a phase rotation by ϕ(x0+x1)(z0+z1), using only one dirty ancilla that is borrowed
from another part of the computation. As discussed in the main text, this dirty ancilla can be borrowed from the
inputs themselves, yielding an implementation that requires zero ancilla qubits, dirty or clean. Here, the unitaries
with rounded corners represent phase rotations of the labeled factor times the value of the inputs on which the unitary
is being applied. The operations labeled “Cuccaro 1/2” and “Cuccaro 2/2” represent the first and second halves of a
Cuccaro adder, respectively. The unitaries controlled off of the top bit of a many-qubit register are controlled off of
the qubit temporarily holding the value of the carry bit of the Cuccaro adder in progress. The operation “Cuccaro†”
is the Cuccaro adder performed backwards, uncomputing the sums.

|0⟩ basis state is trivial—if the incoming carry is zero,
the sum is unchanged. The tricky case is when the dirty
qubit is in the |1⟩ state, because the resulting sum will be
one too large and then the phase rotation based on the
resulting register will be slightly too large. We propose a
simple fix: before starting the adder, perform a negative
phase rotation controlled off of the dirty qubit, that ex-
actly cancels the extra phase that will be applied due to
the increase in the sum. This way, the total accumulated
phase will be exactly the product that was originally de-
sired. We show an explicit circuit for the application of
the entire phase ϕ(x0+x1)(z0+ z1) using only one, dirty
ancilla in Figure 2.

Finally, we show how to avoid the need for even an
external dirty ancilla qubit, making the multiplier en-
tirely self-contained with zero ancillas. The idea is sim-
ple: stop the sums one bit earlier, not including the most
significant bit of the inputs, and simply use one of these
now-untouched bits as the dirty qubit input to the adder.
Doing so will remove their value from the sum, but as was
done with the carry bit, we can easily perform the por-
tion of the PhaseProduct corresponding to those topmost
bits by directly implementing the extra phase rotation
via m CRϕ gates. In fact, we are already performing m
CRϕ gates controlled off of the dirty ancilla to account
for the extra phase it will add into the sum, so we can
simply adjust those phase rotations to include the qubit’s
value when taken as the top bit of the inputs as well.

2. Full case

There are a few ways we must generalize the above to
cover all situations that may arise in our algorithm: 1)
the inputs may not be exactly the same length, for ex-
ample if n is not perfectly divisible by k; 2) there may be
several terms in the sum, rather than simply two; 3) the
terms of the sum may be multiplied by a constant; and 4)
the PhaseTripleProduct has three factors instead of just
two. It is easy to see how to handle the first three of these
generalizations, by simply allowing more of the product
to be done directly via CRϕ gates. As long as we ensure
that the number of bits for which we perform the Phase-
Product directly is sufficiently small, it will not affect the
asymptotic scaling. As shown in Figure 2, we simply take
the “overlapping” bits of the input and apply the algo-
rithm from the previous sub-section to implement their
PhaseProduct, directly using O(n) CRϕ gates to imple-
ment the phase rotation proportional to the other bits
that do not overlap (a number of bits which is constant
in n). We may use one of the non-overlapping bits as
the dirty qubit input into the Cuccaro adder. For sums
with multiple terms, we can simply apply the Cuccaro
adder several times, making sure to rotate by an amount
proportional to the carry bit of each sum when we have
it available. By choosing the wℓ to be powers of 2 we en-
sure that any coefficients multiplying terms in our sums
are also powers of two, and thus can be implemented as

14

FIG. 3: A diagram of the bits of two values, here a 12-
bit value x0 and a 10-bit value x1 being summed to form
the linear combination 2x0 + x1. The setting is the im-
plementation of a phase rotation proportional to, say,
(2x0 + x1)(2z0 + z1) (z registers not shown). The purple
bits are the “main” bits, which are summed together us-
ing Cuccaro’s adder, with the top bit of x0 (marked by
diagonal hashes) being used as the “incoming carry” into
Cuccaro’s adder. Separately, a phase rotation is applied
controlled off of that top bit of x0, but adjusted for the
fact that its value was carried into the sum of the main
bits. The polka-dotted bits represent other extra “non-
overlapping” bits whose phase rotations are implemented
directly. Crucially, the number of extra bits is constant
in n, so the cost of performing the portion of the Phase-
Product involving them is asymptotically negligible.

logical bit shifts in the inputs to the adders.
The PhaseTripleProduct can be implemented without

ancillas via essentially the same strategy, with one small
hiccup: because there are three inputs, the portion of
PhaseTripleProduct involving a constant number of qubits
of one of the inputs requires O(1) · O(n) · O(n) = O(n2)
gates to implement via the schoolbook algorithm of
Eq. 9, which is too many to maintain the larger algo-
rithm’s asymptotic scaling. Fortunately there is an easy
workaround: a PhaseTripleProduct in which one of the
inputs is a single qubit is equivalent to a PhaseProduct
controlled off of that single bit. So, we may simply imple-
ment that portion of the operation via a constant number
of controlled fast PhaseProduct operations, making sure
to set k in such a way that the asymptotic scaling of
each PhaseProduct is better than the asymptotic scaling
of the overall PhaseTripleProduct algorithm. Thus the
contribution of these controlled PhaseProduct operations
is asymptotically negligible and the overall asymptotic
scaling of the fast PhaseTripleProduct is maintained.

Appendix D: In-place modular multiplication

The core of Shor’s algorithm for factoring an integer of
n bits can be implemented via a series of in-place mul-
tiplications by classical constants, controlled off of a sin-
gle qubit (see the “one controlling qubit” trick, Sec. 2.4
of [46]). Written out, a single one of these multiplications
consists of the in-place operation

|x⟩ → |cx mod N⟩ (D1)

for a classical integer c. Here we apply the modular mul-
tiplication introduced in Sec. V to implement this oper-
ation to within an error η using 2n + O(log 1/η) qubits
(while maintaining the same subquadratic gate count of
the multiplication algorithm).

To do so, we make the following observation: our
classical-quantum multiplication algorithm does not re-
quire that the classical value c be an integer. It can be
a floating-point number, which we may classically com-
pute to whatever arbitrary precision we desire before us-
ing it to compute the values of the phase rotations in our
multiplication algorithm. We use this fact to perform
roughly the following trick: compute the fractional value
w = (cx mod N)/N up to some precision m, and then
multiply by N to convert the fractional value w into an
integer. The accuracy of this operation will depend on
the precision to which we compute w; however, we will
find that we only need O(log(1/η)) extra bits to achieve
an error of less than η.

Algorithm 1 applies this idea to approximately imple-
ment the unitary of Eq. D1. It is clear by inspection that
it uses 2n+O(log 1/η) total qubits and O(nlogk q) gates.
In the following theorem we prove the error bound.

Algorithm 1: In-place classical-quantum
modular multiplication

Input: Quantum state |x⟩ (extended to
superpositions by linearity)
Classical constant c
Error level η

Output: Quantum state |cx mod N⟩ (up to error η)

Let m = n+ ⌈2 log(2 + 1/2η)⌉
Allocate a register of m ancillas initialized to |0⟩

1 Compute |x⟩ |0⟩ → |x⟩ |w⟩ for w = ((c− 1)x
mod N)/N via classical-quantum multiplication

2 Adding one ancilla to the top of the first register,
compute |x⟩ |w⟩ → |x+Nw⟩ |w⟩. State is now
(approximately) |cx mod N⟩ |w⟩ or
|(cx mod N) +N⟩ |w⟩.

3 Using an ancilla qubit, compute whether the left
register is greater than N ; subtract N controlled by
the ancilla. State is now |cx mod N⟩ |w⟩

4 Uncompute the ancilla qubit by computing whether
cx mod N < Nw via a comparison operator

5 Subtract the value w = ((1− c−1)(cx) mod N)/N from

the second register, where c−1 is the multiplicative
inverse of c (mod N). State is now |cx mod N⟩ |0⟩.

Theorem 1. The final state |ψ⟩ produced by Algorithm 1
has |1− ⟨ψ|cx mod N⟩ | < O(η), for arbitrary inputs |x⟩
and c.

Proof. We enumerate each step of the algorithm, at var-
ious points replacing the state at that step with an-
other state that is η-close (measured via inner product
as above). By the triangle inequality and the fact that
unitary transformations preserve inner products, we thus
prove the theorem.

We begin with step 1. Applying Hadamard gates to
the second register to generate |x⟩

∑
z |z⟩, then a phase

rotation of ϕ = 2πwz and then an inverse QFT modulo

15

2m yields a state which in full generality can be written

|x⟩
∑
w̃

αw̃ |w̃⟩ (D2)

where the sum is over all m-bit binary fractions w̃. Let S
be the set of m-bit binary fractions for which |w − w̃| <
η/2n. The key to Algorithm 1 is that from quantum
phase estimation (see Sec. 5.2.1 of [25]), we have that∑

w̃∈S αw̃ |w̃⟩ ≈
∑

w̃ αw̃ |w̃⟩; formally, the inner product
of the actual state and the truncated state in which only
terms with |w − w̃| < η/2n are kept is within O(η) of 1.
Therefore, we may consider for the analysis of step 2 the
truncated state for which |w− w̃| < η/2n for all terms in
the superposition.

Applying a quantum Fourier transform now to
the register containing |x⟩, and then applying
PhaseProduct(2π22n−m/N) to the two registers (where
the second register’s value is now considered as an
integer) yields the state∑

z

e2πi(x+((c−1)x mod N)z/2n+1

|z⟩
∑
w̃

αw̃ |w̃⟩ (D3)

up to a phase error of at most O(η). Replacing that
state with the state having precisely the correct phase,
and applying an inverse quantum Fourier transform to
the first register yields

|x+ ((c− 1)x mod N)⟩
∑
w̃

αw̃ |w̃⟩ . (D4)

The conditional subtraction of steps 3 and 4 is exact,
yielding the state

|cx mod N)⟩
∑
w̃

αw̃ |w̃⟩ . (D5)

Now performing step 5 by precisely inverting the oper-
ations of step 1 that produced the state of the second
register yields the all zero state on the second register,
completing the computation.

For Shor’s algorithm, this operation must be repeated
O(n) times. Thus for each product we set η = O(1/n) so
that the error of the overall algorithm does not grow with
n. This yields a total qubit count of 2n + O(log n/η′),
where η′ is the error over the entire algorithm.

Appendix E: Estimation of gate and qubit counts

In this section, we describe the details of the resource
estimates presented in Tables II and III of the main text.
The resource counts for previous works were computed
using code presented with those works; in this section
we describe the estimation for the algorithms presented
in this work. The code used to perform these estimates
is available online: https://zenodo.org/doi/10.5281/
zenodo.10871109.

1. Recursive structure and choice of k

One of the most critical choices for efficiency is the
choice of k, the number of pieces into which we divide the
values being multiplied. Because increasing k decreases
the asymptotic cost but increases costant factors, the ob-
vious strategy is to find some “cutoff” value for each k,
and use the largest k for which the desired product is
above the cutoff. However, the situation is complicated
by the fact that in practice, the cost for a particular
k does not increase smoothly with n—there is a range
of “overlap” where neighboring k alternately jump past
each other in efficiency. (This is due to the fact that k in
general will not evenly divide n). It is complicated even
further by consideration that the linear combinations like
(Ax)ℓ may be slightly different bit lengths for different
ℓ, so it may be optimal to use different k for different ℓ,
even at the same level of recursion.
Because of all of those complications, for each recur-

sive call we simply exhaustively search through all k, and
choose the construction that yields the lowest cost (for
some cost function that we may define; we use the num-
ber of CRϕ gates as our cost function). In practice,
we can perform this exhaustive search in a reasonable
amount of time because the tree depth is logarithmic in
n, and we memoize the optimal result for each value of
n encountered in the recursion.

2. Evaluation points wℓ

We choose the q evaluation points wℓ as follows. We
always include 0 and ∞ because both can be evaluated
directly from the inputs, without the need for any lin-
ear combinations. Next we include −1 and 1 if needed,
prioritizing −1 because the absolute value of the result-
ing linear combination is bounded to a smaller value.
For q > 4, we then use the points −1/ω, 1/ω,−ω, ω in
that order, for ω powers of 2. We use powers of 2 be-
cause then the resulting coefficients are powers of 2 and
thus values can be scaled by them via a logical bit shift.
We prioritize unit fractions over whole numbers because
it helps reduce the size of the linear combinations: the
most-significant chunk (e.g. xk−1) will in general be a
few bits longer than all the rest, because n will in gen-
eral not be evenly divisble by k. Thus we would like to
scale it by the smallest coefficient, which occurs with unit
fraction wℓ (see Appendix B). We prioritize negative co-
efficients for the same reason as above with −1, that it
helps reduce the absolute value of the linear combination
which reduces the ancilla counts.

For pairs of wℓ that are the negative of each other, ev-
ery negative term is summed together first, for a value
we may denote x′1. Then x−wℓ

= xwℓ
− 2x′1, requiring a

single addition/subtraction. Using this strategy, comput-
ing and uncomputing both xwℓ

for a pair ±wℓ requires a
total of 2k−1 additions, while computing and uncomput-
ing a single unpaired wℓ requires 2k − 2 additions. This

https://zenodo.org/doi/10.5281/zenodo.10871109
https://zenodo.org/doi/10.5281/zenodo.10871109

16

strategy requires a few extra ancilla qubits, to hold the
overflow of both the intermediate sum register and the
register holding the final sum result.

In all cases, the register we choose to overwrite with the
linear combinations is the most significant (e.g. xk−1),
because it may be a few bits longer than the others and
thus require fewer ancilla qubits to store the value.

Next, we describe certain optimizations that are spe-
cific to the individual applications described in the main
text.

3. 2048-bit classical-quantum multiplication

For non-modular arithmetic, the output register for
this operation is twice as long as the input. Thus, in that
case we implement the whole PhaseProduct as two simul-
taneous PhaseProduct operations, corresponding to the
phase rotations for the low and high halves of the output
z register respectively. We perform both simultaneously
so that we only have to compute the linear combinations
on the input x register once rather than twice. This uses
a small amount more ancillas because the same ancillas
cannot be reused for each of the two halves of the output
register; we consider this tradeoff worth the reduction in
gate counts.

The base case we use in this construction is very sim-
ple: we simply apply n2base CRϕ gates, as in Eq. 8. As
discussed in Sec. V of the main text, it is possible to re-
duce the number of CRϕ gates further by performing the
base case product explicitly into an ancilla register and
applying Rϕ gates on the result.

4. x2 mod N proof of quantumness

A powerful feature of the proof of quantumness proto-
col is that “garbage bits” can be discarded for free via
measurement [6]. We use this fact to reduce gate counts
at the expense of a moderate number of ancillas, by stor-
ing the (Ax)i etc. in separate ancilla registers and then
measuring them away instead of using adder circuits to
uncompute them. This corresponds to the “fast” version
of our circuits, listed in Table III. The “balanced” version
computes and uncomputes the sums in-place, requiring a
few more gates but many fewer ancillas.

The “narrow” version uses the decomposition x2z =
z0(x

2
0 + x0x1 + x21) + z1(x

2
0 + x0x1 + x21) to reduce qubit

counts quite a bit further, at the expense of some more
gates. In particular, it first computes the low half of the

bits of the output x2 mod N via the first term above (that
proportional to z0), performing half of the final QFT and
measuring the result. Then, the same n/2 qubits can
be reused to compute the high half of the output bits
and the remaining half of the final QFT. This yields a
total qubit count of roughly only 3n/2 qubits because
all of the bits of the n-bit long output never need to be
stored at the same time. For the products themselves,
we compute the additions in-place as in the “balanced”
construction to keep the qubit counts low. (It is possible
to take decompositions like this further to reduce qubit
counts even more, but in preliminary exploration we find
that the increase in gate counts is not worth the trade
off).
For this construction, we use a more involved base

case than in the classical-quantum case. Notationally,
denote the phase rotation we desire to implement in the
base case as ϕ′x′2z′. Broadly, as described in Sec. V of
the main text, the idea is to replace the n3base CCRϕ

gates that would be required to implement the school-
book PhaseTripleProduct of Eq. 9 with 2n2base CRϕ gates,
by explicitly computing the product x′2 and then per-
forming CRϕ gates between the bits of that product and
the bits of z′. However, because of the ability to freely
uncompute garbage bits, we can avoid having to allocate
2nbase qubits to store x′2 in its entirety. Instead, we de-
compose x′2 =

∑
i 2

i
∑

j x
′
jx

′
i−j—that is, we group the

bit products by the power of 2 they are scaled by. Fol-
lowing this grouping, we first compute the sum for i = 0,
apply the CRϕ gates that involve the least significant bit
of the result, and then immediately measure it away to
uncompute it. Next we compute i = 1, summing into
any existing carry bits from i = 0, and again perform
controlled rotations off of the least significant bit before
measuring it away. We continue this process for all i.
Throughout this process, we will need to store at most
log2 nbase carry bits, a substantial improvement over the
2nbase ancillas that would be naively required.
Finally, we note that in the quantum-quantum case,

the k = 2 algorithm scales as O(n2) just like the base
case, but is observed to have worse constants. Therefore
we always move directly to the base case from k = 3,
never using the k = 2 construction.

Appendix F: Parallel sequences

In Tables IV, V, and VI, we provide examples of se-
quences of operations that allow for the parallel com-
putation of branches of the recursive tree, reducing the
overall depth of the circuit.

17

Operation Register 0 Register 1 Register 2

(start) |x0⟩ |x1⟩ |x2⟩
Add reg. 2 to reg. 1 |x0⟩ |x1 + x2⟩ |x2⟩
Add reg. 0 to reg. 1 |x0⟩ |x0 + x1 + x2⟩ |x2⟩

Product on all registers |x0⟩ |x0 + x1 + x2⟩ |x2⟩
Invert sign of reg. 1 |x0⟩ |−x0 − x1 − x2⟩ |x2⟩
Add reg. 0 to reg. 1 |x0⟩ |−x1 − x2⟩ |x2⟩

Add 2× reg. 2 to reg. 1 |x0⟩ |−x1 + x2⟩ |x2⟩
Add reg. 1 to reg. 0 |x0 − x1 + x2⟩ |−x1 + x2⟩ |x2⟩
Add reg. 0 to reg. 1 |x0 − x1 + x2⟩ |x0 − 2x1 + 2x2⟩ |x2⟩

Add 2× reg. 2 to reg. 1 |x0 − x1 + x2⟩ |x0 − 2x1 + 4x2⟩ |x2⟩
Product on regs. 1 and 0 |x0 − x1 + x2⟩ |x0 − 2x1 + 4x2⟩ |x2⟩

Invert sign of reg. 1 |x0 − x1 + x2⟩ |−x0 + 2x1 − 4x2⟩ |x2⟩
Add 2× reg. 2 to reg. 1 |x0 − x1 + x2⟩ |−x0 + 2x1 − 2x2⟩ |x2⟩
Add reg. 1 to 2× reg. 0 |x0⟩ |−x0 + 2x1 − 2x2⟩ |x2⟩
Add reg. 0 to reg. 1 |x0⟩ |2x1 − 2x2⟩ |x2⟩

Add 2× reg. 2 to reg. 1 |x0⟩ |2x1⟩ |x2⟩
Divide reg. 1 by two |x0⟩ |x1⟩ |x2⟩

TABLE IV: k = 3 low-depth classical-quantum multiplication algorithm. This table lists the quantum oper-
ations performed to implement the unitary Ũq×c(a). The registers are divided into subregisters as |x⟩ = |x0⟩ |x1⟩ |x2⟩
and |z⟩ = |z0⟩ |z1⟩ |z2⟩ (using little-endian notation, so x0 is the least-significant subregister). In this table only the
state of the x sub-registers are shown; the same operations are applied to the z register. “Product on registers” means
to apply a phase corresponding to the product of the respective x and z registers, usually by recursively calling the
same algorithm again. Registers containing values upon which the algorithm is applied recursively are highlighted in
bold. The linear combinations used here for the products correspond to the evaluation points wℓ ∈ {0,∞,±1,−2}.

18

Operation Register 0 Register 1 Register 2

(start) |x0⟩ |x1⟩ |x2⟩
Add reg. 0 to reg. 1 |x0⟩ |x0 + x1⟩ |x2⟩
Add reg. 2 to reg. 1 |x0⟩ |x0 + x1 + x2⟩ |x2⟩
Product on all |x0⟩ |x0 + x1 + x2⟩ |x2⟩

Add −1× reg. 2 to reg. 1 |x0⟩ |x0 + x1⟩ |x2⟩
Add 2× reg. 0 to −1× reg. 1 |x0⟩ |x0 − x1⟩ |x2⟩

Add reg. 1 to reg. 2 |x0⟩ |x0 − x1⟩ |x0 − x1 + x2⟩
Add reg. 2 to reg. 1 |x0⟩ |2x0 − 2x1 + x2⟩ |x0 − x1 + x2⟩

Add 2× reg. 0 to reg. 1 |x0⟩ |4x0 − 2x1 + x2⟩ |x0 − x1 + x2⟩
Product on regs. 1 and 2 |x0⟩ |4x0 − 2x1 + x2⟩ |x0 − x1 + x2⟩

Add reg. 0 to 2× reg. 2 |x0⟩ |4x0 − 2x1 + x2⟩ |3x0 − 2x1 + 2x2⟩
Add reg. 2 to −2× reg. 1 |x0⟩ |−5x0 + 2x1⟩ |3x0 − 2x1 + 2x2⟩
Add 2× reg. 2 to reg. 1 |x0⟩ |x0 − 2x1 + 4x2⟩ |3x0 − 2x1 + 2x2⟩
Add reg. 1 to −4× reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |−11x0 + 6x1 − 4x2⟩
Add 2× reg. 1 to reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |−9x0 + 2x1 + 4x2⟩
Add 8× reg. 0 to reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |−x0 + 2x1 + 4x2⟩
Add 2× reg. 0 to reg. 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |x0 + 2x1 + 4x2⟩

Product on regs. 1 and 2 |x0⟩ |x0 − 2x1 + 4x2⟩ |x0 + 2x1 + 4x2⟩
Add reg. 2 to −1× reg. 1 |x0⟩ |4x1⟩ |x0 + 2x1 + 4x2⟩
Add −1× reg. 0 to reg. 2 |x0⟩ |4x1⟩ |2x1 + 4x2⟩

Add −1× reg. 1 to 2× reg. 2 |x0⟩ |4x1⟩ |8x2⟩
Divide reg. 1 by 4 |x0⟩ |x1⟩ |8x2⟩
Divide reg. 2 by 8 |x0⟩ |x1⟩ |x2⟩

TABLE V: k = 3 quantum-quantum multiplication sequence. In this table only the state of the x sub-registers
are shown; the same operations are applied to the z register. Registers containing values upon which the algorithm
is applied again recursively are highlighted in bold. The linear combinations used here for the products correspond
to the evaluation points wℓ ∈ {0,∞,±1,±2,−1/2}.

19

Operation Register 0 Register 1 Register 2 Register 3

(start) |x0⟩ |x1⟩ |x2⟩ |x3⟩
Add reg. 0 to reg. 2 |x0⟩ |x1⟩ |x0 + x2⟩ |x3⟩
Add reg. 3 to reg. 1 |x0⟩ |x1 + x3⟩ |x0 + x2⟩ |x3⟩
Add reg. 2 to reg. 1 |x0⟩ |x0 + x1 + x2 + x3⟩ |x0 + x2⟩ |x3⟩

Add reg. 1 to −2× reg. 2 |x0⟩ |x0 + x1 + x2 + x3⟩ |−x0 + x1 − x2 + x3⟩ |x3⟩
Product on all regs. |x0⟩ |x0 + x1 + x2 + x3⟩ |−x0 + x1 − x2 + x3⟩ |x3⟩
Add reg. 1 to reg. 2 |x0⟩ |x0 + x1 + x2 + x3⟩ |2x1 + 2x3⟩ |x3⟩

Add −3× reg. 3 to reg. 2 |x0⟩ |x0 + x1 + x2 + x3⟩ |2x1 − x3⟩ |x3⟩
Add 3× reg. 0 to reg. 1 |x0⟩ |4x0 + x1 + x2 + x3⟩ |2x1 − x3⟩ |x3⟩
Add reg. 2 to 2× reg. 1 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |2x1 − x3⟩ |x3⟩

Add 3× reg. 3 to 2× reg. 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |4x1 + x3⟩ |x3⟩
Add −1× reg. 1 to 2× reg. 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |−8x0 + 4x1 − 2x2 + x3⟩ |x3⟩
Product on regs. 1 and 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |−8x0 + 4x1 − 2x2 + x3⟩ |x3⟩
Add reg. 1 to −1× reg. 2 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |16x0 + 4x2⟩ |x3⟩

Divide reg. 2 by 4 |x0⟩ |8x0 + 4x1 + 2x2 + x3⟩ |4x0 + x2⟩ |x3⟩
Add 6× reg. 2 to reg. 1 |x0⟩ |32x0 + 4x1 + 8x2 + x3⟩ |4x0 + x2⟩ |x3⟩

Add −15× reg. 0 to 4× reg. 2 |x0⟩ |32x0 + 4x1 + 8x2 + x3⟩ |x0 + 4x2⟩ |x3⟩
Add 15× reg. 3 to reg. 1 |x0⟩ |32x0 + 4x1 + 8x2 + 16x3⟩ |x0 + 4x2⟩ |x3⟩

Divide reg. 1 by 2 |x0⟩ |16x0 + 2x1 + 4x2 + 8x3⟩ |x0 + 4x2⟩ |x3⟩
Add −15× reg. 0 to reg. 1 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |x0 + 4x2⟩ |x3⟩
Add reg. 1 to −2× reg. 2 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |−x0 + 2x1 − 4x2 + 8x3⟩ |x3⟩

Product on regs. 1 and 2 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |−x0 + 2x1 − 4x2 + 8x3⟩ |x3⟩
Add 6× reg. 1 to −2× reg. 2 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |8x0 + 8x1 + 32x2 + 32x3⟩ |x3⟩

Divide reg. 2 by 8 |x0⟩ |x0 + 2x1 + 4x2 + 8x3⟩ |x0 + x1 + 4x2 + 4x3⟩ |x3⟩
Add −3× reg. 2 to 2× reg. 1 |x0⟩ |−x0 + x1 − 4x2 + 4x3⟩ |x0 + x1 + 4x2 + 4x3⟩ |x3⟩
Add 3× reg. 0 to 4× reg. 1 |x0⟩ |−x0 + 4x1 − 16x2 + 16x3⟩ |x0 + x1 + 4x2 + 4x3⟩ |x3⟩
Add 12× reg. 3 to reg. 2 |x0⟩ |−x0 + 4x1 − 16x2 + 16x3⟩ |x0 + x1 + 4x2 + 16x3⟩ |x3⟩

Add −3× reg. 0 to 4× reg. 2 |x0⟩ |−x0 + 4x1 − 16x2 + 16x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩
Add 48× reg. 3 to reg. 1 |x0⟩ |−x0 + 4x1 − 16x2 + 64x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩

Product on regs. 1 and 2 |x0⟩ |−x0 + 4x1 − 16x2 + 64x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩
Add reg. 2 to reg. 1 |x0⟩ |8x1 + 128x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩
Divide reg. 1 by 8 |x0⟩ |x1 + 16x3⟩ |x0 + 4x1 + 16x2 + 64x3⟩ |x3⟩

Add −4× reg. 1 to reg. 2 |x0⟩ |x1 + 16x3⟩ |x0 + 16x2⟩ |x3⟩
Add −1× reg. 0 to reg. 2 |x0⟩ |x1 + 16x3⟩ |16x2⟩ |x3⟩

Divide reg. 2 by 16 |x0⟩ |x1 + 16x3⟩ |x2⟩ |x3⟩
Add −16× reg. 3 to reg. 1 |x0⟩ |x1⟩ |x2⟩ |x3⟩

TABLE VI: k = 4 quantum-quantum multiplication sequence. In this table only the state of the x sub-registers are
shown; the same operations are applied to the y and z registers. Registers containing values upon which the algorithm is applied
again recursively are highlighted in bold. The linear combinations used here for the products correspond to the evaluation
points wℓ ∈ {0,∞,±1,±1/2,±2,±4}.

	Fast quantum integer multiplication with zero ancillas
	Abstract
	Introduction
	Background and Framework
	Classical Toom-Cook multiplication
	Quantum multiplication via the QFT

	Sub-quadratic quantum multiplication without ancillas
	Space-time trade-offs
	Applications
	Classical-quantum multiplication: Shor's algorithm
	x2 -5mumod5mu-N: cryptographic proofs of quantum computational advantage

	Outlook
	References
	The Karatsuba algorithm in the notation of Section IIA
	Use of fractional w
	Overflow bit phase application
	Simple case
	Full case

	In-place modular multiplication
	Estimation of gate and qubit counts
	Recursive structure and choice of k
	Evaluation points w
	2048-bit classical-quantum multiplication
	x2 -5mumod5mu-N proof of quantumness

	Parallel sequences

