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GENERALIZED CHERN-SIMONS-SCHRÖDINGER SYSTEM WITH CRITICAL

EXPONENTIAL GROWTH: THE ZERO-MASS CASE

LIEJUN SHEN AND MARCO SQUASSINA

Abstract. We consider the existence of ground state solutions for a class of zero-mass Chern-Simons-
Schrödinger systems























−∆u+ A0u+

2
∑

j=1

A
2
ju = f(u) − a(x)|u|p−2

u,

∂1A2 − ∂2A1 = −
1

2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|
2
, ∂2A0 = −A1|u|

2
,

where a : R2 → R
+ is an external potential, p ∈ (1, 2) and f ∈ C(R) denotes the nonlinearity that fulfills

the critical exponential growth in the Trudinger-Moser sense at infinity. By introducing an improvement
of the version of Trudinger-Moser inequality approached in [33], we are able to investigate the existence
of positive ground state solutions for the given system using variational method.

1. Introduction and main results

In this article, we focus on establishing the existence of positive ground state solutions for the follow-
ing generalized Chern-Simons-Schrödinger (CSS in short) system/equation with critical exponential
growth

(1.1)



























−∆u+A0u+

2
∑

j=1

A2
ju = f(u)− a(x)|u|p−2u,

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
where a : R2 → R

+ is an external potential, p ∈ (1, 2) and f ∈ C(R) denotes the nonlinearity that
fulfills the critical exponential growth in the Trudinger-Moser sense at infinity which would be specified
later.

Recently, great attention has been paid to the time-dependent CSS system in two spatial dimension

(1.2)



















iD0ψ + (D1D1 +D2D2)ψ + g(x, |ψ|2)ψ = 0,

∂0A1 − ∂1A0 = −Im(ψD2ψ),

∂0A2 − ∂2A0 = Im(ψD1ψ),

∂1A2 − ∂2A1 = −1
2 |ψ|2,

where i stands for the imaginary unit, ∂0 =
∂
∂t , ∂1 =

∂
∂x1

, ∂2 =
∂

∂x2
for (t, x1, x2) ∈ R

1+2, ψ : R1+2 → C

acts as the complex scalar field, Aj : R
1+2 → R denotes the gauge field, Dj = ∂j +iAj is the covariant

derivative for j = 0, 1, 2 and g is the nonlinearity. In real world, it is usually exploited to describe the
non-relativistic dynamics behavior of massive number of particles in Chern-Simons gauge fields. This
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2 L. SHEN AND M. SQUASSINA

model plays an important role in the study of high-temperature superconductors, Aharovnov-Bohm
scattering, and quantum Hall effect, we refer the reader to [16–18]. Moreover, there exist some further
physical motivations for considering CSS system (1.2), see [12,14,25,26] for example.

For all (t, x1, x2) ∈ R
1+2 and j = 0, 1, 2, one usually considers the situation Aj(t, x) = Aj(x). If the

standing wave ansatz ψ(t, x) = eiλtu(x) with a given λ ∈ R for u : R2 → R, then (1.2) reduces to

(1.3)



























−∆u+ λu+A0u+

2
∑

j=1

A2
ju = f(x, u),

∂1A2 − ∂2A1 = −1

2
|u|2,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,

where f(x, u) = g(x, |u|2)u. Suppose Aj satisfies the Coulomb gauge condition
∑2

j=0 ∂jAj = 0, then

(1.3) with λ ≡ 0 becomes the original CSS equation (1.1), namely

(1.4)



























−∆u+A0u+
2
∑

j=1

A2
ju = f(x, u),

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0.

It follows from ∂1A0 = A2|u|2 and ∂2A0 = −A1|u|2 in (1.4) that

∆A0 = ∂1
(

A2|u|2
)

− ∂2
(

A1|u|2
)

,

leading to

(1.5) A0[u](x) =
x1

2π|x|2 ∗
(

A2|u|2
)

− x2
2π|x|2 ∗

(

A1|u|2
)

.

In a similar way, we depend on ∂1A2 − ∂2A1 = −1
2 |u|2 and ∂1A1 + ∂2A2 = 0 in (1.4) to derive

∆A1 = ∂2

( |u|2
2

)

and ∆A2 = −∂1
( |u|2

2

)

.

From which, the components Aj for j = 1, 2 in (1.4) can be represented as

(1.6)















A1[u](x) =
x2

2π|x|2 ∗
( |u|2

2

)

= − 1

4π

ˆ

R2

(x2 − y2)u
2(y)

|x− y|2 dy,

A2[u](x) = − x1
2π|x|2 ∗

( |u|2
2

)

=
1

4π

ˆ

R2

(x1 − y1)u
2(y)

|x− y|2 dy.

In the sequel, we shall write Aj in place of Aj [u] for j ∈ {0, 1, 2} for simplicity as long as there is no
misunderstanding. There are some further properties of Aj for j ∈ {0, 1, 2} in Section 2 below.

Indeed, CSS system (1.2) can reduce to a single equation if one studies the standing wave ansatz
ψ(t, x) = eiλtu(x) with a radially symmetric u. Actually, Byeon-Huh-Seok [6] considered the standing
waves of type

(1.7)
ψ(t, x) = u(|x|)eiλt, A0(t, x) = k(|x|),
A1(t, x) =

x2
|x|2h(|x|), A2(t, x) = − x1

|x|2h(|x|),

where k and h are real value functions depending only on |x|. Note that (1.7) satisfies the Coulomb
gauge condition with ς = ct+ nπ, where n is an integer and c is a real constant. To seek for solutions
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of CSS system (1.2) of the type (1.7), it is enough to handle the following semilinear elliptic equation

(1.8) −∆u+ λu+

(
ˆ ∞

|x|

h(s)

s
u2(s)ds +

h2(|x|)
|x|2

)

u = f(x, u) in R
2,

where h(s) =
´ s
0

r
2u

2(r)dr. As before, we continue to assume that λ ≡ 0 in Eq. (1.8).
At this stage, there are two kinds of CSS equations, (1.4) and (1.8), which could be called by the

so called zero-mass ones. Generally, when f(x, t) = f̄(x, t)−V (x)t for all (x, t) ∈ R
2×R in the classic

CSS equations, more and more interesting results have been explored by many mathematicians over
the past decades for various assumptions on f̄ and V . Speaking precisely, for f̄(x, t) = |t|p−2t and
V ≡ 1, by exploiting the Nehari-Pohoz̆aev manifold argument, Byeon et al. [6] derived the existence
of positive solutions for all p > 6. Particularly, with the prescribed mass constraint

´

R2 |u|2dx = c2,
they showed some existence results for each c 6= 0 if p ∈ (2, 3] and sufficiently small |c| if p ∈ (3, 4).
Afterwards, the existence, nonexistence and multiplicity of nontrivial solutions for (1.3), or (1.8), have
been considerably contemplated by a lot of mathematicians, see [4,8,11,19,20,23,27,29,30,32,34,35,37]
and the references therein for example even if these references are far to be exhaustive.

Next, we should turn to consider the so-called zero-mass CSS equation. Very recently, Zhang, Tang
and Chen [40] handled the following zero-mass CSS equation

(1.9) −∆u+

(
ˆ ∞

|x|

h(s)

s
u2(s)ds +

h2(|x|)
|x|2

)

u = f(u)− ā|u|p−2u in R
2,

where ā > 0 is a constant, p ∈ (3, 4) and the nonlinearity f admits the critical exponential growth
in the Trudinger-Moser sense at infinity. In fact, we say that a function f possesses the critical
exponential growth at infinity if there exists a constant α0 > 0 such that

(1.10) lim
t→+∞

|f(t)|
eαt2

=

{

0, ∀α > α0,

+∞, ∀α < α0.

The above definition was introduced by Adimurthi and Yadava in [1], see also de Figueiredo, Miyagaki
and Ruf [9] for example.

In [40], the authors depended on the work space below

E ,

{

u : u(x) is Lebesgue measurable s.t.

ˆ

R2

|∇u|2dx < +∞ and

ˆ

R2

|u|pdx < +∞
}

which is the completion of C∞
0 (R2) under the norm

‖u‖ =
√

|∇u|22 + |u|2p, ∀u ∈ E,

where | · |q denotes the usual norm corresponding to the Lebesgue space Lq(R2) for every 1 ≤ q ≤ ∞.
In order to treat the problem variationally, proceeding as [1, 2, 7, 9, 10, 22, 39], they established the
following version of Trudinger-Moser inequality

Proposition 1.1. Suppose that 3 < p < 4, then (eαu
2 − 1 − αu2) ∈ L1(R2) for all α > 0 and u ∈ E.

Moreover, if u ∈ E, |∇u|22 ≤ 1, |u|pp ≤M > +∞ and α < 4π, then there exists a constant C(M,α) > 0,
which depends only on M and α, such that

(1.11)

ˆ

R2

(eαu
2 − 1− αu2)dx ≤ C(M,α).

With the help of Proposition 1.1, they concluded the existence of mountain-pass solutions for Eq. (1.9)
with a nonlinearity f involving the critical exponential growth. Actually, to search for the nontrivial
solutions, they Actually, to look for the nontrivial solutions, they restricted themselves in the radially
symmetric subspace of E, namely Er = {u ∈ E : u(x) = u((|x|)}. In this situation, they immediately
have the compact imbedding Er →֒ Ls(R2) for all p < s < +∞.
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Afterwards, Shen [33] generalized and improved the results in [40] to the case that 1 < p < 2 and the
nonlinearity f having supercritical exponential growth. Precisely, by contemplating the work space E
above and introducing the the Young function defined by

(1.12) Φα,j0(t) = eαt
2 −

j0−1
∑

j=0

αj

j!
|t|2j , ∀t ∈ R,

where α > 0 appearing in (1.10) and j0 , inf{j ∈ N
+ : 2j ≥ p∗} with p∗ = 2p

2−p > 2, Shen [33] firstly

established the Trudinger-Moser inequality below

Proposition 1.2. Suppose that 1 < p < 2, then Φα,j0(u) ∈ L1(R2) for all α > 0 and u ∈ E. Moreover

(1.13) S(α) , sup
u∈E,‖u‖≤1

ˆ

R2

Φα,j0(u)dx < +∞

for all 0 < α < 4π. Finally, if α > 4π, then S(α) = +∞.

Then, combining the minimax procedure and elliptic regular theory, Shen investigated the existence of
a nontrivial solution with the mountain-pass energy in [33], where the subspace Er was still considered.

Motivated by all of the quoted papers above, particular by [33, 40], it is quite natural to ask some
interesting questions. For example,

(I) As pointed out in [33], either (1.11) or (1.13) is a subcritical Trudinger-Moser type inequality
in the whole space R

2, namely there is no information when α is exactly equal to 4π. Thereby, can
we given an affirmative answer that whether S(4π) < +∞ or S(4π) = +∞.

(II) Owing to the compact imbedding Er →֒ Ls(R2) for each p < s < +∞, although the nonlinearity
f possesses the (super)critical exponential growth in [33, 40], it is simple to recover the compactness
to some extent. Hence, can we find nontrivial solutions for zero-mass CSS equation (1.9). In other
words, whether the existence results in [33,40] remain true for Eq. (1.4) with f(x, t) = ā|t|p−2t for all
x ∈ R

2 and t ∈ R, where p ∈ (1, 2), or p ∈ (3, 4).
(III) The reader is invited to observe that Eq. (1.9) is an autonomous one because ā > 0 is just

a constant. Thus, can we improve this constant to a general potential function. Moreover, if it was
true, whether the obtained nontrivial solution is indeed a ground state solution.

As a consequence, we shall try our best to introduce some new analytic tricks and then contemplate
the above Questions.

First of all, we focus on the Question (I). Let us continue to use the Young function Φα,j0 defined
in (1.12), we shall prove the following result.

Theorem 1.3. Suppose that 1 < p < 2, then Φα,j0(u) ∈ L1(R2) for all α > 0 and u ∈ E. Moreover

(1.14) S(α) , sup
u∈E,‖u‖≤1

ˆ

R2

Φα,j0(u)dx < +∞

for all α ∈ (0, 4π]. Moreover, S(α) = +∞ if α > 4π.

Remark 1.4. Due to Theorem 1.3, we can make sure that S(4π) < +∞, and so it solves the Question
(I) completely. Moreover, we do believe that the technique for the proof of Theorem 1.3 can be also
adapted to Proposition 1.1.

Next, in order to solve Questions (II) and (III), we are ready to introduce some technical assumptions
on the potential a : R2 → R and the nonlinearity f : R → R in Eq. (1.1) as follows.

(A1) a ∈ C0(R2) with inf
x∈R2

a(x) > 0;

(A2) for almost every x ∈ R
2, a(x) ≤ lim

|x|→∞
a(x) , a∞ < +∞ and this inequality is strict in a

subset of positive Lebesgue measure
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Concerning the nonlinearity f , we suppose that

(f1) f ∈ C(R) with f(t) ≡ 0 for all t ∈ (−∞, 0] and f(t) = o(t) as t→ 0+;
(f2) the map t 7→ f(t)/t5 is strictly increasing on t ∈ (0,+∞);
(f3) there exist constants t0 > 0, M0 > 0 and ϑ ∈ [0, 1) such that

0 < tϑF (t) ≤M0f(t), ∀t > t0,

where and in the sequel F (t) =
´ t
0 f(s)ds for all t > 0;

(f4) lim
t→+∞

F (t)e−α0t2 , β0 > 0, where α0 > 0 comes from (1.10).

We are now in a position to state the second main result in this article.

Theorem 1.5. Let 1 < p < 2 and suppose (A1)− (A2). If f satisfies (1.10) and (f1)− (f4), then Eq.
(1.1) admits at least a positive ground state solution in E.

Remark 1.6. It is obvious that Questions (II) and (III) are uncovered by Theorem 1.5 which in turn
indicates that our results improve and replenish the counterparts in [33, 40]. It should be mentioned
here that both the assumptions on the potential a and the nonlinearity f are standard. On the one
hand, the function a equipping with (A1)− (A2) is usually called by the well-known Rabinowitz’s type
potential introduced in [31] and it was later exploited by Wan and Tan in [37]. On the other hand, as
to the function f having critical exponential growth and satisfying (f1)− (f4), we prefer to refer the
reader to [30,34,40] and their references therein.

Finally, we shall exhibit the main idea for the proof of Theorem 1.5. The reader is invited to see
that the work space

Ea ,

{

u : u(x) is Lebesgue measurable s.t.

ˆ

R2

|∇u|2dx < +∞ and

ˆ

R2

a(x)|u|pdx < +∞
}

endowed with the norm

‖u‖a =

(

ˆ

R2

|∇u|2dx+

(
ˆ

R2

a(x)|u|pdx
)

2
p

)

1
2

, ∀u ∈ Ea,

is equivalent to (E, ‖ · ‖) because a is a positive and bounded function in R
2. Thus, we will exploit

the work space (E, ‖ · ‖), instead of (Ea, ‖ · ‖a), just for simplicity. Due to the lack of compactness
caused by the critical exponential growth and the absence of the compact imbedding Er →֒ Ls(R2)
for every p < s < +∞, the foremost point of the proof of Theorem 1.5 is to restore the compactness.
Inspired by [37], we need to investigate the existence of ground state solutions of the associated “limit
problem” of (1.1), which is given as

(1.15)



























−∆u+ a∞|u|p−2u+A0u+
2
∑

j=1

A2
ju = f(u),

∂1A2 − ∂2A1 = −1

2
|u|2, ∂1A1 + ∂2A2 = 0,

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2.
We obtain the following result.

Theorem 1.7. Let 1 < p < 2. If f satisfies (1.10) and (f1)−(f4), then Eq. (1.15) possesses a positive
ground state solution in E.

Remark 1.8. Obviously, one realizes that Theorem 1.7 also provides a positive answer to the Question
(II) above. In the proof of Theorem 1.7, the most striking point is that we success in establishing the
Vanishing lemma corresponding to the work space (E, ‖ · ‖), see Theorem 3.8 below. Although the
essential idea originates from its classic version due to Lions, c.f. [38, Lemma 1.21], we have to make
some efforts to prove it and it may prompt some further studies for zero-mass Schrödinger equation.
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With Theorem 1.7 in hands, the solvability of Theorem 1.5 becomes available so far, but we em-
phasize here that the condition (f2) plays a crucial role in restoring the compactness, see Lemma 3.5
and (3.17) for instance. As a consequence, one naturally wonders that whether there still exists a
mountain-pass type solution for Eq. (1.15) when (f2) is replaced with a weak type condition below

(f ′2) for all t > 0, there holds f(t)t− 6F (t) ≥ 0.

Actually, we are going to conclude the existence result as follows.

Theorem 1.9. Let 1 < p < 2 and suppose (A1) − (A2). If f satisfies (1.10) and (f1) − (f ′2) as well
as (f3)− (f4), then Eq. (1.15) has a positive mountain-pass type solution in E.

Remark 1.10. We note that Theorem 1.9 solves Question (II) and (III) partially. Let us point out
here that we will borrow some idea adopted in [33] to reach the proof. Nevertheless, there are some new
challenges that prevent us repeating the arguments simply. For example, as to the critical exponential
case in [33], the author strongly relied on the following condition of type

(f ′4) there are γ > 0 and s > 6 such that F (t) ≥ γts for all t ≥ 0,

to restore the compactness, where γ > 0 is sufficiently large. One would easily deduce that the
condition (f4) in the present article is weaker than (f ′4) which is a global one that does never reveal
the essential feature of the critical exponential growth in (1.10).

The outline of the paper is organized as follows. In Section 2, we mainly present some preliminary
results and show the proofs of Theorem 1.3. Sections 3 and 4 are devoted to the proofs of Theorems
1.7 and 1.5, respectively. The proof of Theorem 1.9 shall be presented in Section 5.

Notations: From now on in this paper, otherwise mentioned, we ultilize the following notations:

• C,C1, C2, · · · denote any positive constant, whose value is not relevant and R
+ , (0,+∞).

• Let (X, ‖ · ‖X) be a Banach space with dual space (X−1, ‖ · ‖X−1), and Ψ be functional on X.
• The (C) sequence at a level c ∈ R ((C)c sequence in short) corresponding to Ψ means that
Ψ(xn) → c and (1 + ‖xn‖X)‖Ψ′(xn)‖X−1 → 0 in R as n→ ∞, where {xn} ⊂ X.

• | · |p stands for the usual norm of the Lebesgue space Lp(R2) for all p ∈ [1,+∞].

• For any ̺ > 0 and every x ∈ R
2, B̺(x) , {y ∈ R

2 : |y − x| < ̺}.
• on(1) denotes the real sequences with on(1) → 0 as n→ +∞.
• “ → ” and “ ⇀ ” stand for the strong and weak convergence in the related function spaces,
respectively.

2. Variational Framework and Preliminaries

In this section, we are going to exhibit some preliminary results which enable us to treat the
problems variationally.

First of all, let us recall some imbedding results which would play a foremost role in formulating
the variational structure. The following results can be found in [33, Lemmas 2.1 and 2.2], so we shall
omit the detailed proofs.

Lemma 2.1. Assume 1 < p < 2, then the imbedding E →֒ Ls(R2) is continuous and E →֒ Ls
loc
(R2) is

compact for all p ≤ s < +∞, respectively. Moreover, (E, ‖ · ‖) is a reflexive Banach space.

Then, we turn to contemplate the so called Chern-Simons term in Eq. (1.1). To begin with, there
exist some meaningful and significant observations. According to the second equation and the last
two equations in Eq. (1.1), for each u ∈ E, one has

(2.1)

ˆ

R2

A0|u|2dx = 2

ˆ

R2

A0(∂2A1 − ∂1A2)dx

= 2

ˆ

R2

(A2∂1A0 −A1∂2A0)dx = 2

ˆ

R2

(A2
1 +A2

2)|u|2dx.
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As a by-product of the well-known Hardy-Littlewood-Sobolev inequality [24, Theorem 4.3], we could
conclude the following estimates to the gauge fields Aj for j ∈ {0, 1, 2}.
Lemma 2.2. (see [15, Propositions 4.2-4.3]) Assume 1 < r < 2 and 1

r − 1
r̂ = 1

2 , then

|Aj |r̂ ≤ Cr|u|22r for j = 1, 2, |A0|r̂ ≤ Cr|u|22r|u|24,
where Cr > 0 is a constant dependent of r.

Combining Lemmas 2.1 and 2.2, one can easily see that

(2.2) |Aju|2 ≤ |Aj |r̂|u| r
r−1

≤ Cr|u|22r|u| r
r−1

≤ C̄r‖u‖3, for j = 1, 2,

because 2r > 2 and r/(r − 1) > 2, where C̄r > 0 depends only on r > 1. We also need the following
Brézis-Lieb type lemma for the Chern-Simons term.

Lemma 2.3. (see [13, Lemma 2.4]) If un ⇀ u in E and un → u a.e. in R
2, then one has Aj [un] →

Aj [u] a.e. for j = 1, 2,

(2.3)











lim
n→∞

ˆ

R2

A0[un]unψdx =

ˆ

R2

A0[u]uψdx, ∀ψ ∈ E,

lim
n→∞

ˆ

R2

A2
j [un]unψdx =

ˆ

R2

A2
j [u]uψdx, ∀ψ ∈ E with j = 1, 2,

and

(2.4) lim
n→∞

ˆ

R2

[

A2
j [un]|un|2 −A2

j [un − u]|un − u|2
]

dx =

ˆ

R2

A2
j [u]|u|2dx, for j = 1, 2.

Finally, we shall focus on the nonlinearity f . Whereas, it possesses the critical exponential growth at
infinity in the Trudinger-Moser sense at infinity, we have to derive the Trudinger-Moser type inequality
associated with the work space E in this article.

Proof of Theorem 1.3. Let α ∈ (0, 4π] and u ∈ E with ‖u‖ ≤ 1. We denote by u∗ the Schwarz
symmetrization of u, then u∗ is radial and non-increasing. Thanks to the results in [21],

ˆ

R2

|∇u∗|2dx ≤
ˆ

R2

|∇u|2dx,
ˆ

R2

|u∗|pdx =

ˆ

R2

|u|pdx

and
ˆ

R2

Φα,j0(u
∗)dx =

ˆ

R2

Φα,j0(u)dx.

So, without loss of generality, we can suppose that u ∈ E is non-increasing. Given an R > 0 which
will be determined later, due to Lemma 2.1, we could deduce that the function v(x) , u(x) − u(R)
belongs to H1

0 (BR(0)). Adopting the Young’s inequality, there holds

u2(x) = v2(x) + 2v(x)u(R) + u2(R) ≤ v2(x) + [1 + v2(x)u2(R)] + u2(R)

= [1 + u2(R)]v2(x) + 1 + u2(R) , w2(x) + 1 + u2(R), ∀x ∈ BR(0).

Obviously, w ,
√

1 + u2(R)v ∈ H1
0 (BR(0)) and ∇w =

√

1 + u2(R)∇v =
√

1 + u2(R)∇u. Moreover,
we recall from [5, Lemma A.IV], because u ∈ Lp(R2) by Lemma 2.1, there is a constant Cp > 0 which
is independent of u such that

(2.5) |u(x)| ≤ Cp|x|−
2
p |u|p for all x 6= 0.

Consequently, with the help of (2.5), we are able to see that

ˆ

R2

|∇w|2dx = [1 + u2(R)]

ˆ

R2

|∇u|2dx ≤ [1 + u2(R)]

[

1−
(
ˆ

R2

|u|pdx
)

2
p

]
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≤ 1−
(
ˆ

R2

|u|pdx
)

2
p

+ u2(R) ≤ 1− (1−C2
pR

− 4
p )

(
ˆ

R2

|u|pdx
)

2
p

.

We then choose the constant R to be sufficiently large such that 1 − C2
pR

− 4
p ≥ 0 and so |∇w|22 ≤ 1.

As a consequence, we can apply the classic Trudinger-Moser inequality explored in [7,10] to arrive at
ˆ

BR(0)
Φ4π,j0(u)dx ≤

ˆ

BR(0)
e4πu

2
dx ≤ e4π(1+u2(R))

ˆ

BR(0)
e4πw

2
dx ≤ C.

From which, one concludes that

(2.6) sup
u∈E:‖u‖≤1

ˆ

BR(0)
Φ4π,j0(u)dx ≤ C < +∞.

On the other hand, we can follow the proof of [33, Theorem 1.1] to verify that the integral on the
complement of BR(0) is uniformly bounded. For the sake of the reader’s convenience, we shall show
the proof in detail. Using [5, Lemma A.IV] and Lemma 2.1 again, for each u ∈ Lp∗(R2), there is a
constant C̄p > 0 independent of u such that

(2.7) |u(x)| ≤ C̄p|x|−
2−p
p |u|p∗ for all x 6= 0.

Since j0 = inf{j ∈ N : 2j ≥ p∗}, then one sees 2j ≥ p∗ for all j ≥ j0 and so applying (2.7) and R > 1,

ˆ

R2\BR(0)
Φ4π,j0(u)dx =

∞
∑

j=j0

(4π)j

j!

ˆ

R2\BR(0)
|u|2jdx =

∞
∑

j=j0

(4π)j

j!

ˆ

R2\BR(0)
|u|2j−p∗ |u|p∗dx

≤
∞
∑

j=j0

(4π)j

j!

ˆ

R2\BR(0)
(C̄p|u|p∗)2j−p∗|u|p∗dx =

1

C̄p∗
p |u|p∗p∗

∞
∑

j=j0

(4π)j

j!

ˆ

R2\B̺(0)
(C̄p|u|p∗)2j |u|p

∗
dx

≤ e4π(C̄p |u|p∗)2

C̄p∗
p |u|p∗p∗

ˆ

R2\B̺(0)
|u|p∗dx ≤ e4π(C̄p|u|p∗)2

C̄p∗
p

≤ e4π(C̃p‖u‖)2

C̄p∗
p

=
e4πC̃

2
p

C̄p∗
p

.

From this inequality and (2.6), we obtain that

S(α) ≤ C + e4πC̃
2
p C̄−p∗

p < +∞, ∀α ∈ (0, 4π].

The remaining parts are totally same as in [33, Theorem 1.1], so we omit them here. �

Now, we are able to verify that the variational functional Ja : E → R defined by

Ja(u) =
1

2

ˆ

R2

[|∇u|2 + (A2
1 +A2

2)u
2]dx+

1

p

ˆ

R2

a(x)|u|pdx−
ˆ

R2

F (u)dx,

is well-defined and of class C1(E,R). Actually, due to (1.10) and (f1), for all ε > 0 and α > α0, there
is a constant Cε > 0 such that

(2.8) |f(s)| ≤ ε|s|+ Cε|s|q−1Φα,j0(s), ∀s ∈ R,

where Φα,j0 is defined by (1.12) and q > 2 can be arbitrarily chosen later. Using (f2), there holds

(2.9) |F (s)| ≤ ε|s|2 + Cε|s|qΦα,j0(s), ∀s ∈ R.

Moreover, without mentioned any longer, let us exploit directly the following inequality (see e.g. [39,
Lemma 2.1]):

(Φα,j0(s))
m ≤ Φmα,j0(s), ∀s ∈ R, α > 0 and m > 1.
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With (2.8) and (2.9) in hands, exploiting Theorem 1.3, we could proceed as the calculations in [32,33] to
deduce that the variational functional Ja associated with (1.1) is well-defined and belongs to C1(E,R)
such that

J ′
a(u)[v] =

ˆ

R2

[∇u∇v + (A2
1 +A2

2 +A0)uv]dx+

ˆ

R2

a(x)|u|p−2uvdx−
ˆ

R2

f(u)vdx, ∀v ∈ E.

In particular, it follows from (2.1) that

J ′
a(u)[u] =

ˆ

R2

[|∇u|2 + 3(A2
1 +A2

2)u
2]dx+

ˆ

R2

a(x)|u|pdx−
ˆ

R2

f(u)udx.

Hence, any (weak) solution of Eq. (1.1) corresponds to a critical point of Ja. In order to search for
the critical points of Ja, we introduce the following results.

Lemma 2.4. Let 1 < p < 2 and f satisfies (1.10) and (f1) − (f4). Suppose there exists a sequence
{un} ⊂ E such that un ⇀ u in E and un → u a.e. in R

2. If in addition, we assume that

(2.10) sup
n∈N

ˆ

R2

f(un)undx ≤ K0

for some K0 ∈ (0,+∞) independent of n ∈ N, then, going to a subsequence if necessary,

(2.11) lim
n→∞

ˆ

Ω
F (un)dx =

ˆ

Ω
F (u)dx for any compact set Ω ⊂ R

2.

Moreover, passing to a subsequence if necessary, there holds

(2.12) lim
n→∞

ˆ

R2

f(un)ψdx =

ˆ

R2

f(u)ψdx for all ψ ∈ C∞
0 (R2).

Proof. We can follow the essential ideas adopted in [9, Lemma 2.1] and the details will be omitted. �

3. The limit problem (1.15)

The main objective of this section is to investigate the existence of positive ground state solutions
for the CSS equation (1.15) which acts as the “limit problem” of Eq. (1.1).

In order to solve Eq. (1.15), we are going to look for the critical points of its corresponding
variational functional J∞ : E → R below

(3.1) J∞(u) =
1

2

ˆ

R2

[|∇u|2 + (A2
1 +A2

2)u
2]dx+

a∞
p

ˆ

R2

|u|pdx−
ˆ

R2

F (u)dx, ∀u ∈ E.

Arguing as before, it is simple to show that J∞ is well-defined and it is of class C1(E,R) satisfying

J ′
∞(u)[v] =

ˆ

R2

[∇u∇v + (A2
1 +A2

2 +A0)uv]dx+
a∞
p

ˆ

R2

|u|p−2uvdx−
ˆ

R2

f(u)vdx, ∀v ∈ E.

Moreover, we are derived from (2.1) that

J ′
∞(u)[u] =

ˆ

R2

[|∇u|2 + 3(A2
1 +A2

2)u
2]dx+ a∞

ˆ

R2

|u|pdx−
ˆ

R2

f(u)udx.

In what follows, we shall denote the Nehari manifold associated with J∞ by

N∞ , {u ∈ E\{0} : J ′
∞(u)[u] = 0}

and the corresponding ground state energy level on N∞ is defined by

(3.2) m∞ , min
u∈N∞

J∞(u).

Our main result concerning the autonomous CSS equation (1.15) is the following:
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Theorem 3.1. Let 1 < p < 2 and suppose that f satisfies (1.10) and (f1) − (f5), then Eq. (1.15)
admits a positive ground state solution u∞ ∈ E such that

J∞(u∞) = m∞ = inf
u∈E\{0}

max
t≥0

J∞(tu).

The proof of the above theorem will be divided into several lemmas. For simplicity, we shall always
suppose that the nonlinearity f satisfies (1.10) and (f1)−(f4) and do not mention them unless needed.

First of all, let us give some key observations on the shape of the functional J∞.

Lemma 3.2. Let 1 < p < 2, then there exists a constant ζ > 0 such that

(3.3) mρ , inf
{

J∞(u) : u ∈ E, ‖u‖ = ρ
}

> 0, ∀ρ ∈ (0, ζ],

and

(3.4) nρ , inf
{

J ′
∞(u)[u] : u ∈ E, ‖u‖ = ρ

}

> 0, ∀ρ ∈ (0, ζ].

Proof. It follows from (2.9) that

J∞(u) ≥ 1

2

ˆ

R2

(|∇u|2 + a∞|u|p)dx− ε

ˆ

R2

|u|2dx− C(ε, q, α)

ˆ

R2

|u|qΦα,j0(u)dx.

Using Lemma 2.1 and letting ε > 0 be suitably small, with the help of (1.14), there exists a constant
ζ ∈ (0, 1) such that

J∞(u) ≥ 1

4
‖u‖2 − C‖u‖q when ‖u‖ ≤ ζ.

In light of q > 2, we can determine a constant ζ ∈ (0, ζ) such that (3.3) holds true. According to the
definition of J ′

∞, it is easy to reach (3.4) as before. The proof is completed. �

Lemma 3.3. Let 1 < p < 2 and suppose that u ∈ E\{0}, then for all t > 0, there holds

J∞(tu) → −∞ as t→ +∞.

In particular, the functional J∞ is not bounded from below.

Proof. For any fixed positive function u ∈ E\{0} and t > 1, we have that

J∞(tu)

t6
≤ 1

p

ˆ

R2

[|∇u|2 + (A2
1 +A2

2)u
2 + a∞|u|p]dx− 1

t6

ˆ

R2

F (tu)dx.

Due to (f4), one sees that F (t)t−6 → +∞ as t → +∞. Thereby, using the Fatou’s lemma, we arrive
at J∞(tu)/t6 → −∞ as t→ +∞, and the claim follows. �

Relying on Lemmas 3.2 and 3.3, we shall exploit the following critical point theorem without the
(C) condition introduced in [28] to find a (C) sequence for J∞.

Proposition 3.4. Let X be a Banach space and ϕ ∈ C1(X,R) Gateaux differentiable for all v ∈ X,
with G-derivative ϕ′(v) ∈ X−1 continuous from the norm topology of X to the weak ∗ topology of X−1

and ϕ(0) = 0. Let S be a closed subset of X which disconnects (archwise) X. Let v0 = 0 and v1 ∈ X
be points belonging to distinct connected components of X̄\X. Suppose that

inf
S
ϕ ≥ ̺ > 0 and ϕ(v1) ≤ 0

and let Γ = {γ ∈ C([0, 1],X) : γ(0) and γ(1) = v1}. Then

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)) ≥ ̺ > 0

and there is a (C)c sequence for ϕ.
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Combining Lemmas 3.2 and 3.3 as well as Proposition 3.4, there is a sequence {un} ⊂ E such that

(3.5) J∞(un) → c∞ and (1 + ‖un‖)‖J ′
∞(un)‖E−1 → 0,

where

(3.6) c∞ , inf
γ∈Γ∞

max
t∈[0,1]

J∞(γ(t)) > 0

with Γ∞ = {γ ∈ C([0, 1], E) : γ(0) = 0 and J∞(γ(1)) < 0}.
Lemma 3.5. Let 1 < p < 2, then for every u ∈ E\{0}, there exists a unique constant tu > 0 such
that J∞(tuu) = max

t≥0
J∞(tu) and tuu ∈ N∞. In particular, we could conclude that c∞ = m∞ = d∞,

where

d∞ , inf
u∈E\{0}

max
t≥0

J∞(tu).

Proof. For any u ∈ E\{0} and t > 0, we define ξ(t) = J∞(tu) and so

ξ′(t) = 0 ⇐⇒
ˆ

R2

[t|∇u|2 + 3t5(A2
1 +A2

2)u
2]dx+ a∞t

p−1

ˆ

R2

|u|pdx−
ˆ

R2

f(tu)udx = 0

⇐⇒ J ′
∞(tu)[tu]/t = 0 ⇐⇒ J ′

∞(tu)[tu] = 0 ⇐⇒ tu ∈ N∞.

Proceeding as in the proofs of Lemmas 3.2 and 3.3, ξ(t) possesses a critical point which corresponds
to its maximum, that is, there exists a constant tu > 0 such that ξ′(tu) = 0. Next, we verify that tu is
unique. Arguing it indirectly, we would assume that there exist two constants t1, t2 > 0 with t1 6= t2
such that uti ∈ N∞ for i ∈ {1, 2}. It follows from some elementary computations that

J∞(t1u)− J∞(t2u)−
t61 − t62
6t61

J ′
∞(t1u)[t1u]

=
t21
6

[

2− 3

(

t2
t1

)2

+

(

t2
t1

)6
]

ˆ

R2

|∇u|2dx

+
tp1
6p

[

(6− p)− 6

(

t2
t1

)p

+ p

(

t2
t1

)6
]

a∞

ˆ

R2

|u|pdx

+

ˆ

R2

[

1− (t−1
1 t2)

6

6
f(t1u)t1u− F (t1u) + F ((t−1

1 t2)t1u)

]

dx

and

J∞(t2u)− J∞(t1u)−
t62 − t61
6t62

J ′
∞(t2u)[t2u]

=
t22
6

[

2− 3

(

t1
t2

)2

+

(

t1
t2

)6
]

ˆ

R2

|∇u|2dx

+
tp2
6p

[

(6− p)− 6

(

t1
t2

)p

+ p

(

t1
t2

)6
]

a∞

ˆ

R2

|u|pdx

+

ˆ

R2

[

1− (t−1
2 t1)

6

6
f(t2u)t2u− F (t2u) + F ((t−1

2 t1)t2u)

]

dx.

Combining the above two formulas and J ′
∞(tiu)[tiu] = 0 for i ∈ {1, 2}, we arrive at a contradiction if

t1 6= t2. Next, to coincide the three numbers with each other, we shall firstly conclude that c∞ ≤ d∞,
then d∞ ≤ m∞ and finally m∞ ≤ c∞ step by step.
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(1). c∞ ≤ d∞. In view of Lemma 3.3, there is a sufficiently large t0 > 0 such that J∞(t0u) < 0 for

every u ∈ E\{0}. Define γ0(t) = tt0u ∈ Γ∞, then c∞ ≤ maxt∈[0,1] J∞(tt0u) ≤ maxt≥0 J∞(tu) which
implies that c∞ ≤ d∞.

(2). d∞ ≤ m∞. We claim that, for all u ∈ E and t > 0, there holds

(3.7)

J∞(u)− J∞(tu)− 1− t6

6
J ′
∞(u)[u] =

1

6

(

2− 3t2 + t6
)

ˆ

R2

|∇u|2dx

+
a∞
6p

[

(6− p)− 6tp + pt6
]

ˆ

R2

|u|pdx+

ˆ

R2

[

1− t6

6
f(u)u− F (u) + F (tu)

]

dx.

Due to (f2), it suffices to verify that

τ(s, t) ,
1− t6

6
f(s)s+ F (st)− F (s) ≥ 0 for all s ≥ 0 and t > 0.

Indeed, it is simple to calculate that

∂

∂t
τ(s, t) = f(st)s− t5f(s)s = t5s6

[

f(st)

(st)5
− f(s)

s5

]

{

≥ 0, if t ∈ [1,+∞),
≤ 0, if t ∈ (0, 1],

where we have used (f2) in the last inequalities. Therefore, we obtain that t 7→ τ(s, t) is decreasing in
(0, 1) and increasing in (1,+∞) for all s ≥ 0, respectively. It has that τ(s, t) ≥ mint∈(0,+∞) τ(s, t) =
τ(s, 1) = 0 for every s ≥ 0 and the claim concludes. Owing to the claim, for all u ∈ N∞, one sees that
J∞(u) ≥ J∞(tu) for all t > 0 yielding that d∞ ≤ m∞.

(3). m∞ ≤ c∞. We follow [38, Theorem 4.2] and present the details for the sake of completeness.

The manifold N∞ clearly separates E into two components, we say them by {J∞ > 0} and {J∞ < 0},
respectively. According to Lemma 3.2, one can conclude that {J∞ > 0} contains the origin and a small
ball around the origin. Moreover, adopting (f2), J∞(u) ≥ J∞(u)− 1

6J
′
∞(u)[u] ≥ 0 for all u ∈ {J∞ > 0},

so one must have that γ(1) ∈ {J∞ < 0} for all γ ∈ Γ∞. Because γ ∈ C0, there exists a t0 ∈ (0, 1) such
that γ(t0) ∈ N∞ showing that m∞ ≤ c∞ by the arbitrariness of γ. The proof is completed. �

Since the nonlinearity f fulfills the critical exponential growth at infinity which leads to the lack
of compactness, to recover it, we have to pull the mountain-pass level c∞ down below a critical value.
Have this aim in mind, inspired by [1,2,7,9,10,22,39], we will consider the Moser sequence functions
defined by

w̄n(x) ,
1√
2π



















√
log n, if 0 ≤ |x| ≤ 1

n ,

log( 1
|x|

)
√
logn

, if 1
n < |x| ≤ 1,

0, if |x| > 1,

Lemma 3.6. Let 1 < p < 2, then 0 < c∞ < 2π
α0
.

Proof. We have c∞ ≥ mζ > 0 by Lemma 3.2. Taking advantage of Lemma 3.3, it is not difficult
to observe that c∞ = infγ∈Γ maxt∈(0,1] J∞(γ(t)) ≤ infu∈E\{0} maxt>0 J∞(tu). As a consequence, it

suffices to conclude that there exists a function w ∈ E\{0} such that maxt>0 J∞(tw) < 2π
α0
. It follows

from some elementary computations that wn ∈ C∞
0 (B1(0)) ⊂ E and it satisfies

ˆ

R2

|∇w̄n|2dx =
1

2π log n

ˆ

B1(0)\B 1
n
(0)

1

|x|2 dx =
1

log n

ˆ 1

1
n

1

ρ
dρ = 1,
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and
ˆ

R2

|w̄n|dx =

√

log n

2π

π

n2
+

√

2π

log n

(

1

4
− log n

2n2
− 1

4n2

)

= on(1).

Thanks to the interpolation inequality, there holds |w̄n|ss = on(1) for all 1 ≤ s < +∞.
Denoting |w̄n|pp = δn with δn → 0 and we then define wn = w̄n/(1 +

p
√
δn) for all n ∈ N. Obviously,

it has that ‖wn‖ ≡ 1 which together with δn → 0 indicates that

(3.8) |∇wn|22 → 1 and |wn|pp → 0.

With the help of (2.2) and (3.8), we follow [35, Lemma 3.10] to show that

(3.9) c(wn) ,

ˆ

R2

(

A2
1[wn] +A2

2[wn]
)

w2
ndx→ 0.

We now claim that there is a n ∈ N
+ such that

(3.10) max
t>0

J∞(twn) <
2π

α0
.

Otherwise, for all n ∈ N
+, there exists a tn > 0 corresponding to the maximum point of maxt>0 J(twn)

(3.11) J ′
∞(tnwn)[tnwn] = 0 and J∞(tnwn) = max

t>0
J∞(twn) ≥

2π

α0
.

From (f3)− (f4), for all ǫ ∈ (0, β0), there exists a constant Rǫ = R(ǫ) > 0 such that

f(s)s ≥M−1
0 (β0 − ǫ)sϑ+1eα0|s|2, ∀|s| ≥ Rǫ.

According to the second formula in (3.11), {tn} is bounded below by some positive constant. For some
sufficiently large n ∈ N, one knows that tnwn ≥ Rǫ on B1/n(0). Using (3.11) again,

t2n|∇wn|22 + a∞tpn|wn|pp + 3t6nc(wn) =

ˆ

R2

f(tnwn)tnwndx ≥
ˆ

B1/n(0)
f(tnwn)tnwndx

≥ πM−1
0 (β0 − ǫ)(tnwn)

ϑ+1eα0|tnwn|2n−2

= πM−1
0 (β0 − ǫ)

[

tn
√
log n

(1 + p
√
δn)

√
2π

]ϑ+1

exp

[

α0t
2
n

log n

2π(1 + p
√
δn)2

− 2 log n

]

indicating that {tn} is uniformly bounded in n ∈ N. Up to a subsequence if necessary, there exists a
constant t0 ∈ (0,+∞) such that tn → t0. Since F (s) ≥ 0 for all s ∈ R, we invoke from (3.8) and the
second formula in (3.11) that

(3.12) t20 ≥
4π

α0
.

Choosing ǫ = β0/2, we apply (3.8)-(3.9) and tn → t0 to get

(1− ϑ) log t0 ≥ C

[

1 +
ϑ+ 1

2
log(log n) +

(

α0t
2
0(2π)

−1 − 2
)

log n

]

+ on(1),

where C > 0 is independent of n ∈ N. Recalling (3.12), we would arrive at a contradiction by tending
n→ ∞ and so (3.10) holds true. The proof is completed. �

Lemma 3.7. Let 1 < p < 2, then each sequence {un} ⊂ E satisfying (3.5) is uniformly bounded in
E. Moreover, there is a constant K0 > 0 independent of n ∈ N such that (2.10) holds true.

Proof. Given a sequence {un} ⊂ E satisfying (3.5), it follows from (f2) that

c∞ + on(1) = J∞(un)−
1

6
J ′
∞(un)[un]
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≥ 1

3

ˆ

R2

|∇un|2dx+
(

1

p
− 1

6

)

a∞

ˆ

R2

|un|pdx.

Recalling Lemma 3.6 and 1 < p < 2, we see that {‖un‖} is uniformly bounded in n ∈ N. Then, we
are derived from ‖un‖‖J ′

∞(un)‖E−1 → 0 and (2.2) that
ˆ

R2

f(un)undx =

ˆ

R2

[|∇un|2 + 3(A2
1 +A2

2)u
2
n]dx+ a∞

ˆ

R2

|un|pdx+ on(1)

≤
ˆ

R2

|∇un|2dx+ a∞

ˆ

R2

|un|pdx+ 3C̄2
r ‖un‖6 + on(1)

implying the desired result. The proof is completed. �

Before establishing the existence of ground state solutions for Eq. (1.15), we shall introduce a new
version type of Vanishing lemma with respect to our variational setting.

Theorem 3.8. Let 1 < p < 2 and r > 0. If {un} is bounded in E and suppose that

lim sup
n→∞

sup
y∈R2

ˆ

Br(y)
|un|pdx = 0,

then un → 0 in Ls(R2) for all p < s < +∞.

Proof. We follow the idea adopted in [38, Lemma 1.21] to conclude the proof and exhibit it in detail
for the convenience of the reader. First of all, we recall the Gagliardo-Nirenberg inequality in [3] that

(3.13) |u|ss ≤ Cs|∇u|s−p
2 |u|pp, ∀u ∈ E and p < s < +∞,

where the constant Cs > 0 only depends on s. So, we are derived form (3.13) that

ˆ

Br(y)
|un|sdx ≤ Cs

(

ˆ

Br(y)
|un|pdx

)(

ˆ

Br(y)
|∇un|2dx

)
s−p
2

.

Covering R
2 by balls of radius r in such a way that each point of R2 is contained in at most 3 balls,

we are able to see that

ˆ

R2

|un|sdx ≤ 3Cs sup
y∈R2

(

ˆ

Br(y)
|un|pdx

)

p(1−̟)
q∗

‖un‖s−p.

Under the assumption of this lemma, it holds that un → 0 in Ls(R2) for each p < s < +∞. The proof
is completed. �

We are now in a position to show the proof of Theorem 4.1.

Proof of Theorem 3.1. Due to Lemmas 3.2-3.3 and Proposition 3.4, there is a sequence {un} ⊂ E
satisfying (3.5). From Lemma 3.7, {‖un‖} is uniformly bounded in n ∈ N. Passing to a subsequence
if necessary, using Lemma 2.1, there exists a u∞ ∈ E such that un ⇀ u∞ in E, un → u∞ in Ls

loc(R
2)

with s ∈ (p,+∞) and un → u∞ a.e. in R
2. We claim that, there are y ∈ R

2 and r, τ > 0 such that

(3.14)

ˆ

Br(y)
|un|pdx ≥ τ.

Otherwise, thanks to Theorem 3.8, we obtain that un → 0 in Ls(R2) for every s ∈ (p,+∞). According
to Lemma 3.7, we now take a similar calculations in (2.11) to deduce that

(3.15) lim
n→∞

ˆ

R2

F (un)dx = 0.
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Our next goal is to show that

(3.16) lim
n→∞

ˆ

R2

f(un)undx = 0.

Indeed, on the one hand, taking (3.15), J∞(un) → c∞ and Lemma 3.6 into account that lim sup
n→∞

|∇un|22 <
4π
α0
. Thereby, we shall choose α > α0 sufficiently close to α0 and ν > 1 sufficiently close to 1 in such a

way that 1
ν + 1

ν′ = 1 with ν ′ > 1 and

αν|∇un|22 < 4π(1− ǫ) for some suitable ǫ ∈ (0, 1).

We define

ūn =

√

αν

4π(1− ǫ)
un, ∀n ∈ N.

Obviously, one sees that |∇ūn|22 ≤ 1 for all sufficiently n ∈ N and |ūn|pp is uniformly bounded in n ∈ N.
On the other hand, we apply (1.14) in (2.8) to get

ˆ

R2

f(un)undx ≤ ε

ˆ

R2

|un|2dx+ Cε

ˆ

R2

|un|qΦα,j0(un)dx

≤ ε

ˆ

R2

|un|2dx+ Cε

(
ˆ

R2

|un|qν
′
dx

)
1
ν′
(
ˆ

R2

Φ4π(1−ǫ),j0(ūn)dx

)
1
ν

≤ ε

ˆ

R2

|un|2dx+ CεS(4π)

(
ˆ

R2

|un|qν
′
dx

)
1
ν′

.

Letting n→ ∞ and then tending ε→ 0+, we reach the desired result (3.16). With (3.16) in hands, as a
direct consequence of J ′

∞(un)[un] → 0, we derive that |∇un|22 → 0, |un|pp → 0 and
´

R2(A
2
1+A

2
2)u

2
ndx→

0. Exploiting (3.15) and J∞(un) → c∞ again, it immediately concludes that c∞ ≡ 0 which contradicts
with c∞ > 0 in Lemma 3.6. So, we see that (3.14) must hold true.

According to (3.14), we define vn = un(·+yn) for every n ∈ N. Since both J∞ and J ′
∞ are translation

invariant in R
2, one knows that {vn} is still a (C) sequence of J∞ at the level c∞. Arguing as before,

passing to a subsequence if necessary, vn ⇀ v in E, vn → v in Ls
loc(R

2) with s ∈ (p,+∞) and vn → v
a.e. in R

2. Moreover, we can see that v 6= 0 by (3.14). As a consequence, without loss of generality,
we consider the sequence {un} instead of vn to suppose that u∞ 6= 0. In view of (2.3) and (2.12),
there holds J ′

∞(u∞) = 0 and so u∞ ∈ N∞. We are then derived from (3.5) and the Fatou’s lemma
that

c∞ = lim inf
n→∞

J∞(un) = lim inf
n→∞

{

J∞(un)−
1

6
J ′
∞(un)[un]

}

= lim inf
n→∞

{

1

3

ˆ

R2

|∇un|2dx+

(

1

p
− 1

6

)

a∞

ˆ

R2

|un|pdx+
1

6

ˆ

R2

[f(un)un − 6F (un)]dx

}

≥ 1

3

ˆ

R2

|∇u∞|2dx+

(

1

p
− 1

6

)

a∞

ˆ

R2

|u∞|pdx+
1

6

ˆ

R2

[f(u∞)u∞ − 6F (u∞)]dx

= J∞(u∞)− 1

6
J ′
∞(u∞)[u∞] = J∞(u∞) ≥ m∞.(3.17)

From which, it follows from Lemma 3.5 that un → u∞ in E along a subsequence. In other words, we
deduce that u∞ is a solution of Eq. (1.15) with J∞(u∞) = m∞. The positivity of u∞ is trivial, and
so we omit it here. The proof is completed. �

Remark 3.9. We invite the reader to see that Theorem 1.7 is a direct corollary of Theorem 3.1.
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4. Proof od Theorem 1.5

In this section, we are going to investigate the existence of positive ground state solutions for Eq.
(1.1). From the view point of variational method, we search for critical points of Ja defined in (3.1).
Recalling the discussions in Section 2, Ja is well-defined and of class of C1(E,R).

We shall prove the following result.

Theorem 4.1. Let 1 < p < 2 and suppose (A1)− (A2). If f satisfies (1.10) and (f1)− (f4), then Eq.
(1.1) admits at least a positive ground state solution ua ∈ E such that

Ja(ua) = ma = inf
u∈E\{0}

max
t≥0

Ja(tu).

Associated with Ja, we have the Nehari manifold given by

Na = {u ∈ E \ {0} : J ′
a(u)[u] = 0},

and define the minimization problem

(4.1) ma = min
u∈Na

Ja(u).

By definitions of m∞ and ma in (3.2) and (4.1), adopting (A2), it is easy to check that

(4.2) ma < m∞.

Moreover, because a is a positive and bounded function, it permits us to repeat the arguments in
Section 3 to find a (C) sequence {un} ⊂ E of Ja at the level ca, where

(4.3) ca , inf
γ∈Γa

max
t∈[0,1]

Ja(γ(t)) > 0

with Γa = {γ ∈ C([0, 1], E) : γ(0) = 0 and Ja(γ(1)) < 0}. We can also deduce that

(4.4) ma = ca = da , inf
u∈E\{0}

max
t≥0

Ja(tu)

and

(4.5) 0 < ca <
2π

α0
.

Actually, the essential, or unique, difference between the proof of Theorem 3.1 and that of Theorem
4.1 is that whether the variational functional is translation invariant in R

2. Clearly, we realize that
Ja does not have such a good property because of the appearance of the nonconstant potential a.
Thereby, to reach the proof, it is enough to verify that the weak limit of (C)ca sequence is nontrivial.

Lemma 4.2. Under the assumptions of Theorem 4.1, if {un} ⊂ Na denotes a (C)ca sequence of Ja
and un ⇀ ua in E along a subsequence, then ua 6= 0.

Proof. Assume by contradiction that ua = 0 and let tn > 0 such that tnun ∈ N∞ by Lemma 3.5. The
standard calculations show that {tn} is bounded, and so,

ca + on(1) = Ja(un) = max
t≥0

Ja(tun) ≥ Ja(tnun) = J∞(tnun) +
tpn
p

ˆ

R2

(a(x)− a∞)|un|pdx,

where we have used Lemma 3.5 again in the second equality. From this,

ca + on(1) ≥ m∞ +
tpn
p

ˆ

R2

(a(x)− a∞)|un|pdx.

In light of the fact that {tn} is bounded, we can make use of (A2) to have that
ˆ

R2

(a(x) − a∞)|un|pdx→ 0
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loading to

ca ≥ m∞,

which contradicts with (4.2) and (4.4). The proof is completed. �

Proof of Theorem 4.1. Owing to (4.4), we just need to find a sequence {un} ⊂ Na and it is a (C)ma

sequence of Ja. It is standard, we refer the reader to [30, Theorem 1.1] and so the proof is done. �

5. Proof od Theorem 1.9

In this section, we aim to derive that Eq. (1.15) admits a mountain-pass type solution whose energy
is equal to the mountain-pass level.

The main result in this direction can be stated as follows.

Theorem 5.1. Let 1 < p < 2 and suppose (A1) − (A2). If f satisfies (1.10) and (f1) − (f ′2) as well
as (f3)− (f4), then Eq. (1.15) has a positive mountain-pass type solution in u ∈ E with J∞(u) = c∞,
where J∞ and c∞ are defined by (3.1) and (3.6), respectively.

As we have pointed out in the Introduction, when (f2) is absence, we cannot restore the compactness
as what we have done in the Sections 3 and 4. Speaking it clearly, let {un} ⊂ E be a (C)c∞ sequence
of J∞, it is impossible to conclude that {un} admits a strongly convergent subsequence in E by (3.17).
The existence of such a sequence is guaranteed by adopting some very similar calculations in Section
3.

Whereas, since the whole space R
2 itself also results in the lack of compactness, we shall always

restrict ourselves in the radially symmetric subspace of E. In other words, in this section, we prefer
to take advantage of Er to be the work space, instead of E.

Now, we are able to verify that the variational functional J∞ satisfies the (C) condition at the level
c∞.

Lemma 5.2. Under the assumptions of Theorem 5.1, if {un} ⊂ Er is a (C)c∞ sequence of J∞, then
there is a u0 ∈ E such that un → u0 in Er along a subsequence.

Proof. Proceeding as the proof of Lemma 3.7, {‖un‖} is uniformly bounded in n ∈ N. Passing to a
subsequence if necessary, there is a u0 ∈ Er such that un ⇀ u0 in Er, un → u0 in Ls(RN ) with s > p
and un → u0 a.e. in R

N . Combining (2.3) and (2.12), one has J ′
∞(u0) = 0 which implies that

(5.1) J∞(u0) = J∞(u0)−
1

6
J ′
∞(u0)[u0] ≥ 0.

Moreover, it follows from the Brézis-Lieb lemma, (2.4), (2.11) and (5.1) that

c∞ =
1

2
|∇un|22 +

a∞
p

|un|pp +
1

2

ˆ

R2

(A2
1[un] +A2

2[un])u
2
ndx−

ˆ

R2

F (un)dx+ on(1)

=
1

2
|∇un −∇u0|22 +

a∞
p

|un − u0|pp +
1

2

ˆ

R2

(A2
1[un − u0] +A2

2[un − u0])(un − u0)
2dx

+
1

2
|∇u0|22 +

a∞
p

|u0|pp +
1

2

ˆ

R2

(A2
1[u0] +A2

2[u0])u
2
0dx−

ˆ

R2

F (u0)dx+ on(1)

≥ 1

2
|∇un −∇u0|22 + J∞(u0) + on(1) ≥

1

2
|∇un −∇u0|22 + on(1).

From which and Lemma 3.6, then lim sup
m→∞

|∇un −∇u0|22 < 4π
α0
. Consequently, we shall choose α > α0

sufficiently close to α0 and ν > 1 sufficiently close to 1 in such a way that 1
ν + 1

ν′ = 1 with ν ′ > 1 and

αν|∇un −∇u0|22 < 4π(1− ǫ̂) for some suitable ǫ ∈ (0, 1).
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We define

ûn =

√

αν

4π(1 − ǫ̂)
(un − u0), ∀n ∈ N.

Obviously, one sees that |∇ûn|22 ≤ 1 for all sufficiently n ∈ N and |ûn|pp is uniformly bounded in n ∈ N.
Besides, for the above fixed ǫ̂ ∈ (0, 1), we need the following two types of Young’s inequality

|a+ b|2 ≤ (1 + ǫ̂)|a|2 + (1 + ǫ̂−1)|b|2, ∀a, b ∈ R

and

ea+b − d ≤ 1

1 + ǫ̂

[

e(1+ǫ̂)a − d
]

+
ǫ̂

1 + ǫ̂

[

e(1+ǫ̂−1)b − d
]

, ∀a, b, d ∈ R.

By means of the above facts together with (1.14), we derive
ˆ

R2

Φαν,j0(un)dx ≤ 1

1 + ǭ

ˆ

R2

Φ4π(1+ǭ)−2,j0(ûn)dx+
ǭ

1 + ǭ

ˆ

R2

Φνα(1+ǭ−1)2,j0(u0)dx

≤ S(4π)

1 + ǭ
+

C2ǭ

1 + ǭ
≤ C3 < +∞, ∀n ∈ N

+.

As a consequence, by (2.8), we obtain

∣

∣

∣

∣

ˆ

R2

f(un)(un − u0)dx

∣

∣

∣

∣

≤
(
ˆ

R2

|un|2dx
)

1
2
(
ˆ

R2

|un − u0|2dx
)

1
2

+ C|un|(q−1)
2(q−1)ν′ |un − u0|2ν′

(
ˆ

R2

Φαν,j0(un)dx

)
1
ν

= on(1).(5.2)

It is simple to see that

(5.3)

ˆ

R2

f(u0)(un − u0)dx = on(1).

For all 1 < r < 2, thanks to the significant inequality [36, (2.2)] which can be stated as follows

(|y2|r−2y2 − |y1|r−2y1) · (y2 − y1) ≥ Ĉr ·
|y2 − y1|2

(|y2|+ |y1|)2−r
.

From which, using J ′
∞(un) = on(1) and J

′
∞(u0) = 0 as well as (2.3) and (5.2)-(5.3), it holds that

on(1) = J ′
∞(un)[un − u0]− J ′

∞(u0)[un − u0]

=

ˆ

R2

[

|∇un −∇u0|2 + (|un|p−2un − |u0|p−2u0)(un − u0)
]

dx

+

ˆ

R2

(A2
1[un]un +A2

2[un]un)(un − u)dx+

ˆ

R2

(A2
1[u0]u0 +A2

2[u0]u0)(un − u0)dx

+

ˆ

R2

f(un)(un − u0)dx+

ˆ

R2

f(u0)(un − u0)dx

=

ˆ

R2

[

|∇un −∇u0|2 + (|un|p−2un − |u0|p−2u0)(un − u0)
]

dx+ on(1)

≥ on(1)

yielding that

|∇un −∇u0|22 = on(1) and

ˆ

R2

(|un|p−2un − |u0|p−2u0)(un − u0)dx.
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At this stage, we apply the Hölder’s inequality to get
ˆ

R2

|un − u0|pdx ≤ Ĉ
− p

2
p

ˆ

R2

|(|un|p−2un − |u0|p−2u0)(un − u0)|
p
2 (|un|+ |u0|)

p(2−p)
2 dx

≤ Ĉ
− p

2
p

(
ˆ

R2

|(|un|p−2un − |u0|p−2u0)(un − u0)|dx
)

p
2
(
ˆ

R2

(|un|+ |u0|)pdx
)

2−p
2

≤ C

(
ˆ

R2

|(|un|p−2un − |u0|p−2u0)(un − u0)|dx
)

p
2

= on(1).

Thus, we can derive that un → u0 in Er as n→ ∞. The proof is completed. �

Proof of Theorem 5.1. In view of Section 3, there is a (C)c∞ sequence {un} ⊂ Er of J∞. So, we
can finish the proof by Lemma 5.2. This proof also concludes Theorem 1.9. �
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