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The challenge of understanding quantum measurement persists as a fundamental issue in modern
physics. Particularly, the abrupt and energy-non-conserving collapse of the wave function appears
to contradict classical thermodynamic laws. The contradiction can be resolved by considering mea-
surement itself to be an entropy-increasing process, driven by the second law of thermodynamics.
This proposal, dubbed the Measurement-Equilibration Hypothesis, builds on the Quantum Dar-
winism framework derived to explain the emergence of the classical world. Measurement outcomes
thus emerge objectively from unitary dynamics via closed-system equilibration. Working within
this framework, we construct the set of ‘objectifying observables’ that best encode the measurement
statistics of a system in an objective manner, and establish a measurement error bound to quantify
the probability an observer will obtain an incorrect measurement outcome. Using this error bound,
we show that the objectifying observables readily equilibrate on average under the set of Hamil-
tonians which preserve the outcome statistics on the measured system. Using a random matrix
model for this set, we numerically determine the measurement error bound, finding that the error
only approaches zero with increasing environment size when the environment is coarse-grained into
so-called observer systems. This indicates the necessity of coarse-graining an environment for the
emergence of objective measurement outcomes.

I. INTRODUCTION

The measurement of a quantum system is a key part of
any experiment in quantum physics. While the process
is well-modelled mathematically, the physical interpreta-
tion of this model stands as one of the most enduring
challenges of modern physics. Additionally, the laws of
thermodynamics, fundamental in our understanding of
energy, entropy, and temperature, are seemingly violated
by the abrupt and energy-non-conserving collapse of the
wave function [1–5].

The Measurement-Equilibration Hypothesis (MEH) [6]
provides a potential resolution, stating that a quan-
tum measurement emerges as a direct consequence of
the second law, i.e. via an entropy-increasing transition.
This would indicate that measurements are fundamen-
tally thermodynamic processes. Under the MEH, one
can apply the tools of modern quantum statistical me-
chanics to the framework of decoherence and Quantum
Darwinism to understand the emergence of classical mea-
surement outcomes [7, 8]. This addresses an important
open question, sometimes called the “big” measurement
problem [9]: when should a process be modelled as uni-
tary evolution, i.e. dynamically, and when should it be
modelled as a measurement, i.e. instantaneous collapse?
In the paradigm of the MEH, the system being measured
interacts with its surrounding environment, all processes
are unitary, and it is the effect of equilibration on av-
erage [10] that generates seemingly irreversible measure-
ments, just as classical statistical mechanics explains how
seemingly irreversible phenomena arise from reversible

dynamics. A key result within this paradigm is that an
exact, ideal projective measurement is impossible [6] (in-
deed, the infinite thermodynamic costs associated with
them was already studied in detail in [4]). However,
as the environment grows in size, the possible outcomes
of measurements of the system asymptotically approach
complete distinguishability, and hence the measurements
can be treated as ideal. Further, by coarse-graining en-
vironmental subsystems into “observer systems”, the ap-
proach to complete distinguishability is exponential with
respect to the size of the observer system.

In [6], the structure of the equilibrium state was in-
vestigated, specifically the extent to which a system’s
environment unambiguously encodes the measurement
outcome. It remains, however, to be understood which
environment observables actually reveal these outcomes,
and whether these observables equilibrate, which must
be addressed in any practically motivated model of mea-
surement.

In this paper, we construct a set of observables that
best encode the statistics of the measured system, which
we call the objectifying observables. In order to quantify
how effective these observables are at extracting measure-
ment outcomes at equilibrium, we then construct a mea-
surement error bound. This error quantifies the probabil-
ity that an observer system will not accurately reproduce
the measurement outcome. It can be concluded that any
dynamics leading to a vanishing error bound for multiple
observers are, in the conventional sense, measurements,
as they satisfy the requirements of objectivity, stability
and irreversibility.

Both the objectifying observables and the error bound
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that we construct are independent of the form of the
system-environment dynamics. The equilibration of an
observable, however, depends on the dynamics, and we
investigate this for the structure of system-environment
interactions considered in [6, 11, 12]. We then use numer-
ical simulations of a random matrix model [13] to inves-
tigate the conditions under which the measurement error
is minimal. In particular, we consider chaotic conditional
interactions modelled by a Gaussian random matrix en-
semble [14].

We find that the observables which most readily en-
code the measurement statistics of the system also read-
ily equilibrate for large environment dimensions. Impor-
tantly, we also find that for the chaotic conditional inter-
actions that we study, the distinguishability of measure-
ment outcomes can only be approached via the coarse-
graining of the environment into large observer systems.

We begin by reviewing the notion of objectivity (in a
strict sense defined in the following section) and the equi-
libration of isolated quantum systems, which are com-
bined under the MEH. We then define the set of observ-
ables that most readily encode the statistics of the system
and derive an error bound on an observer’s ability to ex-
tract measurement information through an equilibration
process. Following this, we investigate the size of the er-
ror bound, averaging over random dynamics described by
a broadcasting Hamiltonian. Finally, we consider differ-
ent initial states and the impact they have on the error,
and we discuss the ramifications of the results.

II. OBJECTIVITY VIA DYNAMICAL
EQUILIBRATION OF CLOSED SYSTEMS

A. Objectivity of measurement outcomes

Any reasonable model of a quantum measurement
must reproduce its key features: irreversibility, and the
stability and objectivity of outcomes. Objectivity of mea-
surement outcomes was defined in the context of Quan-
tum Darwinism (QD) as information that is indepen-
dently accessible to multiple observers, without perturb-
ing the system under consideration [8]. Classical me-
chanics satisfies this definition, whereas in quantum me-
chanics, properties of a system are not objective until
after a measurement has occurred. A model of quan-
tum measurement must therefore be able to explain how
non-objective quantum states can irreversibly produce
objective measurement outcomes. In the conventional
picture of quantum measurement as a ‘wavefunction col-
lapse’, post-measurement objectivity is imposed as a
postulate. The theory of QD was developed to under-
stand how our objective classical world emerges from
non-objective quantum systems, without imposing this
assumption ‘from above’, and has been investigated in
many physical scenarios, both theoretically [15–17] and
experimentally [18–22].

Following the QD formalism, the notion of objectivity

FIG. 1. Conceptual illustration. We model a measurement
as an isolated system-environment interaction. The system
being measured, S, interacts unitarily with an environment
(blue background). The environment is composed of many
sub-environments (orange spheres), and observer systems are
collections of sub-environments (white envelopes). We imag-
ine a scenario in which each observer has access to an observer
system.

was formalised into a state structure, namely spectrum
Broadcast Structures (SBS) [23, 24], defined in Eq. (1)
below. This state structure is equivalent to so-called
‘strong Quantum Darwinism’, combined with strong in-
dependence of environmental subsystems [25]. Following
the introduction of SBS states, there has been much re-
search into their appearance in known physical models
such as Brownian motion [26–28] and spin-spin models
[29, 30]. Beyond these physical models, both dynamics
with self-evolution [31] and the relationship between en-
tanglement and objectivity [32] have been studied. The
generic emergence of objectivity was investigated by av-
eraging over dynamics to see typical behaviours [11] and
recent work even proposed a Bell-like inequality to wit-
ness non-objectivity [33].

As illustrated in Fig. 1, we consider some system of in-
terest S interacting with an ‘environment’, where this en-
vironment consists ofNE quantum systems, which we call
‘sub-environments’. We collect these sub-environments
into NO groups, which we call ‘observer systems’, and
for simplicity, we will assume that each observer sys-
tem contains n sub-environments (though our results can
be readily generalised to the case where each observer
system contains different numbers of sub-environments).
For example, the environment could include a physical
measurement device such as a single-photon detector,
along with its surroundings in a laboratory. The observer
systems would then be distinct fractions of this.

Let us denote the initial state of S by ρS,0 and the
measurement basis by {|i⟩S}i=1,2...dS

, with dS denoting
the dimensionality of the Hilbert space of the system S
(note that we have assumed a non-degenerate observable
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for simplicity). The probability associated with the mea-
surement outcome i is then pi = ⟨i|ρS,0|i⟩S . Demanding
that, at some later time, the observer systems objectively
(as defined in [23]) encode the state of S in the measure-
ment basis implies that their combined state at that time
has spectrum broadcast structure (SBS):

ρSBS =

dS∑
i=1

pi|i⟩⟨i|S
NO⊗
k=1

ρ
(i)
k , (1)

where the conditional observer system states are com-

pletely distinguishable: ρ
(i)
k ρ

(j)
k = 0, ∀ i ̸= j and for

all observers k. This is equivalent to F
(
ρ
(i)
k , ρ

(j)
k

)
= 0,

where F (ρ, σ) =
(
tr
√√

ρσ
√
ρ
)2

is the fidelity.
In this paradigm, observers are each associated with an

observer system, and the distinguishability of the condi-

tional states of the kth observer system {ρ(i)k }i=1,2...dS

corresponds to the kth observer’s ability to distinguish,
correctly and with certainty, between the possible system
states {|i⟩S}i=1,2...dS

.
A question that naturally follows this idea of objectiv-

ity is, given a general multipartite state, with a defined
system that has been measured, how far away is it from
being an objective SBS state? There are many ways to
answer this question: one could use the trace distance
as a distance metric between states, as in [12, 31]. How-
ever, as the set of SBS states is not convex, minimising
the trace distance to the closest SBS state is not efficient.
An alternative idea, discussed and used in [12, 33, 34], is
to calculate a probability of success, i.e. asking what the
probability is that an observer, attempting to extract the
measurement outcome from an observer system, would
obtain the correct result. This is essentially a state dis-
crimination problem [35] and we outline this approach in
Section III.

B. Objectivity through equilibration

The MEH states that the emergence of an objective
post-measurement state occurs spontaneously through
unitary dynamics, as the result of closed-system equi-
libration. In this notion of equilibration, one does not
demand that a state tends inexorably to an equilibrium
state, but rather that the statistics of certain observables
or subsystems are on average represented by the equilib-
rium state, which can be calculated via the infinite-time
average [10]:

ρeq = lim
T→∞

1

T

∫ T

0

ρ(t)dt =
∑
n

Pnρ(0)Pn, (2)

where Pn is the projector onto the eigenspace corre-
sponding to the nth eigenvalue of the Hamiltonian, and
ρ(t) = U(t)ρ(0)U†(t). The equilibrium state maximises
the von Neumann entropy given the constants of mo-
tion [10, 36]. Specifically, we say that an observable

equilibrates on average when, for ‘most’ times t, a mea-
surement of the observable will follow statistics close to
those of the equilibrium state ρeq [37]. Hence, the state
ρ(t) is very ‘close’ to the equilibrium state ρeq with re-
spect to equilibrating observables. Bounds on this close-
ness are well-known [37–39]; one such bound states that
for an arbitrary observable O and a Hamiltonian with
non-degenerate energy gaps [37–39],

〈
| tr[ρ(t)O] − tr[ρeqO]|2

〉
∞ ⩽

∥O∥2

deff
, (3)

where we use the notation ⟨·⟩∞ = limT→∞
∫ T

0
· dt to de-

note the infinite-time average and deff is the effective di-
mension (sometimes called the inverse participation ratio
). The effective dimension depends on the probability for
each energy eigenstate of the Hamiltonian H =

∑
λnPn

to be occupied by the initial state [36], and is defined as:

d−1
eff (ρ) :=

D∑
n=1

(tr [Pnρ(0)])
2
, (4)

where D is the dimensionality of the total Hilbert space.
When the Hamiltonian is non-degenerate or the initial
state is pure, the effective dimension is simply the in-
verse purity of the equilibrium state deff = 1/ tr(ρ2eq) [40].
Heuristically, it tells us how much of the total Hilbert
space is explored by the state during the time evolution.

This bound indicates that for ∥O∥2 << deff , the ob-
servable will equilibrate. A similar bound also exists for
the equilibration on average of sub-systems [41], which
can be proven using the observable bound.

As noted above, the MEH models a quantum mea-
surement as a dynamical and entropy-increasing transi-
tion to equilibrium. In [6], the conditions under which
an equilibrium state is objective were studied, i.e. when
ρeq = ρSBS. It was shown that this exact relation is im-
possible, and can only be approached asymptotically as
the size of the environment increases. This leaves open
the question, however, of which degrees of freedom (i.e.
which observables) in the environment will encode the
measurement statistics. We address this in Section III.

III. MEASUREMENT VIA OBJECTIFYING
OBSERVABLES

Let us now consider some arbitrary equilibrium state
ρeq, calculated according to Eq. (2) for some time-
independent Hamiltonian. Fixing a pointer (i.e. mea-
surement) basis on the system {|i⟩S}i, one can separate
this state into diagonal and off-diagonal parts:

ρeq =

dS∑
i=1

qi|i⟩⟨i|S ⊗ ρ(i) + γSE , (5)

where the state ρ(i) is a density matrix on
⊗NO

k=1 Hk,
which is the environment Hilbert space consisting of NO
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observer systems. Our goal is to quantify how well ob-
servers can distinguish between system states {|i⟩S}i. To
do this, we can use convex optimisation to find the op-
timal projectors for each observer system to distinguish
between the possible outcomes of the measured system
S [12, 34]. The maximum probability of success for each
observer system k to reproduce the statistics of S (in the
pointer basis) is defined as [33]:

Pk = max
{Πi

k}i

dS∑
i=1

qi tr
(
ρ
(i)
k Πi

k

)
, (6)

where ρ
(i)
k = trk′ ̸=k

(
ρ(i)
)

is the state of the kth observer
system conditioned on the system S being in the state
|i⟩, and {Πi

k}i are a complete set of projectors on Hk. In
the following, we will use {Πi

k}i to denote the particular
set of optimal projectors satisfying the maximisation in
Eq. (6). We will use these optimal projectors to construct
the objectifying observables, as well as an SBS state close
to the given equilibrium state ρeq.

The probability of error for each observer attempting
to ascertain the outcome of the measurement of S will be
quantified. Given a fictional scenario in which a system-
environment equilibrates to an equilibrium state that is
a perfect SBS state, the error is zero for all k because one
can always find optimal projectors that perfectly distin-
guish between the conditional states of each observer sys-
tem. This means that all observers can correctly repro-
duce the statistics of the measured system and moreover
that they all agree with each other.

In reality, there are two sources of error to consider.
For the first part, we know that equilibration is not an ex-
act process. The statistics of an equilibrating observable
may be close to those described by ρeq for most times but
there is still a finite difference between them at any given
t, and for certain t this difference may even be large (e.g.
fluctuations from equilibrium). So even if the equilibrium
state is a perfect SBS state, one has to account for this
difference. This is addressed using time-averaged equi-
librium bounds [38, 41]. Secondly, we know from [6] that
the equilibrium state cannot be an exact SBS state and
for large distances between the equilibrium state and an
SBS state, the probability for each observer to correctly
encode the statistics of the system will be low.

Operationally speaking, we only need to consider how
well an observable can distinguish between the time-
evolving state ρ(t) and an SBS state that is close to the
equilibrium state, which we denote ρSBS

eq . In Appendix A,
we show how to construct such an equilibrium-proximate
SBS state. The observable equilibration bound from [38]
then provides a way to quantify the operational error
arising from the difference between ρ(t) and ρSBS

eq .

The optimal projectors {Πi
k}i defined via Eq. (6) allow

us to define an observable for each observer system k
which optimally distinguishes between the states of S. To
wit, for each observer system k, we define an objectifying

observable Ôk:

Ôk =

dS∑
i=1

ci,kO
i
k =

dS∑
i=1

ci,k1S ⊗ Πi
k ⊗ 1k′ ̸=k, (7)

where we apply the optimal projector Πi
k to the kth

observer system, and the identity to all other observer
systems and the measured system S. These projectors
are weighted by some arbitrary observable outcomes ci,k
(which play no role in the following).

To quantify the extent to which the objectifying ob-
servables encode measurement outcomes in an objective
manner, we make use of a measurement-dependent dis-
tinguishability of states. Specifically, the distinguishabil-
ity between two states, ρ1 and ρ2, when one has access
to a specific measurement M , is defined as [38]:

DM (ρ1, ρ2) ≡ 1

2

∑
i

|tr (Miρ1) − tr (Miρ2)| . (8)

Here, M is a Positive Operator-Valued Measure
(POVM), which is determined by a set of positive opera-
tors {Mi}, one for each outcome i, such that

∑
iMi = 1.

The distinguishability DM (ρ1, ρ2) then determines the
probability of success in distinguishing ρ1 from ρ2 using
the measurement M [38].

We assume that each observer has access to the objecti-
fying observable Ôk defined in Eq. (7). For each observer
system k, we can look at the distinguishability between
ρ(t) and ρSBS

eq according to Ôk. Let Ek denote the time-
average of this distinguishability over the course of the
evolution. This quantity, which we call the measurement
error, satisfies the following bound

Ek =
〈
DÔk

(
ρ(t), ρSBS

eq

)〉
∞

≤ Eobj + Eeq, (9)

where the two terms correspond to a lack of objectiv-
ity of the equilibrium state and a lack of equilibration
respectively:

Eobj =
∑
i ̸=j

√
qiqjF

(
ρ
(i)
k , ρ

(j)
k

)
, (10)

Eeq =
dS

4
√
deff

. (11)

The terms {qi}i and ρ
(i)
k = trk′ ̸=k

(
ρ(i)
)

are defined from
the general equilibrium state in Eq. (5) and we recall
that ρSBS

eq is an SBS state close to ρeq, defined in Ap-
pendix A. The effective dimension (defined in Eq. (4))
satisfies 1 ≤ deff ≤ dSdE where dS denotes the dimension
of the system being measured and dE the total environ-
ment dimension. See Appendix B for the proof of this
bound.

From Eq. (9), we can see that the objectifying observ-
ables equilibrate and unambiguously encode the state of
the system (in the measurement basis) under the con-
ditions that, 1) the environment unambiguously encodes
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the measurement outcome, F (ρ
(i)
k , ρ

(j)
k ) ≈ 0 ∀i, j, k with

i ̸= j, and 2) the system S equilibrates on average under
the dynamics, i.e. dS

4
√
deff

≈ 0 (see Eq. (16) in [38]).

Note, however, that even when the average error
Eobj + Eeq is negligible, the objectifying observables only
accurately encode the measurement statistics of the ini-
tial state {pi = ⟨i|ρS,0|i⟩S}i=1,2...dS

when the equilibrium
state itself encodes those statistics, i.e. when qi ≈ pi ∀i.
Exact equality, qi = pi ∀i, implies the Hamiltonian com-
mutes with the observable being measured on the system

of interest, i.e. that H =
∑dS

i=1 |i⟩⟨i|S ⊗ H
(i)
E for some

{H(i)
E }i=1,2...dS

.
Eq. (9) bounds, in a manner that is independent of

dynamics, the time-averaged error for observers to deter-
mine the state of the measured system S. In the following
section, we will investigate this error for quantum sys-
tems evolving under a Hamiltonian with a specific form.

IV. EQUILIBRATION OF OBJECTIFYING
OBSERVABLES UNDER A BROADCASTING

HAMILTONIAN

In the previous section, we defined the measurement
error as the lack of objectivity associated with an ob-
jectifying observable, averaged over the entire dynam-
ics, and we derived an upper bound to this error. Here
we wish to test the hypothesis that as the observer sys-
tem dimension dk increases, we can expect, in general,
for our error bound to decrease. This would then sug-
gest that in the thermodynamic limit of large environ-
ment size (and hence the classical limit), the probability
of error (or ‘non-objectivity’) would be negligible. This
naturally motivates a study of the measurement error,
averaged over random interaction Hamiltonians. In the
spirit of this, we consider the broadcasting Hamiltonian
investigated in [6, 11, 12], to wit:

H =

dS∑
i=1

|i⟩⟨i|S ⊗
NE∑
l=1

H
(i)
l , (12)

where each conditional Hamiltonian H
(i)
l is drawn from

the Gaussian Unitary Ensemble (GUE) [13, 42] and acts
on a single sub-environment, indexed by l. We use this
random matrix model to represent a generic, chaotic evo-
lution of the observer system (see e.g. [14] for an extensive
discussion of quantum chaos and random matrix mod-
els), thus limiting the extent to which specific features
of chosen conditional Hamiltonians restrict our analysis,
and allowing us to capture generic features of the dy-
namics. The form of the Hamiltonian in Eq. (12) follows
from the requirements that the interaction preserves the
pointer basis (see Section III), i.e. that qi = pi ∀i, and
from the strong independence condition [24].

Level repulsion in Gaussian random matrix models
ensures that there is vanishing probability for eigenval-
ues to coincide, and we can therefore take each condi-
tional Hamiltonian to be non-degenerate. Thus we can

write each one as H
(i)
l =

∑dl

n=1E
(i)
nl |E

(i)
nl ⟩⟨E

(i)
nl |, where

|E(i)
nl ⟩ is the eigenstate corresponding to the unique eigen-

value E
(i)
nl and dl denotes the dimensionality of the sub-

environment l.
In [6], it was shown that for an arbitrary, uncorrelated

initial state ρ(0) = ρS,0 ⊗NE

l=1 ρ̃l,0, the equilibrium state,
according to evolution via Eq. (12), will be of the form

ρeq =

dS∑
i=1

pi|i⟩⟨i|S
NE⊗
k=1

ρ̃
(i)
l , (13)

where pi = ⟨i|ρS,0|i⟩S , and where we have used a tilde
to denote a state of a sub-environment, rather than an
observer system. Note that despite its appearance, ρeq
in Eq. (13) is not an SBS state, as the distinguishability

condition, i.e. ρ̃
(i)
l ρ̃

(j)
l = 0 for all i ̸= j and all l, is not

met. Each sub-environment l, has a different equilibrium

state ρ̃
(i)
l , conditional on the system’s state, indexed by

i:

ρ̃
(i)
l =

dl∑
nl=1

⟨E(i)
nl |ρ̃l,0|E

(i)
nl ⟩|E

(i)
nl ⟩⟨E

(i)
nl |. (14)

The state ρ̃
(i)
l is in general mixed, and only depends on

the initial state ρ̃l,0 and on the conditional Hamiltonian
of the lth sub-environment corresponding to the outcome
i. Note that if the sub-environments were initially corre-
lated, this would not be the case.

Now, as illustrated in Fig. 2, we identify sub-
environments with observer systems, either one-to-

one (ρ
(i)
k = ρ̃

(i)
l for some k,l), or by grouping sub-

environments together into a coarse-grained observer sys-

tem: ρ
(i)
k =

⊗
l ρ̃

(i)
l where the tensor product is taken

over all l associated with that particular k. This allows us
to compare the effect of increasing dimensionality in both
cases. As we shall see later, the choice of identification
(i.e. coarse-grained or one-to-one) has a demonstrable
effect on the objectivity of the equilibrium state.

The average of the measurement error Ek over the GUE
is bounded by the average of the objectivity and equili-
bration error terms in Eq. (9) since all terms are positive,
i.e.

⟨Ek⟩GUE ≤ ⟨Eobj⟩GUE + ⟨Eeq⟩GUE . (15)

We numerically approximate this by drawing each con-

ditional Hamiltonian H
(i)
l from the GUE and averaging

over many instances. In the following sections, we will
study the two terms ⟨Eobj⟩GUE and ⟨Eeq⟩GUE for different
initial states of the environment: pure, maximally mixed
and finite-temperature. When both terms approach zero,
the average error likewise approaches zero. Our analysis
will answer two questions: do systems in general equi-
librate under chaotic conditional dynamics, and is the
equilibrium state objective according to the objectifying
observables?
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FIG. 2. Schematic illustrating two system-environment configurations. In both cases, we model a system S being measured
via a unitary interaction with its surrounding environment. The environment is composed of many sub-environments (orange
spheres). The observer systems (indicated by shaded boxes) are collections of one or more sub-environments. Objectifying
observables, corresponding to {Πi

k}i are associated with each observer system. The black lines connecting the system to the
sub-environments indicate interactions via the broadcasting Hamiltonian (Eq. (12)). In (a), we consider observer systems of
single high-dimensional qudit sub-environments, where each qudit has dimension d (here d = 16). In (b) we consider observer
systems of n qubit sub-environments (n = 4 in this illustration and so the total dimension of each observer system is 24 = 16).

Firstly, we wish to investigate when ⟨Eeq⟩GUE is min-
imised. As noted above, the conditional Hamiltonians
are non-degenerate, and moreover each energy gap in
the spectrum appears no more than once. We begin by
simplifying deff = 1/ tr(ρ2eq). Using Eq. (13), we can
write the effective dimension in terms of the eigenstates

{|E(i)
nl ⟩}i,l of the conditional Hamiltonians and the initial

sub-environment states ρ̃l,0:

deff =

[
dS∑
i=1

p2i

NE∏
l=1

dl∑
nl=1

⟨E(i)
nl |ρ̃l,0|E

(i)
nl ⟩

2

]−1

. (16)

We define

Xi
nl

≡ ⟨E(i)
nl |ρ̃l,0|E

(i)
nl ⟩

2
(17)

as a random variable for simplicity of notation. If we
assume the system S is initially in an equal superposition
(which is, in a sense, the hardest case to distinguish),
then we have that pi = 1

dS
for all i. Then, ⟨Eeq⟩GUE

reduces to:

⟨Eeq⟩GUE =
1

4

〈√√√√ dS∑
i=1

NE∏
l=1

dl∑
nl=1

Xi
nl

〉
GUE

. (18)

Next, we analyse the average over the GUE of Eobj,
where the latter was defined in Eq. (10). This term quan-
tifies the (lack of) objectivity of the equilibrium state.
When it is zero, ρeq is an SBS state and therefore ob-
jective. As above, we assume that pi = 1

dS
for all i.

Averaged over the GUE, all the fidelity terms in Eq. (10)
are the same, and so may be replaced by any specific
term in the summation, e.g. i = 0 and j = 1, without
loss of generality. Noting that the total number of terms
in the summation is dS(dS − 1), we then have

⟨Eobj⟩GUE = (dS − 1)
〈
F
(
ρ
(i)
k , ρ

(j)
k

)〉
GUE

. (19)

The probability that F
(
ρ
(i)
k , ρ

(j)
k

)
= 0 for any random

draw from the GUE is zero, as there exists no Hamil-
tonian for which the equilibrium state has this property

exactly [6]. As noted above F
(
ρ
(i)
k , ρ

(j)
k

)
only asymp-

totically approaches zero when larger and larger observer
systems of the environment (so-called macrofractions) are
considered.

We study the behaviour of the upper bound in Eq. (15)
as the observer systems dimensions dk increase. Specif-
ically, we investigate whether both terms ⟨Eobj⟩GUE and
⟨Eeq⟩GUE approach zero in the limit of very large dk. Due
to the strong independence-preserving structure of the
broadcasting Hamiltonian (i.e. no interactions between
sub-environments), we only need to simulate a single sub-
environment, and the result can then be used to also
calculate the error for composite observer systems. We
consider two distinct scenarios, illustrated in Fig. 2. In
Fig. 2a, we consider an observer system comprised of a
single qudit with dimension dk. In Fig. 2b, we consider an
observer system comprised of n-qubit sub-environments,
and thus with total dimension dk = 2n. Both scenar-
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FIG. 3. Numerical simulation of Eeq, defined in Eq. (11), when sampled over the GUE. Each sample in histograms (a) and (b)
considers an initially pure and uncorrelated system-environment state, evolving according to conditional Hamiltonians drawn
from the GUE. There are 10,000 samples for each considered observer system dimension dk. (a) A single qudit observer system
of dimension dk (the scenario in Fig. 2a). (b) A coarse-grained observer system of n qubits with total dimension dk = 2n (the
scenario in Fig. 2b). In (c) we plot the average over the GUE of each histogram in single qudit and many-qubit observer system
cases as a function of dk. In (d) we plot the variance over the GUE.

ios are investigated in the simulations in the following
sections.

We consider pure, maximally-mixed and thermal ini-
tial states. We restrict ourselves to measuring a qubit
system dS = 2, initially in an equal superposition, such
that ρS,0 = |ψS,0⟩⟨ψS,0|, where |ψS,0⟩ = 1√

2
(|0⟩ + |1⟩).

In this case, the only distinguishability condition to con-

sider in Eq. (10) is the function F
(
ρ
(0)
k , ρ

(1)
k

)
. For each

simulation round, we generate conditional Hamiltonians
from the GUE, in which the matrix elements are com-
plex normal random numbers (µ = 0 and σ = 1). This is
done with the python package TeNPy [43]. We then use
the QuTiP package [44] to numerically calculate ρeq and

from this deff and F
(
ρ
(0)
k , ρ

(1)
k

)
.

1. Pure initial observer states

First, we consider an environment of uncorrelated pure
states, such that ρ̃l,0 = |ψl⟩⟨ψl| for each sub-environment
l, i.e. a temperature-zero environment. We analyse both
terms in our error bound separately, beginning with Eeq
for pure initial states. The random variable defined in

Eq. (17) can then be simplified to Xi
nl

= |⟨E(i)
nl |ψl⟩|4.

For our simulations, we can choose any initial pure state,
since both ⟨Eobj⟩GUE and ⟨Eeq⟩GUE are averaged over the
GUE and so are invariant under unitary transformation
– see Appendices C 1 and D 1. Thus, without loss of
generality, we choose ρ̃l,0 = |0⟩⟨0|.

Fig. 3a shows histograms (each with 10,000 random
samples) of Eeq for a qubit system, coupled to a single qu-
dit observer system with dimension dk (i.e. the scenario
described in Fig. 2a). Fig. 3b shows the corresponding set
of histograms for a qubit system coupled to an observer
system of n initially uncorrelated qubits of total dimen-
sion dk, i.e. with initial state

⊗n
l=1 |0⟩⟨0|l (the scenario
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FIG. 4. Numerical simulation of Eobj, defined in Eq. (10), via sampling over the GUE. (a) shows histograms for a single
qudit observer system (the scenario in Fig. 2a). Each sample considers an initially pure and uncorrelated system-environment,
evolving according to conditional Hamiltonians drawn from the GUE. There are 10,000 samples for each considered dimension
dk. In (b) we show ⟨Eobj⟩GUE for a coarse-grained observer system consisting of n qubits (the scenario in Fig. 2b). We present
the average fidelity on a log2 scale. Here we show the necessity of coarse-graining in order to approach zero fidelity in the large
observer system limit.

described in Fig. 2b).
It is expected that our system will typically approach

equilibrium (corresponding to a small ⟨Eeq⟩GUE) as the
total dimension of the observer system grows. Here, we
corroborate that hypothesis, indicated by the histograms
in Figs. 3a and 3b tending towards zero as dk increases.
There are, however, certain complications: there is a de-
pendence on the Hilbert space structure of the observer
system and the corresponding dynamics. Fig. 3c plots
the averages of each histogram from Figs. 3a and 3b on
the same plot. It shows that a single-qudit observer sys-
tem equilibrates better (on average) in this setting than
a many-qubit observer system of the same dimension.
We also see from Fig. 3d that the variance of Eeq for a
single-qudit observer decreases considerably faster with
dimension than in the case of the equivalent many-qubit
observer system. Each qubit in the many-qubit case in-
teracts individually with the central system in a star-
like structure, resulting in very different dynamics to the
single-qudit case. This result highlights the dependence
of the effective dimension on the form of the interaction.

We now examine the objectivity term in the error
bound. Fig. 4a shows histograms (10,000 samples each)
of Eobj for single-qudit observer systems of increasing di-
mension (the scenario in Fig. 2a). We can see that even
for a high-dimensional observer system (dk = 128), the
mean fidelity remains greater than 0.6. This result may
be counter-intuitive, as the overlap between two ran-
domly drawn states decreases with the increase of the
Hilbert space dimension (see e.g. Section 7.6 of [45]).
However, this comparison is not quite correct, as we are
not simply comparing the overlaps of random states, but
rather the result of applying two randomly-drawn pinch-
ing maps (the infinite-time average) to ρ̃l,0 = |0⟩⟨0|.
The pinching map in each case depends on eigenvec-

tors of randomly drawn Hamiltonians. We show in Ap-
pendix C 2, that in the limit of dk → ∞, the fidelity
between conditional states, averaged over the GUE, ap-
proaches 0.62. This has an important implication for
the emergence of objectivity. Specifically, it implies that
extracting measurement statistics from a single, chaotic
high-dimensional qudit observer system generically re-
sults in a non-negligible error.

It was shown in [6] that coarse-graining sub-
environments into multipartite observer systems reduces
this error. However, our result indicates that in the sce-
nario considered, this coarse-graining is not just benefi-
cial, but in fact necessary for the emergence of objec-
tivity via equilibration on average. Indeed, in Fig. 4b
we consider the result of coarse-graining n qubits into
one observer system (the scenario in Fig. 2b). We see
that ⟨Eobj⟩GUE exponentially approaches zero with re-
spect to the number of qubits (plotted here on a loga-
rithmic scale).

2. Maximally-mixed initial states

At the opposite end of the spectrum, we consider initial
sub-environment states that are maximally mixed, i.e. at
infinite temperature. Let us briefly relax the assump-
tion that the system S is a qubit, and assume instead
that it is in a equally-weighted superposition of basis
states with an arbitrary dimension. We find that this
choice of initial state maximises the effective dimension,
i.e. deff = dS ·(dl)NE – see Appendix D 2. Thus the equili-
bration error decreases as either dl or NE increase, and as

either tends to infinity then Eeq =
√
dS(4 d

NE/2
l )−1 → 0.

Indeed, no matter which Hamiltonian is drawn from the
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GUE, the state of each sub-environment is maximally

mixed throughout the evolution and so ρ
(i)
l = ρ̃l,0 for all

i, l. In this sense, the dynamics decoheres the system
being measured, but the initial state ρ̃l,0 is already in lo-
cal equilibrium and so no information is being exchanged
between the system being measured and the environment
during the dynamics. (Thus no information is exchanged
with the observer systems, too.) Consequently, this ini-

tial state leads to a trivial Eobj, as F (ρ
(i)
k , ρ

(j)
k ) = 1 for

any choice of grouping into an observer system k. There-
fore, for a system initially in an equal superposition such
that pi = 1/dS for all i, the error bound reduces to:

Ek ≤ (dS − 1) +
1

4

√
dS

dNE

l

,

for any choice of k. Noting that the right-hand side is
always greater than unity, we see that we obtain no in-
formation in this case. The entire environment, and in
particular any observer system, contains no information
about the measurement outcome.

3. Finite-temperature initial states

So far, we have considered two opposing examples of
initial states: pure and maximally mixed, i.e. zero and
infinite-temperature respectively. For completeness, in
this section, we study the intermediate scenario, i.e. sub-
environments initially at temperatures 0 < T <∞.

A thermal state is defined as

ρth =
e−βHth

Z
, (20)

where Z = tr(e−βHth) is the partition function, β =
1/kBT is the inverse temperature (we set Boltzmann’s
constant kB = 1 in all simulations) and Hth is some
Hamiltonian. Here, we consider an initial state ρ(0) =

ρS,0 ⊗NE

l=1 ρ̃
th
l , where we again take the system S to be a

qubit, initially in an equal superposition, and where ρ̃thl
is a thermal state of the lth sub-environment. Here we
only consider the case where each of the observer systems
k consist of a single sub-environment, i.e. a single qudit
of dimension dk = dl (this is the scenario in Fig. 2a).
We show in Appendix D 3 that the error bound, when
averaged over the GUE, is invariant under unitary trans-
formations of Hth. Therefore, our choice of eigenstates
in Hth will not affect our simulation results. We as-
sume Hth has equally-spaced eigenvalues and note that
in this case, a different choice of eigenvalues is equiva-
lent to an overall rescaling, and therefore to a different
temperature. We make use of a built-in QuTiP function
(qutip.enr thermal dm) to generate our thermal initial
states in the excitation-restricted number space at inverse
temperature β = 1/kBT [44]. For details on our choice
of Hth, see Appendix D 4.

In Fig. 5a, we show the obtained values of the equilibra-
tion term ⟨Eeq⟩GUE for increasing initial sub-environment

temperature. We see that in general, as the temperature
of the initial environment state increases, ⟨Eeq⟩GUE de-
creases. However, the effect of temperature becomes less
impactful as the observer system dimension increases.

In Fig. 5b, we analyse ⟨Eobj⟩GUE for the same scenario
and see that ⟨Eobj⟩GUE increases, tending to one, as we
increase the temperature of the initial environment. This
indicates that higher temperature environments are less
able to exchange information with the system S. Loosely
speaking, mixed-state environments are noisy and so less
able to acquire and store information about the system of
interest. This was previously investigated in the context
of Quantum Darwinism [46] and further seen for spec-
trum broadcast structure states in [12].

V. DISCUSSION & CONCLUSIONS

When an observer measures a quantum system of in-
terest, information about a particular observable is ex-
tracted. This is modelled mathematically as the observer
applying an observable operator to the system being mea-
sured and obtaining a measurement outcome that corre-
sponds to an eigenstate of the observable. In a dynam-
ical measurement model, when the system is measured,
information in its pointer basis is exchanged with the
environment via the interaction of the two. Under the
recently-proposed Measurement-Equilibration Hypothe-
sis (MEH), this process is unitary, and corresponds to
a process of equilibration. The MEH thus frames quan-
tum measurements as an inherently thermodynamic (or
more precisely, statistical mechanical) phenomenon that
directly results from the universe’s tendency towards en-
tropy maximisation.

In this work, we showed how to obtain the set of ob-
servables – objectifying observables – which optimally en-
code measurement statistics from the system being mea-
sured. For example, in a Stern-Gerlach experiment, the
objectifying observables would be the position of the par-
ticles upon impact with the screen. From this position
observable, we learn the measurement outcome (the spin)
of the particle. Applying this to the equilibrium state,
we solve the question of how, under the MEH, macro-
scopic, equilibrating observables can encode the measure-
ment outcome.

We then constructed an error bound on the measure-
ment with respect to the objectifying observables. We
use numerical methods to find that this error decreases
as the environment dimension increases and importantly,
when the environment is coarse-grained. These results
indicate the objectifying observables readily equilibrate
for large Hilbert spaces of the environment.

Coarse-graining has been shown to play a role in the
emergence of objectivity in a noisy photonic environ-
ment [23], for example, as well as in thermodynamic in-
vestigations of the measurement process [6, 47]. Inter-
estingly, our numerical studies highlight that the emer-
gence of objectivity necessarily requires coarse-graining
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FIG. 5. (a) shows ⟨Eeq⟩GUE for a single-qudit observer system with dimension dk (the scenario in Fig. 2a), that is initially
thermal at temperature T = 1/β and energy gap ω. (b) shows ⟨Eobj⟩GUE for the same thermal initial states as in (a). Each
data point in (a) and (b) is an average of 10,000 samples over the GUE.

of observers into observer systems in some cases. With-
out coarse-graining, the error bound remains high, even
when the dimension of the environment is large.

We have shown that under dynamics described by the
conditional Hamiltonian structure, the objectifying ob-
servables generically encode the measurement statistics
and equilibrate. However, we have not shown that all ob-
servables that equilibrate encode the measurement statis-
tics. This is intuitive, as we would not expect every
degree of freedom to perfectly record measurement out-
comes. For example, in a Stern-Gerlach experiment, both
the particle position and momentum equilibrate at the
end of the experiment, but only one of those two observ-
ables, the position, encodes the spin state of the system
[48].

Here, we also want to emphasise that the method used
to construct the objectifying observables is independent
of dynamics, and thus our method can be applied beyond
the conditional Hamiltonians considered in this work.
However, because of this independence, one can of course
construct example dynamics that result in observables
that are maximally incapable of reproducing the mea-
surement statistics of the system. Therefore, it is impor-
tant to note that the observables are not unconditionally
objectifying and their ability to objectify depends heavily
on the dynamics.

Many aspects of quantum measurements are still to
be investigated in the MEH paradigm. The MEH pro-
vides tools to explore measurement timescales and the
relationship between measurement speed and observer
size. Investigating the process of entropy maximisation,
particularly the entropies associated with observables,
is also of interest. The examination of more compli-
cated many-body systems, such as many-body fermion
or boson chains, would bring the MEH closer to real-
world phenomena and potential experimental proposals.

Lastly, a generalisation effort could extend the paradigm
to continuous variables, expanding the range of physical
degrees of freedom the MEH model can be applied to.
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Appendix A: Finding optimal projectors and a close candidate SBS state

Using a convex optimisation method, for each observer system, we can find a set of optimal projectors to distinguish
between the states of the measured system S. Given a system-environment Hilbert space HS ⊗ HE , with NE sub-
environments, such that HE = H1 ⊗ · · · ⊗ HNE

, one can fix the pointer basis of S. Then, with a general equilibrium
state written in this pointer basis, we can split the density matrix into diagonal and off-diagonal blocks:

ρeq =

dS∑
i

qi|i⟩⟨i|S ⊗ ρ(i) + γSE , (A1)

where γSE is the off-diagonal part. This density matrix is completely independent of dynamics. The only assumption
made is that of the pointer basis of the system {|i⟩S}i, which we assume is optimal (for the case of our considered
Hamiltonian, Eq. (12), this is true when averaging over the GUE). We then assume there exist projective measurements
to distinguish between the ‘branches’ of the environment ρ(i) and ρ(j) for all i ̸= j (this is not the case if ρ(i) = ρ(j)).

For simplicity, we will start by considering a single observer performing a projective measurement over the entire
environment, generalising to multiple observer systems later. The branches of an SBS state have non-overlapping
support and so can be distinguished perfectly with a single projective measurement. To find how close our state is to
an SBS state, we find the set of projectors {Πi}i that gives the largest probability of success when measuring the state
ρ(i) for all i (ignoring the off-diagonal part γSE for now). We can view this as a state discrimination problem, in which
we have a set of states {ρ(i)}i, each state occurring with probability qi. We want to distinguish between the states
with the minimum average error [35, 49]. We use the Python library CVXPY [50, 51] to perform the maximisation
problem defined in the main text as the probability of success (Eq. (6)) [12, 34]:

P = max
{Πi}i

∑
i

qi tr
(
ρ(i)Πi

)
. (A2)

https://github.com/tenpy/tenpy
https://github.com/tenpy/tenpy
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Using the set of optimal projectors found via the optimisation, we define a candidate SBS state:

ρSBS =
∑
i

qi|i⟩⟨i|S ⊗ σ(i), σ(i) =
Πi

tr [Πi]
, (A3)

where the probabilities qi corresponding to each pointer state |i⟩S are the same as the initial probabilities in Eq. (A1).
This state varies slightly from the state constructed in [12], where new probabilities are defined. It is important that
any measurement process preserves the outcome probabilities and therefore any SBS state we are constructing must
also preserve the probabilities {qi}i.

Now we will generalise to multiple observer systems. Let’s say we have K observer systems within the environment,
such that K ≤ NE and we index each observer system k. Again, we begin with a general state, which by fixing the
pointer basis of S, we can write in the form of Eq. (A1). To construct the probability of success, we again ignore the
off-diagonal section γSE and define

ρ
(i)
k = trk′ ̸=k

[
ρ(i)
]

=
1

qi
trk′ ̸=k [⟨i|ρeq|i⟩S ] . (A4)

The search for optimal projectors is performed separately for each observer system k, resulting in a set of success
probabilities {

Pk = max
{Πi

k}i

∑
i

qi tr
(
ρ
(i)
k Πi

k

)}
k

. (A5)

The candidate SBS state becomes:

ρSBS =
∑
i

qi|i⟩⟨i|S
K⊗

k=1

σ
(i)
k , σ

(i)
k =

Πi
k

tr
[
Πi

k

] (A6)

where {Πi
k}i,k are the optimal projectors found in the maximisation in Eq. (A5).

Appendix B: Derivation of the error bound for objectifying observables

This section derives the error bound, defined in Eq. (9). This error quantifies the probability that an observer
system will not accurately reproduce the measurement outcome. If this error is vanishing, one can conclude that the
corresponding dynamics describe a measurement. We emphasise that the derivation of the error bound is independent
of considered dynamics. The error is based on the distinguishability of states [38]. This definition quantifies how
well a POVM can distinguish between two states. For two states ρ1 and ρ2, given a measurement (POVM) M , the
distinguishability of states is:

DM (ρ1, ρ2) ≡ 1

2

∑
i

|tr (Miρ1) − tr (Miρ2)| , (B1)

where M is described by a positive operator Mi for each outcome i, such that
∑

iMi = 1. For each observer, we
define an objectifying observable (Eq. (7)) that is constructed from a set of projective measurements found from
the method in Appendix A. We likewise use them to construct the equilibrium-proximate SBS state ρSBS

eq from a
general equilibrium state ρeq of the form of Eq. (A1), specifically via Eq. (A6). For each observer system, indexed k,
we then look at the distinguishability between ρ(t) and ρSBS

eq given the observer applies the objectifying observable

Ôk =
∑dS

i=1 ciO
i
k =

∑dS

i=1 ci1S ⊗ Πi
k ⊗ 1k′ ̸=k. Distinguishability obeys the triangle inequality so,

DÔk

(
ρ(t), ρSBS

eq

)
≤ DÔk

(ρ(t), ρeq) +DÔk

(
ρeq, ρ

SBS
eq

)
. (B2)

Firstly, looking at the second term on the RHS,

DÔk

(
ρeq, ρ

SBS
eq

)
=

1

2

∑
i

∣∣tr (Oi
kρeq

)
− tr

(
Oi

kρ
SBS
eq

)∣∣ , (B3)
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we show that

tr
(
Oi

kρeq
)

= tr

Oi
k

∑
j

qj |j⟩⟨j| ⊗ ρ(j) + γSE


= tr

Oi
k

∑
j

qj |j⟩⟨j| ⊗ ρ(j)

+ tr
[
Oi

kγSE

]

= trS trE

Oi
k

∑
j

qj |j⟩⟨j| ⊗ ρ(j)

+ trE
[
Oi

k trS (γSE)
]

=
∑
j

qj trE

[(
Πi

k ⊗ 1k′ ̸=k

) (
ρ(j)
)]

+ 0

=
∑
j

qj trk

[(
Πi

k ⊗ 1k′ ̸=k

)
trk′ ̸=k

(
ρ(j)
)]

=
∑
j

qj tr
(

Πi
kρ

(j)
k

)
= qi tr

(
Πi

kρ
(i)
k

)
+
∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)
(B4)

where we used that trk′ ̸=k

(
ρ(j)
)

= ρ
(j)
k and that the off-diagonal term has zero trace: trS (γSE) = 0. Next, we find

tr
(
Oi

kρ
SBS
eq

)
= tr

(1S ⊗ Πi
k ⊗ 1k′ ̸=k

)∑
j

qj |j⟩⟨j|
NO⊗
m=1

σ(j)
m


= trE trS

(1S ⊗ Πi
k ⊗ 1k′ ̸=k

)∑
j

qj |j⟩⟨j|
NO⊗
m=1

σ(j)
m


=
∑
j

qj trE

[(
Πi

k ⊗ 1k′ ̸=k

)( NO⊗
m=1

σ(j)
m

)]

=
∑
j

qj trk trk′ ̸=k

[(
Πi

k ⊗ 1k′ ̸=k

)( NO⊗
m=1

σ(j)
m

)]

=
∑
j

qj trk

[
Πi

kσ
(j)
k

]

=
∑
j

qj
tr
(

Πi
kΠj

k

)
tr
[
Πj

k

]
=
∑
j

qjδij

= qi, (B5)
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using that σ
(j)
k = Πj

k/ tr
[
Πj

k

]
(defined in Eq. (A6)). This results in

DÔk

(
ρeq, ρ

SBS
eq

)
=

1

2

∑
i

∣∣∣∣∣∣qi tr
(

Πi
kρ

(i)
k

)
+
∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)
− qi

∣∣∣∣∣∣ (B6)

=
1

2

∑
i

∣∣∣∣∣∣
[
qi tr

(
Πi

kρ
(i)
k

)
− qi

]
+
∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)∣∣∣∣∣∣ (B7)

≤ 1

2

∑
i

∣∣∣qi tr
(

Πi
kρ

(i)
k

)
− qi

∣∣∣+

∣∣∣∣∣∣
∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)∣∣∣∣∣∣
 (B8)

≤ 1

2

[∑
i

qi −
∑
i

qi tr
(
ρ
(i)
k Πi

k

)]
+

1

2

∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)
(B9)

=
1

2

[
1 −

∑
i

qi tr
(
ρ
(i)
k Πi

k

)]
+

1

2

∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)
, (B10)

using the property of the modulus: |x+ y| ≤ |x| + |y| and that
∑

i qi = 1 . Looking separately at the second term in
Eq. (B10) and assuming dS = 2 for now,

1

2

∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)
=

1

2

[
q0 tr

(
Π1

kρ
(0)
k

)
+ q1 tr

(
Π0

kρ
(1)
k

)]
(B11)

=
1

2

[
q0 tr

((
1 − Π0

k

)
ρ
(0)
k

)
+ q1 tr

((
1 − Π1

k

)
ρ
(1)
k

)]
(B12)

=
1

2

[
q0 tr

(
ρ
(0)
k

)
− q0 tr

(
Π0

kρ
(0)
k

)
+ q1 tr

(
ρ
(1)
k

)
− q1 tr

(
Π1

kρ
(1)
k

)]
(B13)

=
1

2

[
q0 + q1 − q0 tr

(
Π0

kρ
(0)
k

)
− q1 tr

(
Π1

kρ
(1)
k

)]
(B14)

=
1

2

[
1 −

∑
i

qi tr
(

Πi
kρ

(i)
k

)]
, (B15)

which allows us to simplify DÔk

(
ρeq, ρ

SBS
eq

)
to

DÔk

(
ρeq, ρ

SBS
eq

)
=

[
1 −

∑
i

qi tr
(
ρ
(i)
k Πi

k

)]
. (B16)

The term
∑

i qi tr
(
ρ
(i)
k Πi

k

)
is the probability of success for a state discrimination problem. It was shown in [12, 35, 49]

that the probability of error is bounded from above:

1 −
∑
i

qi tr
(
ρ
(i)
k Πi

k

)
≤
∑
i ̸=j

√
qiqjF

(
ρ
(i)
k , ρ

(j)
k

)
, (B17)

where F (ρ, σ) is the fidelity. This implies that for dS = 2, we have:

DOk

(
ρeq, ρ

SBS
eq

)
≤
∑
i̸=j

√
qiqjF

(
ρ
(j)
k , ρ

(i)
k

)
. (B18)
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Now, we show that (B15) holds more generally for dS > 2. Once again, we begin with the second term in Eq. (B10):

∑
j ̸=i

qj tr
(

Πi
kρ

(j)
k

)
=
∑
j

qj tr

∑
i ̸=j

Πi
k

 ρ
(j)
k

 (B19)

=
∑
j

qj tr
((

1 − Πj
k

)
ρ
(j)
k

)
(B20)

=
∑
j

qj −
∑
j

[
qj tr

(
Πj

kρ
(j)
k

)]
(B21)

= 1 −
∑
j

[
qj tr

(
Πj

kρ
(j)
k

)]
, (B22)

where we used the fact that
(∑

i ̸=j Πi
k

)
+ Πj

k = 1.

Now we have shown that DOk

(
ρeq, ρ

SBS
eq

)
≤
∑

i ̸=j

√
qiqjF

(
ρ
(j)
k , ρ

(i)
k

)
for all dS , we return to the first term on the

RHS of the inequality in Eq. (B2). We know that the time average of the first term in the inequality can be bounded
[38]:

⟨DM (ρ(t), ρeq)⟩∞ ≤ N(M)

4
√
deff

, (B23)

where M is a finite set of POVMs such that DM(ρ, σ) = maxM∈MDM (ρ, σ) and N(M) is the total number of
outcomes for all measurement in M. In our cases, the considered measurement set is simply M = Ok. Each observer
system, indexed k, has a set of dS projectors and therefore dS outcomes, such that N(M) = dS .

Overall we can define a time averaged measurement error Ek (as stated in the main text):

Ek =
〈
DÔk

(
ρ(t), ρSBS

eq

)〉
∞

≤
∑
i̸=j

√
qiqjF

(
ρ
(i)
k , ρ

(j)
k

)
+

dS

4
√
deff

. (B24)

This is the error, averaged over all times, for a single observer to determine the state of the measured system, using
a single projective measurement on their observer system.

Appendix C: Properties of the average fidelity with respect to the Gaussian unitary ensemble

1. Unitary invariance with respect to the initial state

Here we show that the average fidelity in Eq. (10) is invariant under a unitary transformation of the initial state
on the sub-environment l.

Recall that the dynamics generated by the Hamiltonian in Eq. (12) results in an equilibrium state of the form [6]:

ρeq =

dS∑
i=1

pi|i⟩⟨i|S
NE⊗
l=1

ρ̃
(i)
l ,

with the conditional states ρ̃
(i)
l given by

ρ̃
(i)
l =

∑
nl

⟨E(i)
nl |ρ̃l,0|E

(i)
nl ⟩|E

(i)
nl ⟩⟨E

(i)
nl |, (C1)

where H
(i)
l =

∑
nl
E

(i)
nl |E

(i)
nl ⟩⟨E

(i)
nl | is the conditional Hamiltonian corresponding to the measurement outcome i. We

now prove that 〈
F
(
ρ̃
(i)
l , ρ̃

(j)
l

)〉
GUE

=
〈
F
(
Uρ̃

(i)
l U†, Uρ̃

(j)
l U†

)〉
GUE

, (C2)

where U is an arbitrary unitary transform.
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To simplify matters, let us temporarily omit the tilde and subscript l from ρ̃
(i)
l , and write this conditional state in

terms of the pinching map with respect to H(i) i.e. ρ(i) = PH(i) [ρ0]. The statement to be proven, Eq. (C2), can then
be written 〈

F
(

PH(i) [ρ0],PH(j) [ρ0]
)〉

GUE
=
〈
F
(

PH(i) [Uρ0U
†],PH(j) [Uρ0U

†]
)〉

GUE
. (C3)

As a first step, recall the rotational invariance property of the Gaussian Unitary Ensemble (GUE) [52], namely that
a Hamiltonian H(i) is selected from the ensemble with the same probability as U†H(i)U for any unitary operator U .
In our notation, we can write this as∑

n

E(i)
n |E(i)

n ⟩⟨E(i)
n | Pr

=
∑
n

E(i)
n U†|E(i)

n ⟩⟨E(i)
n |U ≡

∑
n

E(i)
n |Ẽ(i)

n ⟩⟨Ẽ(i)
n |, (C4)

where
Pr
= denotes that the two operators are associated with the same probability, and |Ẽ(i)

n ⟩ := U†|E(i)
n ⟩. Combining

this with Eq. (C1), we see that

PH(i) [ρ0]
Pr
=
∑
n

⟨Ẽ(i)
n |ρ0|Ẽ(i)

n ⟩|Ẽ(i)
n ⟩⟨Ẽ(i)

n | = U†

(∑
n

⟨E(i)
n |Uρ0U†|E(i)

n ⟩|E(i)
n ⟩⟨E(i)

n |

)
U = U†PH(i)

[
Uρ0U

†]U,
and therefore that

F
(

PH(i) [ρ0],PH(j) [ρ0]
)

Pr
= F

(
U†PH(i)

[
Uρ0U

†]U,U†PH(j)

[
Uρ0U

†]U).
Noting that the fidelity is invariant under a unitary transformation of both arguments, we find that Eq. (C3), and
therefore Eq. (C2), holds, concluding the proof.

2. Finite fidelity limit for pure initial states

Here we give a heuristic argument as to why the average fidelity between conditional states does not vanish with
increasing environment dimension in the case of a pure state. First let us use Eq. (C1) to write out the fidelity
explicitly in this case (again, omitting the tilde and subscript l for clarity):

F
(
ρ(i), ρ(j)

)
= tr

√√√√ ∑
n,n′,m

√
⟨E(i)

n |ρ0|E(i)
n ⟩
√

⟨E(i)
n′ |ρ0|E(i)

n′ ⟩⟨E(j)
m |ρ0|E(j)

m ⟩⟨E(i)
n |E(j)

m ⟩⟨E(j)
m |E(i)

n′ ⟩|E(i)
n ⟩⟨E(i)

n′ |

2

. (C5)

Now, since |E(i)
n ⟩ is an eigenvector of H

(i)
l , a matrix randomly selected according to the GUE, its elements in an

arbitrary basis {|α⟩ ∈ Hl}α can be treated as i.i.d. random variables in the large-dl limit. In particular, defining
the variable y := dl|⟨Ei

n|α⟩|2, they are distributed according to the probability density p(y) = e−y [53]. Let us now
examine the elements in the sum in Eq. (C5) individually in the large-dl limit.

First, we know from Appendix C 1 that the average fidelity is invariant under unitary rotations of the initial state,
and therefore for ρ0 pure, the average does not depend on the specific pure state chosen. Consequently, we may write

ρ0 = |α⟩⟨α| for arbitrary |α⟩, and hence treat ⟨E(i)
n |ρ0|E(i)

n ⟩ as the variable |⟨E(i)
n |α⟩|2 = y/dl. Likewise, we can treat

|⟨E(i)
n |E(j)

m ⟩| as the variable |⟨E(i)
n |α⟩| =

√
y/dl.

Noting that under permutation of the appropriate labels, this accounts for all factors in the sum in Eq. (C5), we
can invoke the i.i.d. assumption to get a crude estimate of the average fidelity in the large-dl limit, replacing each
factor with its average magnitude to get

〈
F
(
ρ(i), ρ(j)

)〉
GUE

∼ tr

√√√√ ∑
n,n′,m

〈√
y

dl

〉
GUE

〈√
y

dl

〉
GUE

〈
y

dl

〉
GUE

〈√
y

dl

〉
GUE

〈√
y

dl

〉
GUE

|E(i)
n ⟩⟨E(i)

n′ |

2

= dl

〈√
y

dl

〉4

GUE

〈
y

dl

〉
GUE

tr

√∑
n,n′

|E(i)
n ⟩⟨E(i)

n′ |

2

=
1

d2l
⟨√y⟩4GUE ⟨y⟩GUE tr

∑
n,n′

|E(i)
n ⟩⟨E(i)

n′ |

2

= ⟨√y⟩4GUE ⟨y⟩GUE .
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Using the probability density p(y) = e−y to calculate the averages in the above expression, one finds the limit

〈
F
(
ρ(i), ρ(j)

)〉
GUE

∼ lim
dl→∞

(
⟨√y⟩4GUE ⟨y⟩GUE

)
=
π2

16
≈ 0.62,

which, despite the crudeness of the approximation used, agrees very well with the result shown in Fig. 4a (as
⟨Eobj⟩GUE =

〈
F
(
ρ(i), ρ(j)

)〉
GUE

for our chosen initial states).

Appendix D: Properties of the average effective dimension with respect to the Gaussian unitary ensemble

1. Unitary invariance of the effective dimension with respect to initial state

Here we show that the term ⟨Eeq⟩GUE in the error bound (Eq. (15)) is invariant under a unitary transformation on
the initial state of a sub-environment l, i.e.

〈
1√

deff(ρl,0)

〉
GUE

=

〈
1√

deff(Uρl,0U†)

〉
GUE

(D1)

where U is an arbitrary unitary transform and

〈
1√

deff(ρl,0)

〉
GUE

=

〈
1

2

√√√√ dS∑
i

NE∏
l

dl∑
nl

⟨E(i)
nl |ρl,0|E

(i)
nl ⟩

2

〉
GUE

. (D2)

From Eq. (C4), we know that

∑
n

E(i)
n |E(i)

n ⟩⟨E(i)
n | Pr

=
∑
n

E(i)
n U†|E(i)

n ⟩⟨E(i)
n |U

which implies

⟨E(i)
nl |ρl,0|E

(i)
nl ⟩

2 Pr
= ⟨E(i)

nl |Uρl,0U†|E(i)
nl ⟩

2
= ⟨E(i)

nl |ρ̃l,0|E
(i)
nl ⟩

2
.

The unitary invariance of ⟨Eobj⟩GUE, given by Eq. D1 follows directly.

2. Maximised effective dimension for maximally mixed initial sub-environment states

We now calculate the effective dimension for a system-environment whose sub-environments are initially maximally-
mixed:

ρ(0) = |ψS,0⟩⟨ψS,0|
NE⊗
l=1

1

dl
1l,
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and we assume the system S is initially in an equal superposition |ψS,0⟩ = 1√
dS

∑dS

i=1 |i⟩ Using Eq. (16), we can see

that this choice of initial state maximises the effective dimension:

deff =

[
dS∑
i=1

p2i

NE∏
l=1

dl∑
nl=1

{
⟨E(i)

nl |
(

1

dl
1l

)
|E(i)

nl ⟩
}2
]−1

=

[
dS∑
i=1

p2i

NE∏
l=1

dl∑
nl=1

(
1

dl

)2
]−1

=

[
dS∑
i=1

p2i

NE∏
l=1

(
1

dl

)]−1

=

[
dS∑
i=1

p2i

(
1

dl

)NE
]−1

=

[(
1

dS

)(
1

dl

)NE
]−1

= dS · (dl)
NE ,

where we use that pi = 1
dS

and NE is the total number of sub-environments. It is also worth noting that the

equilibrium state of each sub-environment is also the maximally mixed state, meaning ρl,0 = ρ
(i)
l = ρ

(j)
l . Therefore,

observers cannot distinguish between system outcomes, no matter how they group together sub-environments into
observer systems. There is no objectivity and the equilibrium state is very far from an SBS state.

3. Effect on fidelity and effective dimension under choice of thermal Hamiltonian for thermal initial states

In this section, we outline the effect of the thermal state Hamiltonian on both terms ⟨Eobj⟩GUE and ⟨Eeq⟩GUE in the
error bound. Our initial state is

ρ(0) = ρS,0

NE⊗
l=1

ρl,0,

where the system is a qubit in an equal superposition ρS,0 = |ψS,0⟩⟨ψS,0|, such that |ψS,0⟩ = 1√
2
|0⟩ + |1⟩ and each

environment is thermal ρl,0 = ρth. We begin by defining a thermal state as ρth = e−βHth

Z , with respect to some

Hamiltonian Hth, where Z = tr
(
e−βHth

)
. Noting that, under the transformation Hth → UHthU

† where U is an

abitrary unitary operator, we have e−βHth → Ue−βHthU†, and recalling the unitary invariance of the trace operation,
we see that ρth → UρthU

† under Hth → UHthU
†. We showed in Appendix D 1 (C 1) the invariance of ⟨Eeq⟩GUE

(⟨Eobj⟩GUE) with respect to unitary transformations of the initial observer system state. Any Hermitian matrix with
the same spectrum can be related by a unitary transformation.

Therefore, we can conclude that the choice of thermal Hamiltonian eigenstates has no effect, in our numerical
simulations, on the error bound when averaged over the GUE. If we consider thermal Hamiltonians with different
eigenenergy spectrums, they cannot be related by a unitary transformation and so this will affect our results. The only
effect is on the temperature scaling. In the following Appendix, we address this and explain our choice of temperature
in Fig. 5.

4. Details of thermal states used in numerical simulations

As outlined in the previous Appendix (D 3), only the distribution of eigenenergies of the thermal Hamiltonian
defining the sub-environment initial states will affect the error bound, when averaged over the GUE. For that reason,
we choose to model an optical thermal field, due to the simplicity of the thermal Hamiltonian Hth = ℏω

(
â†â+ 1

2

)
,

with eigenenergies En = ℏω
(
n+ 1

2

)
, such that all energy gaps are fixed to ℏω. The density operator for the thermal
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field is [54]:

ρth =
e−Hthβ

Z
=

∞∑
n=0

Pn|n⟩⟨n|, (D3)

where β = 1/KBT is the inverse temperature and the probability that a mode is excited to the nth level is Pn =
1
Z e

−Enβ . This results in an average photon number of

n̄ =
1

eℏωβ − 1
. (D4)

From this, we can write

βω =
1

ℏ
ln

(
1 + n̄

n̄

)
(D5)

and define the thermal state in terms of n̄

ρth =

∞∑
n=0

n̄n

(1 + n̄)n+1
|n⟩⟨n| (D6)

To perform our numerical simulations, we need to write the thermal state as a finite density matrix. To do this, we
use a built-in QuTiP function [44] which defines the thermal state with d dimensions as

ρth =
1

tr(ρth)

d−1∑
n=0

(
n̄

1 + n̄

)n

|n⟩⟨n|, (D7)

where tr(ρth) indicates the renormalisation of the density matrix for finite dimension d. In the simulations, the
parameter we define is the average photon number n̄, so by varying this we are varying the dimensionless quantity
βω, without ever defining β or ω individually.
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