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Abstract

Unisolvence of unsymmetric Kansa collocation is still a substantially

open problem. We prove that Kansa matrices with MultiQuadrics and

Inverse MultiQuadrics for the Dirichlet problem of the Poisson equation

are almost surely nonsingular, when the collocation points are chosen by

any continuous random distribution in the domain interior and arbitrarily

on its boundary.
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1 Introduction

Unsymmetric Kansa collocation has become over the years one of the most
adopted meshless methods by RBF for the numerical solution of PDEs in a
variety of engineering and scientific problems; cf., e.g., [12, 13] and [2, 4, 16, 19]
with the references therein. On the other hand, in the popular textbook [8]
one reads: “Since the numerical experiments by Hon and Schaback show that
Kansa’s method cannot be well-posed for arbitrary center locations, it is now an
open question to find sufficient conditions on the center locations that guarantee
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invertibility of the Kansa matrix”. Indeed, Hon and Schaback [11] proved that
there are “rare” point configurations that make Kansa matrices singular, but so
far unisolvence of unsymmetric Kansa collocation has remained a substantially
open problem.

In a quite recent paper [6], unisolvence of random Kansa collocation by Thin-
Plate Splines (TPS) has been proved for the Poisson equation, on 2-dimensional
domains with analytic boundary. The key properties in the proof are radiality of
the Laplacian and the fact that the TPS basis functions are analytic up to their
center, the latter used also in other recent papers on interpolation unisolvence
of TPS without polynomial addition, cf. [1, 5]. Though this result represents a
first step towards unisolvence, it has a number of restrictions, besides the fact
that the differential operator is the pure Laplacian: the RBF kind (indeed, the
most usual approach to Kansa method is with MultiQuadrics), the dimension,
the boundary regularity.

In the present paper, still resorting to the key property of analiticity of
the basis, but this time with the presence of complex singularities, we prove
that unsymmetric Kansa matrices with MultiQuadrics (MQ) and Inverse Mul-
tiQuadrics (IMQ) for the Dirichlet problem of the Poisson equation are almost
surely invertible (in any dimension), when the collocation points are chosen by
any continuous random distribution in the domain interior and arbitrarily on
its boundary.

2 Unisolvence of random MQ and IMQ Kansa

collocation

In this paper we study unisolvence of Kansa collocation by (scaled) Multi-
Quadrics (MQ)

φ(r) = φε(r) =
√

1 + (εr)2 , (1)

and Inverse MultiQuadrics (IMQ)

φ(r) = φε(r) =
1

√

1 + (εr)2
, (2)

which are both analytic in R. The scale ε > 0 represents the so-called shape
parameter associated with RBF [8, 15]. We consider the Poisson equation with
Dirichlet boundary conditions (cf. e.g. [7])

{

∆u(P ) = f(P ) , P ∈ Ω ,
u(P ) = g(P ) , P ∈ ∂Ω ,

(3)

where Ω ⊂ Rd is a bounded domain (connected open set), P = (x1, . . . , xd) and
∆ = ∂2/∂x21 + · · · + ∂2/∂x2d is the Laplacian. Differently from [6], where we
studied Kansa discretization by TPS in R2 and we assumed that the boundary
is a curve possessing an analytic parametrization, here we do not make any
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restrictive assumption on ∂Ω, except for the usual ones that guarantee well-
posedness and regularity of the solution (like e.g. that the boundary is Lipschitz,
cf. e.g. [18] with the references therein). The main reason is that for the
discretization of the boundary conditions, with MQ we can resort to a classical
result by Micchelli [10] on interpolation unisolvence by any set of distinct points,
result achieved also with IMQ since they are strictly positive definite.

Unsymmetric Kansa collocation (see e.g. [3, 8, 11, 12, 16, 19, 20]) consists
in seeking a function

uN(P ) =

n
∑

j=1

cj φj(P ) +

m
∑

k=1

dk ψk(P ) , N = n+m , (4)

where
φj(P ) = φ(‖P − Pj‖2) , {P1, . . . , Pn} ⊂ Ω , (5)

ψk(P ) = φ(‖P −Qk‖2) , {Q1, . . . , Qm} ⊂ ∂Ω , (6)

such that
{

∆uN(Pi) = f(Pi) , i = 1, . . . , n
uN(Qh) = g(Qh) , h = 1, . . . ,m .

(7)

The following properties will be used below. Defining φA(P ) = φ(‖P −A‖),
we have φA(A) = 1 and φA(B) = φB(A). Moreover ∆φA(B) = ∆φB(A) and
∆φA(A) = 2ε2. Indeed, the Laplacian in polar coordinates centered at A (cf.
e.g. [7, Ch.2], [8, App.D]) is the radial function

∆φA =
∂2φ

∂2r
+

1

r

∂φ

∂r
(8)

and thus for φ(r) = (1 + (εr)2)s, s ∈ R \ {0}, we get

∆φA = 4ε2s (1 + (εr)2)s−2(1 + s(εr)2) , (9)

that is for MQ (s = 1/2)

∆φA = ε2
2 + (εr)2

(1 + (εr)2)3/2
, (10)

and for IMQ (s = −1/2)

∆φA = −ε2
2− (εr)2

(1 + (εr)2)5/2
. (11)

Kansa collocation can be rewritten in matrix form as




∆Φ ∆Ψ

Φ Ψ









c

d



 =





f

g



 (12)
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where the block matrix is

Kn = Kn,m({Pi}, {Qh}) =





∆Φ ∆Ψ

Φ Ψ





=



















































c · · · · · · ∆φn(P1) ∆ψ1(P1) · · · ∆ψm(P1)

...
. . .

...
... · · ·

...
...

. . .
...

... · · ·
...

∆φ1(Pn) · · · · · · c ∆ψ1(Pn) · · · ∆ψm(Pn)

φ1(Q1) · · · · · · φn(Q1) 1 · · · ψm(Q1)

... · · · · · ·
...

...
. . .

...

φ1(Qm) · · · · · · φn(Qm) ψ1(Qm) · · · 1



















































with c = 2ε2 for MQ and c = −2ε2 for IMQ, and f = {f(Pi)}i=1,...,n, g =
{g(Qh)}h=1,...,m. We are now ready to state and prove our main result.

Theorem 1 Let Kn be the MQ or IMQ Kansa collocation matrix defined above,
where {Qh} is any fixed set of m distinct points on ∂Ω, and {Pi} is a sequence of
i.i.d. (independent and identically distributed) random points in Ω with respect
to any probability density σ ∈ L1

+(Ω). Then for every m ≥ 1 and for every
n ≥ 0 the matrix Kn is a.s. (almost surely) nonsingular.

Before proving the theorem, we recall that the construction of i.i.d. random
sequences with respect to any probability density can be accomplished (via
the uniform distribution) by the well-known acceptance-rejection method, cf.
e.g. [9]. Though uniform random points could be the most natural choice for
collocation, the possibility of adopting other distributions could be interesting
whenever it is known that the solution has steep gradients, or other regions
where it is useful to increase the discretization density.

Proof of Theorem 1. The proof proceeds by (complete) induction on n. For
n = 0 the collocation matrix coincides with the m × m interpolation matrix
on the boundary discretization points, which is (deterministically) nonsingular.
For IMQ this is a consequence of their positive definiteness (cf. e.g. [8, 20]),
while for MQ this comes from a classical result by Micchelli on conditionally
positive definite RBF of order 1, cf. [10]. For the inductive step, we define the
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augmented matrix

K̃(P ) =



























































c · · · · · · ∆φn(P1) ∆φ1(P ) ∆ψ1(P1) · · · ∆ψm(P1)

...
. . .

...
...

... · · ·
...

...
. . .

...
...

... · · ·
...

∆φ1(Pn) · · · · · · c ∆φn(P ) ∆ψ1(Pn) · · · ∆ψm(Pn)

∆φ1(P ) · · · · · · ∆φn(P ) c ∆ψ1(P ) · · · ∆ψm(P )

φ1(Q1) · · · · · · φn(Q1) ψ1(P ) 1 · · · ψm(Q1)

... · · · · · ·
...

...
...

. . .
...

φ1(Qm) · · · · · · φn(Qm) ψm(P ) ψ1(Qm) · · · 1



























































Observe that in this case Kn+1 = K̃(Pn+1) since ψk(Pn+1) = φn+1(Qk) and
∆φj(Pi) = ∆φi(Pj).

To compute the determinant, developing det(V (P )) by Laplace’s rule on the
(n+ 1)-row we have

δ(P ) = det(K̃(P )) = −det(Kn−1)(∆φn(P ))
2 + α(P )∆φn(P ) + β(P ) (13)

where
α ∈ span{∆φj , ψk,∆ψk ; 1 ≤ j ≤ n− 1 , 1 ≤ k ≤ m} , (14)

β ∈ span{∆φi∆φj ,∆φi∆ψh, ψk∆φi, ψk∆ψh ; 1 ≤ i, j ≤ n− 1 , 1 ≤ k, h ≤ m} .

Notice that δ is a real analytic function in Ω, because such are all the func-
tions involved in its definition by linear combinations and products, and real
analytic functions form a function algebra [14]. We claim that δ(P ) is almost
surely not identically zero in Ω. Indeed, if δ were identically zero in Ω, it would
be identically zero also in R

2, since the zero set of a not identically zero real
analytic function must have null Lebesgue measure (cf. [17] for an elementary
proof) whereas meas(Ω) > 0. Then taking the line P (t) = Pn + tv where
v = (v1, . . . , vd) is a given unit vector, we obtain that the real univariate func-
tion δ(P (t)) would be identically zero for t ∈ R. Consequently, its analytic
extension to the complex plane, say δ(P (z)), would also be identically zero for
z ∈ C. Observe now that by (9)-(11)

∆φn(P (z)) = 4ε2s (1 + (εz)2)s−2(1 + s(εz)2) , s = 1/2 or s = −1/2 ,

has two branching points in z = ±i/ε (we take in (1)-(2) the branch of the square
root that is positive on the positive reals), and (∆φn(P (z)))

2 has a pole there, of
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order 3 for MQ and of order 5 for IMQ. On the other hand, the functions α(P (z))
and β(P (z)) are analytic at z = ±i/ε. In fact, if A is one of the collocation
points different from Pn, that is A ∈ {Qh} ⊂ ∂Ω or A ∈ {Pk, k 6= n} ⊂ Ω, we
first observe that ‖P (z)−A‖22 = ‖Pn + zv−A‖22 has to be seen as the complex
extension of the corresponding real function, hence not the complex 2-norm but
the sum of the squares of the complex components. Then the complex numbers

1 + ε2‖P (±i/ε)−A‖22 = 1 + ε2
d

∑

j=1

(Pn ± iv/ε−A)2j

= 1 + ε2
d

∑

j=1

[(Pn −A)2j ± 2i(P −A)jvj/ε− v2j /ε
2]

(recalling that ‖v‖2 = 1) have a.s. positive real part, namely ‖Pn − A‖22 > 0,
since Pn is a.s. distinct from A, and thus the complex functions corresponding
to the chosen branch of the complex square root



1 + ε2
d

∑

j=1

(Pn + zv −A)2j





±1/2

are both analytic at z = ±i/ε. This means that φA(P (z)) and ∆φA(P (z)) are
analytic at z = ±i/ε, and so are α(P (z)) and β(P (z)) in view of (14).

Since by inductive hypothesis a.s. det(Kn−1) 6= 0, by δ(P (z)) ≡ 0 we would
get for MQ

[−det(Kn−1)(∆φn(P (z)))
2 + β(P (z))](1 + (εz)2)3

= −ε4det(Kn−1)(2 + (εz)2)2 + β(P (z))(1 + (εz)2)3

≡ −α(P (z))∆φn(P (z))(1 + (εz)2)3

= −ε2α(P (z))(2 + (εz)2)(1 + (εz)2)3/2 , (15)

and for IMQ

[−det(Kn−1)(∆φn(P (z)))
2 + β(P (z))](1 + (εz)2)5

= ε4det(Kn−1)(2 − (εz)2)2 + β(P (z))(1 + (εz))5

≡ −α(P (z))∆φn(P (z))(1 + (εz)2)5

= +ε2α(P (z))(2− (εz)2)(1 + (εz)2)5/2 , (16)

which in both cases give a contradiction, because the first term in (15) and (16)
is analytic at ±i/ε, whereas the last has a branching point there.

Then, det(Kn+1) = δ(Pn+1) is a.s. nonzero, by the already quoted funda-
mental result that the zero set of a not identically zero real analytic function on
an open connected set Ω ⊂ R

d is a null set for the Lebesgue measure (and thus
also for any probability measure with density σ ∈ L1

+(Ω)). Indeed, denoting by
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Zδ the zero set of δ in Ω and recalling that det(Kn−1) 6= 0 (which a.s. holds)
implies δ 6≡ 0, taking the probability of the corresponding events we get

prob{det(Kn+1) = 0} = prob{δ(Pn+1) = 0}

= prob{δ ≡ 0}+ prob{δ 6≡ 0 & Pn+1 ∈ Zδ} = 0 + 0 = 0 ,

and the inductive step is completed. �
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