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Abstract

Including the effect of lattice anharmonicity on electron-phonon interactions has recently gar-
nered attention due to its role as a necessary and significant component in explaining various
phenomena, including superconductivity, optical response, and the temperature dependence of
mobility. This study focuses on analytically treating the effects of anharmonic electron-phonon
coupling on the polaron self-energy, combined with numerical Diagrammatic Monte Carlo data.
Specifically, we incorporate a quadratic interaction into the method of squeezed phonon states,
which has proven effective for analytically calculating the polaron parameters. Additionally, we
extend this method to non-parabolic finite-width conduction bands while maintaining the periodic
translation symmetry of the system. Our results are compared with those obtained from Dia-
grammatic Monte Carlo, partially reported in a recent study [Phys. Rev. B 107, L121109(2023)],
covering a wide range of coupling strengths for the nonlinear interaction. Remarkably, our analytic

method predicts the same features as the Diagrammatic Monte Carlo simulation.
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I. INTRODUCTION

Polaron physics, which originates from a theoretical problem that involves the interaction
of a particle with a quantum field [1, [2], has garnered significant experimental interest due
to its practical applications. This curiosity has additionally driven the advancement of
polaron theory, which has broadened its scope from its original concentration on polarons
in crystals [3] to include a range of condensed matter systems, such as quantum gases I,
and even celestial bodies like neutron stars [1, §].

Conventional theoretical frameworks for polarons typically center around the idea of
small oscillations within a crystal lattice or another bosonic quantum field. Within this
framework, the linear-harmonic approximation characterizes the phonon field as harmonic,
with the electron-phonon interaction being directly proportional to the phonon coordinates.
Instances of such frameworks include the Frohlich and Holstein models for polarons in solid-
state physics 2], as well as Frohlich-type Hamiltonians for impurity polarons in quantum
gases [9]. In these applications, the Frohlich model relies on the assumption of a parabolic
energy dispersion for the conduction band.

It has been established for a while that in certain situations, higher-order terms beyond
the linear-harmonic approximation can be significant [10]. These additional terms specifi-
cally influence the optical response and kinetics of impurities within crystals. Lately, there
has been a resurgence of interest in nonlinear electron-phonon interactions and anharmonic
phonons ] These occurrences have proven crucial in elucidating different phenom-
ena, such as superconductivity at low carrier concentrations |18, ] and the temperature-
dependent mobility [20].

While Diagrammatic Monte Carlo (DiagMC) simulations have made it possible to de-
scribe polaron properties for both linear EI], B; and nonlinear [15] electron-phonon inter-
actions with high accuracy, analytic methods remain of significant interest. These methods
provide a clear physical picture of polarons and enhance our understanding of results ob-
tained through numerical techniques such as density functional theory and DiagMC simu-
lations.

The primary objective of this study is to develop an analytical method for investigat-
ing anharmonic polarons within a non-parabolic conduction band characterized by a finite

bandwidth. By adjusting the bandwidth and exploring various electron-phonon interaction



amplitudes, this framework encompasses scenarios involving both small and large polarons,
as well as the intermediate regime between these extremes. Our approach is based on the
well-established method of using displaced squeezed phonon states _ l after elimina-
tion of the electron coordinate by a shift to the frame co-moving with the electron l

This technique has been widely used for large polarons with linear interactions in weak
and intermediate coupling regimes. In this work, we first extend the displaced squeezed
phonon approximation to incorporate quadratic interactions (discussed in Section [). Next,
in Section [l we examine polaron behavior with a quadratic interaction in non-parabolic
bands while maintaining periodic boundary conditions for the Brillouin zone. This polaron
model has been recently explored numerically ] using the DiagMC technique, and we

compare our results with those of DiagMC. Finally, the results obtained are summarized in

Section V1

II. POLARON WITH FROHLICH AND 2TO INTERACTIONS
A. The system

In this section, we investigate the polaron in a parabolic conduction band, focusing on
two distinct types of electron-phonon interactions. Firstly, we examine the Frohlich inter-
action, which involves longitudinal optical (LLO) phonons and exhibits a linear dependence
on phonon coordinates. Secondly, we explore the quadratic interaction which engages two
transverse optical (TO) phonons. This 2TO interaction manifests as a quadratic function
of phonon coordinates. Although the 2TO interaction was introduced in theoretical frame-
works long ago , it has recently regained interest. Notably, a coexistence of Frohlich and
2TO couplings has Ven relevant in experimental contexts, particularly with materials
like SrTiO3 E These interactions have allowed to successfully elucidate various

phenomena, including response properties and superconductivity.

Our analysis centers around the electron-phonon Hamiltonian:
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Here, r is the position coordinate operator of the electron with band mass m, p is its
canonically conjugate momentum operator; bil(a) and bgl) are the creation and annihilation
operators for optical phonons of wave vector q and energy hw((f). The index a = 1, 2 labels
the TO phonon modes, and a = 3 denotes the LO mode. So further on in this note we

(1) (2) _  (TO) ®3)

assume that wgq’ = wg’ = wgq = and wg’ = wro. The Vg are Fourier components of the

linear (Frohlich) part of the electron-phonon interaction

hwro [ 4ro 2 h
— . 2
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The strength of the Frohlich electron—phonon interaction is expressed by a dimensionless

ISk

coupling constant «, which is defined as:
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In this definition, €., and &y are, respectively, the high-frequency and static dielectric con-

stants of the polar crystal.
We apply the quadratic electron-phonon interaction Hamiltonian following Ref. B

HZTO - §P2( ) (4)

where g5 is the coupling strength for the 2TO interaction. The polarization P (r) is given
by

ZZ o (B e + b Te o) (5)
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with the factor to the interaction strength,

0)€0(Q) — €
o = J wy (6)

where £ (q) and e, are, respectively, the static momentum-dependent dielectric function
and high-frequency dielectric constant. In the considered isotropic model, there are two unit

vectors e for TO modes, with a = 1,2, orthogonal to q and to each other.

B. The approximation of squeezed phonon states

The original idea of the Lee-Low-Pines transformation @] followed by the Bogoliubov-

Tyablikov diagonalization | of the truncated coordinate-free polaron Hamiltonian,
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quadratic in phonon coordinates, belongs to Gross B] This approximation was subse-
quently further developed in different modifications, e.g., the method of displaced squeezed
phonon states ] or correlated Gaussian wave functions H] (see also Refs. _@ Here,
we show that the approximation of displaced squeezed phonon states (abbreviated to SPS
in the figures) is straightforwardly extended to a polaron with a quadratic electron-phonon
interaction.

The first Lee-Low-Pines unitary transformation

/i a a
(P — > hab{To ))-r] : (7)
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S1 = exp

where P is the eigenvalue of the total momentum, leads to the coordinate-free polaron

Hamiltonian
H = S_lel

(P > hab§ 0 )
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Here B((f) is proportional to the phonon coordinate, and is given by

B = b + bt (9)

The coordinate-free Hamiltonian looks appealing for approximate methods, and led to nu-
merous attempts to make analytic approximations suitable at both weak and strong coupling.
Here, we consider the well-established approach for the weak and intermediate-coupling

regime. In this approach, the second Lee-Low-Pines transformation is performed,
Sy = exp Z FLo () — plt (10)

where f((la) (which are real here, in accordance with the polaron Hamiltonian) are treated as
variational functions and will be chosen to minimize the energy. The unitary transformation
S, results in a displacement of the phonon operators. The resulting transformed Hamiltonian
consists of two terms:

52_17'[82 = Ho -+ HI



where Hy and H; are the following contributions to the coordinate-free Hamiltonian after

phonon shifts:

(1) The Hamiltonian truncated to the quadratic normal form of phonon operators:

Hy = Eo+ Y hQb T

2
1
il (a) p(a) g2 (a)
+2m <§hqfq By ) + ( Z e %qB ) (11)

q,a=1,2

with the renormalized phonon energy,
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RO = p@ 1 L g >+Zm(q a) (15 (12)
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where the term FEj, does not contain operators:
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(2) The remaining part of the Hamiltonian, which is also written in the normal form:

Hy =Y (hQD 8 + V) BY

q
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The term H; can only quantitatively influence the polaron energy in a sufficiently strong
coupling. Consequently, an account of this contribution is beyond the scope of the present

work, which is restricted to weak- and intermediate-coupling regimes.

C. 2TO polaron self-energy

The Hamiltonian Hj, given by Eq. (), is quadratic in the phonon operators, but it

does contain products of two creation or two annihilation operators. Such Hamiltonians
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can be diagonalized by a Bogoliubov transformation, which can be interpreted as a unitary
transformation representing a phonon squeezing. We refer to this transformation as the
Bogoliubov-Tyablikov diagonalization @q] The momentum-dependent polaron energy shift

ﬁvided by the Bogoliubov-Tyablikov diagonalization is found starting from the definition

]
1 a a
AE:§§aq:h(V(§)—Qﬁl)), (15)

where I/éa) are eigenvalues of the renormalized phonon energies. The energy AF is calculated

exactly, the details are presented in Appendix A.

Polarons of different types with linear electron-phonon coupling within the displaced
squeezed phonon approximation were extensively studied in earlier work, e.g. E, , , ]
Therefore, we focus here on the 2TO polaron self-energy. It is derived using the known
scheme ﬂ;j]] using the contour integral
h 1

ds — In APTO) (5 P) (16)

AE®TO) (p)y = ——
87T’l C \/g

with the function (see Appendix A)
2

2 2Q(a)
In ACTO) (5, P) = Zln 192 Z (1_&)%70‘
) 2 2
Jj=x,y,% hV q,a=1,2 q S — (lea))

2 2
The integration contour C' contains inside all values of (V((f)> and (QE?) as shown in Fig.

@

(17)

s plane

FIG. 1: Integration contour in the complex s plane for the polaron energy shift.
Here, for numeric testing, we use the approximation of a soft TO mode applied by Kumar

w((lTO) = /w2 + ¢
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et al. |13]:



(TO)

and neglect wq = wr with respect to ¢q. Thus the soft mode is approximately sound-
q=0
like:
2
(TO) 2 . SooWio
w ~ cq, woN ——— 18
o q @~ neq (18)

Without knowledge of a realistic large-g behavior of the TO-phonon energy and of the
2TO interaction, the integrals over the phonon momentum in the present approximation
diverge. To remove this divergence a phonon wave vector cutoff kg is introduced. The

coupling strength of the 2TO interaction is expressed through the dimensionless coupling

constant
2
EooMWT o
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926 3 h2e (19)
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FIG. 2: Momentum-dependent TO2-polaron energy shift as a function of the polaron momentum P
for different values of the coupling constant ap, calculated using the momentum cutoff hky = 10mec.

Solid and dashed curves show the energy for positive and negative ar, respectively.

The polaron energy shift (I6) describes the polaron dispersion AE®TO) (P) as a function
of the polaron momentum P. The numeric results for this 2TO contribution to the polaron
self-energy are shown in Fig. @ The polaron energies AE®TO) are plotted as functions
of the total momentum P for different values of the coupling constant ar. The numeric
calculation is performed using the units with A~ =1, m = 1, and ¢ = 1. Thus the energy is

measured in units of mc?.



To the best of our knowledge, the sign of the coupling constant for the 2TO interaction
is not a priori known. Therefore the polaron self-energy is calculated here for both positive
and negative ar, shown by solid and dashed curves, respectively. The range of the polaron
momentum is chosen sufficiently small with respect to the momentum cutoff in order to
avoid possible artifacts related to the cutoff. As can be seen from Fig. 2], the 2TO polaron

energy shift AE®TO) (P) smoothly and monotonically decreases as a function of P.
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FIG. 3: (a) TO2-polaron ground state energy calculated using the approximations for the soft-
mode TO-phonon dispersion and the coupling factor by Kumar et al. ] for different values
of the phonon cutoff momentum ky. The thin lines show the first-order perturbation results for
EQTO), (b) The ground state polaron energy within the approximation of squeezed phonon states
compared with results of partial summation of DiagMC series containing up to 2-loop diagrams
(filled symbols) and up to 3-loop diagrams (hollow symbols). Error bars of DiagMC data are

smaller than the points size.

Expanding the momentum-dependent 2TO polaron energy shift (I6) in powers of P
up to the second order, we obtain the ground state energy and the polaron contribution
to the inverse effective mass for the 2TO polaron. The ground state energy AETO) (P)
is plotted in Fig. Bl Results of the present method are labeled “SPS” which stands for

the “squeezed phonon state” approach, since that is indeed what we rely on through the



Bogoliubov-Tyablikov diagonalization.

The polaronic energy shift resulting from the 2TO interaction depends not only on the
magnitude of the interaction but also on its sign. For ar > 0, its behavior resembles the
repulsive polaron in atomic quantum gases [5]. The dependence of the self-energy on ar is
not fully antisymmetric when changing the sign of ar, because both even and odd terms
contribute to the total energy.

The dashed lines show the first-order perturbation result for the ground state energy
determined by the averaging of the electron-phonon interaction term with the Hamiltonian
of free electrons and phonons,

3 h2k?

(2TO) .
Eweak - <H2TO>0 — g m ar. (20)

The ground state energy determined from (@) at P = 0 analytically tends to (Haro), in

the limit of small coupling constant as.
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FIG. 4: TO2-polaron effective mass as a function of the coupling constant ap, calculated using

different values of the the momentum cutoff k.

The dependence of the effective mass on the coupling constant « is shown in Fig. @l For
a positive coupling constant, the ar dependence of the effective mass is smooth and does
not manifest any specific feature. The 2TO polaron effective mass monotonically rises with

an increasing ag, as well as with an increasing phonon cutoff momentum k.
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The behavior of the effective mass at negative ap is more interesting. It exhibits a
resonant divergent peak of the effective mass at some value of ar. Physically, an infinite
effective mass means a localization (trapping) of a polaron. As was shown by Gerlach and
Lowen [31], “phase transitions” for polarons when varying the coupling strength cannot
exist and might be artifacts of approximations. Nevertheless, these “phase transitions” can
indicate real situations when, e.g., the polaron mass can drastically increase.

It should be noted that there are kinks (discontinuities of the first derivative) in the
curve for the ground state energy in Fig. at the same critical values of the coupling
constant where the 2TO polaron effective mass diverges. As discussed below in Sec. [III
and in Ref. ], the physical origin of these features consists in the polaron instability
which appears when the coupling strength of the quadratic interaction reaches some critical
negative value. In the parameter range below the appearance of the kinks, the SPS result
is well consistent with DiagMC simulations (Fig. Bl (b)) of a subset of the diagrammatic
expansion of the polaron Green function. The terms involved are all crossing diagrams
containing 2-loops and 3-loops, which are the dominant contribution at small coupling. The
inclusion of 3-loops results in a behavior closer to the SPS result compared to 2-loops alone.
The implementation of the DiagMC method is described in Appendix B.

In Fig. B the 2TO polaron effective mass is shown as a function of ar choosing other
parameters the same as in Ref. | in order to see whether the 2TO interaction may be
relevant for polarons in strontium titanate. Kumar et al. use g, as a fitting parameter,
and apply for numerics g, = 0.92a3 where aq is the lattice constant taken in Ref. [13]
to be ay = 3.9A. With other parameters from the same work, ¢ = 6.6 x 10° cms™', the
bare electron band mass m = 1.8mg (where myg is the electron mass in vacuum), and with
hwro = 0.0987 eV [32], we estimate the dimensionless 2TO coupling constant in SrTiO3 as
ar ~ 0.079. This value is indicated by the arrow in the inset of Fig. B The phonon cutoff
momentum is chosen here as the edge of the Brillouin zone, ky = 7/ag, which gives us the
dimensionless cutoff value py = hko/mc =~ 80.

As can be seen from Fig. [A the relative contribution of the 2TO interaction to the polaron
mass in SrTiOj is relatively small with respect to the Frohlich polaron mass, which can be
estimated as mj/m — 1~ «/6 ~ 0.35 [32]. However the 2TO contribution is not negligible.
Moreover, if it may appear that the coupling constant in SrTiOj3 is negative, the value

|ar| &~ 0.079 lies rather close to the resonance obtained in the present calculation. This may
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FIG. 5: TO2-polaron effective mass as a function of the coupling constant ap, calculated using
the momentum cutoff kg = 80me, which approximately corresponds to the Brillouin zone edge in
SrTi0O3. Inset: the effective mass in the Weak—couplinﬁange of arp. The arrow indicates the value

-

ar =~ 0.079 obtained using the parameters from Ref.

explain larger values for the effective mass of a “dressed” electron obtained in spectroscopic

measurements with respect to that which follows from our calculations (predicting o =~ 2.1).

III. INCLUDING NON-PARABOLICITY AND FINITE WIDTH OF THE CON-
DUCTION BAND

A. Model

The most important point of this subsection consists in a generalization of the method
using displaced squeezed phonon states to the polaron in a non-parabolic finite-width con-
duction band. The generalized method satisfies periodic boundary conditions in the Brillouin
zone and consequently it is not restricted to a small polaron momentum. Thus, it allows for
a description of both large and small polarons.

The treatment in the present work is performed for the polaron model introduced in Ref.

]. The polaron problem is treated using the Hamiltonian in the lattice representation,
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written as H = Hy + H._,), where

— —tz Z c, SCio + Zwo <b;r/bi + %) ) (21)

(i"i) o==%1/2

Hepp, = anl (22)

with
B; = by + b}, (23)
Z ciT,ociJ. (24)
o=+1/2

In reciprocal space the lattice corresponds to a discrete finite set of wave vectors,

2mi;

m m
ao — ( ]7qj) < a07 ( ]7qj) L (j $7y)7 ( 5)

where L = N'/3q is the size of the system (V = L = Na}), ao being the lattice constant,
and i; are integers.

In the momentum representation, applying the discrete Fourier transform
Cio = L Z o€ o = L Z o emikmi (26)
Lo = N1/2 k.o e X NGV k.o ’
Kk Kk

1 —1 Ty ]' 7 ‘ry
Ba=sam D ¢ By Bi= g ) ¢ By (27)
i q

the Hamiltonian H, takes the form

1
Hy = E e (k) E Ol Ol + E wo (bgbq + 5) (28)
k o q

with ¢ (k) (counted from the middle of the conduction band) given by
3
k) = —2t ) _ cos(kja). (29)
j=1
The quadratic interaction Hamiltonian becomes
Wy 1
AN TE5 5 3) 3 S IURRNENC) 0
a d k o

with By = bg + bl 4.
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Expanding the band dispersion up to quadratic order, € (k) = adt k* + O (k*), yields the

relation between the bandwidth parameter ¢t and the band mass my,:

h? h?
t= " my=
"7 24t

31
TR (31)

The band width for the tight-binding model is W = max [ (k)] — min [e (k)] = 12¢. Further
on, we set h = 1. The other units will be set below.

For a single polaron, the parts of the single-polaron Hamiltonian are

Ho (p, {bl,bq}) = +Zw0 (b*b + 1) (32)
He_p (v, {b1,04}) = sze a-a)*p Bl (33)

The first Lee-Low-Pines transformation, as in Sec. [[Il leads to an electron coordinate-free
Hamiltonian. In order to apply the Bogoliubov-Tyablikov transformation, this Hamiltonian

is rewritten in terms of real phonon coordinates,

H=:c(P-Q)+ > w <bgbq+%)+%<2(bq+bg)> : (34)

where the total phonon momentum is Q = qbgbq. Representing ¢ (P — Q) through the

normal products of phonon second quantization operators, we arrive at the result:

3
c (P . Q) N Z leiaonN exp (Z (e—iaoqj _ 1) bgbq>
j=1 q
te mOPJNeXp (Z (eiaoqg' _ 1) bqu)] . (35)

q

where N(...) denotes the normal form of second quantization operators. When truncating
the Taylor series of (B3]) in powers of normal products of phonon operators up to the quadratic

order, this gives us the expression

sl (P Q) = (P)+ 3 [ (P — q) — = (P)] b, (36)

qa

Consequently, the Hamiltonian (34)) can be subdivided in the two parts

H = Hy + H; (37)
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where the Hamiltonian Hj is a quadratic form of phonon operators,

2
Hozg(P)+Z%+Zqugbq+Z—§\f <Z (bq+bg)> : (38)
q q

q

with the renormalized phonon frequency (g,
Qq=wo+e(P—q)—e(P), (39)
and Hj is a series of all higher-order terms beyond the quadratic expansion,
Hy=e(P-Q) - (P-Q). (40)

As can be explicitly seen from (B5), both the total Hamiltonian H and the quadratic
Hamiltonian H, have the correct periodic translation symmetry, the same as for the initial
exact electron-phonon Hamiltonian. Namely, ¢ (P), ¢ (P — Q) and 2 are invariant with
respect to the periodic translations P; — P; 4+ 2m/ay and/or ¢; — ¢; + 2m/ag. Conse-
quently, the present scheme exactly accounts for the boundary conditions of the Brillouin
zone both for an electron and phonons. When including both linear and quadratic electron-
phonon interactions, the full expansion of the kinetic energy in powers of phonon operators
is performed in the same way without difficulties. Therefore this expansion gives us the
straightforward extension of the method of squeezed phonon states to a polaron in a non-
parabolic finite-width band. As a particular case, this provides the equivalent scheme of

displaced squeezed phonon approach for a small polaron.

B. Self-energy of a polaron with a quadratic interaction

The shift of the self-energy provided by the Bogoliubov-Tyablikov diagonalization is de-

termined in the same way as in Sec. [Il and gives

1 1 Wog Qq
AE(P)=—— —In|1- : 41
(P) S Cds\/gn< N;S_Qa (41)

The summation over q is performed within the first Brillouin zone over sites of the recip-
rocal lattice with the number of sites N = % = (21)* (with L = 2lag). Thus the present
0
treatment is in fact for the lattice polaron rather than for the continuum polaron in bulk.

The subsequent numeric check shows that the relative difference between the energies for
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the continuum and lattice polarons becomes negligibly small already at relatively small [.
For example, the relative difference of the ground state energies calculated with [ = 10 and
[ =20 is about 2.4 x 107°. Consequently, the lattice representation very well reproduces the
properties of a polaron in bulk even at relatively small number of sites.

To obtain the particular case of the atomic limit (AL), the limiting transition ¢ — 0 can
be taken explicitly for the leading term of the ground state energy. For the ground state

energy in this limit we can consider the Hamiltonian

lim Ho = ZWO (b’rb + ) - (Z (bq+bj;)> . (42)

This Hamiltonian has the analytic expression for the exact ground-state energy

AEM = 20§ e (1- =2 ). 4
i Jo = 22 -1 (43)
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FIG. 6: Ground state energy of the quadratic polaron in the adiabatic regime with wy = 0.25¢ (a)
and in the antiadiabatic regime with wy = 48t (b) as a function of the strength g of the quadratic
electron-phonon coupling calculated within the present approach (solid curve) and by DiagMC
(dots). The DiagMC data are from Ref. ] In the panel (a), the dashed line shows the weak-
coupling limit for the ground state energy within the first-order perturbation theory. In the panel

(b), the dashed curve shows the ground-state energy in the atomic limit ¢ — 0.

In Fig. @ (a), we plot the ground state polaron energy of a polaron with a quadratic

interaction as a function of the coupling constant g in the adiabatic regime, with wy = 0.25¢.
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The obtained ground state energy is compared with the DiagMC data of Ref. ﬂﬂ] shown by
full dots.

As we can see from Fig. [l (a), the qualitative behavior of the ground state energy within
the extended squeezed phonon approach is similar to that obtained using DiagMC calcula-
tions. In the adiabatic regime the extension of the squeezed phonon method to the polaron
in the tight-binding conduction band provides polaron ground state energy values in be-
tween the weak-coupling results and the DiagMC data, being closer to DiagMC rather than
to the weak-coupling result. For a weak and intermediate coupling strength (¢ < 10), the
agreement between the squeezed phonon approximation and DiagMC results seems to be
rather good.

In Fig. [0 (b), the ground state energy is calculated for wg/t = 48, which corresponds to
the antiadiabatic regime. In the antiadiabatic regime, when wg > ¢, the agreement between
the current method with squeezed phonon states and DiagMC for the ground state energy
appears to be better than in the adiabatic regime. This is explained by the fact that in the
limit ¢ — 0, the coordinate-free Hamiltonian (34)) tends to a quadratic form which is ezactly
diagonalized by the Bogoliubov-Tyablikov transformation. For the comparison, the result

of this limiting transition is shown by the red dashed curve in Fig. [@ (b).
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FIG. 7: Parameter k = 1—my/m™ of the quadratic polaron in the adiabatic regime with wy = 0.25¢
(a) and in the antiadiabatic regime with wg = 48t (b) as a function of the coupling strength g

calculated using the SPS method (solid curves) and by DiagMC (dots).
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In Fig. [ we plot the parameter k = 1 — m;/m* which determines the polaron effective
mass m*, in the adiabatic (a) and antiadiabatic (b) regimes. The parameter « is the co-
efficient at k% in the series expansion of the momentum-dependent polaron energy E, (k)
in powers of k. For the simple cubic tight-binding band used in the present work and in
Ref. ], the electron and polaron effective masses are isotropic.

The dependence of k as a function of the coupling constant g is qualitatively similar to
that extracted from the DiagMC data. However, quantitatively there is a difference between
our results and Ref. [15]. In the adiabatic regime, the present calculation underestimates
the polaron mass with respect to the DiagMC result. On the contrary, in the antiadiabatic
regime we can see an overestimation of k given by the present method with respect to
DiagMC.

Because the approximated coordinate-free Hamiltonian keeps the translation symmetry of
the initial electron-phonon Hamiltonian, it allows us to calculate the polaron energy E, (k)
in the whole Brillouin zone. In Fig. B (a), the band dispersion is shown for the polaron
with a quadratic interaction for several values of the coupling constant ¢g (including g = 0
which corresponds to the bare band electron) along the standard path for the cubic lattice:
['-X—M—-I"-R—X|M — R in the adiabatic regime with wy/t = 0.25. As can be seen from
the figure, the quadratic electron-phonon interaction leads to a narrowing of the conduction
band with respect to that of the bare electron. For sufficiently high coupling strengths, the
polaron self-energy exhibits non-monotonic behavior at large momentum close to the point
M, so that local minima appear along the chosen path. Consequently, the polaron band
dispersion is more complicated than the electron band dispersion.

The polaron band dispersion in the antiadiabatic regime shown in Fig. § (b) looks dif-
ferently from the momentum-dependent energy in the adiabatic regime. First, here the
polaron shift of the energy is relatively large with respect to the electron bandwidth. As a
result, the polaron effect on the energy in the antiadiabatic regime is expressed through the
shift of the whole band rather than through a renormalization of the bandwidth. Thus in
the antiadiabatic regime the top and the bottom of the conduction band shift in the same

directions, while in the adiabatic case they shift in the opposite directions.
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FIG. 8: Band dispersion of the polaron with a quadratic interaction in the adiabatic case with
wp/t = 0.25 (a) and in the antiadiabatic case with wy/t = 48 (b) along the path for the cubic

lattice ' = X — M —T' — R — X|M — R for different values of the coupling strength.

IV. CONCLUSIONS

One of the primary outcomes of this treatment involves incorporating quadratic electron-
phonon interaction into the squeezed phonon states scheme, which appears straightforward.
The resulting dependence of the ground state energy and the effective mass of a polaron,
arising from the quadratic interaction between an electron and TO-phonons, exhibits notable
differences for positive and negative coupling constants. In the regime of positive coupling
strengths, we observe behavior typical of a repulsive polaron, without irregularities. How-
ever, for a negative coupling constant, the polaron’s effective mass diverges at a critical value

of the negative coupling strength. This divergence indicates a polaron instability, akin to
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what has been described in Ref. ﬂﬂ]

An advantageous feature of the current modification to the squeezed phonon states
method lies in its ability to calculate the polaron band dispersion across the entire Bril-
louin zone, extending beyond the assumption of small polaron momentum and the quadratic
expansion in powers of polaron momentum, and keeping the periodic boundary conditions
exactly. This represents the second key result of our present work.

Even for a parabolic band, achieving a comprehensive variational treatment is inherently
complex [6]. The feasibility of obtaining a tractable form for the complete correlated Gaus-
sian wavefunction remains uncertain in the context of a non-parabolic conduction band.
This unresolved question serves as the focus of subsequent studies.

The analytic method employed in this work enables the investigation of various polaron
characteristics across a broad range of parameters, including coupling strength. Notably,
it complements the numeric DiagMC treatment. Our method’s predictions align qualita-
tively with DiagMC results, highlighting features such as the instability of the polaron with

quadratic interaction at specific negative coupling strengths.
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Appendix A: Derivation of the polaron self-energy

The off-diagonal component of the quadratic Hamiltonian (IT]) and (B8] remains irrelevant

to the energy within the Lee-Low-Pines approximation. The Bogoliubov-Tyablikov canonical
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transformation, as described in ﬂﬂ, E, @], is the third transformation,

1 / / / /
(a) _ (aa’) 5(a’) (aa’)x p(a’)t
bq o /_VZ(uqq’ 5q’ T Vgq 5q’ >’

q’,a’

1 / / / /
()t _ (aa’)x p(a’)t (aa’) p(a’)
bq - \/V (uqq’ 5q’ +qu’ 5q’ ) (Al)
q’,a’

This mixes the creation and annihilation phonon operators, and corresponds to a transfor-
mation from the original phonon states to squeezed phonon states. This is why we refer to
this approach as the “squeezed phonon state” approach. When the Bogoliubov-Tyablikov
transformation is used in conjunction with the displacement operator Sy, this leads to dis-
placed squeezed phonon states, which are useful when both a linear-harmonic interaction and
a quadratic interaction are present. The matrix elements of the Bogoliubov-Tyablikov uni-
tary transformation are chosen in order to diagonalize the Hamiltonian Hy. After applying
(AT) to (B8), the resulting Hamiltonian can be written as:

Hy = Ey+ Y w8 + AE, (A2)

a?q

where Véa) are eigenfrequencies, and AF is the polaron energy shift,

1 a a
AE:§;h(V(§)—Qg)). (A3)

In order to obtain the polaron self-energy within the squeezed phonon states method for
Hy, we do not need an explicit form of eigenfrequencies and matrix elements. The self-
energy can be derived using a scheme described by Wentzel @] First, the Hamiltonian H

is rewritten in terms of phonon coordinates and momenta,

h
(a) _ (@)t | pla)
Qq - 2mQ£1a) (bq +bq )
[ EmQ{®
P = i\ Tq (bl — b (A4)
leading to
2
g () () e
Ho=to a,q 2m * 2 (le))
gam 1 "

+ hW? + ng -3 §a q: hQL, (A5)
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with the collective coordinates

[~ (a)
W= a0 fO0W, wy = Y e %“ - ——X = Q. (A6)
a,q

q,a=1,2
The equation for eigenfrequencies and eigenvectors of the quadratic form (Af) is determined

in the standard way:

2 Mg @) QY ) =0, (A7)
where the elements of the matrix M (w) = HM (a,a') H are

a,a’ a)\2 a a’ a) p(a
M((1/7q ) (CU) == 5(1’,(15q’,q |:W2 - (Q( )) :| - 2h (q ® q/) Q((l)Q((:l’ )f(g )f((ll )

29 a a’ a a’
— (1= b0g) (1= 8ur3) 72 (eg> @ el ’) s\ 2O, (AS8)

The eigenfrequencies are the roots of the equation
det Ml (w) = 0. (A9)

A reduced set of equations for collective coordinates ([A6) can be extracted from the full set
of equations (A7) when we divide the equation by {w (Q( ) } and perform summations

over q with different weight coefficients. It results in the matrix equation
A(w)W (w) =0, (A10)
where W (w) is a 6-dimensional vector, which is given in a block form by:

B Wl (w)
W (w) =
W2 (w)

The matrix A (w) can be written as the block matrix

A(LO) (w) A(mzx) (w)
Aw) = . T , (Al1)
[A(mzx) (W)} A(ZTO) (w)

with the matrices

A () =T-2n Y o (q®q), (A12)

q,a=1,2,3
22
TO a a a

AT (W) =T 222 Z Ay (e @el)) (A13)
q,a=1,2

A (1) Z J(a®el), (A14)
qa 1,2
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and weight functions

2
g’ (fé“)) AR 3 Q) £40
a((la) (W)= ———2_ )\gz) (w) = q—qg,%(f) (w) = L‘l? (A15)
w? — (Q((f)) w? — (le)) w? — (le))
The eigenvalues of the phonon energy are determined by the equation
det A (w) = 0. (A16)

A mixing of the Frohlich and 2TO interactions is provided by non-diagonal blocks of the
matrix (AL]). For P = 0, they are exactly equal to zero due to symmetry. Therefore, for the
ground-state energy the Frohlich and 2TO contributions are completely decoupled within
the approach of squeezed phonon states. For a nonzero momentum, this mixing is not equal
to zero. However, it can be significant only when the LO and TO phonon frequencies are
in resonance. For soft TO phonon modes in strongly polar crystals like Sr'TiOg, this is not
the case, and hence the aforesaid LO-TO phonon mixing is expected to be of a relatively
small importance. When the non-diagonal blocks of A (w) are neglected, it is reduced to a
quasi-diagonal form of two blocks describing, respectively, Frohlich and 2TO contributions.
Without loss of generality, we can choose axes in coordinate and momentum spaces such

that P || Oz, so that P, = P, P, = P, = 0. In this basis, the first block is:

Az 00
AM (w)y=1 0 A4, 0
0 0 A,
with the matrix elements
Ajj=1-2hn ) oWk (A17)
q,a=1,2,3

Also the second block results in the diagonal matrix:

B,., 0 0
APTO (w)y=1 0 B, 0 (A18)
0 0 B..
with the matrix elements:
g2 (a) k3
o a J
Bjj_1—Wq;2Aq (1—ﬁ). (A19)

23



As the Frohlich polaron self-energy within the approach of squeezed phonon states is
already thoroughly studied in the literature |6, 24, g@] we focus on the contribution for

the polaron self-energy for a 2TO interaction. The determinant of the matrix A®TO) (w) is

det ACTO (w) = ] (1 -2 3 W (1 — k—)) . (A20)

j=z,y,2 qa 1,2
The change in the self-energy resulting from the Bogoliubov-Tyablikov diagonalization is
established in the following manner, following the logical framework outlined in Ref. .

The eigenfrequencies are solutions to the equation
det Ml (w) = 0. (A21)

The matrix M (w) is diagonalized using the Bogoliubov-Tyablikov transformation described
above. The transformation (AI) is unitary and can be written as UgrF (b1, ) Ugt for any

function of phonon operators F (bT, b). Hence, the diagonalized matrix is

M (w) = UptM (w) Ugt =

batea - Y|

where V((f) are eigenfrequencies. The determinant of the matrix M (w) is an invariant of

unitary transformations: det M (w) = det Ml (w). Hence
det M (w) = H [wz - (I/é“))ﬂ : (A22)
a7q
If the interaction terms in ([AS) tend to zero, this determinant turns to its limiting value

det My (w) = H [wz — (Q((l“))2] : (A23)

a7q

Let us introduce the ratio function o