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Abstract 

High-quality fluorescence imaging of biological systems is limited by processes like 

photobleaching and phototoxicity, and also in many cases, by limited access to the latest 

generations of microscopes. Moreover, low temporal resolution can lead to a motion blur effect 

in living systems. Our work presents a deep learning (DL) generative-adversarial approach to 

the problem of obtaining high-quality (HQ) images based on their low-quality (LQ) equivalents. 

We propose a generative-adversarial network (GAN) for contrast transfer between two 

different separate microscopy systems: a confocal microscope (producing HQ images) and a 

wide-field fluorescence microscope (producing LQ images). Our model proves that such 

transfer is possible, allowing us to receive HQ-generated images characterized by low mean 

squared error (MSE) values, high structural similarity index (SSIM), and high peak signal-to-

noise ratio (PSNR) values. For our best model in the case of comparing HQ-generated images 

and HQ-ground truth images, the median values of the metrics are 6·10-4, 0.9413, and 31.87, 

for MSE, SSIM, and PSNR, respectively. In contrast, in the case of comparison between LQ and 

HQ ground truth median values of the metrics are equal to 0.0071, 0.8304, and 21.48 for MSE, 

SSIM, and PSNR respectively. Therefore, we observe a significant increase ranging from 14% to 

49% for SSIM and PSNR respectively. These results, together with other single-system cross-

modality studies, provide proof of concept for further implementation of a cross-system 

biological image quality enhancement. 

1. Introduction 



High-quality microscopy plays a crucial role in biological sciences 1,2. The development of 

several groundbreaking techniques such as fluorescence confocal microscopy and later super-

resolution techniques unlocked new possibilities in biological sciences like 3D optical sectioning 

and imaging nanometric size (5-20nm) structures 3–8. Nowadays, these marvelous techniques 

have established their place well in the spectrum of research techniques, and it is hard to 

imagine doing research without them. Yet, even with years of further research and 

development, they still come with caveats like high cost of equipment or low imaging 

throughput, which drastically limit access to these essential techniques, especially in low-

income regions 4. On the other hand, techniques like basic wide-field fluorescence (WFF) 

microscopy are getting more and more accessible these days, especially if we consider that 

second-hand retired systems, which cost a fraction of their original price, often offer a good-

quality basic WFF-based imaging potential 9,10. These systems allow a fine-quality basic 

fluorescence imaging with reduced cost and time of a microscopy experiment, however 

without advantages that give more advanced techniques. 

A generative-adversarial network (GAN) is one of the methods that can be used to bridge low-

quality low-cost fast imaging with advantages given by confocal or super-resolution techniques. 

GANs are composed of two networks: a generator and a discriminator 11,12. The crucial part of 

GAN training is the dynamic interplay between those two networks. GANs have been used in 

many different fields and are one of the most promising deep-learning methods 13–18. This type 

of architecture has already been implemented for modalities, where images from the same 

imaging system were gathered in different resolutions to improve their quality after processing 

them through the network 19. Moreover, different modifications of GANs were also proved to 

be efficient tools and showed promising results in other image-enhancement applications 
13,14,19–21. A great advantage of GAN is its easy way of implementing different modifications to 

the base architecture. For example, some alterations include Fourier Channel Attention blocks, 

which proved to be useful when STED and confocal images were compared 22. However, it is 

worth noting that the more complex the implemented methods, the more computationally 

intensive the entire model will be, which can significantly increase the calculation time.  

In our research, we created a database of matching pairs of images collected on two separate 

imaging systems: a wide-field fluorescence microscope, and a laser scanning confocal 

microscope. We developed a GAN model for deep-learning microscopy, where we recovered 

the spatial information from the LQ WFF microscopy images based on their HQ confocal 

equivalents (the ground truth data). In short, the generator aims to create the HQ image based 

on the LQ input. Next, the discriminator is primarily trained on the HQ ground truth images and 

later is fed with HQ-generated images to estimate the resemblance between the generated 

images and the ground truth ones 12. In our GAN implementation, we used a U-NET architecture 

for the generator 23. U-NET was first applied for the biological image segmentation methods 

but was also proved to be a robust architecture in our case. This type of network learns the 

features of the image in a very efficient way by employing down- and up-sampling blocks 24–29. 

Furthermore, our U-NET architecture is modified with additional residues, which improve 

network performance even further. On the other hand, for the discriminator, we employed a 

simple convolutional neural network (CNN) architecture. The results received from our 

network, based on our cross-system database, together with other single-system cross-

modality studies, provide proof of concept and a scientific basis for further implementation of 

cross-system biological image quality enhancement. In future, this may help to establish 

fundaments for forming a multi-institute microscopy cooperative network, where multiple 

microscopes, located even on different continents, may be virtually paired together to increase 

access to high-quality imaging methods. 



 

2. Methods  

In this research, we employed a GAN architecture. It consists of a discriminator and a generator, 

which work adversarially to obtain images, which would resemble images obtained using a 

high-quality modality. Original data was composed of 149 aligned images of mouse embryonic 

fibroblasts (procedure of data aligning was performed in ImageJ software 30–32, and is described 

in detail in the supplementary materials) obtained from laser scanning confocal (Zeiss LSM 710 

set on Zeiss Axio Observer Z1 body, oil-immersion Plan-Apochromat 40x NA 1.4 objective, ZEN 

black version 8.10.484 software) and wide-field fluorescence microscopes (Zeiss Axio Observer 

Z1, oil-immersion EC Plan-Neofluar 40x NA 1.30 Ph3, ZEN blue version 2.3 software). They were 

later artificially augmented using data augmentation random flips, random rotations, and/or 

random translations algorithms (all actions were taken at the same time for LQ and HQ ground 

truth images). These procedures allowed us to increase the total number of images to around 

600. Augmented data was split into training, testing, and validation subsets (80% - 19% - 1%, 

respectively). The training procedure is described below. The architecture of the network is 

shown in Figure 1.  The Discriminator comprises a CNN with 10 convolutional blocks. It initiates 

with a convolutional layer, and its output is fed through subsequent convolutional blocks, 

where a series of essential operations unfold as follows: 

 

𝑥𝑘 = 𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝑥𝑘−1)])])])],  (1) 

𝑘 = 1, 2,… , 10, 

 

where xk is the output of the x-th convolutional block, x0 is the input from the first convolutional 

layer, LReLU is a Leaky Rectified Linear Unit activation function with a slope a= 0.1, and Conv2D 

is a two-dimensional convolution operation. LReLU is defined as: 

 

𝐿𝑅𝑒𝐿𝑈(𝑥, 𝑎) = max(0, 𝑥) − 𝑎 ∙ max(0,−𝑥).            (2)   

 

After the 10th convolutional block, the average pooling layer is inserted to reduce 

dimensionality, implementing a 4x4 pool size. Subsequently, two fully connected layers (FC) are 

added and the network outputs the probability estimated by the sigmoid activation function.  

The generative model is based on a residual U-NET architecture, facilitating the acquisition of 

spatial information by the network. In this case, U-NET consists of 4 down-sampling and four 

up-sampling blocks, connected by skip layers. Each down-sampling block consists of 3 

convolutional blocks, where the following operations are performed: 

 

𝑑𝑘 = 𝑑𝑘−1 + 𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣(𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝑑𝑘−1)])])] ,                                (3) 

𝑘 = 1, 2, 3, 4. 

 

Following the addition operation, an average pooling layer is inserted with a 2x2 pool size. In 

this case, d0 is the input image. Similarly, to the down-sampling part, the up-sampling blocks 

consist of three convolutional blocks with the following operations: 

 

𝑢𝑘 = 𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝐿𝑅𝑒𝐿𝑈[𝐶𝑜𝑛𝑣2𝐷(𝐶𝑜𝑛𝑐𝑎𝑡{𝑑5−𝑘, 𝑢𝑘−1})])])],           (4) 

𝑘 = 1, 2, 3, 4 

 

After the last block, a convolution layer, together with the LReLU activation function, is added. 

Here, u0 denotes the output of the layer, which is placed at the bottom of the U-NET. The Concat 



operation denotes the concatenation of the down-sampling, and up-sampling layers (so-called 

skipped connections), which allows to improve network performance.  

The loss function employed in the discriminative model is a simple binary cross-entropy (BCE). 

Its primary objective is to determine whether the received images correspond to the HQ 

ground truth or are generated by the network, effectively acting as a binary classifier. BCE is 

defined as follows: 

 

ℒ𝐷|𝐺(𝑋, 𝑌) = 𝐵𝐶𝐸(𝐷(𝐺(𝑋)) − 𝐷(𝑌), 𝑦) + 𝐵𝐶𝐸(𝐷(𝑌) − 𝐷(𝐺(𝑋)), 1 − 𝑦),                          (5) 

 

where X and Y denote the LQ and HQ input images, respectively. G(·) is the generative model 

output, D(·) represents discriminator model prediction, and y is the label set during the training 

(0 when the discriminator is trained). In the case of the generative model, the combined losses 

of MSE (mean squared error), SSIM (structural similarity index) 33, and BCE are used:  

 

ℒ𝐺|𝐷(𝑋, 𝑌) = 𝛼 ∙ 𝑀𝑆𝐸(𝐺(𝑋), 𝑌) + 𝛽 ∙ 𝑆𝑆𝐼𝑀(𝐺(𝑋), 𝑌) + 𝛾 ∙ 𝐵𝐶𝐸(𝐷(𝐺(𝑋) − 𝐷(𝑌), 𝑦).          (6) 

 

Here α, β, and γ denote the weights given to the respective losses. MSE loss was used to ensure 

the general fidelity of the generated image. However, the loss given to the MSE cannot be too 

high in comparison to the SSIM and BCE because the differences between HQ ground truth and 

LQ images in terms of MSE are initially small. SSIM loss on the other hand ensures that the 

visual perception of the generated image is enhanced, whereas the BCE encourages the 

generator to produce images similar to the HQ ground truth ones. Altogether, the combined 

weights of MSE and SSIM accounted for approximately 10% of the total loss.   

To compare the ability of our network to produce HQ images, we also performed deconvolution 

of LQ images. The deconvolution workflow was done using Fiji ImageJ software. For that 

purpose, we used BatchDeconvolution, PSF generator, and the DeconvolutionLab2 plugins 34–

37.  PSF was generated according to the Born-Wolf model 34, with the parameters set to be 

identical to those used during the experiments, i.e., NA = 1.4, immersion refractive index = 

1.515, pixel size = 159 nm and the wavelengths identical to those of the maxima of emission 

spectra of the fluorophores (461nm, 520nm, and 565nm, for Hoechst 3342, Alexa Fluor 488, 

and Alexa Fluor 555, respectively). The deconvolution was performed separately for all the 

channels and was done using the Richardson-Lucy algorithm with 10 iterations 38,39. 

 



 
Figure 1. The models used in this research. (a) The discriminator model (input image can be an 

HQ ground truth image or an HQ generated image), (b) The generator model based on a U-NET 

architecture (input image is an LQ image, and the output is an HQ generated image).  

 

Altogether training was performed on a set of 480 pairs of images all having the dimensions of 

256x256 pixels. The rest of the data was left as a testing and validation sets (120 images). Our 

GAN architecture is designed to start with random initializations and is optimized using an 

Adam optimizer with a starting learning rate of 10-5 for both the discriminator and the 

generator. It is also worth mentioning that the GAN network continuously switches between 

training the generator given the discriminator and updating the discriminator by keeping the 

generator unchanged. In our case, the generator model was saved every 10,000 epochs. 

Furthermore, during every iteration, the model was validated on the validation image set, and 



SSIM and PSNR scores were kept in memory, which allows for saving the best model. This 

architecture was implemented using Python version 3.8.10, tensorflow version 2.13.0, numpy 

version 1.23.5, and skimage version 0.19.3. The training was performed using Google 

CoLaboratory (a cloud-based platform providing access to the graphic processing units). Here, 

T4 GPU was used and the model was trained for approximately 500,000 iterations. The details 

of the architecture can be found on the GitHub page. After saving the best model, our solution 

was validated on unpaired images, which allowed us to assess the model’s ability to generalize 

learned features of the HQ images. 

 

3. Results and discussion 

In the following sections, we show representative results of the network training, which were 

obtained on the testing subset of the data. The metrics we used for image comparison are 

mean squared error (MSE), normalized root mean squared error (NRMSE), structural similarity 

index (SSIM), and peak signal-to-noise ratio (PSNR). These metrics allowed us to assess the 

fidelity of the generated images in comparison to the ground truth ones.  

To analyze the effectiveness of our network we processed the images of microtubule filaments 

of mouse embryonic fibroblasts (MEFs) through the GAN model as well as through 

deconvolution (Figure 2). Deconvolution minimized the noise of the LQ wide-field images to 

some extent (Figure 2d, h, m). Nevertheless, our architecture handles this problem in a much 

more refined way. The microtubular structure is better defined in comparison to the LQ or LQ 

deconvoluted images. Interestingly, in some cases, our network can reconstruct the intricate 

microtubular web by removing the excess noise, which indicates the places of the microtubular 

fibers and allows potentially more precise localization of these structures than in the case of 

the HQ ground truth image (Figure 2xi).  

We compared values of MSE, NRMSE, SSIM, and PSNR metrics of representative images of MEF 

cells taken using confocal microscopy, wide-field fluorescence microscopy, as well as images 

generated by the network (Figures 3-5, Table 1). In both Figures 3 and 4, the proposed model 

was able to restore very intricate details from the cell structures, including actin filaments, 

microtubules, and even the internal structure of chromatin inside the nuclei. Images in Figure 

3 prove the ability of the network to transfer the high-quality features from the HQ ground 

truth images to the LQ ones. It can be seen clearly in panels b and c, as well as h and i, that the 

network was able to recover the subtle information about the microtubule structure, which is 

hard to distinguish in LQ images. Furthermore, in some cases (outlined in Figure 3) images 

generated by the GAN are characterized by a higher level of detailedness when compared to 

the HQ ground truth images. This is especially visible in panels f and i of the GAN results where 

the microtubule structures are more prominent than in the confocal ones. Moreover, evident 

noise reduction is observable in panel f when comparing confocal and generated images. The 

metrics that we used for comparisons (Table 1) indicate that the network was able to learn the 

ability of an HQ modality to produce HQ images with a high level of fidelity. Nonetheless, the 

model sometimes struggled to reconstruct actin stress fibers (Figure 3a-c, indicated by the 

white arrow). However, its denoising ability was able to extract information about the 

microtubule structure from the LQ images (Figure 3e and h) making them clearly visible (Figure 

3d-i).  

 



 
Figure 2. The comparison of LQ, ground truth HQ, generated HQ, and deconvolved images of 

microtubule networks. The color bar on the right corresponds to the normalized fluorescence 

intensity. Panels (a – m) show the LQ input images, ground truth HQ (confocal) images, 

generated HQ as well as LQ deconvoluted images. The insets (i – xii) correspond to the frames 

of the respective color in the upper figures.  

 



 
Figure 3. Exemplary images showing the network’s ability to generate accurate HQ images from 

the LQ ones. (a – i) Comparisons of ground truth HQ (confocal), LQ (WWF), and HQ generated 

images. The white dashed lines in the a-c correspond to the profiles shown in panel j (all the 

profiles are drawn along 128 pixels). Here, red represents microtubule fibers, green - actin 

filaments, and blue - nucleus. The white arrows point to the regions where the model struggled 

to reconstruct actin stress fibers. Numbers along the vertical and horizontal axes indicate the 

pixel number. 

 



 
Figure 4. Exemplary images showing the network performance in generating HQ images from 

LQ Images. Panels (a – i) show comparisons of ground truth HQ (confocal), LQ (WWF), and HQ-

generated images. Interestingly, the network was able to produce images of lower noise than 

in the HQ ground truth images. The white dashed lines in d-f correspond to the profiles shown 

in the panel j (all the profiles drawn along 130 pixels). Here, red represents microtubule fibers, 

green - actin filaments, and blue - nucleus. Numbers along the vertical and horizontal axes 

indicate the pixel number. 

 

 

 

 

 

 



Table 1. Metrics comparing images shown in Figures 2 and 3. Values of the comparisons 

between ground truth HQ and generated HQ images are bolded. MSE – mean squared error, 

NRMSE – normalized MSE, SSIM – structural similarity index, PSNR – peak signal-to-noise ratio. 

Comparison MSE NRMSE SSIM PSNR 

Fig. 3 

a vs. b 0.0106 0.7249 0.8142 19.73 

a vs. c 0.0011 0.2315 0.9283 29.65 

b vs. c 0.0092 0.5084 0.8292 20.35 

d vs. e 0.0077 0.6568 0.8320 21.15 

d vs. f 0.0010 0.2396 0.9271 29.91 

e vs. f 0.0070 0.5004 0.8512 21.55 

g vs. h 0.0066 0.6166 0.8464 21.77 

g vs. i 0.0051 0.1708 0.9452 32.92 

h vs. i 0.0064 0.4582 0.8375 21.91 

Fig. 4 

a vs. b 0.0037 0.3589 0.8517 24.34 

a vs. c 0.0067 0.1437 0.9230 31.71 

b vs. c 0.0033 0.2852 0.8638 24.86 

d vs. e 0.0044 0.5002 0.6723 23.54 

d vs. f 0.0060 0.1840 0.8410 32.23 

e vs. f 0.0040 0.4701 0.8281 23.97 

g vs. h 0.0071 0.8052 0.7570 21.46 

g vs. i 0.0005 0.2156 0.9080 32.90 

h vs. i 0.0068 0.5548 0.8581 21.65 

 

 

 

 
Figure 5. Box plots representing differences between the metrics calculated on the testing set. 

The line within a box represents the median value, the upper and lower box boundaries 

represent the first and the third quartile respectively, the whiskers represent a range of the 

data (1.5 times the interquartile range), and the points under or above the whiskers represent 

the outliers. **** p < 0.0001 (statistics calculated using non-parametric Kruskal-Willis ANOVA 

test, and post hoc Dunn’s test).  

 



Additionally, the final model was tested on images, for which ground truth HQ images were not 

known. The model was able to reconstruct the microtubular structure, which is not clearly seen 

on the LQ image (Figure 6), showing promising robustness to changes in microscopy systems 

happening over time, such as decreasing light source power or micro-damages of optical 

elements of the microscope. This procedure also allowed us to estimate to what range 

experimental conditions and/or microscope settings can influence the outcome of the model.  

 

 
Figure 6. Representative results of model performance on an unseen wide-field fluorescence 

microscopy image. The WFF image was taken under slightly different conditions than the 

training and testing data. (a-c) WFF images, (d – f) generated HQ image, (d) cross sections 

through the images (plotted according to the horizontal line in the (f) image). Dashed and solid 

lines represent cross-sections through the WWF and HQ generated images respectively. Red 

represents microtubule fibers, green - actin filaments, and blue - nucleus. Numbers along the 

vertical and horizontal axes indicate the pixel number. 

 

4. Conclusions 

In this paper, we presented a deep-learning algorithm based on a GAN architecture to generate 

high-quality images based on their low-quality equivalents. To assess the ability of our model 

to generate HQ images we compared it with a simple process of deconvolution. Figure 2 shows 

that our model can reconstruct the intricate cytoskeletal structure based on the LQ images. 

Furthermore, our model significantly outperforms deconvolution; our model reproduces much 

more detailed and less noisy images. Figure 3 shows clearly that the network maps the 



resolution from HQ ground truth images to LQ ones with great fidelity, which is also visible in 

the color-based cross section in Figure 3j. The distributions of intensities along the line in 

images generated by the network and in the HQ ground truth ones are very much alike. Our 

model manages to generalize the intricate features of HQ imaging very well. In Figure 4, our 

model even outperformed the HQ ground-truth images in terms of quality. Figure 4a, d, and g 

show noticeably noisy confocal images, whereas their high-quality generated counterparts do 

not exhibit similar characteristics. This indicates that the model learned how to generalize HQ 

features into unseen data. By analyzing the metrics presented in Table 1 and Figure 5, it is 

evident that in each comparison the ground truth HQ images and generated HQ images are 

much more alike when compared to LQ and LQ deconvoluted ones. A very convenient metric 

to measure image similarity is SSIM, which (in contrast to MSE or PSNR) is limited by the upper 

value of 1. The maximal SSIM value indicates identical images. In Figure 5 the values of SSIM 

range from 0.92 to 0.95, which indicates high similarity between images.  

In summary, our model can be used for image quality enhancement not only in the case of 

images collected in the same conditions as the training set but also possibly in the case of 

images that were obtained in slightly different experimental conditions. However, caution 

should be taken when interpreting such results. Any modifications, including the efficiency of 

the microscopy system, staining protocol, the type of cells, etc., may affect the way the model 

interprets the input LQ data. Nevertheless, the results collected so far present our model as a 

promising and robust tool for high-resolution image generation. 

To our knowledge, this is the first work showing deep-learning-based cross-modality image 

enhancement between image sets taken on separate imaging systems. Based on the literature  
16,40 we believe that this model can be expanded to various other cross-modality setups (like 

scanning confocal – STED, or TIRF – SIM-TIRF). Thus far there are a couple of initiatives to 

increase the accessibility of high-quality imaging methods to scientists. For example, 

ZeroCostDL4Mic provides scientists with a database of multiple deep learning-based 

algorithms to enhance and analyze microscopy images 41. Furthermore, institutions like Janelia 

Research Campus or European Molecular Biology Laboratory provide no- or low-cost access to 

the latest imaging equipment, based on a grant-proposal scheme. Our study opens a gate to a 

new collaborative approach in imaging, where image enhancement will be dependent on the 

preparation of a correlated image database of LQ-HQ images, where two imaging systems can 

be located in different parts of the world. This approach will allow research groups with limited 

access to advanced microscopy systems to increase their imaging capability, after correlating 

their system with a high-quality one. We strongly believe that our work will lay the groundwork 

for the establishment of a multi-institute microscopy cooperative network. This network would 

enable the virtual pairing of multiple microscopes, even across different continents, to enhance 

access to high-quality imaging methods. 
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Supplementary materials 

  



Supplementary Note 1 – Paired image database preparation 

 

1. Cell culture and staining 

Mouse embryonic fibroblasts (MEF NIH/3T3 - ATCC CRL-1658 |) were culture in medium DMEM 

Low Glucose medium (L0066, Biowest, Nuaillé, France) supplemented with 10% Gibco FBS 

(10270106, Thermo Fisher Scientific, Waltham, MA, USA), and 100 I.U./mL Penicillin and 100 

μg/mL Streptomycin Solution (L0022, Biowest, Nuaillé, France) at 37°C, 5% CO2, and 100% 

humidity. Cells were passaged every 2-3 days when the confluence of cells reached about 75%. 

After at least three passages from thawing, 24 hours before fixation, cells were plated on #1.5 

round coverslips, 20 mm in diameter in a six-well plate and cultured with 2 ml of fresh media. 

20,000 cells were transferred to each slide in a six-well plate.  

 

Cells were fixed with 4% paraformaldehyde solution in PBS (20 min at 37°C), followed by 

incubation with 0.5% TRITON X-100 PBS solution (5 min in RT), and finally 0.1 M glycine solution 

in PBS (10 min, RT, rocking). Then, the samples were rinsed several times with PBS. After 

rinsing, samples were blocked using a 4% solution of BSA (bovine serum albumin) in PBST 

(0.05% TWEEN 20 solution in PBS) for 1 hour in RT.  

 

Immunofluorescence antibody staining was performed to label the microtubules. Cells were 

stained overnight with anti-α-Tubulin antibody (1:500 in 4% BSA PBS buffer; T9026, Sigma-

Aldrich, St. Louis, MO, USA). Then washed 3 times with PBST (5 min, RT), and stained Alexa 

Fluor 555-labeled goat anti-mouse IgG (H+L) antibody (1:100 in 4% BSA PBS buffer; A21422, 

Thermo Fisher Scientific, Waltham, MA, USA) for 1 hour in RT. Then, the samples were washed 

several times with PBS. 

 

Thereafter, actin and nucleus were stained for 30 min in RT using PBS solution of Alexa Fluor™ 

488 Phalloidin (1:200; A12379, Thermo Fisher Scientific, Waltham, MA, USA), and Hoechst 

33342 (2 µg/ml; H3570, Thermo Fisher Scientific, Waltham, MA, USA), respectively. Then, the 

samples were washed several times with PBS. Before imaging samples were mounted on the 

Correscopy sample holder (Correscopy, Krakow, Poland). 

 

2. Wide-field fluorescence and confocal images gathering  

Two microscopes were used for this purpose: a laser scanning confocal (Zeiss LSM 710 set on 

Zeiss Axio Observer Z1 body, oil-immersion Plan-Apochromat 40x NA 1.4 objective, ZEN black 

version 8.10.484 software) and wide-field fluorescence microscopes (Zeiss Axio Observer Z1, 

oil-immersion EC Plan-Neofluar 40x NA 1.30 Ph3, ZEN blue version 2.3 software). Calibrations 

were carried out for each microscope before each experiment.  

 

The calibration consisted of using the dedicated Correscopy software (Correscopy, Krakow, 

Poland). The first step was to locate the dedicated reference point, then once the orientation 

of the point was correctly set on the holder and the microscope. Once the calibration was 

recorded, cells were imaged using 40x oil lenses, preserving the pixel size and the z-step on 

both microscopes. First, images were taken on the wide-field fluorescence microscope, then 

the sample was transferred to the laser microscope and calibration was performed again. 

Moreover, to increase the quality of image alignment we added 200 nm red fluorescent 

polystyrene beads (F8763, Thermo Fisher Scientific, Waltham, MA, USA) at the 

paraformaldehyde fixation step. 

 



Additionally, we prepared calibration slides with polystyrene TetraSpeck beads of 100 nm in 

diameter (T7279, Thermo Fisher Scientific, Waltham, MA, USA). This allowed for the correction 

of optical defects, i.e. chromatic aberrations, which consist of displacement of the same objects 

due to the length of light emitted.  

 

The images captured with the wide field microscope were taken at a resolution of 2048x2048, 

while those with the confocal microscope at a resolution of 1114x1114. This adjustment was 

made to ensure uniform pixel size across both microscopes. Final alignment was performed 

using the ImageJ software. 

 

3. Data preprocessing  

Some of the images were slightly misaligned, i.e. were rotated relative to each other and/or 

shifted in different axes. The steps of the alignment algorithm were as follows:  

 

a. evaluation of the rotation angle and rotation of one image (rotation relative to each 

other of the images was performed using the angle measurement tool in Fiji software),  

b. extraction of a cell from the images by cropping the wide field image with a rectangle 

of the same size as the confocal image, 

c. evaluation of shifts of images in relation to each other (to determine a possible shift 

vector, first one corresponding slice was selected from both types of data, then an 

operation was performed to merge them into one stack and superimpose both images 

on each other using the method of averaging pixel values) 

d. Possible translation of one of the images (Fiji "Translate" tool was used to reduce the 

deformation that occurs) 

e. Z-axis image matching (for this purpose, the first and last slices in the stack were found 

so that they corresponded to each other between the different modalities)  

 


