
Proceedings of JuliaCon

EinExprs: Contraction Paths as Symbolic Expressions
Sergio Sanchez-Ramirez1, Jofre Vallès-Muns1, and Artur Garcia-Saez1, 2

1Barcelona Supercomputing Center, 08034 Barcelona, Spain
2Qilimanjaro Quantum Tech., 08014 Barcelona, Spain

ABSTRACT
Tensor Networks are graph representations of summation expres-
sions in which vertices represent tensors and edges represent tensor
indices or vector spaces. In this work, we present EinExprs.jl,
a Julia package for contraction path optimization that offers state-
of-art optimizers. We propose a representation of the contraction
path of a Tensor Network based on symbolic expressions. Using
this package the user may choose among a collection of different
methods such as Greedy algorithms, or an approach based on the
hypergraph partitioning problem. We benchmark this library with
examples obtained from the simulation of Random Quantum Cir-
cuits (RQC), a well known example where Tensor Networks pro-
vide state-of-the-art methods.

Keywords
Julia, Tensor Networks, Contraction Path, Symbolic Expressions,
Optimization

1. Introduction
A Tensor Network is a collection of tensors connected by common
indices indicating contraction operations. Despite being extensively
used in different fields of Physics such as Quantum Information [5]
or Condensed Matter[14], recently they have received much atten-
tion due to their capabilities to simulate Quantum circuits, a task
hard even for supercomputers [15]. The necessity to improve Ten-
sor Network methods emerges from the computational resources
required to manipulate these structures. Currently, Tensor Network
methods are state of the art for quantum circuit simulation.
Tensor Networks are equivalent to a graph representation of Ein-
stein summation expressions (a.k.a. einsum) in which vertices rep-
resent tensors and edges represent tensor indices or vector spaces.
A tensor T is encoded by the Tensor Network, and can be exactly
computed by contracting the tensors following the summation oper-
ations. As an example, using Einstein summation rules for common
indices, T is the result of the contraction of several Tensors:

T = AimBijpCjknDklpEmnoFlo (1)

Any einsum expression can be reinterpreted diagrammatically us-
ing Tensor Networks. For example, Equation 1 is represented
graphically as shown in Figure 1. The order in which the tensors
are contracted highly affects the computational cost of the simu-
lation. Indeed, exact tensor network contraction is a #P-complete
problem [7]. Finding the optimal contraction path of a tensor net-
work is known to be linked to the optimal tree decomposition prob-
lem of the underlying graph [10]. This is equivalent to finding the

treewidth of such graph, which is a well-known NP-complete prob-
lem.

Fig. 1. Diagrammatic representation of Equation 1 as a Tensor Network.

In this work we present EinExprs.jl, a package forTensor Net-
work contraction path optimization and visualization. Many of the
Tensor Networks found in the literature have some kind of struc-
ture. As with many NP-complete problems, this structure can be
exploited to reduce the complexity of the problem. Recent develop-
ments in the field have demonstrated that some heuristics are well-
suited for finding quasi-optimal contraction paths. EinExprs.jl
aims to be the reference package for the development of new algo-
rithms by providing an easy interface along the fastest implemen-
tations of well-known algorithms.
The work is organized as follows. Section 2 reviews state-of-art
software for contraction path optimization. Section 3 relates con-
traction paths and symbolic expressions. Section 4 introduces some
of the most popular contraction path optimization methods which
are implemented in EinExprs. Section 5 compares the execution
performance of EinExprs against other packages.

2. Related work
The reference software package to provide a diverse set of con-
traction path optimizers is opt_einsum [2]. It provides implemen-
tations of depth-first exhaustive search, greedy search and some
tree-width estimation algorithms from the graph theory world such
as QuickBB [8] or dynamic programming. A new optimizer based
on the well-known Hypergraph Partitioning problem was presented
in [9]. Along with hyper-parameter optimization, this work pushes
state-of-art contraction path optimization for large-scale tensor net-
works.
Many packages provide support for einsum-like notation
in Julia: TensorOperations.jl [4], ITensors.jl [6],
OMEinsum.jl [11] and Tullio.jl [1], to name a few. The

1

ar
X

iv
:2

40
3.

18
03

0v
1 

 [
qu

an
t-

ph
] 

 2
6 

M
ar

 2
02

4



Proceedings of JuliaCon 1(1), 2023

TensorOperations [4] package provides the fastest im-
plementation of the exhaustive optimizer [12]. The recent
OMEinsumContractionOrders.jl reimplements in Julia
some of the algorithms found in opt_einsum together with
some of their own, and currently powers OMEinsum.jl and
ITensorNetworks.jl.

3. Contraction paths are symbolic expressions
Working with large Tensor Networks involves choosing the best
data-structures to avoid unwanted overheads when scaling up. The
same can be said for contraction paths. opt_einsum stores contrac-
tion paths as an ordered list of pairs of SSA ids of tensors, which
is equivalent to storing the contracting indices of the represented
pairwise tensor contraction. We argue that such data-structure does
not fully exploit the structure inherent in contraction paths, and that
a better representation can be attained.
It is important to observe that indices in a contraction path follow a
partial order, represented as (α1 . . . αk) indicating the precedence
in the contraction of indices α1 . . . αk. As an example, in Figure 1
it can be easily checked that (m, o, j, pk, inl), (m, j, o, pk, inl),
(m, j, pk, o, inl), (j, pk,m, o, inl), (j,m, pk, o, inl) and
(j,m, o, pk, inl) generate exactly the same intermediate ten-
sors, where summation indices are explicitly indicated:

αino =
∑
m

AimEmno

βinl =
∑
o

αinoFol

γipkn =
∑
j

BijpCjkn

δinl =
∑
pk

γipknDpkl

T =
∑
inl

βinlδinl

In search for a better suited data-structure and inspired by Julia’s
LISP heritage, we draw a parallelism between symbolic expres-
sions and contraction paths. In a symbolic expression, a code ex-
pression is decomposed in a syntax tree: The terminal nodes or
leaves represent the initial values or variables which the compu-
tation takes as inputs, while non-terminal nodes or branches rep-
resent computations. The tree diagram of a syntax tree faithfully
represents the partial order implicit in the symbolic expression: the
sequential order of execution is unfixed and free to reconfigure as
long as the precedence set by the tree is respected. In order to al-
low composition of expressions, symbolic expressions are usually
implemented as recursive data-structures: a symbolic expression
stores a symbol (i.e. the name of the performed operation) and a
list of other symbolic expressions.
We use a similar approach for Tensor Network contractions. Fol-
lowing the example from Figure 1, we observe that the contraction
path (m, o, j, pk, inl), and the equivalent contraction paths, can
be represented as a tree diagram in Figure 2, where vertices rep-
resent contraction operations, open edges represent initial tensors
(except for the final tensor T ) and closed edges represent interme-
diate tensors. Note that with this representation, the particular order
on which partial contraction operations are performed is not explic-
itly specified.
In such tree visualization, computational cost information can be
mapped to the nodes and edges. EinExprs integrates with the
Makie [3] library to add plotting capabilites of the contraction trees.

Fig. 2. A valid contraction tree of the Tensor Network found in Figure 1.
Vertices represent contraction operations, open edges represent initial ten-
sors (except for the final tensor T ) and closed edges represent intermediate
tensors.

Fig. 3. Illustration of a contraction tree using Makie.jl. Vertices rep-
resent tensor contraction operations, with larger sizes and brighter colors
for contractions with larger amount of FLOPs. Edges represent intermedi-
ate tensors, with larger thickness and brighter colors for larger amount of
memory used.

In Figure 3, we plot the contraction tree of a Random Quantum Cir-
cuit. The size and color of the tree nodes are related to the cost in
FLOPs of the tensor contractions, and the thickness and color of
the edges are related to size of the intermediate tensors. It can be
easily seen that most tensor contraction operations are of negligi-
ble size and that only a few tensor contractions are of a large size.
This suggests that in this case, the cost of contracting the Tensor
Network is dominated by the intermediate tensors in the last steps.

4. Optimization methods for contraction paths
We can distinguish two kinds of optimizers based on the starting
point of the construction of the contraction tree: local optimizers,
which start from the leaves up to the root; and global optimizers,
which start from the root down to the leaves. In this section, we
present the collection of methods implemented in EinExprs.jl,
with a description of their advantages and limitations.

2



Proceedings of JuliaCon 1(1), 2023

4.1 Exhaustive
The Exhaustive search explores the full combinatorially-big solu-
tion space. As such, it guarantees to find the optimal contraction
path but at a factorial complexity O(n!). The complexity can be
relaxed down to O(en) by excluding outer products, which rarely
obtain any gain.
EinExprs.jl provides two implementations: a depth-first exhaus-
tive search based on the Optimal optimizer found in opt_einsum,
which uses backtracking along with path pruning. Also, a
breadth-first exhaustive search based on the implementation of
TensorOperations.jl [12].

4.2 Greedy
The Greedy algorithm works by greedily selecting the contracting
index that maximizes a given score, which is not directly linked
with the cost of contraction but instead it follows a heuristic. The
most common score heuristic evaluations use the size of the result-
ing tensor subtracted by the size of the input tensors.
The Greedy algorithm is an extremely fast local optimizer, although
its results are far from optimal on large networks. Luckily, these
results can be improved by adding a thermal noise to the greedy
candidate selector and sampling from it many times.

4.3 Hypergraph Partitioning
Treewidth calculation is a persistent problem in the community de-
tection field. Over the years, researchers have developed many al-
gorithms and heuristics for indirectly finding the treewidth of par-
ticular graph instances. It is then presumable that community detec-
tion methods could perform well on contraction path optimization.
Based on this premise, authors in [9] formulated the contraction
path optimization problem as a Hypergraph Partitioning problem, a
well-known and largely worked out community detection problem.
The problem consists of dividing the vertices of a (hyper)graph into
2 sets such that the number of edges in common between the sets
is minimized. The parallelism with a global contraction path opti-
mizer is obvious: the 2 vertex sets would be the topmost intermedi-
ate tensors in the contraction tree and the shared edges between the
2 sets are the contracting indices. This method is then called recur-
sively. Moreover, as a global optimizer it can easily be composed
with other local optimizers. For example, when achieving a small
enough vertex set, the problem could be forwarded to a Exhaustive
optimizer for optimal solution of that subproblem.

5. Benchmarks
We analyze the performance of EinExprs using as a reference
the package TensorOperations for the Exhaustive search, and
OMEinsumContractionOrders for the Greedy algorithm. Ran-
dom Tensor Networks are used in both experiments. For the Ex-
haustive search experiment, we set some constraints such as the
maximum number of contracting indices (32), the maximum num-
ber of open indices (10) and the maximum size of an index (5).
For the Greedy algorithm experiment, we fix the number of initial
tensors to powers of 2, until a maximum of 4096, and the "regu-
larity" (or average number of contracting indices per tensor) to 3.
In our analysis, error bars are not shown due to small variance of
the results. Benchmarks for Hypergraph Partitioning were skipped
due to all libraries being powered by KaHyPar [13]. Execution time
benchmarks were carried out in a single-core of the Marenostrum
4 supercomputer at the Barcelona Supercomputing Center.

In Figure 4, we compare the execution time of the breadth-
first exhaustive optimizer implementations of EinExprs against
TensorOperations, over random tensor networks of up to
32 tensors. The dashed line represents equal time for both
implementations. One of the advantages of EinExprs over
TensorOperations is its capability to compose different opti-
mizers together. By performing a initial estimation of the com-
putational cost with the greedy optimizer, the path pruning can
act before and filter out more paths. It can be seen that this ini-
tial estimation (labeled init=Greedy) speeds up the optimization
by up to 2 orders of magnitude compared to no initial estima-
tion (labeled init=Naive). For small tensor networks, both imple-
mentations take a similar amount of time. For larger tensor net-
works, the EinExprs implementation without estimation lacks be-
hind TensorOperations but the initial estimation approach com-
pensates the loss of performance and accelerates over it. This sug-
gests that even though our implementation of the breadth-first Ex-
haustive search is not as optimized as TensorOperation’s imple-
mentation, the initial estimation approach is algorithmically supe-
rior.
In Figure 5, we compare the execution time of the greedy opti-
mizer implementation of EinExprs against the implementation of
OMEinsumContractionOrders. EinExprs consistently achieves
1 order of magnitude speedup on tensor networks of up to 512 ten-
sors. On larger tensor networks, the time difference progressively
vanishes until achieving a similar runtime on tensor networks of
around 4000 tensors. Although the reason behind this behavior is
not fully clear yet, we hypothesize that it is due to an algorithmic
overhead. In particular, we use a heap for storing candidate contrac-
tions that needs to be updated on each winner selection. On worst-
case scenario, updating a candidate in the heap involves O(logn)
operations and as the size of the problem grows, the depth of the
heap and the probability of needing a larger amount of operations
on the update grows along. An alternative hypothesis that we also
consider is L1-cache saturation. An argument that supports this idea
is that the speedup between both implementations is consistent un-
til a size of around 512 tensors, where the heap no longer fits in the
L1 cache (32 KiB). In any case, more work is needed to elucidate
the reason behind the performance loss.

6. Summary
EinExprs is a Julia package for Tensor Network contraction path
optimization. It defines a data structure for the description of the
contraction path, and allows the user to achieve top performance
by the combination of the optimization methods implemented. It
achieves up to 1 order of magnitude speedups compared to other
popular packages, and It also offers a carefully crafted design for
user experimentation and code composition. It currently powers
some of the large-scale quantum tensor network simulations per-
formed at Barcelona Supercomputing Center, with applications to
Quantum Circuit simulations.
In the future, perspective work on the package includes addressing
the following features:

—Implement missing path optimizers from opt_einsum, such as
QuickBB or Dynamic Programming.

—Optimization of tensors with asymptotic scaling.
—Implement post-optimizers such as subforest reconfiguration op-

timization or index permutation for minimization of memory ac-
cesses.

The source code of the package can be found in https://github.
com/bsc-quantic/EinExprs.jl.

3

https://github.com/bsc-quantic/EinExprs.jl
https://github.com/bsc-quantic/EinExprs.jl


Proceedings of JuliaCon 1(1), 2023

Fig. 4. Comparison of execution time between EinExprs (X-axis) and
TensorOperations (Y -axis) implementations of the breadth-first exhaus-
tive optimizer. Samples above the dashed line where solved faster with
EinExprs than with TensorOperations, and vice-versa. Orange samples
had no initial estimation of the contraction cost, while green samples were
initialized with the Greedy optimizer.

Fig. 5. Comparison of execution time between EinExprs (X-axis) and
OMEinsumContractionOrders (Y -axis) implementations of greedy opti-
mizer. Samples above the dashed line where solved faster with EinExprs
than with OMEinsumContractionOrders, and vice-versa. The color indi-
cates the number of tensors.

7. Acknowledgements
Authors would like to thank Lukas Devos and Jutho Haegeman
for discussions on performance and testing. Also, Joseph Tindall
and Matthew Fishman for their help on integrating EinExprs in
ITensorNetworks.

8. References

[1] Michael Abbott and contributors. Tullio.jl.
[2] G Daniel, Johnnie Gray, et al. opt_einsum - a python package

for optimizing contraction order for einsum-like expressions.

Journal of Open Source Software, 3(26):753, 2018.
[3] Simon Danisch and Julius Krumbiegel. Makie.jl: Flexible

high-performance data visualization for Julia. Journal of
Open Source Software, 6(65):3349, 2021.

[4] Lukas Devos, Maarten Van Damme, Jutho Haegeman, and
contributors. Tensoroperations.jl, 2023.

[5] Glen Evenbly. A practical guide to the numerical implemen-
tation of tensor networks i: Contractions, decompositions and
gauge freedom, 2022.

[6] Matthew Fishman, Steven White, and Edwin Stoudenmire.
The itensor software library for tensor network calculations.
SciPost Physics Codebases, page 004, 2022.

[7] Artur García-Sáez and José I Latorre. An exact tensor network
for the 3sat problem. Quantum Information & Computation,
12(3-4):283–292, 2012.

[8] Vibhav Gogate and Rina Dechter. A complete anytime algo-
rithm for treewidth. arXiv preprint arXiv:1207.4109, 2012.

[9] Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor
network contraction. Quantum, 5:410, 2021.

[10] Igor L Markov and Yaoyun Shi. Simulating quantum compu-
tation by contracting tensor networks. SIAM Journal on Com-
puting, 38(3):963–981, 2008.

[11] Andreas Peter, Jin-Guo Liu, and contributors. Omeinsum.jl.
[12] Robert N. C. Pfeifer, Jutho Haegeman, and Frank Verstraete.

Faster identification of optimal contraction sequences for ten-
sor networks. Phys. Rev. E, 90:033315, Sep 2014.

[13] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav
Akhremtsev, Christian Schulz, and Peter Sanders. High-
quality hypergraph partitioning. ACM J. Exp. Algorithmics,
mar 2022.

[14] Ulrich Schollwöck. The density-matrix renormalization
group in the age of matrix product states. Annals of Physics,
326(1):96–192, 2011. January 2011 Special Issue.

[15] Yiqing Zhou, E. Miles Stoudenmire, and Xavier Waintal.
What limits the simulation of quantum computers? Phys. Rev.
X, 10:041038, Nov 2020.

4


	Introduction
	Related work
	Contraction paths are symbolic expressions
	Optimization methods for contraction paths
	Exhaustive
	Greedy
	Hypergraph Partitioning

	Benchmarks
	Summary
	Acknowledgements
	References

