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ABSTRACT

Causal inference on the average treatment effect (ATE) using non-probability samples, such as
electronic health records (EHR), faces challenges from sample selection bias and high-dimensional
covariates. This requires considering a selection model alongside treatment and outcome models that
are typical ingredients in causal inference. This paper considers integrating large non-probability sam-
ples with external probability samples from a design survey, addressing moderately high-dimensional
confounders and variables that influence selection. In contrast to the two-step approach that separates
variable selection and debiased estimation, we propose a one-step plug-in doubly robust (DR) esti-
mator of the ATE. We construct a novel penalized estimating equation by minimizing the squared
asymptotic bias of the DR estimator. Our approach facilitates ATE inference in high-dimensional
settings by ignoring the variability in estimating nuisance parameters, which is not guaranteed in
conventional likelihood approaches with non-differentiable L1-type penalties. We provide a consistent
variance estimator for the DR estimator. Simulation studies demonstrate the double robustness of our
estimator under misspecification of either the outcome model or the selection and treatment models,
as well as the validity of statistical inference under penalized estimation. We apply our method to
integrate EHR data from the Michigan Genomics Initiative with an external probability sample.

Keywords Causal inference; Data integration; Doubly robust; High-dimensional data; Non-probability samples;
Penalized estimating equation.

1 Introduction

Randomized clinical trials (RCTs) have long been considered the gold standard for assessing new treatments. However,
many practical problems arise when collecting and analyzing RCT data, such as elevated costs, time constraints,
and patient adherence (Karanatsios et al., 2020; Herbert et al., 2018). Alternatively, the increasing availability of
cost-efficient non-probability samples, such as electronic health records (EHR), presents new opportunities to study
comparative effectiveness and safety in clinical research using causal inference methods (Mc Cord et al., 2018). One
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Penalized bias-reduced estimation

significant advantage of EHR data is that it contains rich patient information and a far wider spectrum of disease
phenotypes than many RCTs. As such, EHR data offer researchers the opportunity to explore the treatment-outcome
relationship beyond the original RCT, advance pharmacovigilance drug repurposing, create synthesis controls, and
achieve adaptive design (Suchard et al., 2019; Hripcsak et al., 2015; Lauffenburger et al., 2021; Xu et al., 2015).

However, the use of EHR data still faces methodological challenges that are often ignored in many analyses. As a
non-probability sample, one concern is the presence of selection bias (Beesley et al., 2020; Beesley and Mukherjee,
2022; Baker et al., 2013). Since EHR data are primarily collected for clinical care and billing purposes, the selection
mechanism of patients into the EHR system is unknown. As a result, the EHR dataset lacks the representativeness of
a defined target population, e.g. the US population, which brings difficulty when generalizing findings beyond the
sample.

To correct selection bias in EHR data, external probability samples, such as designed surveys, are useful since they are
selected under a known sampling design and are thus representative of the target population. Three common estimators
of the average treatment effect (ATE) are used for integrating a non-probability sample and another probability sample,
including the outcome regression (OR) estimator, the inverse probability weighting (IPW) estimator, and the doubly
robust (DR) estimator (Shi et al., 2022; Dahabreh et al., 2019a,c). These estimators use observed treatment, outcome
and covariates information in the internal non-probability sample as well as the sampling weights and covariates in the
external probability sample, but do not need treatment or outcome information from the external probability sample. The
OR estimator requires correctly specified outcome models for consistent estimation of the ATE while the IPW estimator
requires correctly specified selection and treatment models. The DR estimator combines OR and IPW estimators and
remains consistent if either the outcome models or the weighting models (i.e. both selection and treatment models) are
correctly specified.

Despite the growing methodological development in combining probability and non-probability samples for causal
inference, another challenge arises from the large number of potential confounders and variables influencing selection
into the study. With an unknown selection mechanism and incomplete understanding of the confounding structure
influencing the treatment-outcome relationship, researchers often need to explore a large number of variables from both
datasets. This leads to complications in modeling the outcome, selection, and treatment mechanisms, all potentially
with high-dimensional predictors. In this case, variable selection becomes necessary in estimating nuisance parameters
in the three working models to address the instability and infeasibility of the maximum likelihood estimation.

However, to the best of our knowledge, there is a lack of methods that consider a combination of the three statistical
problems in causal inference, data integration and high-dimensional data. In this paper, we aim to make causal inference
of the ATE by integrating a non probability sample with an external probability sample, where there is a large number
of potential confounders and selection variables present in both datasets. The key challenge is to provide valid inference
of the ATE given that variable selection is needed to handle high dimensional covariates in the outcome, treatment and
selection models.

Existing literature has largely focused on addressing these challenges in pairs, typically tackling two of the three issues
simultaneously. Specifically, there is a rich literature on adapting penalization techniques for causal inferences in the
presence of high-dimensional confounders, where only the outcome and treatment models are considered (Belloni
et al., 2014; Farrell, 2015; Chernozhukov et al., 2018a,b). Several methods have been developed in this field, including
double/debiased machine learning (Chernozhukov et al., 2018a,b) and the outcome adaptive LASSO (Shortreed and
Ertefaie, 2017; Ju et al., 2020; Kabata and Shintani, 2021). These methods typically require correctly specified outcome
and treatment models to make valid inferences. Based on the work of Vermeulen and Vansteelandt (2015), Avagyan
and Vansteelandt (2021) proposed a LASSO-penalized bias-reduced method that produces robust inference under
model misspecification. The robustness is achieved by using the estimating equation that minimizes the squared
first-order asymptotic bias of the DR estimator. More recently, there is a growing literature on integrating probability
and non-probability samples in high-dimensional settings. With the goal of estimating the population mean, current
literature only considers the outcome and selection models. Researchers have proposed various methods to estimate
the selection probability, such as model-based calibration using the LASSO penalty (Tsung et al., 2018) and outcome
adaptive LASSO (Bahamyirou and Schnitzer, 2021). Yang et al. (2020) developed a two-step method for finite sample
inference of population mean. The first step uses a penalized likelihood-based estimating equation procedure with
the SCAD penalty to identify variables associated with the outcome and the selection. The second step re-estimates
the nuisance parameters based on the selected set of variables from the first step, which facilitates the downstream
calculation of the asymptotic distribution of the DR estimator of the population mean.

For our problem, a two-step method that separates variable selection and debiased estimation has been implied from
the existing literature to handle high-dimensional covariates while achieving the doubly robust inference. However,
this approach places strict requirements on the variable selection procedure, requiring the identification of all true
predictors (Yang et al., 2020; Cho and Yang, 2023). In contrast, we propose a novel one-step, plug-in DR estimator
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of the ATE. When using the DR estimator, it is important to consider the impact of the estimators for the nuisance
parameters in the three workings models on the asymptotic distribution of the DR estimator of the ATE. According to
Vermeulen and Vansteelandt (2015), when all working models are correctly specified, any root-n consistent estimators
of the nuisance parameters will yield the same asymptotic distribution of the DR estimator of the ATE, as the first-order
derivative of the DR estimator is asymptotically zero. Nevertheless, depending on the choice of the estimators of the
nuisance parameters, this property might be lost when one of the working models is misspecified. In this case, it is
necessary to account for the uncertainty of the nuisance parameter estimators in the first-order bias of the DR estimator
when deriving its asymptotic distribution. However, this cannot be achieved if nuisance parameters are estimated
from conventional penalized likelihood approaches with possibly misspecified models since the penalty function, e.g.,
LASSO penalty, is non-differentiable at zero.

To address this issue, we propose a novel penalized estimating equation for simultaneous variable selection and
parameter estimation for the selection, treatment, and outcome working models. Our penalized estimating equation
minimizes the squared asymptotic bias of the DR estimator, such that the first-order derivative of the DR estimator
with respect to the nuisance parameters is op(1), as opposed to Op(1) from conventional penalized approaches. As a
result, the uncertainty of the estimators of the nuisance parameters can be ignored asymptotically when making the
inference for ATE, and thus it facilitates the calculation of the asymptotic distribution of the DR estimator. We focus on
the penalty functions that achieve the “oracle properties”: i) selection consistency, ii) producing a sparse solution, and
iii) preserving large coefficients, such as the SCAD and the aLASSO penalties.

To summarize, we make the following contributions to the literature: Firstly, we establish the identification results
of the ATE when integrating a non-probability sample with a probability sample. Secondly, given high-dimensional
predictors, we extend the bias-reduced estimation approach proposed by Vermeulen and Vansteelandt (2015) to estimate
nuisance parameters in the working models. Our extension is two-fold. The first extension generalizes the bias-reduced
estimation procedure to account for three working models of the outcome, treatment, and selection. The second
extension incorporates penalization into the new estimating equations to perform simultaneous variable selection and
coefficient estimation. We show how our proposed penalized estimating equations can aid in making inferences of the
ATE using the DR estimator under high-dimensional settings.

The rest of the paper is organized as follows: In Section 2, we present our proposed penalized estimating equation
procedure for variable selection and estimation for nuisance parameters in the working models. Section 3 describes the
computational algorithm for solving the penalized estimating equation using a local quadratic approximation for the
penalty function and an iterative Newton-Raphson updates. To enhance computational efficiency and to avoid large
matrices inverse, our algorithm separates the optimization for the outcome models and the weighting models. Section
4 presents the theoretical properties of the penalized estimating equation procedure and the asymptotic distribution
and variance estimation for the DR estimator. Simulation studies to evaluate the performance of our proposed strategy
are shown in Section 5. In Section 6, we apply our method to integrate EHR data from the Michigan Genomics
Initiative (MGI), a longitudinal biorepository at the University of Michigan, with a probability sample from the National
Health and Nutritional Examination Survey (NHANES) to estimate the causal effect of severe obesity on systolic blood
pressure/hypertension. We conclude with a brief discussion in Section 7.

2 Proposed method

Denote Y as the outcome, T as the treatment indicator, and X as a vector of covariates of length d (including the
intercept). Consider a probability sample A of size nA and a non-probability sample B of size nB drawn from the
target population of size N . We assume that there is no overlap between sample A and B. Let IA,i be the indicator
for selecting person i into sample A and IB,i be the indicator for selecting person i into sample B. Let dA,i denote
the sampling weight for the i-th person, that is, dA,i = 1/P (IA,i = 1|X = xi). Table 1 illustrates the structure of the
two datasets and the target population. Data on covariates and sampling weights are available in sample A, while data
on covariates, outcome, and treatment are available in sample B. That is, we have {(xi, dA,i), i ∈ A} in sample A
and {(xi, yi, ti), i ∈ B} in sample B. In practice, while confounders and selection variables are likely to be different,
it is common to start with an inclusive large set of variables due to unknown selection mechanism and incomplete
understanding of the confounding structure influencing treatment-outcome relationship. Thus, the covariate vector X
contains candiate predictors for both selection mechanism and the outcome. We define a pair of potential outcomes(
Y (1), Y (0)

)
, that would be observed had the person been given treatment, Y (1), or control, Y (0). The outcome type

could be continuous or binary. The parameter of interest is the ATE, denoted as θ = E{Y (1)− Y (0)}.
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Table 1: Illustration of the structure of the two data sources and the target population. “✓” and “?” indicate observed
and possibly unobserved data, respectively.

Sample id Sampling
weight

Covariates
X

Treatment
T

Outcome
Y

Probability sample A
IA = 1, IB = 0

1 ✓ ✓ ? ?
...

...
...

...
...

nA ✓ ✓ ? ?

Non-probability sample B
IA = 0, IB = 1

nA + 1 ? ✓ ✓ ✓
...

...
...

...
...

nA + nB ? ✓ ✓ ✓
Other individuals in
the target population
IA = IB = 0

nA + nB + 1 ? ? ? ?
...

...
...

...
...

N ? ? ? ?

2.1 Identification

The following assumptions are commonly imposed for identifying the ATE with integrated data (Shi et al., 2022;
Dahabreh et al., 2019c,a,b):
Assumption 1. We assume

(a) Consistency: Y = Y (t) if T = t, t = 0, 1;

(b) Treatment exchangeability: Y (t) ⊥⊥ T |X, IB = 1;

(c) Treatment positivity: P (T = t|X, IB = 1) > 0;

(d) Selection exchangeability: Y (t) ⊥⊥ IB |X;

(e) Selection positivity: P (IB = s|X) > 0, where s = 0, 1.

Assumptions 1(a) - 1(c) allow us to generalize the mean model of the observed outcome to that of the potentially
unobserved potential outcome within sample B: E(Y |X,T = t, IB = 1) = E{Y (t)|X, IB = 1}, while Assumptions
1(d) and 1(e) allow us to generalize the mean model of the potential outcome from sample B to the target population:
E{Y (t)|X, IB = 1} = E{Y (t)|X}.

Under the above identifiability conditions, θ is identifiable via the g-formula (Shi et al., 2022; Dahabreh et al., 2019a,
2021) by

θ = E
[
IAdA

{
E(Y |X, IB = 1, T = 1)− E(Y |X, IB = 1, T = 0)

}]
.

The outer expectation is taken with respect to the joint distribution of IA and X in the target population. This approach
models the conditional expectation of the outcome given the treatment or the control and is valid if both models are
correctly specified. On the other hand, θ is also identifiable via weighting (Shi et al., 2022; Dahabreh et al., 2021) by

θ = E

{
IBT

P (IB = 1, T = 1|X)
Y − IB(1− T )

P (IB = 1, T = 0|X)
Y

}
.

The weighting approach models P (IB = 1, T = t|X) as the weights (inverse) for the observed outcome for each
individual in sample B. Although one can directly model the joint distribution of IB and T , this approach is less
commonly seen due to the complexity of capturing both the selection and treatment mechanisms in one model. On
the other hand, a common practice involves with decomposing the joint probability as the product of sequential
conditional probabilities, P (IB = 1, T = t|X) = P (IB = 1|X) · P (T = t|IB = 1, X), and estimate the selection
probability P (IB = 1|X) and the treatment probability P (T = t|IB = 1, X) separately. Another decomposition of
P (IB = 1, T = t|X) is P (IB = 1|X,T = t) · P (T = t|X). However, estimating these two probabilities would need
the treatment information in sample A, which might be unavailable. Therefore, we do not consider the last type of
decomposition in this paper.

In general, the weighting approach is valid if P (IB = 1, T = t|X) is correctly modeled. In this paper, we will mainly
describe our method based on the decomposition of P (IB = 1, T = t|X) = P (IB = 1|X) · P (T = t|IB = 1, X).
Nevertheless, our method can be easily extended to the direct modeling of P (IB = 1, T = t|X) and we will perform
simulation studies to show that.
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2.2 Existing estimators

The estimation of θ relies on estimating E(Y |X, IB = 1, T = t) and/or P (IB = 1|X), P (T = t|IB = 1, X). Since
non-parametric estimation of these components may not be feasible if X is high-dimensional, dimension-reducing
parametric models are often used for estimation. As such, we postulate the following working models, which may be
misspecified:

(a) Selection model: P (IB = 1|X) = πB(X;α);

(b) Treatment model: P (T = 1|X, IB = 1) = πT (X; τ);

(c) Expected outcome given the treatment in sample B: E(Y |X,T = 1, IB = 1) = g1(X;β);

(d) Expected outcome given the control in sample B: E(Y |X,T = 0, IB = 1) = g0(X; γ),

where α, τ, β, γ ∈ Rp are unknown nuisance parameters, with true values of α0, τ0, β0 and γ0. Let θ0 denote the true
value of the ATE. Implied by the above identification results, we present three types of estimators for ATE in the existing
literature (Shi et al., 2022; Dahabreh et al., 2019c; Yang et al., 2020): the OR estimator, which relies on modeling
the mean of the outcome; the IPW estimator, which relies on modeling the selection probability and the treatment
probability; and the DR estimator, which combines the OR and IPW estimators. We assume that the target population
size N is known. If not, N is usually estimated using the sampling weights from sample A (Särndal et al., 2003).

The OR estimator is given by:

θ̂OR = N−1
N∑

i=1

IA,idA,i

{
g1(Xi; β̂)− g0(Xi; γ̂)

}
. (1)

Typically, β̂ and γ̂ can be obtained by fitting a regression model for the observed outcome in the treated and control group
in sample B. When the outcome models are correctly specified, β̂

p−→ β0 and g1(X; β̂)
p−→ E(Y |X, IB = 1, T = 1),

where “
p−→” denotes “converge in probability”. Similarly, g0(X; γ̂)

p−→ E(Y |X, IB = 1, T = 0). Then we have a
consistent estimator for θ, that is, θ̂OR

p−→ θ0. The OR estimator requires correctly specified outcome models in each
treatment group for a consistent estimator of the ATE.

The IPW estimator is described as:

θ̂IPW = N−1
N∑

i=1

{ IB,iTi

πB(Xi; α̂)πT (Xi; τ̂)
Yi −

IB,i(1− Ti)

πB(Xi; α̂)
(
1− πT (Xi; τ̂)

)Yi

}
. (2)

To estimate τ , people often fit a regression model for the treatment indicator using sample B. In contrast, α is often
estimated based on the combined samples A and B via approaches such as calibration (Kott, 1990) and maximum
pseudo-likelihood estimation (Chen et al., 2020). The IPW estimator is consistent if πB(X;α) and πT (X; τ) are
correctly specified.

The DR estimator combines the previous two estimators to gain robustness under model misspecification: (Shi et al.,
2022; Dahabreh et al., 2019a,b; Yang et al., 2020):

θ̂DR =
1

N

N∑

i=1

[{
IA,idA,ig1(Xi; β̂) +

IB,iTi

πB(Xi; α̂)πT (Xi; τ̂)

(
Yi − g1(Xi; β̂)

)}
−

{
IA,idA,ig0(Xi; γ̂) +

IB,i(1− Ti)

πB(Xi; α̂)
(
1− πT (Xi; τ̂)

)(Yi − g0(Xi; γ̂)
)}]

. (3)

θ̂DR is doubly robust in that the estimator is consistent if the weighting models, πB(X;α), πT (X; τ), are correctly
specified, or if the outcome models, g1(X;β), g0(X; γ), are correctly specified, but not necessarily both. For this nice
property, we will focus on the DR estimator in this paper.

Remark 1. Regarding the consistency of the IPW and DR estimators, it is possible that even though models for
P (IB = 1|X) and P (T = t|X, IB = 1) are both misspecified under πB(X;α) and πT (X; τ), estimates for their
probability are still consistent; that is, πB(X; α̂)

p−→ P (IB = 1|X) and πT (X; τ̂)
p−→ P (T = 1|X, IB = 1). Or more

general, estimates for the joint probability are still consistent; that is, πB(X; α̂)πT (X; τ̂)
p−→ P (IB = 1, T = 1|X) and

πB(X; α̂)
(
1− πT (X; τ̂)

) p−→ P (IB = 1, T = 0|X). In this case, the IPW and DR estimators would also be consistent.
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Remark 2. An alternative approach is to directly model the joint distribution of P (IB = 1, T = t|X) with the
working models w1(X; δ1) for P (IB = 1, T = 1|X) and w0(X; δ0) for P (IB = 1, T = 0|X). The corresponding DR
estimator of the ATE is

θ̂DR = N−1
N∑

i=1

[{
IA,idA,ig1(Xi; β̂) +

IB,iTi

w1(Xi; δ̂1)

(
Yi − g1(Xi; β̂)

)}
−

{
IA,idA,ig0(Xi; γ̂) +

IB,i(1− Ti)

w0(Xi; δ̂0)

(
Yi − g0(Xi; γ̂)

)}]
. (4)

2.3 Estimating nuisance parameters

Let ω = (α⊤, τ⊤, β⊤, γ⊤)⊤ contain all the nuisance parameters in the working models. In practice, ω is unknown and
needs to be estimated from data. The conventional approach is to estimate α, τ, β, γ from separate likelihood models.
While θ̂DR is consistent if either the weighting models or the outcome models are correctly specified, its asymptotic
distribution is impacted under model misspecification since the first-order asymptotic bias of the DR estimator is
non-zero. In this case, it is necessary to account for the uncertainty of the nuisance parameter estimators when deriving
the asymptotic distribution of the DR estimator, namely, parameter estimators in the outcome, selection and treatment
models. However, when X is high-dimensional and the penalization technique is used for variable selection, this cannot
be achieved from the penalized likelihood approach since the penalty function is non-differentiable at zero.

To address this issue, we propose to estimate ω in a way such that the squared asymptotic bias of the DR estimator is
minimized. While existing literature has explored bias-reduced estimation approaches, they have primarily focused on
the outcome and treatment models (Vermeulen and Vansteelandt, 2015; Avagyan and Vansteelandt, 2021). However,
the incorporation of a selection model into this framework remains largely unexplored. Furthermore, little attention
has been paid to explore the advantages of this approach in high-dimensional settings. Therefore, we first present the
estimating method in low-dimensional settings and will extend it to high-dimensional settings in the next section.

Define

ϕ(Z; θ, ω) =
{
IAdAg1(X;β) +

IBT

πB(X;α)πT (X; τ)

(
Y − g1(X;β)

)}

−
{
IAdAg0(X; γ) +

IB(1− T )

πB(X;α)
(
1− πT (X; τ)

)(Y − g0(X; γ)
)}

− θ,

where Z contains observed data in (X,Y, T, IA, dA, IB). The asymptotic bias of the DR estimator given θ0 is

bias(ω; θ0) = E{ϕ(Z; θ0, ω)}.
To minimize the squared asymptotic bias, which is bias2(ω; θ0), we note that bias(ω; θ0), is 0 if the weighting models,
πB(X;α) and πT (X; τ), are correctly specified; or if the outcome models, g1(X;β) and g0(X; γ), are correctly
specified. When all models are misspecified, bias(ω; θ0) is not necessarily zero (Vermeulen and Vansteelandt, 2015).

In this case, suppose there exists ω̊ such that E
{

∂ϕ(Z;θ0,ω)
∂ω⊤

∣∣∣∣
ω=ω̊

}
= 0. Under regularity conditions in Section S1.1 in

the supplementary materials, the squared asymptotic bias is minimized at ω̊ since

∂bias2(ω; θ0)

∂ω⊤

∣∣∣∣
ω=ω̊

= 2bias(ω̊; θ0) · E
{
∂ϕ(Z; θ0, ω)

∂ω⊤

∣∣∣∣
ω=ω̊

}
= 0.

Therefore, we define the following empirical estimating function for ω based on E
{
∂ωϕ(Z; θ0, ω)

}
, i.e., ω̂ solves

U(ω) = 0, where

U(ω) = ∂ωϕ(ω) =




∂βϕ(ω)
∂γϕ(ω)
∂αϕ(ω)
∂τϕ(ω)


 = N−1

N∑

i=1



∂βϕ(zi;ω)
∂γϕ(zi;ω)
∂αϕ(zi;ω)
∂τϕ(zi;ω)


 .

For simplicity, we denote η = (α⊤, τ⊤)⊤ containing nuisance parameters in the weighting models, and µ = (β⊤, γ⊤)⊤

containing nuisance parameters in the outcome models. Let η̂ and µ̂ be the solution obtained from solving U(ω) = 0.
Further, let η∗ and µ∗ be the converging values of η̂ and µ̂, respectively. Let η0 and µ0 be the unknown true values of
the model parameters if the postulated working models are correctly specified. In practice, it is likely that not all four
models are correctly specified. The next theorem shows the conditions for obtaining consistent estimators from our
proposed estimating equation while allowing model misspecification.
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Theorem 1. Under suitable regularity conditions (see Section S1.1 in the supplementary materials), η̂
p−→ η0, when

the selection model πB(X;α) and the treatment model πT (X; τ) are correctly specified regardless of whether the
outcome models are correctly specified or not. Similarly, µ̂

p−→ µ0, when the outcome models, g1(X;β) and g0(X; γ)
are correctly specified regardless of whether the selection and treatment models are correctly specified or not.

The proof of Theorem 1 is provided in Section S1.1 of the supplementary materials. Theorem 1 implies that if weighting
models are correctly specified and outcome models are misspecified, the estimator for the selection and treatment
probability in sample B is still consistent for the truth, that is,

πT (X; τ̂)
p−→ πT (X; τ0) = P (T = 1|X, IB = 1), πB(X; α̂)

p−→ πB(X;α0) = P (IB = 1|X),

while the estimator for the mean outcome may be inconsistent to the truth, that is,

g1(X; β̂)
p−→ g1(X;β∗) ̸= E(Y |X,T = 1, IB = 1),

g0(X; γ̂)
p−→ g0(X; γ∗) ̸= E(Y |X,T = 0, IB = 1).

Similar arguments apply for µ̂. The property in Theorem 1 guarantees the doubly robustness of the DR estimator of the
ATE, which we will discuss in more detail in Section 4.

Theorem 1 also implies an iterative algorithm for solving ω. Since η̂
p−→ η0 when weighting models are correctly

specified, we can fix µ as constant, i.e., µ̃, and only use
(
∂βϕ(η, µ̃)
∂γϕ(η, µ̃)

)
to solve for η. Likewise, we can fix η as η̃ and

use
(
∂αϕ(η̃, µ)
∂τϕ(η̃, µ)

)
to solve for µ. We will use this iterative method in the Computation section.

One limitation of this approach is that it requires the dimension of ∂βϕ(ω), ∂γϕ(ω), ∂αϕ(ω) and ∂τϕ(ω) in U(ω) to
be the same (Vermeulen and Vansteelandt, 2015; Yang et al., 2020; Chen et al., 2020), i.e., |∂βϕ(ω)| = |∂γϕ(ω)| =
|∂αϕ(ω)| = |∂τϕ(ω)|, where | · | denotes the dimension of the vector function. Otherwise, the solution may
not exist. Given the same set of X , this condition can be often satisfied if we postulate an additive model, i.e.,
πT (X; τ) = πT (X

⊤τ), πB(X;α) = πB(X
⊤α), g1(X;β) = g1(X

⊤β), and g0(X; γ) = g0(X
⊤γ). With some data

transformation, interactions between covariates or pre-specified functions of a covariate, such as splines, can be handled
by the additive model. For example, if we suspect that some working models should include higher-order terms, we can
include such terms in all four working models so that the dimensions of X are matched. Under the additive working
models, U(ω) has a specific form that satisfies the above-mentioned dimension-matching criteria:

U(ω) =
1

N

N∑

i=1




IA,idA,ig
(1)
1 (X⊤

i β)Xi − IB,iTi

πB(X⊤
i α)πT (X⊤

i τ)
g
(1)
1 (X⊤

i β)Xi

−IA,idA,ig
(1)
0 (X⊤

i γ)Xi +
IB,i(1− Ti)

πB(X⊤
i α)

(
1− πT (X⊤

i τ)
)g(1)0 (X⊤

i γ)Xi

IB,i

{
− Ti

(
Yi − g1(X

⊤
i β)

)

πT (X⊤
i τ)

+
(1− Ti)

(
Yi − g0(X

⊤
i γ)

)

1− πT (X⊤
i τ)

}
π
(1)
B (X⊤

i α)
(
πB(X⊤

i α)
)2Xi

IB,i

{
− Ti

(
Yi − g1(X

⊤
i β)

)
(
πT (X⊤

i τ)
)2 − (1− Ti)

(
Yi − g0(X

⊤
i γ)

)
(
1− πT (X⊤

i τ)
)2

}
π
(1)
T (X⊤

i τ)

πB(X⊤
i α)

Xi




,

where g
(1)
1 (X⊤

i β), g(1)0 (X⊤
i γ), π

(1)
B (X⊤

i α), π
(1)
T (X⊤

i τ) denote the first-order derivative with respect to the linear
predictor, X⊤

i β,X⊤
i γ,X⊤

i α,X⊤
i τ , respectively.

2.4 Extension to high-dimensional settings

So far, we have discussed the estimation equations for nuisance parameters in low-dimensional settings. We now
consider the situation when X is high-dimensional. In this case, we use the penalized estimating function to perform
simultaneous variable selection and coefficient estimation (Fu, 2003; Johnson et al., 2008), given by

U
p
(ω) = U(ω) +

(
qλη (|η|)sgn(η)
qλµ

(|µ|)sgn(µ)
)
, (5)

where qλ(u) = dpλ(u)/du for a continuous penalty function pλ(u) and qλ(|u|) =
(
qλ(|u0|), qλ(|u1|), ..., qλ(|ud|)

)⊤
.

sgn(u) =
(
sgn(u1), ..., sgn(ud)

)⊤
is the sign vector of u with sgn(uj) = I(uj > 0) − I(uj < 0) if uj ̸= 0
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and sgn(uj) = 0 if uj = 0. qλ(|u|)sgn(u) is the element-wise product of qλ(|u|) and the sign function, sgn(u).
Throughout the paper, we use the superscript “p” to denote “penalized”.

Different values of the tuning parameters, λη and λµ, allow for different amounts of shrinkage for parameters in the
weighting models and in the outcome models. Johnson et al. (2008) showed that both the SCAD and the aLASSO
penalty functions achieve the aforementioned three properties in the introduction: i) selection consistency, ii) producing
sparse solution, and iii) preserving large coefficients. This is also called the “oracle property”, that is, the penalized
estimator is asymptotically equivalent to the oracle estimator obtained by only estimating non-zero coefficients without
penalization. In this paper, we choose the SCAD penalty, although our framework is able to accommodate other penalty
functions such as aLASSO. More specifically, we have

qλ(|u|) = λ

{
I(|u| < λ) +

(aλ− |u|)+
(a− 1)λ

I(|u| ≥ λ)

}
,

where λ > 0 is the tuning parameter. As recommended in Fan and Li (2001), we fix the tuning parameter a as 3.7 since
this choice works similarly to that chosen by generalized cross-validation method. In addition,

(aλ− |u|)+ =

{
aλ− |u|, if aλ− |u| ≥ 0

0, if aλ− |u| < 0
.

Let ω̂p denote the solution obtained from solving the penalized estimating equation (5). Our proposed DR estimator of
the ATE is:

θ̂DR(ω̂
p) =

1

N

N∑

i=1

[{
IA,idA,ig1(Xi; β̂

p) +
IB,iTi

πB(Xi; α̂p)πT (Xi; τ̂p)

(
Yi − g1(Xi; β̂

p)
)}

−
{
IA,idA,ig0(Xi; γ̂

p) +
IB,i(1− Ti)

πB(Xi; α̂p)
(
1− πT (Xi; τ̂p)

)(Yi − g0(Xi; γ̂
p)
)}]

. (6)

3 Computation

In this section, we introduce the numerical algorithms or computational procedures for solving the penalized estimating
equation (5). Our algorithm uses a local quadratic approximation for the SCAD penalty function (Fan and Li, 2001) and
uses an iterative method combined with the Newton-Raphson algorithm to obtain the solution. To be computationally
efficient and to avoid inverting large matrices, we do not jointly solve for ω. Instead, as guaranteed by Theorem 1, we
can fix µ when solving for η and vice versa. Therefore, we separate the optimization for η and µ. The two separate
objective functions are:

O
p
(η) =

(
∂βϕ(η, µ̃)
∂γϕ(η, µ̃)

)
+ qλη

(|η|)sgn(η), (7)

and

Q
p
(µ) =

(
∂αϕ(η̃, µ)
∂τϕ(η̃, µ)

)
+ qλµ

(|µ|)sgn(µ), (8)

for some fixed µ̃ and η̃. Following Johnson et al. (2008), the objective function for solving (7) at the (k+1)-th iteration
is:

η̂(k+1) = argmin
η

∥O(η) + Σλη
(η̂(k))η∥,

where Σλη
(η) = diag(qλη

(|α1|)/ϵ+ |α1|, ..., qλη
(|τ1|)/ϵ+ |τ1|, ...) is a 2d× 2d diagonal matrix; ϵ is a small number.

We choose ϵ = 10−6 in our implementation.

We use the Newton-Raphson algorithm to update η as:

η(k+1) = η(k) −
{
▽(η(k)) + Σλη

(η(k))

}−1{
O(η(k)) + Σλη

(η(k))η(k)
}
,

where

▽(η) = ∂η⊤O(η) =

(
∂α⊤∂βϕ(η, µ̃) ∂τ⊤∂βϕ(η, µ̃)
∂α⊤∂γϕ(η, µ̃) ∂τ⊤∂γϕ(η, µ̃)

)
.
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The algorithm for solving (8) is similar to (7) except that ▽(η) is replaced by ▽(µ) and

▽(µ) = ∂µ⊤Q(µ) =

(
∂β⊤∂αϕ(η̃, µ) ∂γ⊤∂αϕ(η̃, µ)
∂β⊤∂τϕ(η̃, µ) ∂γ⊤∂τϕ(η̃, µ)

)
.

For example, Under the linear additive working models, ▽(η) and ▽(µ) have the following forms:

▽(η) = 1

N

N∑

i=1




IB,iTig
(1)
1 (X⊤

i β̃)π
(1)
B

(X⊤
i α)

π2
B
(X⊤

i α)πT (X⊤
i τ)

XiX
⊤
i

IB,iTig
(1)
1 (X⊤

i β̃)π
(1)
T

(X⊤
i τ)

πB(X⊤
i α)π2

T
(X⊤

i τ)
XiX

⊤
i

−IB,i(1−Ti)g
(1)
0 (X⊤

i γ̃)π
(1)
B

(X⊤
i α)

π2
B
(X⊤

i α)
(
1−πT (X⊤

i τ)
) XiX

⊤
i

IB,i(1−Ti)g
(1)
0 (X⊤

i γ̃)π
(1)
T

(X⊤
i τ)

πB(X⊤
i α)

(
1−πT (X⊤

i τ)
)2 XiX

⊤
i


 ,

▽(µ) = 1

N

N∑

i=1




IB,iTig
(1)
1 (X⊤

i β)π
(1)
B

(X⊤
i α̃)

π2
B
(X⊤

i α̃)πT (X⊤
i τ̃)

XiX
⊤
i

−IB,i(1−Ti)g
(1)
0 (X⊤

i γ)π
(1)
B

(X⊤
i α̃)

π2
B
(X⊤

i α̃)
(
1−πT (X⊤

i τ̃)
) XiX

⊤
i

IB,iTig
(1)
1 (X⊤

i β)π
(1)
T

(X⊤
i τ̃)

πB(X⊤
i α̃)π2

T
(X⊤

i τ̃)
XiX

⊤
i

IB,i(1−Ti)g
(1)
0 (X⊤

i γ)π
(1)
T

(X⊤
i τ̃)

πB(X⊤
i α̃)

(
1−πT (X⊤

i τ̃)
)2 XiX

⊤
i


 .

We use five-fold cross validation to choose the tuning parameters, λη and λµ. The tuning parameters are chosen to
minimize the corresponding loss function:

Loss(λη) = ||∂βϕ(η, µ̃)||2 + ||∂γϕ(η, µ̃)||2;
Loss(λµ) = ||∂αϕ(η̃, µ)||2 + ||∂τϕ(η̃, µ)||2.

The above is summarized in Algorithm 1, which works for most types of outcome. For continuous outcome with a
linear model, as a special case, we do not need to loop from Line 2 to Line 7 since g

(1)
1 (Xi;β) = g

(1)
0 (Xi; γ) = 1.

Algorithm 1
1: Input: k = 0, ξ = 1, η(k), µ(k);
2: while ξ ≥ 10−2 do
3: Obtain η(k+1) by optimizing O

p
(η) at µ = µ(k) in (7);

4: Obtain µ(k+1) by optimizing Q
p
(µ) at η = η(k+1) in (8);

5: ξ = max(||η(k+1) − η(k)||, ||µ(k+1) − µ(k)||)
6: k = k + 1;
7: end while
8: Output: η(k+1), µ(k+1)

4 Asymptotic properties

4.1 Asymptotic properties of the penalized estimating equation

We establish the asymptotic properties of our proposed penalized estimating equation and the DR estimation method.
Let n = nA + nB be the sample size combining two datasets. Following Chen et al. (2020), we make the assumption
about the relationship between the total population N and the sample sizes nA and nB :
Assumption 2. The population size N and the sample sizes nA and nB satisfy limN→∞ nA/N = fA ∈ (0, 1) and
limN→∞ nB/N = fB ∈ (0, 1).

Assumption 2 implies that nA and nB increase as fast as N , and therefore, we do not need to distinguish among
Op(n

−1/2
A ), Op(n

−1/2
B ), Op(n

−1/2) and Op(N
−1/2). Define the set Mω =

{
j : ω∗

j ̸= 0, j ∈ {1, 2, ..., 4d}
}

and
λω = max(λη, λµ). We assume that the following regularity conditions hold, which are commonly seen in the
penalized estimating equation literature (Johnson et al., 2008).
Assumption 3. Regularity conditions.

(a) There exists a non-singular matrix Ω such that for any given constant M ,

sup
|ω−ω∗|≤Mn−1/2

|√nU(ω)−√
nU(ω∗)−√

nΩ(ω − ω∗)| = op(1),

√
nU(ω∗)

d∼ N(0,W ) and ΩMω,Mω
is non-singular;

9
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(b) For nonzero fixed ω,
√
nqλω (|ω|) → 0;

(c) For any M > 0, inf |η|<Mn−1/2

√
nqλη

(|η|) → ∞ and inf |µ|<Mn−1/2

√
nqλµ

(|µ|) → ∞.

Assumption 3(c) implies that for any M > 0, inf |ω|<Mn−1/2

√
nqλω (|ω|) → ∞. Assumption 3(a) is commonly seen

and used for Z-estimators (Wellner et al., 2013). Assumptions 3(b) and 3(c) put restrictions on the choice of the
penalty function and the regularization parameters. In particular, Assumption 3(b) prevents overly shrinking ω if ω ̸= 0,
and Assumption 3(c) allows one to shrink ω to 0 if ω = 0 for a sparse solution. For the SCAD penalty with a > 2,
Assumption 3(b) holds if λω → 0 and Assumption 3(c) holds if

√
nλη → ∞ and

√
nλµ → ∞.

We now consider the solution to the penalized estimating equation, U
p
(ω) = 0. Following Johnson et al. (2008), we

provide a formal definition of the solution to the penalized estimating equation. An estimator ω̃ is called an approximate
zero-crossing of U

p
(ω) if for j = 1, 2, ..., 4d and ϵ > 0,

lim
N→∞

P
{

lim
ϵ→0+

nU
p

j (ω̃ + ϵej)U
p

j (ω̃ − ϵej) ≤ 0
}
= 1,

where ej is the j-th canonical unit vector and U
p

j (·) is the j-th element in U
p
(·). Briefly speaking, the approximate

zero-crossing ω̃ is the solution to the penalized estimation equation in the sense that a small change in any element in
the ω̃ will change the sign of the objective function. This feature ensures that ω̃ is close enough to the exact solution of
solving U

p
(ω) = 0. This definition will be used in the next theorem for establishing the asymptotic properties of the

penalized estimating equation.

Theorem 2. Under Assumptions 2 and 3, there is an approximate zero-crossing ω̃, which satisfies:

(a) U
p

j (ω̃) = op(1) and U j(ω̃) = op(1), for all j = 1, ..., 4d.

(b) sparsity: P (ω̃Mc
ω
= 0) → 1.

(c) root-n-consistency: ω̃ − ω∗ = Op(n
−1/2).

We present the proof for Theorem 2 in Section S1.2 of the supplementary materials. Theorem 2(b) implies that the
penalized estimating equations produce sparse solutions. Theorem 2(c) shows that the estimator is root-n consistent.
Overall, Theorem 2 shows that our penalized estimating equation procedure achieves the oracle property for variable
selection and estimation.

4.2 Asymptotic properties of the DR estimator

We now show the asymptotic properties of θ̂DR(ω̂
p) in (6). By Taylor series expansion,

√
n
{
θ̂DR(ω̂

p)− θ0
}
=
√
n
{
θ̂DR(ω

∗)− θ0
}
+

√
n
∂θ̂DR(ω̂

p)

∂ω⊤ (ω̂p − ω∗) +Op

(√
n ∥ω̂p − ω∗∥2

)
,

where θ̂DR(ω
∗) denote the DR estimator by plugging in ω∗. The third term on the right-hand side is op(1) following

Theorem 2(c). The second term is the estimating function U(ω̂p), which is op(1) following Theorem 2(a). Therefore,
√
n
{
θ̂DR(ω̂

p)− θ0
}
=

√
n
{
θ̂DR(ω

∗)− θ0
}
+ op(1).

That is, θ̂DR(ω̂
p) is asymptotically equivalent to θ̂DR(ω

∗). It follows that the randomness of ω̂p can be ignored when
making the inference about θ0.

Remark 3. The two-step approach (Yang et al., 2020) requires that the first term of the Taylor series expansion with
respect to all the nuisance parameters equals zero, i.e.,

√
n∂θ̂DR(ω̂p)

∂ω⊤ (ω̂p − ω∗) = 0. For a non-zero coefficient, this

zero condition requires that the partial derivative of the DR estimator with respect this nuisance parameter in ∂θ̂DR(ω̂p)
∂ω⊤

is zero. However, their proposed estimating equations in the second estimation step only ensure this zero condition
of the partial derivative for parameters associated with selected variables. For unselected variables, the Taylor series
expansion term for their parameters is not necessarily zero, for example, in case of false negatives from the variable
selection procedure.
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Recall that the random variables in θ̂DR(ω
∗) are IA, IB , T,X and Y . By iterative expectation, we have that θ̂DR(ω

∗) is
unbiased for θ0 if either πB(X;α) and πT (X; τ) or g1(X;β) and g0(X; γ) are correctly specified. Note that

E
{
θ̂DR(ω

∗)− θ0
}
= EX

[
g1(Xi;β

∗)− g0(Xi; γ
∗)− θ0+

EIB ,T |X
{ IB,iTi

πB(Xi;α∗)πT (Xi; τ∗)

}
EY (1)|X

{
Yi(1)− g1(Xi;β

∗)
}
−

EIB ,T |X
{ IB,i(1− Ti)

πB(Xi;α∗)
(
1− πT (Xi; τ∗)

)
}
EY (0)|X

{
Yi(0)− g0(Xi; γ

∗)
}]

. (9)

If weighting models πB(X;α) and πT (X; τ) are correctly specified, equation (9) reduces to EX

[
EY (1)|X

{
Yi(1)

}
−

EY (0)|X
{
Yi(0)

}
−θ0

]
= E{Y (1)−Y (0)}−θ0 = 0; If outcome models g1(X;β) and g0(X; γ) are correctly specified,

equation (9) reduces to EX

{
g1(Xi;β

∗) − g0(Xi; γ
∗) − θ0

}
= E{Y (1) − Y (0)} − θ0 = 0. Therefore, θ̂DR(ω

∗) is
unbiased under the double robustness condition.

To establish the asymptotic variance of
√
n
{
θ̂DR(ω

∗)− θ0
}

, we decompose the total variance into two parts (Yang
et al., 2020; Shao and Steel, 1999), where the first part involves the conditional variance in sample A and the second
part involves the variance of the conditional expectation in sample B. More specifically,

V
{√

n
(
θ̂DR(ω

∗)− θ0
)}

=nEIB ,T,X,Y

[
VIA|IB ,T,X,Y

{
θ̂DR(ω

∗)− θ0
}]

+

nVIB ,T,X,Y

[
EIA|IB ,T,X,Y

{
θ̂DR(ω

∗)− θ0
}]

.

Denote the first and the second term on the right hand side as V1 and V2, respectively. We have:

V1 = EX

{
n

N2

N∑

i=1

(dA,i − 1)
(
g1(Xi;β

∗)− g0(Xi; γ
∗)
)2
}

(10)

is the sampling variance of the Horvitz-Thompson estimator for the probability sample A and

V2 =
n

N
EIB ,T,X,Y

[
IB,iTi

πB(Xi;α∗)πT (Xi; τ∗)

{
Yi(1)− g1(Xi;β

∗)
}
−

IB,i(1− Ti)

πB(Xi;α∗)(1− πT (Xi; τ∗))

{
Yi(0)− g0(Xi; γ

∗)
}
+ (11)

{
g1(Xi;β

∗)− g0(Xi; γ
∗)− θ0

}]2
. (12)

The derivation of V1 and V2 is provided in Section S2.1 of the supplementary materials. We formally provide the
asymptotic properties of θ̂DR(ω̂

p) in the next theorem.
Theorem 3. If πB(X;α) and πT (X; τ) or g1(X;β) and g0(X; γ) are correctly specified,

√
n
{
θ̂DR(ω̂

p)− θ0
} d−→ N(0, V ),

where V = lim(V1 + V2) and V1, V2 are defined in (10) and (11).

V1 can be estimated using the design-consistent estimator in survey sampling literature (Kott, 1990; Deville and Särndal,
1992, 1994; Breidt and Opsomer, 2000):

V̂1 =
n

N2

N∑

i=1

IA,idA,i(dA,i − 1)
(
g1(Xi; β̂

p)− g0(Xi; γ̂
p)
)2
.

Following the law of large numbers, V2 can be consistently estimated by the sample mean in sample B. A more detailed
discussion about V̂1 being design-consistent and the expression of V̂2 is provided in Section S2 of the supplementary
materials.

5 Simulation

5.1 Simulation setup

In this section, we evaluate the performance of our proposed penalized estimating equation procedure and the DR
estimator θ̂DR(ω̂

p) in (6). We first generate the complete data of the target population {(Xi, Ti, Yi), i = 1, ..., N}
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with N = 50, 000. Specifically, we generate Xi = (1, Xi,1, Xi,2, ..., Xi,50) containing the intercept and 50 covariates.
Covariates, Xi,1, Xi,2, ..., Xi,50, are generated independently from a standard normal distribution. We then generate
the treatment indicator from a linear or non-linear treatment model (TM ):

(a) logit
(
P (Ti = 1|Xi)

)
= −1− 0.5Xi,1 − 0.5Xi,2 − 0.5Xi,3;

(b) logit
(
P (Ti = 1|Xi)

)
= −1− 0.5X2

i,1 − 0.5X2
i,2 − 0.5I(Xi,3 > 0.5).

The continuous outcomes are generated from a linear or non-linear outcome model (OM ):

(a) Yi = 1 + Ti +Xi,1 + 2Ti ×Xi,1 +Xi,2 +Xi,3 +Xi,4 +Xi,5 + ϵi, where ϵi ∼ N(0, 1);
(b) Yi = 1 + Ti + |Xi,1|+ 2Ti × |Xi,1|+ |Xi,2|+ |Xi,3|+ |Xi,4|+ |Xi,5|+ ϵi, where ϵi ∼ N(0, 1).

After simulating the complete data for the target population, we draw a probability sample A, where the probability for
each individual in the target population to be selected into sample A is 0.02. The expected sample size for sample A,
nA, is 1,000. In the remaining population, we select a non-probability sample B according to the following selection
model (SM ):

(a) logit
(
P (IB,i = 1|Xi)

)
= −2.3 + 0.5Xi,1 + 0.5Xi,2 + 0.5Xi,3;

(b) logit
(
P (IB,i = 1|Xi)

)
= −3.2 +

(
I(Xi,1 > 1) + I(Xi,2 > 1) + I(Xi,2 > 1)

)2
.

The sample size for sample B, nB is about 5,500. We have eight different combinations for data generation, where the
treatment indicator, T , outcome, Y , and the selection indicator, IB , are generated from a linear or non-linear model
(Cases 1-8 listed in Table 2). When applying our proposed method, we always specify a linear form of covariates so
that models are misspecified if the underlying true model is non-linear. We repeat each simulation scenario 500 times
and the results are averaged over 500 replications.

We compare the performance of our proposed DR estimator, θ̂DR(ω̂
p), to other estimators listed below. We do not

compare our method to a two-step estimator implied from Yang et al. (2020) since their work focuses on estimating the
population mean instead of the ATE.

(a) θ̂NAIVE, the naive estimator using only the non-probability sample B. That is,

θ̂NAIVE =
( N∑

i=1

IB,i

)−1
{ N∑

i=1

IB,i

(
g1(X

⊤
i β̂)− g0(X

⊤
i γ̂)

)}
,

where β̂, γ̂ are obtained by fitting a regression model on the non-probability sample;

(b) θ̂ORACLE, the DR estimator in (3), where α̂, τ̂ , β̂, γ̂ are obtained based on the set of true predictors;

(c) θ̂OR, the OR estimator in (1), where β̂, γ̂ are obtained from likelihood-based estimating equations with the
SCAD penalty;

(d) θ̂IPW, the IPW estimator in (2), where α̂, τ̂ are obtained from the calibration-based estimating equation with
the SCAD penalty.

We also perform simulation studies for binary outcomes, following the above data generation procedure with only
modification to the outcome model. Models for generating binary outcomes are described in Section S4 in the
supplementary materials.

5.2 Simulation results

We present the simulation results in terms of four aspects: (a) sensitivity and specificity of variable selection from our
proposed penalized estimating equation procedure. Sensitivity and specificity quantify how well the variable selection
procedure identifies the underlying important variables and removes the irrelevant variables. (b) Mean squared error
(MSE) for the non-null and null coefficients from the penalized estimating equation. (c) Estimates of ATE using our
proposed DR estimator, θ̂DR(ω̂

p), and other competing estimators. (d) The coverage probability of the 95% confidence
interval (CI). Metrics for the penalization procedure are defined as:

sensitivity = R−1
R∑

r=1

{∑d
i=1 I(βj ̸= 0)I(β̂

(r)
j ̸= 0)

∑d
i=1 I(βj ̸= 0)

}
,
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Table 2: Sensitivity (sens) and specificity (spec) of our proposed penalized estimating equation for continuous outcomes
based on 500 simulation replications. The subscript c stands for the correct specification of the outcome model (OM ),
selection model (SM ), and treatment model (TM ) while the subscript m stands for model misspecification.

α
sens

α
spec

τ
sens

τ
spec

β
sens

β
spec

γ
sens

γ
spec

Case 1: OMc, SMc, TMc 1 0.995 1 0.982 1 0.992 1 0.998
Case 2: OMc, SMm, TMc 1 1 1 0.997 1 0.956 1 0.966
Case 3: OMc, SMc, TMm 1 0.989 0.571 0.992 1 0.978 1 0.999
Case 4:
OMc, SMm, TMm

1 0.999 0.853 1 1 0.98 1 0.999

Case 5: OMm, SMc, TMc 1 0.999 1 0.997 0.225 0.992 0.239 0.997
Case 6:
OMm, SMm, TMc

1 1 1 0.997 0.248 0.991 0.269 0.996

Case 7:
OMm, SMc, TMm

1 0.989 0.571 0.992 0.199 0.982 0.184 1

Case 8:
OMm, SMm, TMm

1 0.989 0.692 0.993 0.24 0.984 0.197 1

Table 3: Mean squared error (MSE) for non-null and null coefficients with continuous outcomes using our proposed
penalized estimating equation based on 500 simulation replications. MSE is evaluated when all models are correctly
specified.

α
non− null

α
Null

τ
non− null

τ
Null

β
non− null

β
Null

γ
non− null

γ
Null

1.13e-
01

1.19e-
04

1.66e-
02

1.59e-
03

1.03e-
02

1.22e-
04

1.86e-
02

1.19e-
04

specifity = R−1
R∑

r=1

{∑d
i=1 I(βj = 0)I(β̂

(r)
j = 0)

∑d
i=1 I(βj = 0)

}
,

MSE for non− null coefficients = R−1
R∑

r=1

{∑d
j=1 I(βj ̸= 0)(β̂

(r)
j − βj)

2

∑d
j=1 I(βj ̸= 0)

}
,

MSE for null coefficients = R−1
R∑

r=1

{∑d
j=1 I(βj = 0)(β̂

(r)
j − βj)

2

∑d
j=1 I(βj = 0)

}
,

where r is the indicator of the r-th simulation replication.

In Table 2, we present the selection results in terms of sensitivity and specificity for continuous outcomes using our
proposed penalized estimating equation procedure. The sensitivity and specificity are close to 1 when models are
correctly specified. As expected, the sensitivity, in general, reduces when models are misspecified. For example, when
the treatment model is misspecified in Case 3, the proposed method on average only selects 57.1% of the true predictors
in the treatment model. When the outcome models are misspecified, similar changes of sensitivity and specificity for β
and γ are observed. For example, when the outcome model is misspecified in Case 5, only 22.5% and 23.9% of true
signals in β and γ are selected, respectively.

Table 3 shows the MSE for the non-null and null coefficients with continuous outcomes when all models are correctly
specified. The MSE for both non-null and null coefficients in all models are small, indicating that our penalized
estimating equation procedure yields nearly unbiased estimates for the nuisance parameters.

In Figure 1, we present the ATE estimates for continuous outcomes using our proposed DR estimator and four other
competing estimators. The naive estimator θ̂NAIVE, which ignores the sampling bias in the non-probability sample, is
greatly biased across all simulation scenarios. The oracle estimator, θ̂ORACLE, which uses true predictors, is consistent
if either the weighting models or the outcome models are correctly specified. On the other hand, the OR estimator, θ̂OR,
is unbiased only when the outcome models are correctly specified; and the IPW estimator, θ̂IPW is nearly unbiased
when the weighting models are correctly specified. Our proposed DR estimator, θ̂DR(ω̂

p), performs similarly to the
oracle estimator and is unbiased under the double robustness condition, i.e., if the outcome models or the weighting
models are correctly specified.
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Table 4: Coverage properties of the 95% confidence interval for continuous outcomes based on 500 replications:
empirical coverage rate and empirical coverage rate ± 2×Monte Carlo standard error. The subscript c stands for
the correct specification of the outcome model (OM ), selection model (SM ), and treatment model (TM ) while the
subscript m stands for model misspecification.

Case 1: OMc, SMc, TMc 0.962 (0.945,0.979)
Case 2: OMc, SMm, TMc 0.946 (0.926,0.966)
Case 3: OMc, SMc, TMm 0.964 (0.947,0.981)
Case 4: OMc, SMm, TMm 0.964 (0.947,0.981)
Case 5: OMm, SMc, TMc 0.966 (0.950,0.982)
Case 6: OMm, SMm, TMc 0.058 (0.037,0.079)
Case 7: OMm, SMc, TMm 0 (0,0)
Case 8: OMm, SMm, TMm 0 (0,0)
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Figure 1: Estimated average treatment effect using our proposed DR estimator and four other competing estimators with
continuous outcomes based on 500 replications. The subscript c stands for the correct specification of the outcome model
(OM ), selection model (SM ), and treatment model (TM ) while the subscript m stands for model misspecification.
The red horizontal line indicates the true average treatment effect.

Table 4 shows the coverage properties of the 95% CI. Under the double robustness condition, the coverage rates are
close to the nominal level. For instance, the coverage rate of our proposed DR estimator under Case 1 where all models
are correctly specified is 0.962, compared to 0.946, 0.964, 0.964 in Cases 2-4, respectively, where only outcome models
are correctly specified, and compared to 0.966 in Case 5 where only models for selection and treatment are correctly
specified. Results for the binary outcomes are presented in Tables S1-S3 and Figure S1 in the supplementary materials.
The main observations for binary outcomes are similar to those for continuous outcomes. Thus, we do not repeat it here.

As we previously mentioned in Section 2, an alternative DR estimator of the ATE as shown in (4) is to directly jointly
model P (IB = 1, T = t|X). However, if we directly apply the alternative DR estimator of the ATE under the above
data generation mechanism in Cases 1-8, the working models w1(X, δ1) for P (IB = 1, T = 1|X) and w0(X, δ0) for
P (IB = 1, T = 0|X) are likely always misspecified (Figures S2-S3). Therefore, we conducted additional simulation
studies using the alternative DR estimator for the purpose of completeness. Details about data generation can be found
in the supplementary materials Section S5.1. In general, the primary observations of the joint approach are consistent
with those of the conditional approach discussed previously (Tables S4-S9, Figures S4-S7). In short, the penalized
estimating equation procedure has high sensitivity and specificity for variable selection and low MSE for coefficient
estimation if the corresponding working models are correctly specified. The alternative DR estimator of the ATE based
on the joint models of P (IB = 1, T = t|X) is consistent under the doubly robust condition, i.e., if the outcome models
g1(X,β), g0(X, γ) or the weighting models w1(X, δ1), w0(X, δ0) are correctly specified, but not necessarily both. The
estimated CI also achieves 95% coverage rates.

6 Analysis of the Michigan Genomics Initiative (MGI) data

We analyze two datasets from the MGI and the 2017-2018 NHANES. MGI is an EHR-linked bio-respiratory within
Michigan Medicine of over 80,000 patients. The EHR dataset from MGI is a non-probability sample containing patient
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diagnoses, demographics, lifestyle and behavioral risk factors, and laboratory results. The 2017-2018 NHANES dataset
is a probability sample representing the US adult population. It contains 5,569 adult participants (age ≥ 20) with known
survey weights.

The treatment variable of interest is severe obesity, defined as BMI ≥ 35, with 1 indicating severe obesity. We focus
on two outcome variables: systolic blood pressure (continuous outcome) and hypertension (binary outcome). Eleven
covariates are observed in both datasets, including age, gender, race (categorized as white or non-white), smoking history
(smoked before or never smoked), marital status, diabetes, cancer, total cholesterol levels, high-density lipoprotein
levels, as well as measurements of iron and iron binding capacity. To highlight the heterogeneity of the two datasets,
Figure 2 shows the distribution of covariates from the EHR data and the NHANES data, and the US population
distribution constructed by the NHANES survey weights. As expected in a hospital-based dataset, EHR patients in the
MGI tend to be older and have a greater burden of disease compared to NHANES participants and the US population.
After removing all missing values, we have 13,112 patients in the EHR data and 4,569 participants in the NHANES
data with complete observations.

Before the analysis, we log-transform right-skewed variables, including total cholesterol, high-density lipoprotein,
and iron. We standardize all continuous variables by subtracting the mean and dividing by the standard deviation of
each variable after combining two datasets. Our models also include 45 pairwise interaction terms among the set of
covariates. When constructing the interaction terms, we omit interactions related to race, since 84% of the EHR patients
are white. In total, we have 56 covariates and interaction terms.

Figure 2: Covariate distribution in the EHR data from MGI, in the 2017-2018 NHANES, and in the US population
(weighted distribution using NHANES survey weights).
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We apply our proposed DR estimator in (6) with the penalized estimating equation procedure in (5) to estimate the
ATE of severe obesity on the outcome of interest. In addition, we calculate various other ATE estimators, as outlined
in Table S10 using different data sources. This analysis allows us to examine three main aspects: (a) the impact of
ignoring both confounding bias and selection bias, where we exclusively use the EHR data; (b) the impact of ignoring
selection bias only, where we exclusively use the EHR data; and (c) the advantage of penalization, where we use both
the EHR data and the NHANES data. Furthermore, we compute the ATE estimators exclusively based on the NHANES
data. We note that in this particular data example, this is feasible since both the treatment and the outcome are observed
in the NHANES. The DR estimator using the NHANES data exclusively can be considered as the“oracle” estimator for
comparison. The variance estimation follows from the theory of M-estimation (Stefanski and Boos, 2002) and more
details about variance derivation are provided in Section S3 of the supplementary materials.

Figure 3 shows the ATE estimates with the 95% CI from our proposed method and other competing methods for the
continuous outcome. Out of a total of 56 covariates, our penalized estimating equation procedure selects 2 variables in
the selection model, 11 in the treatment model, 12 in the outcome model for the treatment arm, and 11 in the outcome
for the control arm. The oracle ATE estimate is 6.32 (4.22, 8.41) and our proposed estimate is 5.20 (3.87, 6.54).
Compared to OR and DR estimators, the IPW-type estimators have wider CIs. Estimators that solely use the EHR data,
i.e., the unadjusted mean-difference estimator and the OR/IPW/DR estimators, are biased due to ignoring selection
bias. For example, the ATE estimate obtained from the DR estimator based exclusively on the EHR data is 4.18 (3.32,
5.04), compared to the oracle estimate 6.32 (4.22, 8.41). Integrating the NHNAES data with the EHR data effectively
addresses the selection bias issue. The ATE estimate from the DR estimator using combined data is 5.20 (3.87,6.54)
with penalization and 5.81 (4.28, 7.34) without penalization, respectively. The DR estimator using both datasets has a
smaller standard error (0.68 with penalization and 0.78 without penalization) than the oracle estimator (1.07) due to an
increase of sample size. In addition, our proposed DR estimator of the ATE with the penalized estimating equation
procedure has a smaller standard error of 0.68 than that without the penalization procedure of 0.78 due to removing
irrelevant variables.

Results of the ATE estimates for the binary outcome are shown in Figure S8. Using our proposed method, we find
that the ATE of severe obesity on hypertension is 0.17 (0.13, 0.21). In addition, we provide ATE estimates via directly
estimating the joint probability of P (IB = 1, T = t|X) (Table S11). The ATE estimate from the alternative DR
estimator using the joint approach are almost identical to that from the conditional approach for both the continuous
and binary outcomes.
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Figure 3: The estimated average treatment effect of severe obesity on systolic blood pressure and 95% confidence
interval (CI). The red horizontal line denotes the point estimate from the doubly robust estimator using exclusively the
NHANES data, with the 95% CI plotted in the banded area. The color of lines represents the method groups based on
the data source (NHANES, EHR data from MGI, or both) and the use of penalization (no penalty or penalized). The
“EHR unadjusted” method represents the sample average of the EHR data that ignores both confounding and selection
bias. The shape of the point estimate represents the type of the estimator: outcome regression (OR) estimator, inverse
probability weighting (IPW) estimator, and doubly robust (DR) estimator.
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7 Conclusion

It is challenging to make causal inference of the ATE using non-probability samples due to selection bias and a large
number of potential confounders and variables influencing selection. In this paper, we have developed a novel DR
estimator of the ATE that integrates a non-probability sample from an EHR database with an external probability sample
from designed surveys. To address the problem of having a large number of candidate variables X , we have proposed
a novel penalized estimating equation procedure that selects variables contributing to confounding relationships and
selection mechanisms while simultaneously estimating their effects.

In practice, the sets of confounders and selection variables are likely to be different. However, with inadequate
understanding of the confounding structure and unknown selection mechanism, a safe approach is to start with an
inclusive set of variables. Therefore, our proposed method considers a pool of candidate variables X for confounding
and selection mechanism together. On the other hand, it is difficult to decide whether X contains all the components for
explaining both the confounding structure and selection mechanism, resulting in the possibility of model misspecification.
However, our method does not require all models to be correctly specified. This relaxed assumption has a broader
application when the underlying models are unknown.

Our proposed one-step plug-in DR estimator provides an alternative to the two-step post-selection inference approach
(Yang et al., 2020). There are some fundamental differences which make direct comparison difficult. First, the target
estimand is different: While Yang et al. (2020) focuses on estimating the population mean, our interest lies in the ATE.
This difference leads us to consider a treatment model in addition to the outcome and selection models in Yang et al.
(2020)’s framework. Second, although it is possible to develop a comparable estimation procedure, we do not pursue
this approach because it requires stricter conditions on the variable selection process to ensure all true predictors are
selected, as we discuss in Remark 3.

One limitation of our method is that estimating nuisance parameters requires the same set of covariates X for all
working models. This problem arises from the constructed estimating equations, which is a common challenge shared
with other methods (Vermeulen and Vansteelandt, 2015; Yang et al., 2020; Chen et al., 2020). One remedy is to expand
the covariate set until they are matched. For example, with one dimension X , if the true outcome model g(X;β) is
g(X;β) = β0 + β1X + β2X

2 and the true selection model logit
(
πB(X;α)

)
= α0 + α1X , one solution is to expand

the selection model to logit
(
πB(X;α)

)
= α0 + α1X + α2X

2. Consequently, this condition requires a high quality
of the probability sample to have the same set of X as the non-probability sample. Future work should explore the
integration of probability and non-probability samples with different sets of covariates.
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S1 Proof of theorems

S1.1 Proof of Theorem 1

We give the proof for the consistency of η̂ for η0 since the proof for the consistency of µ̂ for µ0 is
similar. The proof of Theorem 1 needs the following regularity conditions.

(a) Interchanging integration and differentiation. Let B be an open set on Rd . Under the condi-
tions: (1) φ(z;θ0,η0,µ) is integrable with respect to the probability measure F0(z), where F0(z)
represents the true data generating mechanism, (2) for each component in µ, i.e., µ j , with proba-
bility one, the derivative ∂µ jφ(z;θ0,η0,µ) exists, and (3) for all j , there is an integrable function
B j such that |∂µ jφ(z;θ0,η0,µ) ≤ B j | for all µ ∈B, we have for all j that

∂µ j

∫
φ(z;θ0,η0,µ)dF0(z) =

∫
∂µ jφ(z;θ0,η0,µ)dF0(z).

Under this condition, the following equality holds for any value of µ.

0 = ∂µ
{
E(φ(Z ;θ0,η0,µ)

}= ∂µ
∫
φ(z;θ0,η0,µ)dF0(z) = E

{
∂µφ(Z ;θ0,η0,µ)

}
.

In addition, we assume the following conditions also hold for any µ̃. For notation simplicity, we
omit Z and θ0 in the φ and φ functions.

(b) supη

∥∥∥∂µφ(η, µ̃)−E {∂µφ(η, µ̃)}
∥∥∥ p−→ 0.

(c) infη:d(η,η0)≥ϵ
∥∥E {∂µφ(η, µ̃)}

∥∥≥ 0 =
∥∥E {∂µφ(η0, µ̃)}

∥∥ .

Proof. By regularity condition (c), ∀ϵ> 0, there exists a δ> 0, s.t.,

∥E {∂µφ(η, µ̃)}∥−∥E {∂µφ(η0, µ̃)}∥ > δ,

for all η ∈ d(η,η0) ≥ ϵ. Furthermore,

∥E {∂µφ(η, µ̃)}−E {∂µφ(η0, µ̃)}∥ ≥ ∥E {∂µφ(η, µ̃)}∥−∥E {∂µφ(η0, µ̃)}∥ > δ.

Thus, the event {d(η̂,η0) ≥ ϵ)} is contained in the event {∥E {∂µφ(η̂, µ̃)}−E {∂µφ(η0, µ̃)}∥ > δ}.

That is,
P (∥η̂−η0∥ ≥ ϵ) ≤ P (∥E {∂µφ(η̂, µ̃)}−E {∂µφ(η0, µ̃)}∥ > δ).
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In addition,

∥E {∂µφ(η̂, µ̃)}−E {∂µφ(η0, µ̃)}∥
=∥E {∂µφ(η̂, µ̃)}−∂µφ(η̂, µ̃)+∂µφ(η̂, µ̃)−E {∂µφ(η0, µ̃)}∥
≤∥E {∂µφ(η̂, µ̃)}−∂µφ(η̂, µ̃)∥+∥∂µφ(η̂, µ̃)−E {∂µφ(η0, µ̃)}∥
≤sup

η
∥E {∂µφ(η, µ̃)}−∂µφ(η, µ̃)∥+∥∂µφ(η̂, µ̃)−E {∂µφ(η0, µ̃)}∥.

By regularity condition (b),

sup
η

∥E {∂µφ(η, µ̃)}−∂µφ(η, µ̃)∥ p−→ 0.

For the second term, by the property of η̂, ∥∂µφ(η̂, µ̃)∥ = op (1). It follows that

∥∂µφ(η̂, µ̃)−E {∂µφ(η0, µ̃)}∥ = ∥∂µφ(η̂, µ̃)∥ = op (1).

Therefore,
lim

n→∞P (∥E {∂µφ(η̂, µ̃)}−E {∂µφ(η0, µ̃)}∥ > δ) = 0, so that

lim
n→∞P (∥η̂−η0∥ ≥ ϵ) = 0.

S1.2 Proof of Theorem 2

Proof. To prove Theorem 2(c), we construct ω̃ in a way such that ω̃Mω =ω∗
Mω

−Ω−1
Mω,Mω

UMω(ω∗)

and for j ∈ M c
ω, ω̃ j = 0, where UMω(ω∗) denotes a subvector of U (ω∗) with indexes belong-

ing to Mω and ΩMω,Mω denotes a submatrix of Ω with row and column indexes belonging to
Mω. By Assumption 3(a), ∥UMω(ω∗)∥ = Op (n−1/2). Since ΩMω,Mω is non-singular, ∥Ω−1

Mω,Mω
∥ =

σmin(ΩMω,Mω) =Op (1), where σmin denotes the smallest singular value. Therefore,

∥ω̃−ω∗∥ = ∥Ω−1
Mω,Mω

UMω∥ ≤ ∥Ω−1
Mω,Mω

∥ ·∥UMω∥ =Op (n−1/2).
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Next, we will show that ω̃ we construct is an approximate zero-crossing for U
p

(ω). For j ∈Mω,
p

nU
p
j (ω̃+ϵe j ) =p

n
{
U j (ω̃+ϵe j )+qλω(|ω̃ j +ϵ|)sg n(ω̃ j +ϵ)

}

=p
nU j (ω̃+ϵe j )+o(1) (1)

=p
nU j (ω∗)+p

n
[
ΩMω,Mω

{−Ω−1
Mω,Mω

UMω(ω∗)
}]

j +
p

nΩ j , j ϵ+o(1) (2)

=p
nU j (ω∗)−p

nU j (ω∗)+p
nΩ j , j ϵ+o(1)

=p
nΩ j , j ϵ+o(1), (3)

where [·] j in (2) denotes the element within the bracket correponding to index j , and Ω j , j is the
diagnal element inΩ corresponding to index j . Equation (1) is true under the Assumption 3(b) and
(2) is the Taylor series under the Assumption 3(a). Similarly,

p
nU

p
j (ω̃−ϵe j ) =−pnΩ j , j ϵ+o(1).

Consequently, we have nU
p
j (ω̃+ϵe j )U

p
j (ω̃−ϵe j ) =−nΩ2

j , j ϵ
2 +o(1) so that

lim
N→∞

P
{

lim
ϵ→0+

nU
p
j (ω̃+ϵe j )U

p
j (ω̃−ϵe j ) ≤ 0

}= 1.

For j ∈M c
ω,

p
nU

p
j (ω̃+ϵe j ) =p

n
{
U j (ω̃+ϵe j )+qλω(ϵ)

}

=p
nU j (ω̃+ϵe j )+p

nqλω(ϵ)

=p
nU j (ω∗)+p

n
[
Ω(ω̃−ω∗)

]
j +

p
nΩ j , j ϵ+

p
nqλω(ϵ)

=p
nU j (ω∗)+0+p

nΩ j , j ϵ+
p

nqλω(ϵ). (4)

Denote
p

nU j (ω∗)+p
nΩ j , j ϵ as Cn . Under the Assumption 3(c),

p
nU j (ω∗) = Op (1) and we

choose ϵ such at
p

nΩ j , j ϵ= o(1). Therefore,
p

nU
p
j (ω̃+ϵe j ) =Cn +p

nqλω(ϵ), where Cn =Op (1).
Similarly, we have

p
nU

p
j (ω̃−ϵe j ) =Cn −p

nqλω(ϵ), where Cn =Op (1).

Since
nU

p
j (ω̃+ϵe j )U

p
j (ω̃−ϵe j ) =−nq2

λω
(ϵ)+C 2

n

and under the Assumption 3(c) that
p

nqλω(ϵ) →∞, −nq2
λω

(ϵ) is dominant over C 2
n . We have:

lim
N→∞

P
{

lim
ϵ→0+

nU
p
j (ω̃+ϵe j )U

p
j (ω̃−ϵe j ) ≤ 0

}= lim
N→∞

P
{

lim
ϵ→0+

(−nq2
λω

(ϵ)+C 2
n

)≤ 0
}
= 1.

Therefore, ω̃ is an approximate root-n-consistent zero-crossing of U
p

(ω). Theorem 2(b) is true
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since ω̃ j = 0 for all j ∈M c
ω by our construction. Next we would like to show that Theorem 2(a) is

true. For j ∈Mω,

U
p
j (ω̃) = {

U j (ω̃)+qλω(|ω̃ j |)sg n(ω̃ j )
}

=U j (ω̃)+o(1) (5)

=U j (ω∗)+ [
ΩMω,Mω

{−Ω−1
Mω,Mω

UMω(ω∗)
}]

j +o(1) (6)

=U j (ω∗)−U j (ω∗)+o(1)

= o(1), (7)

Equation (5) is true under the Assumption 3(b) and (6) is the Taylor series under the Assumption
3(a). For j ∈M c

ω,

U
p
j (ω̃) = {

U j (ω̃)+qλω(0)sg n(0)
}

=U j (ω̃)

=U j (ω∗)+ [Ω(ω̃−ω∗)] j (8)

=U j (ω∗)

= op (1). (9)

Note that (8) is the Taylor series under the Assumption 3(a). Under Assumption 3(a), (9) is true.
Therefore, combining (7) and (9), Theorem 2(a) is true.

S2 Asymptotic variance of the DR estimator

S2.1 Derivation of V1 and V2

The first term V1 is the sampling variance of the Horvitz-Thompson estimator for the probability
sample A. Since I A,i ⊥⊥ I A, j |Xi , X j ,

V1 = nE IB ,T,X ,Y

[
VI A |IB ,T,X ,Y

{
N−1

N∑
i=1

I A,i dA,i
(
g1(Xi ;β∗)− g0(Xi ;γ∗)

)}]

= EX

[
n/N 2

N∑
i=1

VI A |X
{

I A,i dA,i
(
g1(Xi ;β∗)− g0(Xi ;γ∗)

)}]

= EX

{
n/N 2

N∑
i=1

(dA,i −1)
(
g1(Xi ;β∗)− g0(Xi ;γ∗)

)2
}

.
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For the second term V2, note that E I A |IB ,T,X ,Y
[
θ̂DR(ω∗)−θ0

]
can be expressed as

N−1
N∑

i=1

{
g1(Xi ;β∗)+ IB ,i Ti

πB (Xi ;α∗)πT (Xi ;τ∗)

(
Yi (1)− g1(Xi ;β∗)

)−

g0(Xi ;γ∗)− IB ,i (1−Ti )

πB (Xi ;α∗)(1−πT (Xi ;τ∗))

(
Yi (0)− g0(Xi ;γ∗)

)−θ0

}
.

Thus,

V2 = nE IB ,T,X ,Y

[{
E I A |IB ,T,X ,Y

(
θ̂DR(ω∗)−θ0)

)}2]

= E IB ,T,X ,Y

[
n/N 2

N∑
i=1

{
g1(Xi ;β∗)+ IB ,i Ti

πB (Xi ;α∗)πT (Xi ;τ∗)

(
Yi (1)− g1(Xi ;β∗)

)−

g0(Xi ;γ∗)− IB ,i (1−Ti )

πB (Xi ;α∗)(1−πT (Xi ;τ∗))

(
Yi (0)− g0(Xi ;γ∗)

)−θ0

}2]
+

E IB ,T,X ,Y

[
n/N 2

N∑
i=1

∑
j ̸=i

{(
g1(Xi ;β∗)+ IB ,i Ti

πB (Xi ;α∗)πT (Xi ;τ∗)

(
Yi (1)− g1(Xi ;β∗)

)−

g0(Xi ;γ∗)− IB ,i (1−Ti )

πB (Xi ;α∗)(1−πT (Xi ;τ∗))

(
Yi (0)− g0(Xi ;γ∗)

)−θ0

)}
·

{(
g1(X j ;β∗)+ IB , j T j

πB (X j ;α∗)πT (X j ;τ∗)

(
Y j (1)− g1(X j ;β∗)

)−

g0(X j ;γ∗)− IB , j (1−T j )

πB (X j ;α∗)(1−πT (X j ;τ∗))

(
Y j (0)− g0(X j ;γ∗)

)−θ0

)}]
.

Since Ti ⊥⊥ T j |Xi , X j , IB ,i = IB , j = 1; IB ,i ⊥⊥ IB , j |Xi , X j ;
(
Yi (0),Yi (1)

) ⊥⊥ {
Y j (0),Y j (1)

}|Xi , X j ,
the second term in V2 is 0 under the double robustness condition. Therefore,

V2 =
n

N
E IB ,T,X ,Y

[{ IB ,i Ti

πB (Xi ;α∗)πT (Xi ;τ∗)

(
Yi (1)− g1(Xi ;β∗)

)−
IB ,i (1−Ti )

πB (Xi ;α∗)(1−πT (Xi ;τ∗))

(
Yi (0)− g0(Xi ;γ∗)

)+ (
g1(Xi ;β∗)− g0(Xi ;γ∗)−θ0

)}2]
.

S2.2 Estimator for V1

The design-consistent estimator is commonly used in survey sampling literature [1, 2, 3, 4]. Dif-
ferent from the classical large-sample framework, the source of randomness in survey samples is
the "design" itself, such as the sampling mechanism, and people often consider other quantities,
such as X and Y , are fixed [1, 2, 3, 4]. Specifically, V̂1 is a design-consistent estimator for V1 in
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the sense that
lim

N→∞
E I A |X

{
V̂1 −V1

}= 0.

To prove this, we assume that the following regularity conditions hold: (a) lim
N→∞

N−1 ∑N
i=1

{
g1(Xi ;β∗)−

g0(Xi ;γ∗)
}4 <∞; and (b) maxi (dA,i −1)3 <∞. It is equivalent to showing that

lim
N→∞

E I A |X
{
(V̂1 −V1)2}= 0.

Since

E I A |X
{
(V̂1 −V1)2}

= n2

N 4

N∑
i=1

E I A |X
{
(I A,i dA,i −1)2}(dA,i −1)2{g1(Xi ;β∗)− g0(Xi ;γ∗)

}4

= n2

N 4

N∑
i=1

E I A |X
{

I A,i d 2
A,i −2I A,i dA,i +1

}
(dA,i −1)2{g1(Xi ;β∗)− g0(Xi ;γ∗)

}4

= n2

N 4

N∑
i=1

(dA,i −1)3{g1(Xi ;β∗)− g0(Xi ;γ∗)
}4,

lim
N→∞

E I A |X
{
(V̂1 −V1)2

}= 0 under the above regularity conditions and Assumption 2.

S2.3 Estimator of V2

We expand the squared term in V2 and obtain

V2 =
n

N
E

[{ IB ,i Ti

πB (Xi ;α∗)πT (Xi ;τ∗)

(
Yi (1)− g1(Xi ;β∗)

)}2
]

+ n

N
E

[{ IB ,i (1−Ti )

πB (Xi ;α∗)(1−πT (Xi ;τ∗))

(
Yi (0)− g0(Xi ;γ∗)

)}2
]

+ n

N
E

{(
g1(Xi ;β∗)− g0(Xi ;γ∗)−θ0

)2
}

− 2n

N
E

{
IB ,i Ti

πB (Xi ;α∗)πT (Xi ;τ∗)

(
Yi (1)− g1(Xi ;β∗)

)
· IB ,i (1−Ti )

πB (Xi ;α∗)(1−πT (Xi ;τ∗))

(
Yi (0)− g0(Xi ;γ∗)

)}

+ 2n

N
E

{
IB ,i Ti

πB (Xi ;α∗)πT (Xi ;τ∗)

(
Yi (1)− g1(Xi ;β∗)

)
·
(
g1(Xi ;β∗)− g0(Xi ;γ∗)−θ0

)}

− 2n

N
E

{
IB ,i (1−Ti )

πB (Xi ;α∗)(1−πT (Xi ;τ∗))

(
Yi (0)− g0(Xi ;γ∗)

)
·
(
g1(Xi ;β∗)− g0(Xi ;γ∗)−θ0

)}

:= S1 +S2 +S3 +S4 +S5 +S6,
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where the expectation is taken with respect to IB ,T, X ,Y and S4 = 0. The remaining terms are
consistently estimated as:

Ŝ1 =
n

N 2

N∑
i=1

{ IB ,i Ti

πB (Xi ; α̂p )πT (Xi ; τ̂p )

(
Yi − g1(Xi ; β̂p )

)}2
,

Ŝ2 =
n

N 2

N∑
i=1

{ IB ,i (1−Ti )

πB (Xi ; α̂p )(1−πT (Xi ; τ̂p ))

(
Yi − g0(Xi ; γ̂p )

)}2
,

Ŝ3 =
n

N 2

N∑
i=1

I A,i dA,i

(
g1(Xi ; β̂p )− g0(Xi ; γ̂p )− θ̂DR(ω̂p )

)2
,

Ŝ5 =
2n

N 2

N∑
i=1

IB ,i Ti

πB (Xi ; α̂p )πT (Xi ; τ̂p )

(
Yi − g1(Xi ; β̂p )

)
·
(
g1(Xi ; β̂p )− g0(Xi ; γ̂p )− θ̂DR(ω̂p )

)
,

Ŝ6 =− 2n

N 2

N∑
i=1

IB ,i (1−Ti )

πB (Xi ; α̂p )(1−πT (Xi ; τ̂p ))

(
Yi − g0(Xi ; γ̂p )

)
·
(
g1(Xi ; β̂p )− g0(Xi ; γ̂p )− θ̂DR(ω̂p )

)
.

Therefore, V2 is consistently estimated as Ŝ1 + Ŝ2 + Ŝ3 + Ŝ5 + Ŝ6.

S3 Variance estimators in the data example

S3.1 Variance estimator for unpenalized estimating equations

Let
∑N

i ψ(Zi ;θ,ω) be the estimating function for θ, the average treatment effect, and ω, the nui-
sance parameters. (θ̂,ω̂) jointly solves

N∑
i=1

ψ(Zi ; θ̂,ω̂) = 0.

Denote θ̂
p−→ θ∗ and ω̂

p−→ω∗. By Taylor series expansion, we have

0 = N−1/2
N∑

i=1
ψ(Zi ;θ∗,ω∗)+N−1/2

N∑
i=1

∂ψ(Zi ;θ∗,ω∗)

∂(θ⊤,ω⊤)

(
θ̂−θ∗
ω̂−ω∗

)
+op (1).

It follows that

p
N

(
θ̂−θ∗
ω̂−ω∗

)
=

{
N−1

N∑
i=1

∂ψ(Zi ;θ∗,ω∗)

∂(θ⊤,ω⊤)

}−1{
N−1/2

N∑
i=1

ψ(Zi ;θ∗,ω∗)
}
+op (1).
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Therefore,
p

N

(
θ̂−θ∗
ω̂−ω∗

)
d−→ MV N (0, A−1

θ∗,ω∗Bθ∗,ω∗{A−1
θ∗,ω∗}⊤),

where
Aθ∗,ω∗ = E

{∂ψ(Zi ;θ∗,ω∗)

∂(θ⊤,ω⊤)

}
,Bθ∗,ω∗ = E

{
ψ(Zi ;θ∗,ω∗)ψ⊤(Zi ;θ∗,ω∗)

}
.

The variance estimator �V ar

(
θ̂

ω̂

)
for (θ̂,ω̂) is:

N−1
{(

N−1
N∑

i=1

∂ψ(Zi ; θ̂,ω̂)

∂(θ⊤,ω⊤)

)−1}
·
{(

N−1
N∑

i=1
ψ(Zi ; θ̂,ω̂)ψ⊤(Zi ; θ̂,ω̂)

)}
·
{(

N−1
N∑

i=1

∂ψ(Zi ; θ̂,ω̂)

∂(θ⊤,ω⊤)

)−1}⊤
.

We now present the specific form the ψ(·) function for different estimators.

Outcome regression (OR) estimator using the NHANES data only:

N∑
i=1

ψ(Zi ;θ,ω) =
N∑

i=1



θ− I A,i dA,i

(
g̃1(Xi ;β)− g̃0(Xi ;γ)

)

I A,i Ti
(
Yi − g̃1(Xi ;β)

)
Xi

I A,i (1−Ti )
(
Yi − g̃0(Xi ;γ)

)
Xi


 ,

where ω= (β,γ).

Inverse probability weighting (IPW) estimator using the NHANES data only:

N∑
i=1

ψ(Zi ;θ,ω) =
N∑

i=1

(
θ− I A,i dA,i

( Ti
π̃T (Xi ;τ) Yi − 1−Ti

1−π̃T (Xi ;τ) Yi
)

I A,i
(
Ti − π̃T (Xi ;τ)

)
Xi

)
,

where ω= τ.

Double robust (DR) estimator using the NHANES data only:

N∑
i=1

ψ(Zi ;θ,ω) =
N∑

i=1




θ− I A,i dA,i õi

I A,i Ti
(
Yi − g̃1(Xi ;β)

)
Xi

I A,i (1−Ti )
(
Yi − g̃0(Xi ;γ)

)
Xi

I A,i
(
Ti − π̃T (Xi ;τ)

)
Xi


 ,

where ω = (β,γ,τ), and õi =
{

g̃1(Xi ;β) + Ti
π̃T (Xi ;τ)

(
Yi − g̃1(Xi ;β)

)}−
{

g̃0(Xi ;γ) + 1−Ti
1−π̃T (Xi ;τ)

(
Yi −

g̃0(Xi ;γ)
)}

.
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OR estimator using EHR data only:

nB∑
i=1

ψ(Zi ;θ,ω) =
nB∑
i=1



θ− (

g1(Xi ;β)− g0(Xi ;γ)
)

Ti
(
Yi − g1(Xi ;β)

)
Xi

(1−Ti )
(
Yi − g0(Xi ;γ)

)
Xi


 ,

where ω= (β,γ).

IPW estimator using EHR data only:

nB∑
i=1

ψ(Zi ;θ,ω) =
nB∑
i=1

(
θ− ( Ti

πT (Xi ;τ) Yi − 1−Ti
1−πT (Xi ;τ) Yi

)
(
Ti −πT (Xi ;τ)

)
Xi

)
,

where ω= τ.

DR estimator using EHR data only:

nB∑
i=1

ψ(Zi ;θ,ω) =
nB∑
i=1




θ−oi

Ti
(
Yi − g1(Xi ;β)

)
Xi

(1−Ti )
(
Yi − g0(Xi ;γ)

)
Xi(

Ti −πT (Xi ;τ)
)
Xi


 ,

whereω= (β,γ,τ) and oi =
{

g1(Xi ;β)+ Ti
πT (Xi ;τ)

(
Yi−g1(Xi ;β)

)}−
{

g0(Xi ;γ)+ 1−Ti
1−πT (Xi ;τ)

(
Yi−g0(Xi ;γ)

)}
.

OR estimator using the NHANES and EHR data:

N∑
i=1

ψ(Zi ;θ,ω) =
N∑

i=1



θ− I A,i dA,i

(
g1(Xi ;β)− g0(Xi ;γ)

)

IB ,i Ti
(
Yi − g1(Xi ;β)

)
Xi

IB ,i (1−Ti )
(
Yi − g0(Xi ;γ)

)
Xi


 ,

where ω= (β,γ).

IPW estimator using the NHANES and EHR data:

N∑
i=1

ψ(Zi ;θ,ω) =
N∑

i=1



θ− ( IB ,i Ti

πB (Xi ;α)πT (Xi ;τ) Yi − IB ,i (1−Ti )

πB (Xi ;α)
(

1−πT (Xi ;τ)
)Yi

)

(IB ,i /πB (Xi ;α)− I A,i dA,i )Xi

IB ,i
(
Ti −πT (Xi ;τ)

)
Xi


 ,

where ω= (α,τ).
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DR estimator using the NHANES and EHR data:

N∑
i=1

ψ(Zi ;θ,ω) =
N∑

i=1




θ−oi

(IB ,i /πB (Xi ;α)− I A,i dA,i )Xi

IB ,i
(
Ti −πT (Xi ;τ)

)
Xi

IB ,i Ti
(
Yi − g1(Xi ;β)

)
Xi

IB ,i (1−Ti )
(
Yi − g0(Xi ;γ)

)
Xi




,

whereω= (α,τ,α,β) and oi =
{

I A,i dA,i g1(Xi ;β)+ IB ,i Ti
πB (Xi ;α)πT (Xi ;τ)

(
Yi−g1(Xi ;β)

)}−
{

I A,i dA,i g0(Xi ;γ)+
IB ,i (1−Ti )

πB (Xi ;α)
(

1−πT (Xi ;τ)
)(Yi − g0(Xi ;γ)

)}
.

S3.2 Variance estimator for penalized estimating equations

Let N−1 ∑N
i=1φ(Zi ;θ,ω) be the estimation function for θ, the average treatment effect, and let

N−1 ∑N
i=1U (Zi ;ω)+ qλ(|ω|)sg n(ω) be the penalized estimating function for ω, the nuisance pa-

rameters. Since the penalty function is non-differentiable when coefficients are zero, we use the
local quadratic approximation technique for the penalty function following [5] to facilitate the
calculation of the differentiation. If ω ̸= 0 and ω is close to ω∗, we have

qλ(|ω|)sg n(ω) ≈ qλ(|ω∗|)
|ω∗| ω≈ qλ(|ω∗|)

ϵ+|ω∗| ω,

[qλ(|ω|)sg n(ω)]′ ≈ qλ(|ω∗|)
ϵ+|ω∗| .

For a small ϵ> 0, the MM-algorithm suggests that the solution ω̂ for the penalized estimating
equations satisfies the following condition [6, 7]:

0 = N−1
N∑

i=1
U (Zi ;ω̂)+ qλ(|ω̂|)

ϵ+|ω̂| ω̂= N−1
N∑

i=1
U p (Zi ;ω̂).

Therefore,

0 = N−1/2
N∑

i=1
U p (Zi ;ω∗)+N−1/2

N∑
i=1

∂U p (Zi ;ω∗)

∂ω⊤ (ω̂−ω∗)+op (1).

Moving the terms,

p
N (ω̂−ω∗) =

{
−N−1

N∑
i=1

∂U p (Zi ;ω∗)

∂ω⊤
}−1{

N−1/2
N∑

i=1
U p (Zi ;ω∗)

}
+op (1),
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where

∂U p (Zi ;ω∗)

∂ω⊤ = ∂U (Zi ;ω∗)

∂ω⊤ +EN (ω∗),

EN (ω∗) = di ag (
qλ(|ω∗

1 |)
ϵ+|ω∗

1 |
, ...,

qλ(|ω∗
p |)

ϵ+|ω∗
p |

),

U p (Zi ;ω∗) =U (Zi ;ω∗)+ qλ(|ω∗|)
ϵ+|ω∗| ω

∗ =U (Zi ;ω∗).

Therefore,

p
N (ω̂−ω∗) = N−1/2

N∑
i=1

−
[

E
{∂U (Zi ;ω∗)

∂ω⊤
}
+EN (ω∗)

]−1
U (Zi ;ω∗)+op (1). (10)

We now consider θ. The Taylor series expansion for N−1/2 ∑N
i=1φ(Zi ; θ̂,ω̂) is:

0 = N−1/2
N∑

i=1
φ(Zi ;θ∗,ω∗)+N−1/2

N∑
i=1

∂φ(Zi ;θ∗,ω∗)

∂θ⊤
(θ̂−θ∗)+N−1/2

N∑
i=1

∂φ(Zi ;θ∗,ω∗)

∂ω⊤ (ω̂−ω∗)+op (1),

where ∂φ(Zi ;θ∗,ω∗)
∂θ⊤ = 1 (or −1). Therefore, using the result in equation (10), we have:

p
N (θ̂−θ∗) =−N−1/2

N∑
i=1

[
φ(Zi ;θ∗,ω∗)−E

{∂φ(Zi ;θ∗,ω∗)

∂ω⊤
}{

E
(∂U (Zi ;ω∗)

∂ω⊤
)+EN (ω∗)

}−1U (Zi ;ω∗)
]
+op (1).

It follows that the variance estimator for θ̂ is:

�V ar (θ̂) = N−2
N∑

i=1

[
φ(Zi ; θ̂,ω̂)−

{
N−1

N∑
i=1

∂φ(Zi ; θ̂,ω̂)

∂ω⊤
}{(

N−1
N∑

i=1

∂U (Zi ;ω̂)

∂ω⊤
)+EN (ω̂)

}−1
U (Zi ;ω̂)

]2
.

OR estimator using the NHANES and EHR data:

N∑
i=1

φ(Zi ; θ̂,ω̂) =
N∑

i=1

{
θ− I A,i dA,i

(
g1(Xi ;β)− g0(Xi ;γ)

)}
,

where ω= (β,γ) and

N∑
i=1

U (Zi ;ω) =
N∑

i=1

(
IB ,i Ti

(
Yi − g1(Xi ;β)

)
Xi

IB ,i (1−Ti )
(
Yi − g0(Xi ;γ)

)
Xi

)
.
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IPW estimator using the NHANES and EHR data:

N∑
i=1

φ(Zi ; θ̂,ω̂) =
N∑

i=1

[
θ−

{ IB ,i Ti

πB (Xi ;α)πT (Xi ;τ)
Yi −

IB ,i (1−Ti )

πB (Xi ;α)
(
1−πT (Xi ;τ)

)Yi

}]
,

where ω= (α,τ) and

N∑
i=1

U (Zi ;ω) =
N∑

i=1

(
I A,i dA,i Xi − IB ,i Ti

πB Xi ;απT Xi ;τXi

I A,i dA,i Xi − IB ,i (1−Ti )
πB Xi ;α(1−πT Xi ;τ) Xi

)
.

S4 Additional simulation studies

The linear and non-linear models for generating binary outcomes are:

(a) logit
(
P (Yi = 1|Xi )

)=−1+0.5Ti +0.5Xi ,1 +T ×Xi ,1 +0.5Xi ,2 +0.5Xi ,3 +0.5Xi ,4 +0.5Xi ,5;

(b) logit
(
P (Yi = 1|Xi )

) = −3 + 0.5Ti + 0.5|Xi ,1| + Ti × |Xi ,1| + 0.5|Xi ,2| + 0.5|Xi ,3| + 0.5|Xi ,4| +
0.5|Xi ,5|.

Table S1: Sensitivity (SENS) and specificity (SPEC) of our proposed penalized estimating equa-
tion for binary outcomes based on 500 simulation replications. The evaluation metrics are sen-
sitivity (SENS) and specificity (SPEC). The subscript c stands for the correct specification of the
outcome model (OM), selection model (SM), and treatment model (T M) while the subscript m
stands for model misspecification.

α

SENS
α

SPEC
τ

SENS
τ

SPEC
β

SENS
β

SPEC
γ

SENS
γ

SPEC
Case 1: OMc ,SMc ,T Mc 1 0.979 0.800 1 0.974 0.999 0.968 1
Case 2: OMc ,SMm ,T Mc 0.982 0.980 0.793 1 0.965 0.998 0.960 0.999
Case 3: OMc ,SMc ,T Mm 0.840 0.986 0.200 1 1 1 1 1
Case 4: OMc ,SMm ,T Mm 0.489 1 0.287 1 1 0.982 1 0.999
Case 5: OMm ,SMc ,T Mc 0.977 0.980 0.780 1 0.167 1 0.168 1
Case 6: OMm ,SMm ,T Mc 0.948 0.981 0.753 1 0.168 1 0.167 1
Case 7: OMm ,SMc ,T Mm 0.977 0.984 0.233 1 0.164 1 0.167 1
Case 8: OMm ,SMm ,T Mm 0.975 0.981 0.534 1 0.181 1 0.167 1

14



Table S2: Mean squared error (MSE) for non-null and null coefficients with binary outcomes
using our proposed penalized estimating equation based on 500 simulation replications. MSE is
evaluated when all models are correctly specified.

α

MSEnonnull

α

MSEnull

τ

MSEnonnull

τ

MSEnull

β

MSEnonnull

β

MSEnull

γ

MSEnonnull

γ

MSEnull

6.80E-01 2.53E-01 5.05E-01 0.00E+00 7.49E-02 4.48E-03 1.16E-01 9.14E-04

Table S3: Coverage properties of the 95% confidence interval for binary outcomes based on 500
replications: empirical coverage rate and empirical coverage rate ± 2×Monte Carlo standard error.
The subscript c stands for the correct specification of the outcome model (OM), selection model
(SM), and treatment model (T M) while the subscript m stands for model misspecification.

Case 1: OMc ,SMc ,T Mc 0.960 (0.943,0.977)
Case 2: OMc ,SMm ,T Mc 0.932 (0.910,0.954)
Case 3: OMc ,SMc ,T Mm 0.962 (0.945,0.979)
Case 4: OMc ,SMm ,T Mm 0.920 (0.896,0.944)
Case 5: OMm ,SMc ,T Mc 0.940 (0.919,0.961)
Case 6: OMm ,SMm ,T Mc 0.760 (0.723,0.797)
Case 7: OMm ,SMc ,T Mm 0 (0,0)
Case 8: OMm ,SMm ,T Mm 0.038 (0.021,0.055)
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Figure S1: Estimated average treatment effect using our proposed DR estimator and four other
competing estimators with binary outcomes based on 500 replications. The subscript c stands for
the correct specification of the outcome model (OM), selection model (SM), and treatment model
(T M) while the subscript m stands for model misspecification. The red horizontal line indicates
the true average treatment effect.
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Figure S2: Estimated average treatment effect with continuous outcomes based on 500 replica-
tions under simulation Cases 1-8. The DR estimator is based on joint models of P (IB = 1,T = t |X ).
The subscript c stands for the correct specification of the outcome model (OM) and the weighting
model (W M) while the subscript m stands for model misspecification. The red horizontal line
indicates the true average treatment effect.
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Figure S3: Estimated average treatment effect with binary outcomes based on 500 replications
under simulation Cases 1-8. The DR estimator is based on joint models of P (IB = 1,T = t |X ).
The subscript c stands for the correct specification of the outcome model (OM) and the weighting
model (W M) while the subscript m stands for model misspecification. The red horizontal line
indicates the true average treatment effect.
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S5 Evaluating the joint modeling approach

S5.1 Data generation

We first generate the complete data of the target population {(Xi ,Ti ,Yi ), i = 1, ..., N } with N =
50,000. More specifically, we generate Xi = (1, Xi ,1, Xi ,2, ..., Xi ,d ) containing the intercept and d
covariates. Covariates, Xi ,1, Xi ,2, ..., Xi ,d , are generated independently from a gamma distribution
with mean 0.5 and variance 0.5. The gamma distribution is chosen so that all Xi s are positive
to facilitate generating the joint indicator of (IB = 1,T = t). We set d = 50. We generate the
indicator for the treated and non-treated people in sample B from the following linear or non-linear
weighting models (W M).

(a) logit
(
P (IB ,i = 1,Ti = 1|Xi )

)= X ⊤
i δ1, where δ1 = (−3.4,1,0.5,−0.5,0, ...,0)⊤;

logit
(
P (IB ,i = 1,Ti = 0|Xi )

)= X ⊤
i δ0, where δ0 = (−2,−1,−0.5,−0.5,0, ...,0)⊤.

(b) logit
(
P (IB ,i = 1,Ti = 1|Xi )

)= (X ⊤
i δ1)2 −4.2, where δ1 = (−1,0.5,0.5,−0.5,0, ...,0)⊤;

logit
(
P (IB ,i = 1,Ti = 0|Xi )

)= (X ⊤
i δ0)2 −4, where δ0 = (−0.5,−0.5,−0.5,0.5,0, ...,0)⊤;

The continuous outcomes are generated from a linear or non-linear outcome model (OM):

(a) E(Yi |Xi ,Ti = 1) = X ⊤
i β0, where β0 = (−0.5,1.3,0.3,0,1,1,0, ...,0)⊤;

E(Yi |Xi ,Ti = 0) = X ⊤
i γ0, where γ0 = (−0.5,0.3,0,0,1,1,0, ..,0)⊤.

(b) E(Yi |Xi ,Ti = 1) = log
(
(X ⊤

i β0)2
)
, where β0 is the same as (a);

E(Yi |Xi ,Ti = 0) = log
(
(X ⊤

i γ0)2
)
, where γ0 is the same as (a).

After simulating the complete data for the target population, we draw a probability sample A,
where the probability for each individual in the target population to be selected into sample A is
0.02. The expected sample size for sample A, nA, is 1,000. The sample size for sample B is about
5,500. We have four different combinations of models for data generation (Cases S1-S4). When
applying our proposed method, we always specify a linear form of covariates so that models are
misspecified if the underlying true model is non-linear. We repeat each simulation scenario 500
times and the results are averaged over 500 replications.

We also perform simulation studies for binary outcomes, following the above data generation
procedure except for the outcome model. The linear and non-linear models for generating binary
outcomes are:

(a) logit(Yi |Xi ,Ti = 1) = X ⊤
i β0, where β0 = (−1.5,0.5,0.5,0.5,0.5,0, ...,0)⊤ ;

logit(Yi |Xi ,Ti = 0) = X ⊤
i γ0, where γ0 = (−2,0.3,0.3,0.5,0.5,0, ...,0)⊤.
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(b) logit(Yi |Xi ,Ti = 1) = (X ⊤
i β0)2, where β0 is the same as (a);

logit(Yi |Xi ,Ti = 0) = (X ⊤
i γ0)2, where γ0 is the same as (a).

S5.2 Simulation results

Table S4: Sensitivity (SENS) and specificity (SPEC) of our proposed penalized estimating equa-
tion based on joint models of P (IB = 1,T = t |X ) for continuous outcomes. The subscript c stands
for the correct specification of the outcome model (OM) and the weighting model (W M) while the
subscript m stands for model misspecification.

δ1

SENS
δ1

SPEC
τ

SENS
τ

SPEC
β

SENS
β

SPEC
γ

SENS
γ

SPEC
Case S1: OMc ,W Mc 0.981 0.993 0.958 0.991 0.993 0.966 0.978 0.953
Case S2: OMc ,W Mm 0.564 1 0.817 0.999 1 0.999 1 0.991
Case S3: OMm ,W Mc 0.982 0.993 0.959 0.991 0.998 0.986 0.99 0.975
Case S4: OMm ,W Mm 0.584 1 0.851 0.999 1 0.998 0.999 0.996

Table S5: Mean squared error (MSE) for non-null and null coefficients with continuous outcomes
using our proposed penalized estimating equation based on joint models of P (IB = 1,T = t |X ).
MSE is evaluated when all models are correctly specified.

δ1

MSEnonnull

δ1

MSEnull

δ0

MSEnonnull

δ0

MSEnull

β

MSEnonnull

β

MSEnull

γ

MSEnonnull

γ

MSEnull

9.10E-02 1.24E-03 1.60E-01 1.86E-03 1.32E-02 2.68E-03 2.71E-02 5.24E-03

Table S6: Coverage properties of the 95% confidence interval based on joint models of P (IB =
1,T = t |X ) for continuous outcomes with 500 replications: empirical coverage rate and empirical
coverage rate ± 2×Monte Carlo standard error. The subscript c stands for the correct specification
of the outcome model (OM) and the weighting model (W M) while the subscript m stands for
model misspecification.

Case S1: OMc ,W Mc 0.954 (0.936,0.972)
Case S2: OMc ,W Mm 0.964 (0.948,0.980)
Case S3: OMm ,W Mc 0.972 (0.958,0.986)
Case S4: OMm ,W Mm 0.044 (0.026,0.062)
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Figure S4: Estimated average treatment effect using our proposed DR estimator based on joint
models of P (IB = 1,T = t |X ) and other competing estimators with continuous outcomes with
500 replications. The subscript c stands for the correct specification of the outcome model (OM)
and the weighting model (W M) while the subscript m stands for model misspecification. The red
horizontal line indicates the true average treatment effect.

Table S7: Sensitivity (SENS) and specificity (SPEC) of our proposed penalized estimating equa-
tion based on joint models of P (IB = 1,T = t |X ) for binary outcomes. The subscript c stands for
the correct specification of the outcome model (OM) and the weighting model (W M) while the
subscript m stands for model misspecification.

δ1

SENS
δ1

SPEC
δ0

SENS
δ0

SPEC
β

SENS
β

SPEC
γ

SENS
γ

SPEC
Case S1: OMc ,W Mc 0.936 0.988 0.906 0.982 0.967 0.959 0.824 0.923
Case S2: OMc ,W Mm 0.500 1 0.750 1 0.999 0.964 0.956 0.956
Case S3: OMm ,W Mc 0.951 0.986 0.914 0.982 0.201 1 0.674 0.993
Case S4: OMm ,W Mm 0.500 1 0.750 1 0.200 1 0.603 1

Table S8: Mean squared error (MSE) for non-null and null coefficients with binary outcomes
using our proposed penalized estimating equation based on joint models of P (IB = 1,T = t |X ).
MSE is evaluated when all models are correctly specified.

δ1

MSEnonnull

δ1

MSEnull

δ0

MSEnonnull

δ0

MSEnull

β

MSEnonnull

β

MSEnull

γ

MSEnonnull

γ

MSEnull

9.80E-02 1.19E-02 1.74E-01 2.13E-02 1.10E-01 3.39E-02 2.40E-01 1.04E-01
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Table S9: Coverage properties of the 95% confidence interval based on joint models of P (IB =
1,T = t |X ) for binary outcomes with 500 replications: empirical coverage rate and empirical
coverage rate ± 2×Monte Carlo standard error. The subscript c stands for the correct specification
of the outcome model (OM) and the weighting model (W M) while the subscript m stands for
model misspecification.

Case S1: OMc ,W Mc 0.948 (0.929,0.967)
Case S2: OMc ,W Mm 0.952 (0.933,0.971)
Case S3: OMm ,W Mc 0.932 (0.910,0.954)
Case S4: OMm ,W Mm 0.452 (0.408,0.496)
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Figure S5: Estimated average treatment effect using our proposed DR estimator based on joint
models of P (IB = 1,T = t |X ) and other competing estimators with binary outcomes. The subscript
c stands for the correct specification of the outcome model (OM) and the weighting model (W M)
while the subscript m stands for model misspecification. The red horizontal line indicates the true
average treatment effect.
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Figure S6: Estimated average treatment effect using our proposed DR estimator based on condi-
tional models of P (IB = 1|X ) and P (T = t |X , IB = 1) and other competing estimators with contin-
uous outcomes under simulation Cases S1-S4. The subscript c stands for the correct specification
of the outcome model (OM) and the weighting model (W M) while the subscript m stands for
model misspecification. The red horizontal line indicates the true average treatment effect.
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Figure S7: Estimated average treatment effect using our proposed DR estimator based on condi-
tional models of P (IB = 1|X ) and P (T = t |X , IB = 1) and other competing estimators with binary
outcomes under simulation Cases S1-S4. The subscript c stands for the correct specification of
the outcome model (OM) and the weighting model (W M) while the subscript m stands for model
misspecification. The red horizontal line indicates the true average treatment effect.

S6 Additional results for the data example
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Table S10: Estimators for the average treatment effect (ATE).

Data source
Estimation of

nuisance parameters
ATE estimator Expression†

NHANES no penalty

OR N−1
N∑

i=1
I A,i dA,i

{
g̃1(X ⊤

i β̂)− g̃0(X ⊤
i γ̂)

}

IPW N−1
N∑

i=1
I A,i dA,i

{ Ti

π̃T (X ⊤
i τ̂)

Yi −
1−Ti

1− π̃T (X ⊤
i τ̂)

Yi

}

DR

N−1
N∑

i=1
I A,i dA,i

{
g̃1(X ⊤

i β̂)+ Ti

π̃T (X ⊤
i τ̂)

(
Yi − g̃1(X ⊤

i β̂)
)−

g̃0(X ⊤
i γ̂)− 1−Ti

1− π̃T (X ⊤
i τ̂)

(
Yi − g̃0(X ⊤

i γ̂)
)}

EHR -
Mean

difference

( nB∑
i=1

Ti
)−1( nB∑

i=1
Ti Yi

)−{ nB∑
i=1

(1−Ti )
}−1{ nB∑

i=1
(1−Ti )Yi

}

EHR no penalty

OR∗ n−1
B

nB∑
i=1

{
g1(X ⊤

i β̂)− g0(X ⊤
i γ̂)

}

IPW n−1
B

nB∑
i=1

{ Ti

πT (X ⊤
i τ̂)

Yi −
1−Ti

1−πT (X ⊤
i τ̂)

Yi

}

DR
n−1

B

nB∑
i=1

{
g1(X ⊤

i β̂)+ Ti

πT (X ⊤
i τ̂)

(
Yi − g1(X ⊤

i β̂)
)−

g0(X ⊤
i γ̂)− 1−Ti

1−πT (X ⊤
i τ̂)

(
Yi − g0(X ⊤

i γ̂)
)}

NHANES

&EHR
no penalty

OR N−1
N∑

i=1
I A,i dA,i

{
g1(X ⊤

i β̂)− g0(X ⊤
i γ̂)

}

IPW N−1
N∑

i=1

{ IB ,i Ti

πB (X ⊤
i α̂)πT (X ⊤

i τ̂)
Yi −

IB ,i (1−Ti )

πB (X ⊤
i α̂)

(
1−πT (X ⊤

i τ̂)
)Yi

}

DR
N−1

N∑
i=1

{
I A,i dA,i g1(X ⊤

i β̂)+ IB ,i Ti

πB (X ⊤
i α̂)πT (X ⊤

i τ̂)

(
Yi − g1(X ⊤

i β̂)
)−

I A,i dA,i g0(X ⊤
i γ̂)− IB ,i (1−Ti )

πB (X ⊤
i α̂)

(
1−πT (X ⊤

i τ̂)
) (

Yi − g0(X ⊤
i γ̂)

)}

NHANES

&EHR
penalized

OR∗∗ N−1
N∑

i=1
I A,i dA,i

{
g1(X ⊤

i β̂
p )− g0(X ⊤

i γ̂
p )

}

IPW‡ N−1
N∑

i=1

{ IB ,i Ti

πB (X ⊤
i α̂

p )πT (X ⊤
i τ̂

p )
Yi −

IB ,i (1−Ti )

πB (X ⊤
i α̂

p )
(
1−πT (X ⊤

i τ̂
p )

)Yi

}

DR
N−1

N∑
i=1

{
I A,i dA,i g1(X ⊤

i β̂
p )+ IB ,i Ti

πB (X ⊤
i α̂

p )πT (X ⊤
i τ̂

p )

(
Yi − g1(X ⊤

i β̂
p )

)−

I A,i dA,i g0(X ⊤
i γ̂

p )− IB ,i (1−Ti )

πB (X ⊤
i α̂

p )
(
1−πT (X ⊤

i τ̂
p )

) (
Yi − g0(X ⊤

i γ̂
p )

)}

†: g̃1 and g̃0 are the outcome model for the treated and control group in the NHANES data, respectively. π̃T is the

treatment model in the NHANES data.

∗, ∗∗, ‡: corresponding to the naive estimator, the OR estimator, and the IPW estimator in the simulation section.
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Figure S8: The estimated average treatment effect of severe obesity on hypertension and 95%
confidence interval (CI). The red horizontal line denotes the point estimate from the doubly robust
estimator using exclusively the NHANES data, with the 95% CI plotted in the banded area. The
color of lines represents the method groups based on the data source (NHANES, EHR data from
MGI, or both) and the use of penalization (no penalty or penalized). The “EHR unadjusted” method
represents the sample average of the EHR data that ignores both confounding and selection bias.
The shape of the point estimate represents the type of the estimator: outcome regression (OR)
estimator, inverse probability weighting (IPW) estimator, and doubly robust (DR) estimator.

Table S11: Estimates of the average treatment effect for continuous and binary outcomes via con-
ditional models of P (IB = 1|X ) and P (T = t |X , IB = 1) or via joint models of P (IB = 1,T = t |X ).

Continuous outcome
Conditional models 5.20 (3.87, 6.54)

Joint models 5.17 (3.87, 6.48)
Binary outcome

Conditional models 0.17 (0.13, 0.21)
Joint models 0.17 (0.13, 0.21)
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