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Abstract— Control barrier functions (CBFs) have recently
been introduced as a systematic tool to ensure safety by estab-
lishing set invariance. When combined with a control Lyapunov
function (CLF), they form a safety-critical control mechanism.
However, the effectiveness of CBFs and CLFs is closely tied to
the system model. In practice, model uncertainty can jeopardize
safety and stability guarantees and may lead to undesirable
performance. In this paper, we develop a safe learning-based
control strategy for switching systems in the face of uncertainty.
We focus on the case that a nominal model is available for a
true underlying switching system. This uncertainty results in
piecewise residuals for each switching surface, impacting the
CLF and CBF constraints. We introduce a batch multi-output
Gaussian process (MOGP) framework to approximate these
piecewise residuals, thereby mitigating the adverse effects of
uncertainty. A particular structure of the covariance function
enables us to convert the MOGP-based chance constraints CLF
and CBF into second-order cone constraints, which leads to a
convex optimization. We analyze the feasibility of the resulting
optimization and provide the necessary and sufficient conditions
for feasibility. The effectiveness of the proposed strategy is
validated through a simulation of a switching adaptive cruise
control system.

I. INTRODUCTION

Many real-world control problems are modeled as hy-
brid dynamical systems, which involve a coupling between
continuous dynamics and discrete events. Research in the
stability analysis of such systems has grown significantly
in recent decades [5], [9], [16]. More recently, Gaussian
processes (GPs) are used to approximate hybrid residual
dynamics model [10]. However, in the modern context of
control applications, the focus has expanded from mere sta-
bility assurance to encompass safety verification. CBFs have
recently provided a powerful theoretical tool for synthesizing
controllers that ensure the safety of dynamical systems. They
were initially applied to autonomous driving and bipedal
walking [3]. Stability guarantees are then added via a unified
control Lyapunov function-control barrier function (CLF-
CBF) framework by solving a state-dependent quadratic
programming (QP) problem at each time step to compute
the control input [20]. In the context of hybrid systems,
barrier functions were initially used as safety certificates in
[19]. After the introduction of CBFs, CLF-CBF design has
been extensively used in safety-critical methods for hybrid
systems [3], [17], [18]. However, there are very few studies
on learning-based safety verification of switching systems
via CBFs in the presence of uncertainty.
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Learning-based CBFs for uncertain systems can be divided
into two approaches. The first approach learns the unknown
dynamics and uses the approximated model to derive safety
certificates. In [23], a GP is employed to learn the unmodeled
dynamics for the safe navigation of quadrotors with CBFs.
A GP-based systematic controller synthesis method is intro-
duced in [14], offering an inherently safe control strategy.
In [11], the authors employ a Bayesian approach to learn
model uncertainty while ensuring safety during the learning
process. However, learning the entire system dynamics using
GP is computationally expensive. As a result, a prevalent
assumption is to learn each element of the vector fields
individually and overlook their correlations. Also, all the
aforementioned works do not consider uncertainty in the
actuation term to reduce the complexity of the learning-based
model.

These limitations lead us to the second approach, which
approximates the projection of the residual onto the CLF and
CBF. In [22], an episodic learning method using neural net-
works is employed to approximate the impact of unmodeled
dynamics on system safety, eliminating the need for exhaus-
tive data collection. This idea has been implemented on the
hybrid bi-pedal robot in [8]. However, methods employing
neural networks must achieve precise approximations of
the dynamics to formally ensure safety. In general, this
requirement is challenging to meet, but GPs can provide un-
certainty quantification with analytical confidence bounds. In
[6], a GP-based min-norm controller stabilizing an unknown
control affine system using CLFs is introduced. The effect of
the uncertainty in the stability constraint is approximated by
a GP model. The same method is applied to CBF design
in [7]. This technique results in the approximation of a
real-valued function instead of a vector field, leading to
a significant reduction in the model complexity for high-
dimensional systems. In [1], the effect of uncertainty on high-
order CBFs is quantified using GPs.

In this paper, we develop a batch MOGP model to learn
the piecewise residuals in each switching surface. We use
the multi-output design to learn the piecewise residuals
corresponding to CLF and CBF simultaneously, and the
batched design facilitates for efficient computation of the
model’s hyperparameters. The main contributions of this
paper relative to prior works are presented as follows:

• We show that the switching system imposes piecewise
residuals on CLF and CBF constraints. We develop a
batch MOGP model to efficiently approximate residuals
in each switching surface.

• We demonstrate that by selecting a particular form of
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the covariance function in the batch MOGP structure,
the resulting min-norm controller with an uncertainty-
aware chance constraint can be converted into a second-
order cone program (SOCP).

• We analyze the feasibility of the resulting constrained
optimization problem and determine the necessary and
sufficient conditions for feasibility.

II. PROBLEM SETUP AND STATEMENT

Consider the control-affine switching system of the form

ẋ =

R∑
r=1

δr (fr(x) + gr(x)u) , (1)

δr =

{
1 if x ∈ Rr,

0 otherwise,

where x ∈ X ⊂ Rn is the state, and u ∈ Rm is the
input, and X is a compact and convex set. The function
δr : X → {0, 1}, r ∈ I is a state-dependent switching signal
with the finite index set I = {1, . . . , R} which indicates the
index of the active switching surface Rr ⊂ X . The vector
fields fr : Rn → Rn and gr : Rn → Rm×n, r ∈ I, are
the unknown dynamics, which are assumed to be locally
Lipschitz in their arguments. Let π : Rn → Rm be a locally
Lipschitz continuous state feedback control law. We assume
that the impulse effects are absent, i.e., the reset map is the
identity. Furthermore, we assume that the closed-loop system

ẋ = Fcl(x) ≜
R∑

r=1

δr (fr(x) + gr(x)π(x)) , (2)

satisfies Caratheodory condition [13]. Then, for any initial
state x(t0) = x0, system (2) admits a solution x(t) in
the sense of Caratheodory defined on a maximal interval
of existence I(x0) = [t0, Imax). In this paper, we consider
complete solutions, thus Imax = ∞.

Assumption 1: We assume that the state space is parti-
tioned into R non-overlapping regions labeled as Rr ⊂ X ,
such that they cover the whole state space, i.e., ∪R

r=1Rr =
X , and Ri ∩Rj = ∅ for all i, j ∈ {1, . . . , R}, i ̸= j.
Assumption 1 requires system (1) to be well-posed, i.e., for
all x ∈ X there exists only one active index r ∈ I satisfying
the membership condition.

A. Control Lyapunov Functions for Switching Systems

Definition 1 (Class K function [15]): We say that a con-
tinuous function α : [0, a) → [0,∞), a > 0, belongs to class
K, if it is strictly increasing and α(0) = 0.

Definition 2 (Control Lyapunov functions): A
continuously differentiable function V : X → R is
a CLF for system (1) if there exist positive constants
λ, c1, c2 > 0 such that for all x ∈ X and r ∈ I,

c1∥x∥2 ≤ V (x) ≤ c2∥x∥2,
R∑

r=1

δr (LfrV (x) + LgrV (x)u) ≤ −λV (x), (3)

where LfrV (x) and LgrV (x) are the Lie derivatives of
V (x) with respect to the corresponding vector fields.
Therefore, if the subsystems in (1) share a CLF, the rate
of decrease of V along the vector fields, given by (3), is
not affected by the switching, thus exponential stability is
uniform with respect to δr. Also, if there exists a compact
subset D ⊆ X including the origin such that (3) holds for
some λ > 0, and there exists a sublevel set Ω = {x ∈
D | V (x) ≤ c}, where c > 0, then the origin is locally
exponentially stabilizable from Ω.

B. Control Barrier Functions

CBF method defines safety based on the notion of set
invariance, where a subset of the state space is specified as
the safe set. This set is characterized by the zero-superlevel
set of a continuously differentiable function h : Rn → R as

C = {x ∈ Rn | h(x) ≥ 0},
∂C = {x ∈ Rn | h(x) = 0}. (4)

CBFs provide a constructive tool for achieving forward
invariance of set C. We define a CBF as follows:

Definition 3 (Control barrier function [3]): Given the
set C as defined in (4), the continuously differentiable
function h(x) is called a CBF on a domain D with
C ⊂ D ⊂ Rn, if there exists a class K function α such that
the following holds for all x ∈ D and r ∈ I

R∑
r=1

δr (Lfrh(x) + Lgrh(x)u) ≥ −α(h(x)). (5)

We can derive the following Corollary based on Nagumo’s
theorem [4] for the forward invariance of the safe set C:

Corollary 1: Given CBF h : Rn → R with the associated
set C in (3), if ∇h(x) ̸= 0 for all x ∈ ∂C, any Lipschitz
continuous controller u(x) satisfying (5), guarantees that the
set C is forward invariant for the system (1) and thus safe.
Inequalities (3) and (5) impose an affine condition on the
control values which can be used to ensure stability and
safety. Consider the CLF constraint (3), primarily designed
to fulfill control objectives. Our goal is to apply the control
law that satisfies (3) to the system only if it complies with
(5). In practice, this is accomplished by solving the following
QP optimization:

us = argmin
(u,d)∈Rm+1

∥u∥22 + ρd2 (6a)

s.t.
R∑

r=1

δr (LfrV (x) + LgrV (x)u) + λV (x) ≤ d, (6b)

R∑
r=1

δr (Lfrh(x) + Lgrh(x)u) + α(h(x)) ≥ 0, (6c)

where ρ is a positive coefficient and d ∈ R is a slack vari-
able. The resulting minimally invasive point-wise controller
prioritizes safety over control objectives by satisfying (5) as
a hard constraint.



C. Impact of uncertainty in the switching systems

In this section, we focus on reformulating CLF and CBF
constraints such that they take the model uncertainty into
account. We refer to the system (1) as the true system, which
is unknown and modeled by a single nominal model in all
regions as

ẋ = f̂(x) + ĝ(x)u, (7)

where f̂ : Rn → Rn and ĝ : Rn → Rn×m are locally
Lipschitz in x. We design a locally exponentially stabilizing
CLF and CBF based on the nominal system and assume they
are also valid for the true system.

Due to the inherent model mismatch between the true
system and the nominal model, the time derivatives of V (x)
and h(x) based on the nominal model differ from their true
values. The resulting error can be represented as

dV (x,u) = V̇ (x,u)− ˆ̇V (x,u) =

R∑
r=1

δrd
V
r (x,u),

dh(x,u) = ḣ(x,u)− ˆ̇
h(x,u) =

R∑
r=1

δrd
h
r (x,u),

where for r ∈ I, we have

dVr = LfrV (x)− Lf̂V (x) + (LgrV (x)− LĝV (x))u,

dhr = Lfrh(x)− Lf̂h(x) + (Lgrh(x)− Lĝh(x))u, (8)

where the dependence on x and u is removed for simplicity.
Consequently, these discrepancies propagate into the CLF
(6b) and CBF (6c) constraints, potentially jeopardizing the
stability and safety of the system. Using (8), the constraints
(6b) and (6c) become

Lf̂V (x) + LĝV (x)u+

R∑
r=1

δrd
V
r + λV (x) ≤ d, (9)

Lf̂h(x) + Lĝh(x)u+

R∑
r=1

δrd
h
r + α(h(x)) ≥ 0. (10)

In this paper, our primary focus is characterizing the adverse
effects of uncertainty on the proposed safety-critical control
method. We then adopt a supervised learning approach to
make our design robust to piecewise residuals of the form
(8). Thus, a dataset that contains information about piecewise
residuals in all regions is needed.

Assumption 2: We have access to the set of samples
{(x(t),u(t))}, t ∈ [t0, tf ] collected with sampling time ∆t
from trajectories of the system. We assume this set is rich
and contains states from all regions Rr, r ∈ I.
Given these data samples, we can approximately measure dV

and dh by collecting trajectories from the true system and
using the finite difference method to obtain

ωV
j = (V (x(tj +∆t))− V (x(tj))) /∆t− ˆ̇V (xj ,uj) ,

ωh
j = (h (x(tj +∆t))− h (x(tj))) /∆t− ˆ̇

h (xj ,uj) ,
(11)

where tj = t0 + (j − 1)∆t, xj = (x(tj +∆t) + x(tj)) /2
is the mean of the state, and uj = u(tj) is the control input
for tj ∈ [tj , tj +∆t), j ∈ {1, . . . , N}.

A dataset can be generated by collecting trajectories of the
true system. We denote it by D = {((xj ,uj), ω

V
j , ω

h
j )}Nj=1,

where (xj ,uj) ∈ X ×Rm is the input data and outputs ωV
j

and ωh
j are obtained from (11). We will use this dataset to

learn piecewise residuals.

III. PROPOSED BATCH MOGP-BASED DESIGN FOR
PIECEWISE RESIDUALS

A. Single-output GP for real-valued functions

Typical single-output GP (SOGP) provides a framework to
approximate nonlinear functions. We represent an SOGP ap-
proximation of v : X → R as v(x) ∼ GP (m(x), k(x,x′)),
which is fully specified by its mean function m : X →
R and covariance (kernel) function k : X × X → R.
Without loss of generality, we consider zero prior mean.
Our prior knowledge of the problem can shape the form
of k(x,x′), considering that the covariance function must
satisfy positive definiteness [24]. Given noisy measurements
wj = v(xj) + εj , j ∈ {1, . . . , N}, which are corrupted by
Gaussian noise εj ∼ N (0, σ2), a GP model can infer a
posterior mean and variance for a test point xt conditioned
on the measurements

µ(xt) = wT
(
K + σ2

nI
)−1

K̄T ,

σ(xt)
2 = k (xt,xt)− K̄

(
K + σ2

nI
)−1

K̄T , (12)

where w ∈ RN is the vector of measurements wj , K ∈
RN×N is the Gram matrix with elements Kij = k(xi,xj),
and K̄ =

[
k(xt,x1), . . . , k(xt,xN )

]T ∈ RN .

B. Batch multi-output GP for piecewise residuals

Going back to the original problem, our objective is to
build a Bayesian approximation uncorrelated target functions
dV and dh. We need to approximate each individual dVr and
dhr , for r ∈ I. Since the input data (xj ,uj) gathered from
the same trajectory, we leverage from batch multi-output
structure to learn dVr and dhr simultaneously. As dVr and
dhr are uncorrelated, we consider an independent MOGP
framework. This design facilitates more computationally
efficient GP training. We initially partition the dataset D,
as described in Section II into R datasets of the form

Dr = {((xj ,uj), ω
V
j , ω

h
j )|((xj ,uj), ω

V
j , ω

h
j ) ∈ D,xj ∈ Rr}

for r ∈ I, and denote the cardinality of each set by Nr.
In a batch GP, each dataset or batch is associated with its
own GP, and these GPs can capture the specific behav-
ior and dependencies within each batch. Now, we employ
MOGP to approximate R individual GPs for dVr and dhr
simultaneously within a unified framework. Let dr(x,u) =[
dVr (x,u) dhr (x,u)

]T ∈ R2 be the vector-valued function
which follows an MOGP as

dr(x,u) ∼ GPr

([
0
0

]
,

[
kVr 0
0 khr

])
. (13)



where the dependence to (x,u) for the covariance functions
is removed for simpler notation. As a result, training a
MOGP model (13) leading to separate posterior distributions
for target functions dVr and dhr :

dVr (x,u) ∼ N (mV
r (Dr,x,u), σ

V
r

2
(Dr,x,u)),

dhr (x,u) ∼ N (mh
r (Dr,x,u), σ

h
r

2
(Dr,x,u)). (14)

From (8), we can verify that the residuals are control-affine
and can be characterized by

dVr =
[
LfrV − Lf̂V LgrV − LĝV

] [1
u

]
= φV

r y, (15)

dhr =
[
Lfrh− Lf̂h Lgrh− Lĝh

] [1
u

]
= φh

ry. (16)

We denote the concatenation of one and u by y =[
1,uT

]T ∈ Rm+1 and φV
r ,φ

h
r ∈ R1×m+1. This prior

knowledge of the problem can be embedded into the structure
of the kernel function.

Proposition 1: Let x ∈ Rr, y ∈ Rm+1, and define the
input domain X̄r = Rr × Rm+1 for a given r ∈ I. Then,
consider the real-valued function kr : X̄r×X̄r → R, defined
by

kr

([
x
y

]
,

[
x′

y′

])
= yTΛr(x,x

′)y′, (17)

where Λr(x,x
′) = diag(

[
k1r(x,x

′), . . . , km+1
r (x,x′)

]
) and

kir : Rr × Rr → R, i ∈ {1, . . . ,m + 1}, we denote the
individual components kir’s as base kernels. If base kernels
are all positive-definite, then kr is a positive-definite kernel.

Proof: Since kir(x,x
′)’s are positive definite kernels,

then by the definition, there is a feature map φ(x) such that
kir(x,x

′) = φT
i (x)φi(x

′) for i ∈ {1, . . . ,m+ 1}. Now, Let
yi and y′i be the ith element of the corresponding vectors.
We have

kr = yT diag
(
[φT

1 (x)φ1(x
′), . . . , φT

m+1(x)φm+1(x
′)]
)
y′

=

m+1∑
i=1

yiφT
i (x)φi(x

′)y′i

=
[
y1φT

1 (x) . . . ym+1φT
m+1(x)

]  y′1φ1(x
′)

...
y′m+1φm+1(x

′)


= ψT

([
x
y

])
ψ

([
x′

y′

])
,

which again by the definition of kernels, proves that kr(·, ·)
is a positive-definite kernel.
An immediate consequence of Proposition 1 is that kr is
the reproducing kernel of a reproducing kernel Hilbert space
(RKHS) Hkr (X̄ ). Also, this structure allows us to choose
kir’s specifically for each region r ∈ I.

We denote the input samples and domain by (x,y) ∈ X̄
as defined above. Let Xr ∈ Rn×Nr and Yr ∈ R(m+1)×Nr

be matrices whose columns are vectors xj and yj of the
corresponding dataset Dr and let outputs ωr ∈ RNr be the
stacked vector of the corresponding outputs to the states xj ∈
Rr. Based on the collected batches, the MOGP model (13)

equipped with the kernels of the form kr in Proposition 1,
gives the following expression for the posterior distribution
of a test point (x∗,y∗) ∈ X̄r:

m∗
r = ωT

r (kr + σ2
nI)

−1K̄T
r y∗, (18)

σ∗
r
2 = yT

∗ (Λr(x∗,x∗)− K̄r(kr + σ2
nI)

−1K̄T
r )y∗, (19)

where kr is the Gram matrix of kr(·, ·) for the input data
pair (Xr, Yr), and K̄r ∈ R(m+1)×Nr is given by

K̄r =
[
k̄
1
r k̄

2
r . . . k̄

Nr

r

]
◦ Yr,

k̄
i
r =

[
k1r(x∗, xi) . . . km+1

r (x∗, xi)
]T
, i ∈ {1, . . . , Nr},

where ◦ denotes the element-wise multiplication (Hadamard
product) of two matrices with identical dimensions. The
posterior mean and variance of dVr and dVr are obtained
by substituting the output vectors ωV

r and ωh
r and their

corresponding kernel structure into (18) and (19).
This result highlights a key advantage of using the pro-

posed kernel. The resulting expression for the posterior mean
m∗

r = µr(x∗)y∗ and the variance σ∗
r
2 = yT

∗ Σr(x∗)y∗
are linear and quadratic in y∗ (and the control input),
respectively. We will exploit this feature in the next section
to establish a convex GP-based safety filter.

C. Confidence bounds for the estimation of the effect of
uncertainty

Although GP is inherently a probabilistic model, a high
probability error bound can be derived for the distance
between the true value and the GP prediction. This requires
an additional assumption on dVr and dhr . Let dr be either dVr
or dhr , and φr be either φV

r or φh
r from (15) and (16).

Assumption 3: We assume that each ith element of φr

is a member of Hki
r

for i ∈ {1, . . . ,m + 1} with bounded
RKHS norm ∥φi

r∥ki
r
≤ ηr for i ∈ {1, . . . ,m + 1} within a

given region r ∈ I.
Lemma 1 ([21]): Let Assumption 3 hold. Then, with a

probability of at least 1− δ, the following holds

|m∗
r − dr(x,u)| ≤ βrσ

∗
r , (20)

on Rr ⊂ X , δ ∈ (0, 1) and

βr =

√
2η2r + 300κNr+1 log

3((Nr + 1)/δ),

where κNr+1 is the maximum mutual information that can
be obtained after getting Nr + 1 data, and ηr is the upper
bound of the corresponding RKHS norm, and m∗

r and σ∗
r

are the posterior mean and standard deviation of a test point
(x∗,y∗) ∈ X̄r.

Based on the probabilistic bounds on (20) and the CLF
and CBF constraints (9) and (10), we can conclude that the
following hold with a probability of at least 1− δ

V̇ (x,u) ≤ ˆ̇V (x,u) +

R∑
r=1

δr(m
V
r + βrσ

V
r ), (21)

ḣ(x,u) ≥ ˆ̇
h(x,u) +

R∑
r=1

δr(m
h
r − βrσ

h
r ), (22)



where mV
r (x,y) and σV

r (x,y) are the mean and standard
deviation of a query point derived from (18), (19). Incorpo-
rating (21) and (22) into the optimization problem (6), we
have

us = argmin
(u,d)∈Rm+1

∥u∥22 + ρd2 (23a)

s.t. ˆ̇V (x,u) +

R∑
r=1

δr(m
V
r + βrσ

V
r ) + λV (x) ≤ d,

(23b)

ˆ̇
h(x,u) +

R∑
r=1

δr(m
h
r − βrσ

h
r ) + α(h(x)) ≥ 0,

(23c)

Note that the constraint in (23) is constructed regardless of
the underlying true dynamics.

Theorem 1: The optimization problem (23) is convex and
can be converted into the standard SOCP of the form (24),
if mV

r ,m
h
r , and σV

r , σ
h
r satisfy (18) and (19), respectively.

usocp = argmin
z

fTz

s.t.
R∑

r=1

δr
∥∥M i

rz + ni
r

∥∥
2
≤

R∑
r=1

δr(p
i
r

T
z + qir), (24)

for i = 1, . . . , nc, where z ∈ Rnz and f ∈ Rnz , and the
matrix M i

r and ni
r,p

i
r, q

i
r have appropriate dimensions for

nc constraints.
Proof: Let’s denote the objective function of (23) by

J = ∥u∥22+ρd2. Let p =
[
uT d

]T ∈ Rm+1. Then, we can
rewrite J as the equivalent form of J1 = pTQp, where Q is
a positive definite diagonal matrix with matrix square root E.
Then, we convert J1 into J2 = ∥Ep∥22. Since the Euclidean
norm is always positive, we can consider the equivalent
objective function J3 = ∥Ep∥2 and set ∥Ep∥2 ≤ t, where
t ∈ R is an auxiliary variable. Then, we convert J3 to a
second-order cone constraint (25). Now, we need to solve a
new minimization problem with a new augmented variable
z =

[
uT d t

]T ∈ Rm+2 as

min
[
0T
m+1 1

]
z

s.t. ∥
[
E 0m+1

]︸ ︷︷ ︸
:=M1

r

z∥ ⩽
[
0T
m+1 1

]︸ ︷︷ ︸
:=p1

r
T

z, (25)

where 0m+1 ∈ Rm+1 is a vector of zeros and f =[
0T
m+1 1

]T
.

Next, we need to show that constraints (23b) and (23c)
are SOC constraints. We need to consider the constraints for
a given region index r ∈ I as at each time step one region is
active according to the defined switching signal δr in Section
I. As the proof is the same for both constraints, we consider
the CBF constraint (23c). Note that based on (18), we have
mh

r (x,y) = µh
r (x)y, which can be written as

mh
r (x,y) = µh1

r + µhm
r u,

where the notation µh1
r refers the first element and µhm

r

refers the last m elements of the row vector µh
r ∈ R1×(m+1).

Also, from (16), we know that φh
r is control affine, i.e.

φh
r = φhf

r + φhg
r u, where φhf

r ∈ R and the row vectors
φhg

r ∈ R1×m. Hence, the right hand side of the inequality
in (23c) is affine in u as desired.

Based on (19), we have that σh
r
2
(x,y) = yTΣh

r (x)y,
where Σh

r ∈ R(m+1)×(m+1). Since kr is a valid kernel and
σn > 0, Σh

r is positive definite. Then, we have

σh
r (x,y) =

√
yTΣh

ry =
√

yTLT
r Lry = ∥Lry∥2,

where Lr ∈ R(m+1)×(m+1) is the matrix square root of
Σh

r . By the definition y =
[
1 uT

]T
, we have σh

r (x,y) =∥∥l1r + Lm
r u

∥∥
2
, where the notation l1r , and Lm

r refers to the
first column and the last m columns of the matrix Lr,
respectively. Now, we can rewrite the safety certificate (23c)
as a SOC constraint of the form∥∥∥Ah

r (x)u+ bhr (x)
∥∥∥
2
≤ chr (x)u+ dhr (x), (26)

where

Ah
r (x) = βrL

m
r ∈ R(m+1)×(m),

bhr (x) = βrl
1
r ∈ Rm+1,

chr (x) = φhg
r + µhm

r ∈ R1×m

dhr (x) = φhf
r + µh1

r ∈ R. (27)

It can be expressed in terms of the new variable z as

∥
[
Ah

r (x) 0m+1

]︸ ︷︷ ︸
:=M2

r

z + bhr (x)︸ ︷︷ ︸
:=n2

r

∥2 ≤
[
chr (x) 0

]︸ ︷︷ ︸
:=p2

r
T

z + dhr (x)︸ ︷︷ ︸
:=q2r

.

The same proof holds for the CLF constraint (23b). Adding
the resulting constraints to (25) leads to (24), which con-
cludes the proof.

D. Feasibility analysis

In this section, we will analyze the point-wise feasibility of
the SOCP (24). As the CLF is considered as a soft constraint,
only the CBF constraint restricts the feasibility. Intuitively,
if the batch MOGP prediction is less accurate, the resulting
standard deviation σh

r (x,y) will be large, leading to a more
conservative approach. In particular, it restricts the space
on which a safe control input can be selected, which may
make the SOCP infeasible. In the following, we theoretically
analyze the conditions for feasibility.

Theorem 2: Given a state x ∈ Rr, the SOCP (24) is
feasible if and only if there exists a control input u ∈ Rm

that satisfies the following conditions

[
dhr (x) chr (x)

] [1
u

]
≥ 0, (28)

[
1 uT

]
Sr(x)

[
1
u

]
≤ 0, (29)



where Sr ∈ R(m+1)×(m+1) is of the form

Sr(x) =

[
S1
r (x) S2

r (x)

S2
r
T
(x) S3

r (x)

]
,

S1
r (x) = bhr

T
(x)bhr (x)− dhr

T
(x)dhr (x),

S2
r (x) = bhr

T
(x)Ah

r (x)− dhr
T
(x)chr (x),

S3
r (x) = Ah

r (x)
TAh

r (x)− chr (x)
T chr (x), (30)

with Ah
r (x), b

h
r (x), c

h
r (x), and dhr (x) are defined in (27).

Proof: In order to analyze the feasibility of the SOCP
(24), we need to verify that the safety SOC constraint (26)
is feasible. Since the left hand side is always non-negative,
the right hand side must be also non-negative, which leads
to the first condition.

Now, since both sides of (26) are non-negative, we can
take squares of both sides and write the resulting expression
in quadratic form. and collect all the terms on the left.
Factorizing the similar terms gives the second condition.
Based on this result, we obtain a necessary condition for
point-wise feasibility as stated in the following:

Corollary 2: Given x ∈ Rr, if the SOCP (24) is feasible,
then the following condition must be satisfied

1− 1

β2
r

ϕrΣ
h
r

−1
ϕT

r ≤ 0, (31)

where ϕr =
[
φhf
r + µh1

r chr (x)
]
∈ R1×(m+1).

Proof: We prove this by contradiction. Let’s assume
that there exists a solution u ∈ Rm of the SOCP (24), which
satisfies 1− 1

β2
r
ϕrΣ

h
r
−1

ϕT
r > 0. Let’s define the matrix Mr

partitioned as

Mr =

[
1 ϕr

ϕT
r β2

rΣ
h
r (x)

]
∈ R(m+2)×(m+2).

The Schur complements of Mr is obtained by{
Mr/1 = β2

rΣ
h
r (x)− ϕT

r ϕr,

Mr/β
2
rΣ

h
r (x) = 1− 1

β2
r
ϕrΣ

h
r
−1

ϕT
r .

We can easily verify that β2
rΣ

h
r =[

βrl
1
r Ah

r (x)
]T [

βrl
1
r Ah

r (x)
]

and Mr/1 = Sr(x).
We know that Σh

r (x) is symmetric positive-definite (SPD).
So, Mr is also symmetric and we can characterize its
definiteness by Schur complement theorem. Since its lower
right block is positive definite and its corresponding Schur
complement Mr/β

2
rΣ

h
r (x) > 0 by our assumption, we can

conclude that Mr is also positive definite.
Now, given that Mr is SPD, and its upper left block

is always positive definite, we can conclude that Mr/1 =
Sr(x) must be positive definite, which is a contradiction to
the condition (29). Thus, 1− 1

β2
r
ϕrΣ

h
r
−1

ϕT
r ≤ 0 holds.

Theorem 2 also provides the theoretical background to
obtain a sufficient condition of feasibility.

Corollary 3: Given x ∈ Rr, the SOCP (24) is feasible at
x, if S3

r (x) is negative definite.
Proof: From (30), we know that S3

r (x) is a symmetric
matrix, thus it has real eigenvalues. Let’s denote its maximum
eigenvalue and the corresponding eigenvector by λmr , emr .

Then, by the assumption that S3
r (x) is negative definite,

we can conclude that λmr < 0 and emr
TS3

r (x)e
m
r < 0.

Substituting (30) into the former, we have

emr
TAh

r

T
(x)Ah

r (x)e
m
r − (chr (x)e

m
r )T (chr (x)e

m
r ) < 0.

Since Ah
r (x)

T
Ah

r (x) is positive definite, chr (x)e
m
r ̸= 0

must hold. We take a control input in the direction of this
eigenvector as ue = α sgn(chr (x)e

m
r ) · emr , α > 0. Next, we

need to check if the resulting control input can satisfy the
conditions of Theorem 2. Substituting ue in (29), we have

S1
r + 2αS2

r ((c
h
r (x)e

m
r ) · emr ) + α2emr

TS3
r (x)e

m
r .

By choosing large enough α, the above statement can be
made negative since emr

TS3(x)e
m
r < 0. Also, substituting

ue into (28), we have

chr (x)ue + (φhf
r + µh1

r ) = α|chr (x)emr |+ (φhf
r + µh1

r ).

Again, by choosing a large enough α, we can make the above
expression positive, which concludes the proof.

E. Data collection and model fitting

We use an episodic data collection method. In the first
episode, we run an initial roll-out using the CLF and CBF
designed based on the nominal system. Using nominal sys-
tem (7), we run QP controller (6) with the nominal values
of the time derivative of V (x) and h(x). Then, we record
the system’s trajectory until it reaches an unsafe state. Next,
we partition the resulting dataset into R datasets Dr as
described in Section III-B. Subsequently, we fit MOGPs
configured with the kernel functions kr to batches Dr, for
r = 1, . . . , R. To use (18) and (19) for prediction, we need
to infer the hyperparameters θr for each individual kernel
kir, i ∈ {1, . . . ,m + 1} in the structure of kr. Each set
of parameters is obtained by minimizing the negative log
marginal likelihood as

θopt
r = argmin

θr

− log p(ωr | X̄r,θr), (32)

where for the Jθr = − log p(ωr | X̄r,θr), we have

Jθr =
1

2
ωT

r

[
Kr(X̄r, X̄r) + σ2

nI
]−1

ωr

+
1

2
log

∣∣Kr(X̄r, X̄r) + σ2
nI

∣∣+ Nr

2
log 2π,

where X̄r = (Xr, Yr) such that ((Xr, Yr),ωr) ∈ Dr. ωr is
either the vector of outputs ωV

j or ωh
j for approximating dVr

or dhr , respectively. Then we use the uncertainty-aware SOCP
optimization (23) with a high probability bound (1 − δ =
0.95) and run the system with the proposed method until
the system reaches an unsafe state or the problem becomes
infeasible. The data collected during each episode will be
added to the dataset and the hyperparameters θr will be
optimized using (32) with the new dataset. We repeat this
process until the simulation completed without encountering
any unsafe behavior.



IV. SIMULATION RESULTS

In this section, we highlight the effectiveness of the
proposed method by applying it to a switching adaptive
cruise control (ACC) system that is moving on varying road
conditions. For comparison, we also implemented a baseline
GP-CBF-CLF-SOCP [7] that fits a single GP to piecewise
residuals and a nominal QP controller. The GP models were
trained using GPyTorch [12].

Consider a switching ACC system modeled by

ẋ =

R∑
r=1

δr (fr(x) + gr(x))u,

fr(x) =

[
x2

−Fr(x2)
m

]
, gr(x) =

[
0
cr
m

]
, (33)

where the system state x =
[
x1 x2

]T ∈ X containing the
position of the ego car x1, and its forward velocity x2 in
the state space X = [0, 700] × [0, 30]. The control input is
the wheel force u ∈ R. The mass of the ego car is denoted
by m and the rolling resistance is modeled by Fr(x2) =
f0r + f1r x2 + f2r x

2
2.

The switching behavior of the system arises from the
changing road conditions which impact the rolling resistance
Fr(x2) and traction control of the vehicle cr. As the vehi-
cle encounters different road surfaces Fr(x2) and cr will
change, leading to variations in the system dynamics. We
consider hyper-rectangular partitions of X with bounds R1 =
([0, 15)∪(25, 700])× [0, 30], and R2 = [15, 25]× [0, 30] that
represent two different road conditions. The state-dependent
switching signal δr in (1) determines the active region index
at each time step. We only have access to the nominal model
and the true system is unknown in both operating regions.
The parameters for each model are shown in Table I.

TABLE I
PARAMETERS FOR THE NOMINAL AND TRUE SYSTEM IN R1,R2

m(kg) f0
1 f1

1 f2
1 cr

True R1 3300 0.2 10 0.5 1
True R2 3300 1 50 4.5 0.5
Nominal 1050 0.1 15 2.25 1

The distance between the ego car and the front car is
denoted by z. The front car is moving at a constant velocity
v0 = 10m/s. Thus, the distance between the cars is
governed by ż = v0−x2, where we have the initial distance
z(t0) = z0. The control objective is to reach a target speed
vd = 18m/s while maintaining a safe distance to the vehicle
in front.

We consider the Lyapunov function V (x) = (x2−vd)2 to
stabilize the velocity at the desired value. Also, we consider
CBF h(x) = z − Thx2, where Th = 1.6 is a predefined
threshold to maintain a safe distance from the car in front
proportional to the current velocity.

We selected infinitely differentiable squared exponential
kernel [24], for ki, i = 1, 2 base kernels in the configuration
of kr. We used the process in Section III-E to collect the
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Fig. 1. Snapshots of the simulation to show the unsafe (red
color) and safe (green color) distance between cars in different
implementations. The nominal QP controller (left) and single GP-
SOCP controller (middle) violate the safety distance. MOGP-based
controller (right) ensures safety. See https://youtu.be/8nmcIIJSGJE
for the simulation video.

dataset and optimize the batch MOGP model hyperparam-
eters, which collected a total number of 390 data samples
in the initial roll-out and a total of 999 data samples in
all episodes. The simulation is started from the initial state
x0 =

[
0 14

]T
and z0 = 140m. The ego car starts in

the region R1 from a safe distance behind the front car.
First, the controller increases the velocity to converge to
the desired speed resulting in a decrease in z. Then, the
ego car transitions into region R2 and approaches the front
car which triggers the activation of the safety constraint
(23c). Consequently, the controller must reduce the velocity
to keep the safe distance. Due to the adverse effect of
the piecewise residuals, the Single GP-SOCP and nominal
QP controller cannot maintain the safe distance. However,
the proposed MOGP-SOCP controller effectively avoids this
unsafe behavior by leveraging the batch MOGP design. A
simulation video showing the performance of the nominal
and MOGP-SOCP controller is provided. Figure 1 shows a
snapshot of a simulation when all controllers result in the
closest distance to the front car. It can be verified that only
MOGP-SOCP controllers can keep the safe distance during
the simulation.

In Figure 2, we aim to compare the performance of the
proposed method with the baseline and nominal controllers.
For your reference, we provided the trajectories of the Oracle
true design. It has been illustrated in Figure 2 that the single
GP-SOCP controller did not converge to the desired velocity,
while MOGP-SOCP and nominal QP controllers could reach
vd in the first 4 seconds. Then, the ego car transitioned to R2

at t = 6 s which affects the rate of change of the velocity.
As it approaches the front car, the controllers must decrease
the velocity in response to remain safe. The CBF h(x) and
control input u are also illustrated in this figure. This plot
shows that the single GP-SOCP and nominal QP controllers
violate the safety condition approximately at t = 15 s and
t = 17 s, respectively. However, the MOGP-SOCP controller
could maintain the safe distance to the front car during the
simulation. Also, it can be verified from the control input
trajectory that the MOGP-SOCP controller could recover the
true system’s performance. However, the single GP-SOCP
controller does not generate a smooth control input which
is a result of poor uncertainty quantification between the
switching times.
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Fig. 2. Comparison of the MOGP-SOCP (yellow), single GP-SOCP
(cyan), nominal QP (blue), and true design (red dashed). System
state x2 and distance between two cars z (left column). The CBF
and control input u (right column).

V. CONCLUSION

In this paper, A batch MOGP framework is developed to
approximate the effect of the uncertainty on the CLF and
CBF constraints. The switching dynamics of the true system
result in piecewise residuals in CLF and CBF constraints
corresponding to R regions that cover the state space. A
batch MOGP model is designed to capture the piecewise
residuals in each region. Then, the resulting constrained
optimization problem with the uncertainty-aware chance
constraint is converted into a SOCP. This optimization is
proven to be convex and can be solved in real-time. Finally,
the feasibility of the resulting SOCP is addressed. Future
works will focus on eliminating the assumption of no impulse
effects and non-overlapping regions in the switching system.

REFERENCES

[1] Mohammad Aali and Jun Liu. Learning high-order control barrier
functions for safety-critical control with gaussian processes. arXiv
preprint arXiv:2403.09573, 2024.

[2] Mohammad Aali and Jun Liu. Learning piecewise residuals of control
barrier functions for safety of switching systems using multi-output
gaussian processes. arXiv preprint, 2024.

[3] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro No-
tomista, Koushil Sreenath, and Paulo Tabuada. Control barrier func-
tions: Theory and applications. In Proc. of ECC, pages 3420–3431.
IEEE, 2019.

[4] Franco Blanchini, Stefano Miani, et al. Set-theoretic methods in
control, volume 78. Springer, 2008.

[5] Michael S Branicky. Multiple lyapunov functions and other analysis
tools for switched and hybrid systems. IEEE Transactions on auto-
matic control, 43(4):475–482, 1998.

[6] Fernando Castaneda, Jason J Choi, Bike Zhang, Claire J Tomlin,
and Koushil Sreenath. Gaussian process-based min-norm stabilizing
controller for control-affine systems with uncertain input effects and
dynamics. In Proc. of ACC, pages 3683–3690. IEEE, 2021.
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