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QUILLEN (CO)HOMOLOGY OF DIVIDED POWER ALGEBRAS OVER AN OPERAD

IOANNIS DOKAS, MARTIN FRANKLAND, AND SACHA IKONICOFF

Abstract. Barr–Beck cohomology, put into the framework of model categories by Quillen, pro-
vides a cohomology theory for any algebraic structure, for example André–Quillen cohomology of
commutative rings. Quillen cohomology has been studied notably for divided power algebras and
restricted Lie algebras, both of which are instances of divided power algebras over an operad P : the
commutative and Lie operad respectively. In this paper, we investigate the Quillen cohomology of
divided power algebras over an operad P , identifying Beck modules, derivations, and Kähler differ-
entials in that setup. We also compare the cohomology of divided power algebras over P with that
of P-algebras, and work out some examples.
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1. Introduction

Barr–Beck cohomology is a cohomology theory for general algebraic structures, based on sim-
plicial resolutions [BB69]. It recovers (up to a shift in degree) group cohomology, Chevalley–
Eilenberg cohomology of Lie algebras, and Hochschild cohomology of algebras over a field; see
for instance [Dus75,Bar96]. One important example is André–Quillen cohomology of commutative
rings [And67,And74], put into the framework of model categories by Quillen [Qui67,Qui70], which
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has various applications in algebra and algebraic geometry. Quillen cohomology later found appli-
cations in topology, often in the guise of inputs to spectral sequences [Mil84,Goe90] or obstructions
in realization and classification problems [GH00,GH04,BDG04,Fra11,BB11,BJT12].

Divided power algebras

Divided power structures are algebraic structures which are fairly ubiquitous when working over a
field of positive characteristic. N. Jacobson introduced the concept of restricted Lie algebra to study
modular Lie theory [Jac62]. A restricted Lie algebra is a Lie algebra equipped with an additional
operation called the p-map, which satisfies specific relations. The archetypal example of a restricted
Lie algebra is an associative algebra in prime characteristic equipped with the Lie bracket given
by the commutator, and with the p-map given by the p-th power. Restricted Lie algebras appear
notably in field theory [Jac37], linear algebraic groups [Bor91], and the cohomology of the Steenrod
algebra [May66].

G. Hochschild, and later B. Pareigis, defined cohomology groups of restricted Lie algebras [Hoc54,
Par68]. In [Dok04], the first author developed the Quillen cohomology theory for restricted Lie
algebras. In contrast to the cases of associative algebras and Lie algebras, this cohomology does not
coincide with Hochschild cohomology for restricted Lie algebras. In [Dok15], 2-fold extensions of
restricted Lie algebras are classified using Duskin’s and Glenn’s torsor cohomology ([Dus75,Gle82])
and the work of Cegarra and Aznar [CA86].

The notion of algebra with divided powers was introduced by H. Cartan in [Car56] to study
certain bar constructions of commutative algebras, and further developed by N. Roby [Rob65]. A
divided power algebra is a commutative algebra endowed with additional operations γn which satisfy
specific relations. An algebra A over Q is naturally equipped with a structure of divided powers
algebra such that γn(x) =

xn

n! for all x ∈ A. Without any restriction on the ground ring, H. Cartan
proves in [Car56] that the homotopy of a simplicial commutative algebra comes naturally equipped
with the structure of a divided power algebra. The notion of divided power algebra is essential
in the theory of crystalline cohomology for schemes introduced by A. Grothendieck [Gro68] and
developed by P. Berthelot [Ber74]. The first author studied Quillen cohomology of divided power
algebras [Dok09,Dok23].

Operads

Operads are an algebraic device which represent types of algebras, such as associative algebras,
commutative algebras, and Lie algebras. The theory of operads has proven to be a powerful tool
in studying different categories of algebras in a unified way. For instance, in the seminal book
[LV12], J.-L. Loday and B. Vallette make a detailed account of many known homological and
homotopical theories for algebras over an operad. This includes a notion of Quillen (co)homology
for algebras over an operad, studied in [Liv98, Fre98,Mil11, GH00]. In the quadratic case, this is
studied through a notion of Koszul duality due to V. Ginzburg and M. Kapranov [GK94] (see also
[GJ94,Fre04]). It also includes a notion of deformation theory due to M. Gerstenhaber [Ger64] (see
[Bal97, KS00, Kel05] for the operadic account), which led the way to the solution of the Deligne
conjecture by D. Tamarkin [Tam98].

The notion of divided power algebras over an operad was introduced by B. Fresse in [Fre00]. While
usual algebras over an operad P are algebras over a monad S(P) built from P using coinvariant
operations, divided power algebras over P are algebras over a monad Γ(P) which is built using
invariant operations. This recovers the classical notion of divided power algebras of Cartan, and
Fresse shows that it also encompasses the notion of restricted Lie algebra of Jacobson. Furthermore,
Fresse generalises Cartan’s result by showing that the homotopy of a simplicial algebra over P is
always equipped with a structure of divided power algebra over P. Divided power algebras were
further studied by the third author, who obtained a convenient characterisation for these objects
using monomial operations [Iko20].
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The aim of this article is to study the Quillen cohomology of divided power algebras over any
operad P, using the techniques due to Quillen, Barr and Beck. This generalises work of the first
author [Dok04,Dok09,Dok23].

Outline and main results

Sections 2 and 3 are background sections. In Section 2, we recall the basic constructions leading
to Quillen homology and cohomology. In Section 3, we recall a characterisation for divided power
algebras obtained by the third author in [Iko20] which we will use throughout the article. As a
preliminary useful result, we obtain the following:

Proposition (see Proposition 3.4). The structure of a Γ(P)-algebra is entirely determined by mono-
mial operations whose monomial degrees are powers of the characteristic of the base field.

The rest of the article is divided into three parts.
I. General theory. In Sections 4 to 8, we develop the general notion of Quillen cohomology for

Γ(P)-algebras.
II. Examples. In Sections 9 and 10, we apply these constructions to the examples of classical

divided power algebras, and of restricted Lie algebras, and recover known results.
III. Comparisons. In Sections 11 to 15, we investigate different comparison maps induced by

adjunctions, which allow us to compare our cohomology for Γ(P)-algebras to more usual cohomology
theories in certain categories of algebras.

In Section 4, we introduce a new notion of module over a Γ(P)-algebra and of abelian Γ(P)-
algebra, which corresponds to a module over the trivial (or terminal) Γ(P)-algebra. Section 5 is
devoted to the proof of the following result:

Theorem (see Theorem 5.2). The data of a Beck module over the Γ(P)-algebra A is equivalent to
the data of an A-module as in Definition 4.5.

One side of the equivalence is obtained by building a new notion of semidirect product for A-
modules.

In Section 6, we build a ring UΓ(P)(A) which represents the operations defining the notion of an
A-module. We obtain the following result:

Theorem (See Theorem 6.11). The category of A-modules is equivalent to the category of left modules
over UΓ(P)(A).

In Section 7, we identify Beck derivations in the category of A-modules, and we build an A-module
ΩΓ(P)(A) which represents these derivations.

Section 8 concludes our general theory by identifying the left adjoint functor to the functor which
sends an A module M to the Γ(P)-algebra over A obtained by the semidirect product A⋉M of M
by A. More precisely, we obtain:

Theorem (See Theorem 8.2). The following two functors form an adjoint pair:

Γ(P)-Alg/A

UΓ(P)(A)⊗UΓ(P)(−)ΩΓ(P)(−)
//
A-Mod.

A⋉−
oo

This induces an analogue of Quillen’s cotangent complex, and by deriving the simplicial extension
of this left adjoint functor, we obtain the desired Quillen homology of A.

In Sections 9 and 10, we reconcile our general theory with the study of classical divided power
algebras and of restricted Lie algebras by the first author in [Dok04,Dok09,Dok15,Dok23].

In the remaining sections of the article, we investigate the different comparison maps induced by
certain adjunctions involving categories of divided power algebras. We focus on two types of such
adjunctions. First, for any operad P, there is an adjunction between the category of P-algebras and
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the category of Γ(P)-algebras. Second, any morphism of operads f : P → Q induces an adjunction
between the categories of Γ(P)- and Γ(Q)-algebras, similar to the extension/restriction of scalars
adjunction for modules over a ring. In Section 11, we describe the comparison maps induced by
both types of adjunctions in a general setting.

In Section 12, we study the first type of adjunction for the operad Com of commutative algebras,
which produces comparison maps between the usual Quillen cohomology of a commutative algebra,
and the Quillen cohomology of a certain associated divided power algebra. Similarly, in Section 13,
we produce a comparison map between the usual Quillen cohomology of a Lie algebra, and the
Quillen cohomology of a certain associated restricted Lie algebra.

In Section 14, we study an adjunction between associative algebras and restricted Lie algebras
which is induced by an injection of the operad of Lie algebras into the operad of associative algebras.
We obtain the following:

Theorem (See Theorem 14.2). Let L be a restricted Lie algebra and M a u(L)-bimodule. Then there
is an isomorphism

HQ∗
As(u(L),M) ∼= HQ∗

RLie(L, u(L)M).

Here, u(L) denotes an analogue of the universal enveloping algebra for restricted Lie algebras,
HQ∗

As is the usual Quillen cohomology for associative algebras, and HQ∗
RLie is the Quillen coho-

mology for restricted Lie algebras. This result is analogous to a classical theorem of Cartan and
Eilenberg, which gives an isomorphism between Chevalley–Eilenberg cohomology of a Lie algebra
L and Hochschild cohomology of its universal enveloping algebra U(L) [CE56, §XIII, Theorem 5.1].

Finally, in Section 15, we come back to the case were the base field is of characteristic 0, and
we study the case of a good triple of operads (C,A,P). In this case, the notions of P-algebras and
Γ(P)-algebras coincide. Good triples of operads generalise the mutual behaviours of the operads of
commutative, of associative, and of Lie algebras. In particular, we see the operad P as a suboperad
A of a certain type. In this setting, we can generalise the result of the previous section, and we
obtain:

Theorem (See Theorem 15.2). Let (C,A,P) be a good triple of operads. Let P be an P-algebra and
M a Beck U(P )-module. Then we have the following isomorphism

HQ∗
A-Alg(U(P ),M) ≃ HQ∗

P-Alg(P, PM).

Here again, U(P ) denotes a certain notion of universal enveloping A-algebra, HQ∗
A-Alg is the

Quillen cohomology for A-algebras, and HQ∗
P-Alg is the Quillen cohomology for P-algebras. If we

consider the good triple (Com,As,Lie), then Theorem 15.2 recovers the Cartan–Eilenberg result in
characteristic zero.

While this last section focusses on the characteristic zero setting, there is evidence that the notion
of good triple of operads can be generalised in positive characteristic, and we expect that our result
still holds under the correct assumptions. Formulating these assumptions is—to our knowledge—an
open problem for future consideration.

Conventions and notations

All the operads considered in this article will be algebraic, symmetric operads. We assume the
reader has a good familiarity with this notion of operad. For more details, we refer to [LV12].

For this whole article, we fix a base field F and an operad P in F-vector spaces that is reduced,
i.e., satisfying P(0) = 0. A Γ(P)-algebra will be generically denoted A.

Notation 1.1. We will denote:

• VectF the category of F-vector spaces.
• P-Alg the category of P-algebras in VectF, with forgetful functor UP

F : P-Alg → VectF and

its left adjoint FP
F : VectF → P-Alg.
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• Γ(P)-Alg the category of Γ(P)-algebras in VectF, with forgetful functor U
Γ(P)
P : Γ(P)-Alg →

P-Alg and its left adjoint F
Γ(P)
P : P-Alg → Γ(P)-Alg.

Acknowledgements
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Frankland acknowledges the support of the Natural Sciences and Engineering Research Council
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2. Preliminaries on Quillen cohomology

Throughout this section, let C be an algebraic category. More details about the kinds of categories
we may consider are given in [Fra15, §2]. For the purposes of this paper, the categories of P-algebras
and Γ(P)-algebras are examples of algebraic categories, in fact, the one-sorted kind: sets equipped
with certain operations satisfying certain equations. Let us recall some terminology, also found in
[Bar96] and [Fra15, §1.3].

Definition 2.1. For an object X of C, a Beck module over X is an abelian group object in the slice
category C/X. The category of Beck modules over X is denoted (C/X)ab.

Definition 2.2. The abelianization over X is the functor AbX : C/X → (C/X)ab which is left adjoint
to the forgetful functor UX : (C/X)ab → C/X.

Definition 2.3. For a map f : X → Y in C, the pullback functor f∗ : C/Y → C/X preserves limits
and thus induces a functor f∗ : (C/Y )ab → (C/X)ab, also called pullback. The pushforward along
f is the left adjoint f! : (C/X)ab → (C/Y )ab of f∗.

Lemma 2.4. Given a map f : X → Y in C viewed as an object of the slice category C/Y , its
abelianization is given by

AbY (X
f
−→ Y ) ∼= f!(AbXX)

where AbXX is shorthand for AbX(X
id
−→ X).

Definition 2.5. Given a Beck module pr : E ։ X over X, a (Beck) derivation from X to E is a
section of pr. The set of derivations is denoted

Der(X,E) := HomC/X(X
id
−→ X,E

pr
−→ X) ∼= Hom(C/X)ab(AbXX,E

pr
−→ X).

Note that Der(X,E) is canonically an abelian group.
The module of Kähler differentials of X is ΩC(X) := AbXX, which represents derivations.

Definition 2.6. The cotangent complex LX of X is the derived abelianization of X, i.e., the simplicial
module over X given by LX := AbX(C• → X), where C• → X is a cofibrant replacement of X in
sC.

Definition 2.7. The nth Quillen homology module of X is the nth (simplicially) derived functor of
abelianization, given by HQn(X) := πn(LX). Note that HQn(X) is a Beck module over X.

Definition 2.8. The nth Quillen cohomology group of X with coefficients in a module M is the nth

(simplicially) derived functor of derivations, given by HQn(X;M) := πnHom(LX ,M). Note that
HQn(X;M) is an abelian group.

Example 2.9. Assuming C is a one-sorted algebraic category, consider the underlying set functor
U = UC

Set : C → Set and its left adjoint F = F C
Set : Set → C. Iterating the free-of-forget comonad FU

yields the standard augmented simplicial object

C• := (FU)•+1(X) → X,
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which is a cofibrant replacement of X in sC. This was the original approach used by Barr and Beck
[BB69], and by M. André in his work on André–Quillen cohomology [And67,And74].

3. Recollections on divided power algebras

In this section, we review the general notion of a divided power algebra over an operad P,
which are also called Γ(P)-algebras, due to Fresse [Fre00]. Throughout this article, we use the
characterisation of divided power algebras in terms of monomial operations due to the third author
[Iko20]. We rely heavily on the notation introduced in [Iko20] for those operations, and operations
on partitions of integers.

Recall that an operad P is a sequence {P(n)}n∈N such that for all n, P(n) is an F-linear repre-
sentation of the symmetric group Sn on n letters. An operad is called reduced when P(0) = 0, and
Fresse showed the following:

Proposition 3.1 ([Fre00, §1.1.18]). For a reduced operad P, the endofunctor Γ(P) in vector spaces
defined on objects by:

Γ(P, V ) =
⊕

n>0

(P(n)⊗ V ⊗n)Sn

is equipped with a monad structure.

Here, (P(n)⊗V ⊗n)Sn stands for the module of invariant under the diagonal action of Sn, where
the action of Sn on V ⊗n is the usual permutation of factors.

Definition 3.2. A divided power P-algebra, or Γ(P)-algebra, is an algebra over the resulting monad
Γ(P).

Theorem 3.3 ([Iko20]). A divided power algebra over a reduced operad P is a vector space A endowed
with a family of operations βx,r : A

×s → A, given for all r = (r1, . . . , rs) such that r1 + · · ·+ rs = n

and x ∈ P(n)Sr , and which satisfy the relations:

(β1) βx,r((ai)i) = βρ∗·x,rρ((aρ−1(i))i) for all ρ ∈ Ss, where ρ
∗ denotes the block permutation with

blocks of size (ri) associated to ρ.

(β2) βx,(0,r1,r2,...,rs)(a0, a1, . . . , as) = βx,(r1,r2,...,rs)(a1, . . . , as).

(β3) βx,r(λa1, a2, . . . , as) = λr1βx,r(a1, . . . , as) ∀λ ∈ F.

(β4) If r1 + · · ·+ rs = n and q1 + · · ·+ qs′ = s, then

βx,r(a1, . . . , a1
︸ ︷︷ ︸

q1

, a2, . . . , a2
︸ ︷︷ ︸

q2

, . . . , as, . . . , as
︸ ︷︷ ︸

qs′

) = β(∑
σ∈Sq⊲r/Sr

σ·x
)
, q⊲r

(a1, a2, . . . , as).

(β5) βx,r(a0 + a1, . . . , as) =
∑

l+m=r1
βx,r◦1(l,m)(a0, a1, . . . , as).

(β6) βλx+y,r = λβx,r + βy,r , for all x, y ∈ P(n)Sr ,

(β7) β1P ,(1)(a) = a ∀a ∈ A.

(β8) Let r1+ · · ·+ rs = n, x ∈ P(n)Sr and for all i ∈ [s], let qi,1+ · · ·+ qi,ki = mi, xi ∈ P(mi)
Sq

i

and (bij)1≤j≤ki ∈ A×ki. Denote by b = (bij)i∈[s],j∈[ki] and for all i ∈ [s], bi = (bi,j)j∈[ki].
Then:

βx,r(βx1,q1
(b1), . . . , βxs,qs

(bs)) = β∑
τ τ ·x

(
x
×r1
1 ,...,x×rs

s

)
,r⋄(q

i
)i∈[s]

(b),

where r ⋄ (q
i
)i∈[s] is defined in [Iko20], where β·,r⋄(q

i
)i∈[s]

is defined in [Iko20] and where τ

ranges over Sr⋄(qi)i∈[s]
/(
∏s

i=1Sri ≀Sq
i
) in the sum.

We can slightly refine this characterisation if we specify the characteristic of the base field:
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Proposition 3.4. Let A be a Γ(P)-algebra over a field F of characteristic p. Then, the operations
βx,r are generated by the family of operations βx,r such that all the ris are powers of p.

Proof. Let n ∈ N, r1 + · · · + rs = n, and x ∈ P(n)Sr . For each i ∈ [s], denote ri =
∑kri

j=0 ri,jp
j the

mod p expansion of ri. For all i ∈ [s] and j ∈ {0, . . . , ki}, denote by Rij = ri,jp
j. We get a partition

R = (R1,0, . . . , R1,kr1
, R2,0, . . . , Rs,ks) of [n] into kr1 + · · · + krs + s integers. Note that since R is

finer than r, x is fixed by the action of SR. Since x ∈ P(n)r, we obtain

∑

σ∈Sr/SR

x =

(
s∏

i=1

(
ri

ri,0p0, . . . , ri,krip
kri

))

x.

Using Lucas’s Theorem, the product
∏k

i=1

( ri
ri,0p0,...,ri,kri

p
rki

)
is equal to 1 modulo p. Using rela-

tion (β4), we then get:

βx,r(a1, . . . , as) = βx,R(a1, . . . , a1
︸ ︷︷ ︸

kr1+1

, . . . , as, . . . , as
︸ ︷︷ ︸

krs

).

Now, consider the partition

Q := (p0, . . . , p0
︸ ︷︷ ︸

r1,0

, . . . , pkr1 , . . . , pkr1
︸ ︷︷ ︸

r1,kr1

, . . . , pkrs , . . . , pkrs
︸ ︷︷ ︸

rs,krs

).

Since Q is finer than R, x is stable under the action of SQ. Using Lucas’s Theorem again, we get:

∑

σ∈SR/SQ

σx =





s∏

i=1

kri∏

j=1

(
ri,jp

j

pj , . . . , pj

)


x

=





s∏

i=1

kri∏

j=1

ri,j !



x.

Since ri,j < p for all i, j, ri,j! is invertible modulo p. So, we can write:

x =





s∏

i=1

kri∏

j=1

(ri,j!)
−1




∑

σ∈SR/SQ

σx,

and so, using relation (β8),

βx,R(a1, . . . , a1
︸ ︷︷ ︸

kr1+1

, . . . , as, . . . , as
︸ ︷︷ ︸

krs

) =





s∏

i=1

kri∏

j=1

(ri,j!)
−1



βx,Q( a1, . . . , a1
︸ ︷︷ ︸

r1,0+···+r1,kr1

, . . . , as, . . . , as
︸ ︷︷ ︸

rs,0+···+rs,krs

).

Here, the integers in Q are either 0s or powers of p. Using relation (β2) allows us to remove the 0s,
and we obtain the result. �

4. Abelian Γ(P)-algebras, A-modules

In order to obtain an analogue of the André–Quillen cohomology of operadic algebras [LV12, §12.3]
on divided power algebras, we will study the notion of a module over a divided power algebra,
which is obtained by looking at certain abelian (or square-zero) extensions. In the setting of usual
(non-unital) F-algebras, since any vector space can be equipped with trivial algebra structure, the
category of abelian (square-zero) F-algebras coincide with the category of F-vector spaces. An A-
module then becomes a vector space equipped with an A-action. However, we will see that, in the
category of divided power algebras, abelian Γ(P)-algebras correspond to vector spaces equipped with



8 IOANNIS DOKAS, MARTIN FRANKLAND, AND SACHA IKONICOFF

additional internal operations, and therefore, requires a separate definition. This section contains
our candidates for the definitions of abelian Γ(P)-algebras and of A-modules, and we will show in
the next section that these are indeed the right definitions (see Theorem 5.2, Corollary 5.4).

Definition 4.1. An abelian Γ(P)-algebra is a Γ(P)-algebra M such that all the operations βx,r
are trivial as soon as r contains two non-zero integers. Abelian Γ(P)-algebras with Γ(P)-algebra
morphisms form a category (Γ(P)-Alg)Ab.

Proposition 4.2. Equivalently, an abelian Γ(P)-algebra is a vector space M equipped, for all n ∈ N

and x ∈ P(n)Sn , with an operation (a set map) βx : M →M satisfying:

(Abβ3) βx(λm) = λnβx(m),
(Abβ4) Suppose there is r ∈ Comps(n), with s > 1 and r contains at least two non-zero integers,

and y ∈ P(n) such that x =
∑

σ∈Sn/Sr
y. Then βx = 0,

(Abβ5) βx(m1 +m2) = βx(m1) + βx(m2),
(Abβ6) βλx+y(m) = λβx(m1) + βy(m2),
(Abβ7) β1P (m) = m,
(Abβ8) βx(βy(m)) = β∑

τ τ ·x(y,...,y)(m), where y ∈ P(l) and τ ranges over Snl/Sn ≀Sl.

Proof. Let M be a Γ(P) algebra such that all the operations βx,r are trivial as soon as r contains

two non-zero integers. For all x ∈ P(n)Sn , denote by βx := βx,(n). We will prove that relations
(Abβ3) to (Abβ8) are satisfied:

(Abβ3) is a direct consequence of (β3),
(Abβ4) is deduced from (β4) in the following way: if there is r ∈ Comps(n) with s > 1 and r

contains at least two non-zero integers, and y ∈ P(n) such that x =
∑

σ∈Sn/Sr
y, then

βx(m) = βx,(n)(m) = βy,r(m, . . . ,m) = 0.

(Abβ5) is deduced from (β5) and (β2) in the following way:

βx(m+m′) = βx,(n)(m+m′) =
∑

i+j=n

βx,(i,j)(m,m
′) = βx,(n,0)(m,m

′) + βx,(0,n)(m,m
′)

= βx(m) + βx(m
′).

(Abβ6) is a direct consequence of (β6),
(Abβ7) is a direct consequence of (β7),
(Abβ8) is a direct consequence of (β8).

Let now M be a vector space equipped, for all x ∈ P(n)Sn , with an operation βx : M → M ,
satisfying the relations (Abβ3) to (Abβ8). For all x ∈ P(n)Sn and r ∈ Comps(n), define an s-ary
operation βx,r, such that:

βx,r(m1, . . . ,ms) =

{

βx(mi) if ri = n,

0 if r contains at least two non-zero integers.

We want to show that βx,r satisfy the relations (β1) to (β8). Relations (β1) and (β2), are a direct
consequence of the definition. Relations (β3), (β5), (β6), (β7) are direct consequences respectively
of relations (Abβ3), (Abβ5), (Abβ6), and (Abβ7).

To prove relation (β4), note that the left term of the equality,

βx,r(a1, . . . , a1
︸ ︷︷ ︸

q1

, a2, . . . , a2
︸ ︷︷ ︸

q2

, . . . , as, . . . , as
︸ ︷︷ ︸

qs′

),

is equal to 0 except if ri = n and qj = m for certain i and j, in which case, it is equal to βx(ai). On
the other hand, the right term of the equality,

β(∑
σ∈Sq⊲r/Sr

σ·x
)
, q⊲r

(a1, a2, . . . , as),
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is 0 unless q ⊲ r contains a single non-zero integers. But this happens if and only if both r and q
contain a single non-zero integer, namely, if there is an i and a j such that ri = n and qj = m, and
if so, Sq⊲r/Sr is trivial, so this term is also equal to βx(ai).

To prove relation (β8), note that the left term in the equality,

βx,r(βx1,q1
(b1), . . . , βxs,qs

(bs)),

Is 0 unless ri = n, qi,j = mi, and in this case, this term is equal to βx(βxi(bi,j)). On the other hand,
the right term in the equality,

β∑
τ τ ·x

(
x
×r1
1 ,...,x×rs

s

))
,r⋄(q

i
)i∈[s]

(b),

Is equal to 0 unless r ⋄ (q
i
)i∈[s] has a single non-zero integer. But again, this happens if and only

if there exists an i such that ri = n, a j such that qi,j = mi, and in this case, r ⋄ (q
i
)i∈[s] =

(nmi),Sr⋄(qi)i∈[s]
/(
∏s

i=1 Sri ≀Sq
i
) = Snmi/Sn ≀Smi , and so, this term is equal to

β∑
τ τx(xi,...,xi)(bi,j),

where τ ranges over Snmi/Sn ≀Smi in the sum.
We have left to prove that

βx(βxi(bi,j)) = β∑
τ τx(xi,...,xi)(bi,j),

where τ ranges over Snmi/Sn ≀Smi in the sum, but that is exactly relation (Abβ8). �

Proposition 4.3. LetM be an abelian Γ(P)-algebra over a field F of characteristic p. Then βx(m) = 0
for all x ∈ P(n)Sn , for all n 6= pi, i ∈ N.

Proof. This is similar to the proof of 3.4. Denote by n0p
0 + · · · + nkp

k the mod p expansion of n.

Denote by Q = (p0, . . . , p0
︸ ︷︷ ︸

n0

, . . . , pk, . . . , pk
︸ ︷︷ ︸

nk

). Denote by y = (
∏k

j=0 nj!)
−1. Using Lucas’s Theorem,

one has:

∑

σ∈Sn/SQ

σ · y =





k∏

j=0

(
njp

j

pj, . . . , pj

)


 y =





k∏

j=0

nj!



 y = x.

Either n is a power of p, or Q has at least two non-zero integers, which, using relation (Abβ4),
implies that βx = 0. �

Corollary 4.4. Let M be an abelian Γ(P)-algebra over a field F of characteristic p. Then, the

operations βx are generated by the family of operations βx such that x ∈ P(pi)Spi .

Definition 4.5. A module over the Γ(P)-algebra A is an abelian Γ(P)-algebra M equipped with a
divided power action of A on M represented by operations βx,r : A

×s−1 ×M →M for all x ∈ P(n)
and r ∈ Comps(n) such that rs 6= 0, satisfying:

(βAM6) βλx+y,r = λβx,r + βy,r , for all x, y ∈ P(n)Sr ,
(βAM7) If s = 1, then βx,(n)(m) = βx(m).

(βAM8) Let r1 + · · ·+ rs = n, x ∈ P(n)Sr and for all i ∈ [s], let qi,1 + · · ·+ qi,ui = ki, xi ∈ P(ki)
Sq

i .
Let (bij)1≤j≤ui ∈ A×ui for i ∈ [s− 1] and bs,1, . . . , bs,us−1 ∈ A. For all i ∈ [s− 1], denote by
bi = (bi,j)j∈[ui]. Then:

βx,r(βx1,q1
(b1), . . . , βxs−1,qs−1

(bs−1), βxs,qs
(bs,1, . . . , bs,us−1,m))

= β∑
τ τ ·x(x

r1
1 ,...,x×rs

s ),r⋄(q
1
,...,q

s
)(b1,1, . . . , b1,u1 , . . . , bs,us−1,m),

where r ⋄ (q
i
)i∈[s] is defined in [Iko20] and where τ ranges over Sr⋄q/

∏s
i=1Sri ≀Sq

i
) in the

sum.
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For s > 1, the two sets of relations:

(βA1) βx,r((ai)i,m) = βρ∗·x,rρ((aρ−1(i))i,m) for all ρ ∈ Ss−1, where ρ
∗ denotes the block permuta-

tion with blocks of size (ri) associated to ρ.
(βA2) βx,(0,r1,r2,...,rs)(a0, a1, . . . , as−1,m) = βx,(r1,r2,...,rs)(a1, . . . , as−1,m).
(βA3) βx,r(λa1, a2, . . . , as−1,m) = λr1βx,r(a1, . . . , as−1,m) ∀λ ∈ F.
(βA4) If r ∈ Comps(n) and q ∈ Comps′(s − 1), then

βx,r(a1, . . . , a1
︸ ︷︷ ︸

q1

, a2, . . . , a2
︸ ︷︷ ︸

q2

, . . . , as−1, . . . , as−1
︸ ︷︷ ︸

qs′

,m) = β(∑
σ∈S

q′⊲r
/Sr

σ·x
)
, q′⊲r

(a1, a2, . . . , as−1,m),

where q′ = (q, 0),
(βA5) βx,r(a0 + a1, . . . , as−1,m) =

∑

l+l′=r1
βx,r◦1(l,l′)(a0, a1, . . . , as−1,m),

and,

(βM3) βx,r(a1, a2, . . . , as−1, λm) = λr1βx,r(a1, . . . , as−1,m) ∀λ ∈ F.
(βM4) Suppose there is q ∈ Comps′(rs) with s′ > 0, where q contains at least two non-zero

integers, and there is a y ∈ P(n)S
×n−rs
1 ×Sq such that x =

∑

σ∈Sn−rs×Srs/S
×n−rs
1 ×Sq

y, then

βx,r(a1, . . . , as−1,m) = 0,
(βM5) βx,r(a1, . . . , as−1,m1 +m2) = βx,r(a1, . . . , as−1,m1) + βx,r(a1, . . . , as−1,m2),

And the two additional relations:

(βAM4) Let s, s′ > 0, q ∈ Comps′(n), and r ∈ Comps(q). Let x ∈ P(n)Sq◦ir . Then,

qi∑

k=1

β∑

ρ∈S

×(q1+···+qi−1)
1 ×Er,k×S

×(qi+1+···+qs′ )

1

ρ·σ∗
i x,q◦i(qi−k,k)(a1, . . . , ai−1, ai+1, . . . , as′ , ai,m) = 0,

where σ∗i is the block permutation for blocks of size q1, q2, . . . , qs′ associated to the transpo-
sition of i and s′ in Ss′ , and where:

Er,k =
{
ρ′ ∈ Sh(r) :

∣
∣{ρ′(r1 + · · · + rj) : j ∈ [s]} ∩ {qi − k + 1, . . . , qi}

∣
∣ ≥ 2

}
,

where Sh(r) is the set of (r1, . . . , rs)-shuffles.

(βAM9) Let r1 + · · ·+ rs = n, x ∈ P(n)Sr , let q1+ · · ·+ qu = k, y ∈ P(k)Sq . Let (ai)i∈[s+u] ∈ A×s+u

and m ∈M . Denote by z = x
(
1×n−rs
P , y×rs

)
∈ P(n + rs(k − 1)) Then,

∑

t+t′=rsqu,t′>0

β∑
τ τz,r⋄s(q)◦s+u(t,t′)(a1, . . . , as+u,m) =

∑

λ+λ′=rs,λ′>0

∑

l+l′=qu,l′>0

β∑
σ′ σ′z,Rll′

λλ′
(a1, . . . , as+u,m),

where, for all l, l′, λ, λ′, Rll′

λλ′ = ((Rij)i∈[s],j∈[us], Rs,u+1) is the partition of [n+ rs(k−1)] into
s+ u+ 1 parts such that Ri = (r ⋄s (q)i for all i ∈ [s+ u− 1], and such that:

Rs+u = {n− rs + k − qu + αk + γ, α ∈ [λ], γ ∈ [qu]} ∪ {λk + (k − qu) + αk + γ, α ∈ [λ′], γ ∈ [l]}.

Rs+u+1 = {n− rs + λk + (k − l′) + αk + γ, α ∈ [λ′], γ ∈ [l′]}.

where τ ranges over Sr⋄sq/
(
∏s−1

i=1 Sri

)

× Srs ≀ Sq in the sum, and where σ′ ranges over

S
Rll′

λλ′
/
(
∏s−1

i=1 Sri

)

×Sλ ≀Sq ×Sλ′ ≀Sq◦u(l,l′) in the sum.

Modules over a Γ(P)-algebra A form a category A-Mod.
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Notation 4.6. We will allow the notation:

βx,r(a1, . . . , ai−1,m, ai+1, . . . , as) := βσ∗
i ,r

σi (a1, . . . , ai−1, ai+1, . . . , as,m),

where σi ∈ Ss sends i to the s-th spot and keeps all other indices in order, that is:

σi(j) =







j, if j < i,

s, if j = i,

j − 1, if j > i,

and where σ∗i ∈ Sn is the block permutation with blocks of size (ri)i∈[s] associated to σi.

Once again, we can slightly refine this characterisation if we specify the characteristic of the base
field:

Proposition 4.7. Let M be an A-module over a field F of characteristic p. Then the operations
βx,r(a1, . . . , as−1,m) are generated by the operations βx,r(a1, . . . , as−1,m) where all the ris are powers
of p, and βx,r(a1, . . . , as−1,m) = 0 when rs is not a power of p.

Proof. The proof, very similar to that of Propositions 3.4 and 4.3, is omitted. �

5. Beck modules over A

This section is devoted to the notion of a Beck module over a Γ(P)-algebra A. The general
notion of Beck module is equivalent to the notion of abelian extensions over an object (see [Bec67],
[Qui70, §2–4], [Bar96, §6], or [Fra10, §A]). The main result of this section, Theorem 5.2, is that
the notion of Beck module over a Γ(P)-algebra A corresponds to the notion of A-module from
Definition 4.5. As a particular case of this result, we obtain Corollary 5.4, which shows that the
notion of abelian Γ(P)-algebra from Definition 4.1 corresponds to the notion of an abelian object
in the category of Γ(P)-algebras.

Remark 5.1. If B
pr // A and C

pr′ // A are Γ(P)-algebras over A, we can endow B ×A C of a
structure of Γ(P)-algebra over A. The map B ×A C → A is given by pr ×A pr

′, and the evaluation
map P ◦̃ (B ×A C) → B ×A C is given by universal property of the pullback, using the two maps
P ◦̃ (B ×A C) → P ◦̃B → B and P ◦̃ (B ×A C) → P ◦̃C → C. This means that for s elements
(b1, c1), . . . , (bs, cs, ) ∈ B × C such that pr(bi) = pr′(ci),

βx,r ((b1, c1), . . . , (bs, cs)) = (βx,r(b1, . . . , bs), βx,r(c1, . . . , cs)).

Theorem 5.2. The data of a Beck module over the Γ(P)-algebra A is equivalent to the data of an
A-module as in Definition 4.5.

Proof. We will define a pair of functors:

ker : (Γ(P)-Alg/A)ab → A-Mod,

and
A⋉− : A-Mod → (Γ(P)-Alg/A)ab ,

and show that these are inverse to each other.

Let us prove that the data of a Beck module over A yields an A-module. Let B
pr // A be a Γ(P)-

algebra over A. Denote by M := ker(p). The data of a Beck module structure on B is equivalent

to the data of a map A
z // B , and of a multiplication map B ×A B

µ // B over A, satisfying
the following conditions:

(1) z is a map of Γ(P)-algebras over A,

(2) µ is a map of Γ(P)-algebras over A,



12 IOANNIS DOKAS, MARTIN FRANKLAND, AND SACHA IKONICOFF

(3) µ is commutative,
(4) z is a unit map for the multiplication µ, that is,

B ×A B

µ
))❙❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

A×A B = B = B ×A A
B×Az //z×ABoo

B
��

B ×B

µ
uu❦❦❦❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

B

.

Condition (1) implies that z splits pr, so we have a split exact sequence of vector spaces:

0 // M // B
pr // A
z

ii // 0 ,

which provides us with a linear isomorphism B ∼= A⊕M .
The fact that pr is a map of Γ(P)-algebras implies that

pr(βx,r((a1,m1), . . . , (as,ms))) = βx,r(pr(a1,m1), . . . , pr(as,ms)) = βx,r(a1, . . . , as),

so there exists a set map ∇x,r : A
×s ×M×s →M such that:

βx,r((a1,m1), . . . , (as,ms)) =
(
βx,r(a1, . . . , as),∇x,r(a1, . . . , as,m1, . . . ,ms)

)
.

Note that, as a vector space, B ×A B ∼= A⊕M ⊕M . One can rewrite condition (4) as the equality
µ(a,m, 0) = µ(a, 0,m) = (a,m). Since µ is linear,

µ(a,m,m′) = µ
(
(a,m, 0) + (0, 0,m′)

)
= µ(a,m, 0) + µ(0, 0,m′) = (a,m) + (0,m′) = (a,m+m′),

from which the commutativity of µ is in fact necessary.
Inspecting the Γ(P)-algebra structure on B ×A B (see previous section), one has:

βx,r
(
(a1,m1,m

′
1), . . . , (as,ms,m

′
s)
)
= (βx,r(a1, . . . , as),∇x,r(a1, . . . , as,m1, . . . ,ms),

∇x,r(a1 . . . , as,m
′
1, . . . ,m

′
s)).

On the one hand, this means that:

µ
(
βx,r

(
(a1,m1,m

′
1), . . . , (as,ms,m

′
s)
))

= µ

(

βx,r(a1, . . . , as),∇x,r(a1, . . . , as,m1, . . . ,ms),

∇x,r(a1 . . . , as,m
′
1, . . . ,m

′
s)

)

,

Which is equal to:
(

βx,r(a1, . . . , as),∇x,r(a1, . . . , as,m1, . . . ,ms) +∇x,r(a1 . . . , as,m
′
1, . . . ,m

′
s)

)

.

On the other hand, since µ is a Γ(P)-algebra map, one has:

µ(βx,r
(
(a1,m1,m

′
1), . . . , (as,ms,m

′
s)
)
) = βx,r

(
µ(a1,m1,m

′
1), . . . , µ(as,ms,m

′
s)
)

= βx,r
(
(a1,m1 +m′

1), . . . , (as,ms +m′
s)
)

=
(
βx,r,∇x,r(a1, . . . , as,m1 +m′

1, . . . ,ms +m′
s)
)
,

And hence,

∇x,r(a1, . . . , as,m1+m
′
1, . . . ,ms+m

′
s) = ∇x,r(a1, . . . , as,m1, . . . ,ms)+∇x,r(a1 . . . , as,m

′
1, . . . ,m

′
s).

This implies that

∇x,r(a1, . . . , as,m1, . . . ,ms) =

s∑

i=0

∇x,r(a1, . . . , as, 0, . . . , 0,mi, 0, . . . , 0), (E1)
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and that

∇x,r(a1, . . . , as, 0, . . . , 0) = 0, (E2)

which is also a consequence of condition (1). From relation (β3), we also obtain:

βx,r((a1,m1), . . . , (ai−1,mi−1), 0, (ai+1,mi+1), . . . , (as,ms)) = 0,

for all i such that ri > 0, which also implies:

∇x,r(a1, . . . , ai−1, 0, ai+1, . . . , as,m1, . . . ,mi−1, 0,mi+1, . . . ,ms) = 0 (E3)

Using the decomposition (a,m) = (a, 0) + (0,m) and the relation (β5), one then gets:

βx,r ((a1,m1), . . . , (as,ms)) =
∑

(li+l′i=ri)i

βx,(l1,l′1,l2,...,ls,l′s) ((a1, 0), (0,m1), (a2, 0) . . . , (as, 0), (0,ms)) .

Using relations (β3) and (β2), we then get:

βx,r ((a1,m1), . . . , (as,ms)) = (βx,r(a1, . . . , as), 0)

+
∑

(li+l′i=ri,l′i>0)i

(

0,∇x,(l1,l′1,l2,...,ls,l
′
s)
(a1, 0, a2, 0, . . . , as, 0, 0,m1, 0,m2, . . . , 0,ms)

)

,

which, using (E1) is equal to:

(
βx,r(a1, . . . , as), 0

)

+
∑

(li+l′i=ri,l′i>0)i

s∑

j=1

(

0,∇x,(l1,l′1,l2,...,ls,l
′
s)
(a1, 0, a2, 0, . . . , as, 0, 0, 0, . . . , 0, mj

︸︷︷︸

(2s+2j)th

, 0, . . . , 0)

)

.

Using (E3), this is equal to:

(
βx,r(a1, . . . , as), 0

)

+
s∑

j=1

∑

l+l′=rj ,l′>0

(0,∇x,r◦j(l,l′)(a1, . . . , aj , 0, aj+1, . . . , as, 0, . . . , 0, mj
︸︷︷︸

(s+j+2)th

, 0, . . . , 0)).

For all j, denote by σj ∈ Ss the permutation that moves j to the last spot and keeps all the other
numbers in order, and denote by σ∗j ∈ Sn the block permutation of the blocks of size (ri)i associated

to σj. Using (β1), one can see that

∇x,r◦j(l,l′)(a1, . . . , aj , 0, aj+1, . . . , as, 0, . . . , 0, mj
︸︷︷︸

(s+j+2)th

, 0, . . . , 0) =

∇σ∗
j x,r

σj◦s(l,l′)(a1, . . . , aj−1, aj+1, . . . , as, aj , 0, . . . , 0, mj
︸︷︷︸

(2s+2)th

).

For all y ∈ P(k), b1, . . . , bs−1 ∈ A, m ∈M and q1 + · · ·+ qs = k such that qs > 0, we set:

βy,q(b1, . . . , bs−1,m) := ∇y,q(b1, . . . , bs−1, 0, . . . , 0, m
︸︷︷︸

(2q)th

). (∗)



14 IOANNIS DOKAS, MARTIN FRANKLAND, AND SACHA IKONICOFF

From what precedes, we finally get the explicit Γ(P)-algebra structure on A⊕M by:

βx,r ((a1,m1), . . . , (as,ms)) =

(βx,r(a1, . . . , as), 0) +

s∑

j=1

∑

l+l′=rj ,l′>0

(

0, βσ∗
j x,(r

σj )◦s(l,l′)(a1, . . . , aj−1, aj+1, . . . , as, aj ,mj)
)

. (∗∗)

We claim that M is an abelian Γ(P)-algebra as defined in 4.1 and that the assignment (∗) endows
M with an A-module structure as defined in 4.5.
M is an abelian algebra: Suppose r has at least two non-zero integers. For the sake of clarity we
will assume that s = 2. Then we want to prove that βx,(r1,r2)(m1,m2) = 0. In B = A⊕M , this can
be rewritten βx,(r1,r2) ((0,m1), (0,m2)), and we know that:

βx,(r1,r2) ((0,m1), (0,m2)) = (0,∇x,r(0, 0,m1,m2))

= (0,∇x,r(0, 0,m1, 0) +∇x,r(0, 0, 0,m2)) = 0,

using (E1) and (E3).
M is an A-module: Using the assignment (∗), note that

βy,q ((b1, 0), . . . , (bs−1, 0), (0,m)) =
(

0, βy,q(b1, . . . , bs−1,m)
)

.

Then, the relations we have to verify for this assignment to equip M with an A-module structure
all are implied by the relations (β1) to (β8) in B.

Only relations (βAM4) and (βAM9) are not completely straightforward. Suppose all other rela-
tions are proven.

Let us show that relation (βAM4) is satisfied. Using relation (β1), it suffices to show (βAM4)

for i = s′ Let s, s′ > 0, q ∈ Comps′(n), and r ∈ Comps(qs′). Let x ∈ P(n)Sq◦
s′

r . We want to show:

qs′∑

k=1

β∑
ρ∈S

×(n−q
s′

)

1
×Er,k

ρx,q◦s′ (qs′−k,k)(a1, . . . , as′ ,m) = 0.

On one hand, using the assignment (∗∗), we have:

βx,q◦s′r((a1, 0), . . . , (as′−1, 0), (as′ ,m), . . . , (as′ ,m)
︸ ︷︷ ︸

s

) =



βx,q◦s′r(a1, . . . , as′−1, as′ , . . . , as′
︸ ︷︷ ︸

s

), 0



+

s∑

j=1

∑

l+l′=rj ,l′>0



0, βτ∗j x,q◦s′(r
τj)◦s(l,l′)(a1, . . . , as′−1, as′ , . . . , as′

︸ ︷︷ ︸
s

,m)



 ,

where τ∗j ∈ S
×(n−qs′ )
1 ×Sqs′ denotes the block permutation for blocks of size (r1, . . . , rs) associated

with the transposition of j and s in Ss. Using relations (β4) on A, (βA4) on M , and re-indexing
k = l′, l = rj − k we then get:

βx,q◦s′r((a1, 0), . . . , (as′−1, 0), (as′ ,m), . . . , (as′ ,m)
︸ ︷︷ ︸

s

) =

(

β∑
ρ∈Sq/Sq◦

s′
r
σx,q◦s′r

(a1, . . . , as′−1, as′), 0

)

+
s∑

j=1

rj∑

k=1

(

0, β∑
S(q◦

s′
r)◦

s′+j−1
(rj−k,k))

ρτ∗j x,q◦s′ (qs′−k,k)(a1, . . . , as′ ,m)

)

. (5.eq.1)
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On the other hand, using relation (β4) in B, we get:

βx,q◦s′r((a1, 0), . . . , (as′−1, 0), (as′ ,m), . . . , (as′ ,m)
︸ ︷︷ ︸

s

) =

β∑
σ∈Sq/Sq◦

s′
r
σx,q ((a1, 0), . . . , (as′−1, 0), (as′ ,m)) .

Then, the assignment ∗∗ gives:

βx,q◦s′r((a1, 0), . . . , (as′−1, 0), (as′ ,m), . . . , (as′ ,m)
︸ ︷︷ ︸

s

) = (β∑
σ∈Sq/Sq◦

s′
r
σx,q(a1, . . . , as′), 0)+

qj∑

k=1

(0, β∑
σ∈Sq/Sq◦

s′
r
σx,q◦s′ (qs′−k,k)(a1, . . . , as′ ,m)). (5.eq.2)

Subtracting equation 5.eq.2 from equation 5.eq.1, and projecting onto M , we get:

( qj∑

k=1

β∑
σ∈Sq/Sq◦

s′
r
σx,q◦s′(qs′−k,k)(a1, . . . , as′ ,m)

)

−





s∑

j=1

rj∑

k=1

β∑
S(q◦

s′
r)◦

s′+j−1
(rj−k,k))

ρτ∗j x,q◦s′ (qs′−k,k)(a1, . . . , as′ ,m)



 = 0.

Observe that a set of representative for Sq/Sq◦s′r is given by S
×n−qs′
1 × Sh(r), and, if k ≤ rj a set

of representative for Sq◦s′ (qs′−k,k)/S(q◦s′r)◦s′+j−1(rj−k,k)) is given by:

S
×n−qs′
1 × Sh(r1, . . . , rj−1, rj+1, . . . , rs, rj − k)×S

×k
1 .

Then, observe that, for all j ∈ [s],

{ρτ∗j : ρ ∈ S
×n−qs′
1 × Sh(r1, . . . , rj−1, rj+1, . . . , rs, rj − k)×S

×k
1 } =

S
×n−qs′
1 × {ρ′ ∈ Sh(r) : ρ′(r1 + · · ·+ rj − k + 1) = qs′ − k + 1},

since both sets are the sets of permutations of Sn which shuffle the last blocks of size r1, . . . , rs and
send n− qs′ + r1 + · · ·+ rj − k + l on n− k + l for all l ∈ [k]. Using relation (βAM6), we then get:

qs′∑

k=1

β∑
ρ∈S

×n−q
s′

1
×Fr,k

ρx, q ◦s′ (qs′ − k, k)(a1, . . . , as′ ,m) = 0,

where F r,k = Sh(r) \
(
∐

j∈[s]{ρ
′ ∈ Sh(r) : ρ′(r1 + · · ·+ rj − k + 1) = qs′ − k + 1}

)

. Note that, if

k > rj, then {ρ′ ∈ Sh(r) : ρ′(r1 + · · ·+ rj − k + 1) = qs′ − k + 1} = ∅.
Remains to show that F r,k = Er,k. But, for ρ

′ ∈ Sh(r), ρ′ does not satisfy ρ′(r1+· · ·+rj−k+1) =

qs′ − k + 1 for any j ∈ [s] if and only if (ρ′)−1({qs′ − k + 1, . . . , qs′}) intersects at least two of the
blocks (r1, . . . , rs), and this happens if and only if it satisfies

∣
∣{ρ′(r1 + · · ·+ rj) : j ∈ [s]} ∩ {qi − k + 1, . . . , qi}

∣
∣ ≥ 2.

Thus, we have shown that relation (βAM4) is satisfied.
Let us now show that relation (βAM9) is satisfied. Let r1 + · · · + rs = n, x ∈ P(n)Sr , let

q1+· · ·+qu = k, y ∈ P(k)Sq . Let (ai)i∈[s+u] ∈ A×s+u andm ∈M . Denote by z = x
(
1×n−rs
P , y×rs

)
∈



16 IOANNIS DOKAS, MARTIN FRANKLAND, AND SACHA IKONICOFF

P(n+ rs(k − 1)). On the one hand, using (∗∗), observe that:

βx,r

(

(a1, 0), . . . , (as−1, 0), βy,q((as, 0), . . . , (as+u−1, 0), (as+u,m))
)

= βx,r



(a1, 0), . . . , (as−1, 0),
∑

l+l′=qs,l′>0

(βy,q(as, . . . , as+u−1), βy,q◦u(l,l′)(as, . . . , as+u,m))





=
(

βx,r(a1, . . . , as−1, βy,q(as, . . . , as+u)), 0
)

+

∑

λ,λ′



0, βx,r◦s(λ,λ′)



a1, . . . , as−1, βy,q(as, . . . , as+u),
∑

l+l′=qs,l′>0

βy,q◦u(l,l′)(as, . . . , as+u,m)







 ,

where (λ, λ′) runs over the pairs of non-negative integers satisfying λ + λ′ = rs, λ
′ > 0. Using

relation (β8) on A gives us:

(βx,r(a1, . . . , as−1, βy,q(as, . . . , as+u)), 0) =
(

β∑
τ τz,r⋄s(q)(a1, . . . , as+u), 0

)

.

Using relation (βM5) and (βAM8) on M , we get

∑

λ,λ′



0, βx,r◦s(λ,λ′)



a1, . . . , as−1, βy,q(as, . . . , as+u),
∑

l+l′=qs,l′>0

βy,q◦u(l,l′)(as, . . . , as+u,m)









=
∑

λ,λ′

∑

l+l′=qs,l′>0

(

0, β∑
σ σz,(r◦s(λ,λ′)⋄((1)×s−1 ,q,q◦u(l,l′)))(a1, . . . , as+u, as, . . . , as+u,m)

)

,

where σ ranges over S(r◦s(λ,λ′)⋄s(q◦u(l,l′)))/
(
∏s−1

i=1 Sri

)

×Sλ ≀Sq×Sλ′ ≀Sq◦u(l,l′) in the sum. Observe

the repetition of input. Using relation (βA4), and noting that:

∑

σ′′∈S
Rll′

λλ′
/S(r◦s(λ,λ′)⋄((1)×s−1,q,q◦u(l,l′)))

σ′′
∑

σ∈S(r◦s(λ,λ′)⋄s(q◦u(l,l′)))/(
∏s−1

i=1 Sri)×S(λ,λ′)≀Sq◦u(l,l′)

σz

=
∑

σ′∈S
Rll′

λλ′
/(

∏s−1
i=1 Sri)×Sλ≀Sq×Sλ′ ≀Sq◦u(l,l′)

σ′z,

we get

∑

λ,λ′



0, βx,r◦s(λ,λ′)



a1, . . . , as−1, βy,q(as, . . . , as+u),
∑

l+l′=qs,l′>0

βy,q◦u(l,l′)(as, . . . , as+u,m)









=
∑

λ+λ′=rs,λ′>0

∑

l+l′=qu,l′>0

β∑
σ′ σ′z,Rll′

λλ′
(a1, . . . , as+u,m).

Finally, we obtain the equality:

βx,r

(

(a1, 0), . . . , (as−1, 0), βy,q((as, 0), . . . , (as+u−1, 0), (as+u,m))
)

=
(

β∑
τ τz,r⋄s(q)(a1, . . . , as+u), 0

)

+
∑

λ+λ′=rs,λ′>0

∑

l+l′=qu,l′>0

β∑
σ′ σ′z,Rll′

λλ′
(a1, . . . , as+u,m). (5.eq.3)
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On the other hand, using relation (β8),

βx,r

(

(a1, 0), . . . , (as−1, 0), βy,q((as, 0), . . . , (as+u−1, 0), (as+u,m))
)

= β∑
τ τz,r⋄s(q)((a1, 0), . . . , (as+u−1, 0), (as+u,m)),

where τ ranges over Sr⋄sq/
(
∏s−1

i=1 Sri

)

×Srs ≀Sq in the sum. Using (∗∗), we then get:

βx,r

(

(a1, 0), . . . , (as−1, 0), βy,q((as, 0), . . . , (as+u−1, 0), (as+u,m))
)

=
(

β∑
τ τz,r⋄s(q)(a1, . . . , as+u), 0

)

+
∑

t+t′=rsqu,t′>0

(

0, β∑
τ τz,r⋄s(q)◦s+u(t,t′)(a1, . . . , as+u,m)

)

. (5.eq.4)

Comparing the equalities (5.eq.3) and (5.eq.4), and projecting in M , yields the relation (βAM9).

Assigning, to each Beck module B
p // A , the abelian Γ(P)-algebra ker(p) with the above A

module structure provides a functor:

ker : (Γ(P)-Alg/A)ab → A-Mod.

Let us now prove that the data of an A-module yields a Beck module over A. LetM be an A-module.
Consider the vector space B := A⊕M , equipped with:

(1) For all r ∈ Comps(n), x ∈ P(n)Sr , an operation βx,r defined as in (∗∗),
(2) A map pr : B → A given by the projection orthogonally to M ,
(3) A map z : A→ B given by the natural injection,
(4) A map µ : B ×A B → A given by µ(a,m,m′) = (a,m+m′).

We claim that:

(A) The assignment (1) endows B with a Γ(P)-algebra structure,
(B) pr is a Γ(P)-algebra map,
(C) z and µ are maps of Γ(P)-algebras over A, and finally,
(D) z and µ endow B with the structure of a Beck module in A.

Assuming (A), conditions (B), (C) and (D) are obvious. To prove (A) we have to check that
the operations defined in (1) satisfy the conditions (β1) to (β8). Using the notation 4.6, we can
rewrite (∗∗) as:

βx,r ((a1,m1), . . . , (as,ms))

=
(
βx,r(a1, . . . , as), 0

)
+

s∑

j=1

∑

l+l′=rj ,l′>0

(

0, βx,r◦j(l,l′)(a1, . . . , aj ,mj , aj+1, . . . , as)
)

.

Then, relation (β1) is directly deduced from (β1) on A and (βA1). Relation (β2) is deduced using
(β2) on A and using the fact that there is no positive l, l′ with l+ l′ = 0 such that l′ > 0. Relation
(β3) is a direct consequence of (β3) on A, (βA3) and (βM3) on M .

Let us prove relation (β4). For clarity we can assume s′ = 1. Then q1 = s, and we need to prove
that:

βx,r ((a,m), . . . , (a,m)) = β∑
σ∈Sn/Sr

σ·x,(n) ((a,m)) .

Using (∗∗), one has:

β∑
σ∈Sn/Sr

σ·x,(n) ((a,m)) =
(

β∑
σ∈Sn/Sr

σx,(n)(a), 0
)

+
∑

l+l′=n,l′>0

(

0, β∑
σ∈Sn/Sr

σx,(l,l′)(a,m)
)

,

which, re-indexing k = l′, yields

(

β∑
σ∈Sn/Sr

σx,(n)(a), 0
)

+
n∑

k=1

(

0, β∑
σ∈Sn/Sr

σx,(n−k,k)(a,m)
)
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Using relation (βAM4), this becomes:

(

β∑
σ∈Sn/Sr

σx,(n)(a), 0
)

+

n∑

k=1

(

0, β∑
ρ ρx,(n−k,k)(a,m)

)

,

where ρ runs over the set of shuffles Sh(r) satisfying:
∣
∣{ρ′(r1 + · · ·+ rj) : j ∈ [s]} ∩ {qi − k + 1, . . . , qi}

∣
∣ = 1.

From what precedes, this set is equal to
∐

j∈[s]{ρ
′ ∈ Sh(r) : ρ′(r1 + · · · + rj − k + 1) = n− k + 1},

which is equal to
∐

j∈[s]

{ρσ∗j : ρ ∈ Sh(r1, . . . , rj−1, rj+1, . . . , rs, rj − k)×S
×k
1 }.

The set Sh(r1, . . . , rj−1, rj+1, . . . , rs, rj − k) ×S
×k
1 is empty if k > rj , and otherwise, it is a set of

representative for Sn−k ×Sk/Srσj◦s(rj−k,k). So, we get:

βx,r ((a,m), . . . , (a,m)) =
(

β∑
σ∈Sn/Sr

σx,(n)(a), 0
)

+

s∑

j=1

n∑

k=1

(

0, β∑
ρ∈Sn−k×Sk/S

r
σj ◦s(rj−k,k)

ρσ∗
j x,(n−k,k)(a,m)

)

.

Using relation (β4) on A and relation (βA4) on M , we get:

βx,r ((a,m), . . . , (a,m)) =
(
βx,r(a, . . . , a), 0

)
+

s∑

j=1

n∑

k=1

(

0, βσ∗
j x,r

σ◦s(rj−k,s)(a, . . . , a,m)
)

,

and, using the assignment ∗, we finally obtain:

βx,r ((a,m), . . . , (a,m)) = β∑
σ∈Sn/Sr

σ·x,(n) ((a,m)) .

Let us prove relation (β5). For clarity, we will assume s = 2. On the one hand, we have:

βx,r
(
(a,m) + (b,m′), (a2,m2)

)
= βx,r

(
(a+ b,m+m′), (a2,m2)

)

=
(
βx,r(a+ b, a2), 0

)
+

∑

l+l′=r1,l′>0

(
0, βx,r◦1(l,l′)(a+ b,m+m′, a2)

)

+
∑

l+l′=r2,l′>0

(
0, βx,r◦2(l,l′)(a+ b, a2,m2)

)
,

which, using relations (β5) on A, (βM5) on M and (βA5) on M , is equal to:

∑

k1+k2=r1

(
βx,r◦1(k1,k2)(a, b, a2), 0

)

+
∑

l+l′=r1,l′>0

∑

k1+k2=l

(
0, βx,r◦1(k1,k2,l′)(a, b,m, a2) + βx,r◦1(k1,k2,l′)(a, b,m

′, a2)
)

+
∑

k1+k2=r1

∑

l+l′=r2,l′>0

(
0, βx,(r◦2(l,l′))◦1(k1,k2)(a, b, a2,m2)

)
.

Note that the middle summand can be rewritten, changing the indices:
∑

k1+k2+k3=r1,k3>0

(
0, βx,r◦1(k1,k2,k3)(a, b,m, a2) + βx,r◦1(k1,k2,k3)(a, b,m

′, a2)
)
.
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On the other hand, note that the assignment (∗∗) gives:
∑

k1+k2=r1

βx,r◦1(k1,k2)
(
(a,m), (b,m′), (a2,m2)

)
=

∑

k1+k2=r1

(βx,r◦1(k1,k2)(a, b, a2), 0)

+
∑

k1+k2=r1

∑

l+l′=k1,l′>0

βx,r◦1(l,l′,k2)(a,m, b, a2), 0)

+
∑

k1+k2=r1

∑

l+l′=k2,l′>0

βx,r◦1(k1,l,l′)(a, b,m
′, a2), 0)

+
∑

k1+k2=r1

∑

l+l′=r2,l′>0

(
0, βx,(r◦2(l,l′))◦1(k1,k2)(a, b, a2,m2)

)
.

The sum of the second and third summand can be rewritten:
∑

k1+k2+k3=r1,k3>0

(
0, βx,r◦1(k1,k2,k3)(a, b,m, a2) + βx,r◦1(k1,k2,k3)(a, b,m

′, a2)
)
.

This proves that relation (β5) holds.
Relation (β6) is a consequence of relation (β6) on A and (βAM6) on M . Relation (β7) is a

consequence of relation (β7) on A, (βAM7) and (Abβ7) on M .
Let us now prove relation (β8). For clarity, we can assume that s = 1. We want to prove that:

βx,(n)

(

βy,q((a1,m1), . . . , (au,mu))
)

= β∑
τ τ ·x(y×n),(n)⋄(q) ((a1,m1), . . . , (au,mu)) ,

where τ ranges overS(n)⋄(q)/S(n)≀Sq in the sum. Here, x ∈ P(n)Sn , q ∈ Compu(k), and y ∈ P(k)Sq .

On the one hand, using the assignment (∗∗),

βx,(n)

(

βy,q((a1,m1), . . . , (au,mu))
)

= βx,(n)





(

βy,q(a1, . . . , au), 0
)

+

n∑

j=1

∑

l+l′=qj ,l′>0

(

0, βy,q◦j(l,l′)(a1, . . . , aj ,mj, aj+1, . . . , au)
)





=
(

βx,(n)

(

βy,q(a1, . . . , au)
)

, 0
)

+

∑

λ+λ′=n,λ′>0



0, βx,(λ+λ′)



βy,q(a1, . . . , au),

u∑

j=1

∑

l+l′=qj ,l′>0

βy,q◦j(l,l′)(a1, . . . , aj ,mj , aj+1, . . . , au)







 .

Using relation (β8) on A and (βM5) on M , we then get,

βx,(n)

(

βy,q((a1,m1), . . . , (au,mu))
)

=
(

β∑
τ τ ·x(y×n),(n)⋄(q)(a1, . . . , au), 0

)

+

u∑

j=1

∑

λ+λ′=n,λ′>0

∑

l+l′=qj ,l′>0

(

0, βx,(λ+λ′)

(

βy,q(a1, . . . , au), βy,q◦j(l,l′)(a1, . . . , aj ,mj , aj+1, . . . , au)
))

(5.eq.5)

On the other hand, using the assignment (∗∗),

β∑
τ τ ·x(y×n),(n)⋄(q)((a1,m1), . . . , (au,mu)) =

(

β∑
τ τ ·x(y×n),(n)⋄(q)(a1, . . . , au), 0

)

+

u∑

j=1

∑

t+t′=nqj,t′>0

(

0, β∑
τ τ ·x(y×n),((n)⋄(q))◦j(t,t′)(a1, . . . , aj ,mj , aj+1, . . . , au)

)

. (5.eq.6)
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Comparing the expressions (5.eq.5) and (5.eq.6), we then have left to prove that inM , for all j ∈ [u],

∑

λ+λ′=n,λ′>0

∑

l+l′=qj ,l′>0

βx,(λ+λ′)

(

βy,q(a1, . . . , au), βy,q◦j(l,l′)(a1, . . . , aj ,mj , aj+1, . . . , au)
)

=

∑

t+t′=nqj,t′>0

β∑
τ τ ·x(y×n),((n)⋄(q))◦j(t,t′)(a1, . . . , aj ,mj , aj+1, . . . , au).

We can, without loss of generality, suppose that j = u. Then, we are left to prove that:

∑

λ+λ′=n,λ′>0

∑

l+l′=qu,l′>0

βx,(λ+λ′)

(

βy,q(a1, . . . , au), βy,q◦u(l,l′)(a1, . . . , au,mu)
)

=

∑

t+t′=nqu,t′>0

β∑
τ τ ·x(y×n),((n)⋄(q))◦j(t,t′)(a1, . . . , au,mu).

Using relation (βAM8) on the left hand side of the equality gives us:

∑

λ+λ′=n,λ′>0

∑

l+l′=qu,l′>0

βx,(λ+λ′)

(

βy,q(a1, . . . , au), βy,q◦u(l,l′)(a1, . . . , au,mu)
)

=

∑

λ+λ′=n,λ′>0

∑

l+l′=qu,l′>0

β∑
σ x(y×n),(λ,λ′)⋄(q,q◦u(l,l′))(a1, . . . , au, a1, . . . , au,mu),

where σ ranges over S(λ,λ′)⋄(q,q◦u(l,l′))/Sλ ≀Sq ×Sλ′ ≀Sq◦u(l,l′) in the sum.

Denote by Rl,l′

λ,λ′ the partition of kn into u + 1 parts such that, for all i ∈ [u − 1], (Rl,l′

λ,λ′)i =
(
(n) ⋄ (q)

)

i
, and such that:

(Rl,l′

λ,λ′)u = {k − qu + αk + γ, α ∈ [λ], γ ∈ [qu]} ∪ {λk + (k − qu) + αk + γ, α ∈ [λ′], γ ∈ [l]}.

(Rl,l′

λ,λ′)u+1 = {λk + (k − l′) + αk + γ, α ∈ [λ′], γ ∈ [l′]}.

Then, using relation (βA4), and noting that:

∑

σ′′∈S
Rll′

λλ′
/S(λ,λ′)⋄(q,q◦u(l,l′))

σ
∑

S(λ,λ′)⋄(q,q◦u(l,l′))/Sλ≀Sq×Sλ′ ≀Sq◦u(l,l′)

σx(y×n) =

∑

σ′∈S
Rll′

λλ′
/Sλ≀Sq×Sλ′ ≀Sq◦u(l,l′)

σ′x(y×n),

we then get:

∑

λ+λ′=n,λ′>0

∑

l+l′=qu,l′>0

βx,(λ+λ′)

(

βy,q(a1, . . . , au), βy,q◦u(l,l′)(a1, . . . , au,mu)
)

=

∑

λ+λ′=n,λ′>0

∑

l+l′=qu,l′>0

β∑
σ′ σ′x(y×n),Rll′

λλ′
(a1, . . . , au,mu).

We have left to prove the equality:
∑

λ+λ′=n,λ′>0

∑

l+l′=qu,l′>0

β∑
σ′ σ′x(y×n),Rll′

λλ′
(a1, . . . , au,mu)

=
∑

t+t′=nqu,t′>0

β∑
τ τ ·x(y×n),((n)⋄(q))◦j(t,t′)(a1, . . . , au,mu).

But this is a particular case of the relation (βAM9).
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Assigning to each A-module M the Beck module A⋉M obtained by equipping the vector space
A⊕M with the divided power P-algebra structure given by (∗∗) provides a functor:

A⋉− : A-Mod → (Γ(P)-Alg/A)ab ,

One can readily check that ker and A⋉− are inverse to each other. �

Definition 5.3. If M is an A-module, the Beck module A⋉M defined above is called the semidirect
product of A and M .

Let us now turn to the particular case of abelian Γ(P)-algebras. Abelian group objects in the
category of Γ(P)-algebras are Beck modules over the terminal object. Since P is reduced, this
terminal object is always the zero algebra 0. Then, we obtain the following:

Corollary 5.4. Abelian group objects in Γ(P)-algebras are equivalent to abelian Γ(P)-algebras from
Definition 4.1, that is:

(Γ(P)-Alg)ab ∼= (Γ(P)-Alg)Ab.

Proof. Applying Theorem 5.2 in the case A = 0, the data of an abelian group object in Γ(P)-algebras
is equivalent to the data of a module over the Γ(P)-algebra 0. Such a 0-module M is an abelian
Γ(P)-algebra equipped with operations βx,(r1,...,rs)(0, . . . , 0,−) : M →M . If s > 1 and if at least one
of the ri for i < s is non-zero, then relation (βA3) implies that βx,(r1,...,rs)(0, . . . , 0,m) = 0 for all
M . If s > 1 and ri = 0 for all i < s, relation (βA2) shows that βx,(r1,...,rs)(0, . . . , 0,m) = βx,(rs)(m).
Finally, when s = 1, relation (βAM7) shows that βx,(rs)(m) = βx(m) is provided by the structure of
abelian Γ(P)-algebra onM . Thus, a 0-module is an abelian Γ(P)-algebra equipped with additionnal
operations which are all trivial. �

6. Universal enveloping algebra

The objective of this section is to show that the category of modules over the Γ(P)-algebra A
is equivalent to the category of left modules over an associative algebra UΓ(P)(A). This result, is
contained in Proposition 6.9. In practice, it will be useful to see UΓ(P)(A) as the algebra containing
all the operations βx(−) in the definition of an abelian Γ(P)-algebra (see Definition 4.1), and all
the operations βx,r(a1, . . . , as−1,−) in the definition of an A-module (see Definition 4.5). Here, the
hyphen “−” is considered as a placeholder. It is then useful to consider the multiplication µ of
the algebra UΓ(P)(A) as the composition of operations: if O1(−), O2(−) are two operations with
one placeholder symbol, then µ(O1(−) ⊗ O2(−)) represents the operation O1(O2(−)) obtained by
replacing the placeholder in O1(−) by the operation O2(−).

For this section, we fix the base field F of characteristic p.

Definition 6.1. Let UΓ(P)(A) be the quotient of the F-vector space spanned by the set of sym-

bols βx,r(a1, . . . , as−1,−), for all r = (r1, . . . , rs), such that r1 + · · · + rs = n, x ∈ P(n)Sr , and
a1, . . . , as−1 ∈ A, by the vector subspace spanned by the elements:

(1) βλx+y,r(a1, . . . , as−1,−)−
(
λβx,r(a1, . . . , as−1,−) + βy,r(a1, . . . , as−1,−)

)
for all x, y ∈ P(n)r,

λ ∈ F,
(2) βx,r(a1, . . . , as−1,−) − βρ∗·x,rρ(aρ−1(1), . . . , aρ−1(s−1),−) for all ρ ∈ Ss−1, where ρ

∗ denotes
the block permutation with blocks of size (ri) associated to ρ.

(3) βx,(0,r1,r2,...,rs)(a0, a1, . . . , as−1,−)− βx,(r1,r2,...,rs)(a1, . . . , as−1,−).
(4) βx,r(λa1, a2, . . . , as−1,m)− λr1βx,r(a1, . . . , as−1,m) ∀λ ∈ F.
(5) For all r ∈ Comps(n) and q ∈ Comps′(s− 1), the element

βx,r(a1, . . . , a1
︸ ︷︷ ︸

q1

, a2, . . . , a2
︸ ︷︷ ︸

q2

, . . . , as−1, . . . , as−1
︸ ︷︷ ︸

qs′

,−)− β(∑
σ∈S

q′⊲r
/Sr

σ·x
)
, q′⊲r

(a1, a2, . . . , as−1,−),

where q′ = (q, 0),
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(6) βx,r(a0 + a1, . . . , as−1,−)−
(∑

l+l′=r1
βx,r◦1(l,l′)(a0, a1, . . . , as−1,−)

)
,

(7) βx,r(a1, . . . , as−1,−) for all x such that there exists q1 + · · · + qu = rs, y ∈ P(n)Sr◦sq , such
that x =

∑

σ∈Sn−rs×Srs/Sn−rs×Sq
σy, and at least two of the qjs are non-zero.

(8) For all r1 + · · ·+ rs = n, x ∈ P(n)Sr , let q1 + · · ·+ qu = k, y ∈ P(k)Sq , (ai)i∈[s+u] ∈ A×s+u,
the element:




∑

t+t′=rsqu,t′>0

β∑
τ τz,r⋄s(q)◦s+u(t,t′)(a1, . . . , as+u,−)



−




∑

λ+λ′=rs,λ′>0

∑

l+l′=qu,l′>0

β∑
σ′ σ′z,Rll′

λλ′
(a1, . . . , as+u,−)



 ,

where z = x
(
1×n−rs
P , y×rs

)
∈ P(n + rs(k − 1)), Rll′

λλ′ is defined in 4.5, where τ ranges over

Sr⋄sq/
(
∏s−1

i=1 Sri

)

×Srs ≀ Sq in the sum, and where σ′ ranges over S
Rll′

λλ′
/
(
∏s−1

i=1 Sri

)

×

Sλ ≀Sq ×Sλ′ ≀Sq◦u(l,l′) in the sum.

Notation 6.2. Following Notation 4.6, we will allow the notation:

βx,r(a1, . . . , ai−1,−, ai+1, . . . , as) := βσ∗
i ,r

σi (a1, . . . , ai−1, ai+1, . . . , as,−).

Proposition 6.3. The vector space UΓ(P)(A) is spanned by the symbols βx,r(a1, . . . , as−1,−) where
all the integers in r are powers of p, and βx,r(a1, . . . , as−1,−) = 0 in UΓ(P)(A) if rs is not a power
of p.

Proof. This is equivalent to Proposition 4.7. �

Viewing the F-vector space structure of UΓ(P)(A) as a left F-action, we endow UΓ(P)(A) with a
right F-action by setting, for all λ ∈ F,

βx,r(a1, . . . , as−1,−) · λ = λrsβx,r(a1, . . . , as−1,−).

Remark 6.4. It is important here to restrict ourselves to the case where rs is a power of p. Otherwise,
the preceding definition is not linear in λ ∈ F. This is made possible by Proposition 6.3.

We then equip UΓ(P)(A) with a multiplication:

µ : UΓ(P)(A)F⊗F UΓ(P)(A) → UΓ(P)(A)

by setting:

µ
(

βx,r(a1, . . . , as−1,−)⊗ βy,q(b1, . . . , bu−1,−)
)

=

β∑
τ τ ·x(1n−rs

P
,y×rs),r⋄sqs

(a1, . . . , as−1, b1, . . . , bu−1,−),

where τ ranges over Sr⋄sqs
/
(
∏s−1

i=1 Sri

)

×Srs ≀Sq in the sum, and extending µ as an F-bimodule

homomorphism, which is well-defined in light of the equations in Definition 6.1. Note that we used
both the right and left F-actions on UΓ(P)(A), that is: (x · λ)⊗ y = x⊗ (λy) in the tensor product.

Lemma 6.5. The multiplication µ endows UΓ(P)(A) with the structure of an associative unital ring.

Proof. Let V be the 1-dimensional F-vector space spanned by v. Consider the Γ(P)-algebra B
obtained as a quotient of the Γ(P)-algebra Γ(P, A ⊕ V ) by the Γ(P)-ideal generated by the two
following family of elements:

• βx,r(a1, . . . , as−1, v) for all x such that there exists q1+· · ·+qu = rs, y ∈ P(n)Sr1×···×Srs−1×Sq

such that x =
∑

σ∈Sn−rs×Srs/Sn−rs×Sq
σy,
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• For all r1 + · · ·+ rs = n, x ∈ P(n)Sr , let q1 + · · ·+ qu = k, y ∈ P(k)Sq , (ai)i∈[s+u] ∈ A×s+u,
the element:




∑

t+t′=rsqu,t′>0

β∑
τ τz,r⋄s(q)◦s+u(t,t′)(a1, . . . , as+u, v)



−




∑

λ+λ′=rs,λ′>0

∑

l+l′=qu,l′>0

β∑
σ′ σ′z,Rll′

λλ′
(a1, . . . , as+u, v)



 ,

where z = x
(
1×n−rs
P , y×rs

)
∈ P(n + rs(k − 1)), Rll′

λλ′ is defined in 4.5, where τ ranges over

Sr⋄sq/
(
∏s−1

i=1 Sri

)

×Srs ≀ Sq in the sum, and where σ′ ranges over S
Rll′

λλ′
/
(
∏s−1

i=1 Sri

)

×

Sλ ≀Sq ×Sλ′ ≀Sq◦u(l,l′) in the sum.

There is a linear map f : UΓ(P)(A) → B such that:

f(βx,r(a1, . . . , as−1,−)) = βx,r(a1, . . . , as−1, v).

Indeed, the relations (β1) to (β8) on B, and quotienting by the above family of elements ensure
that f is well defined. The map f is clearly injective. Note that, for all pair of elements in UΓ(P)(A)
of the type:

t = λβx,r(a1, . . . , as−1,−), s = λ′βy,q(b1, . . . , bu−1,−),

One has:
f(µ(t⊗ s)) = λβx,r(a1, . . . , as−1, λ

′βy,q(b1, . . . , bu−1, v)).

So, the associativity of µ is a consequence of the associativity of the composition of operations β in
B, which is guaranteed by the associativity of the monad Γ(P).

The element β1P ,(1)(−) is clearly a unit for µ. �

Warning 6.6. The ring UΓ(P)(A) is an F-vector space but need not be an F-algebra. The multipli-
cation µ satisfies:

µ
(

βx,r(a1, . . . , as−1,−)⊗
(

λβy,q(b1, . . . , bu−1,−)
))

= µ
((
βx,r(a1, . . . , as−1,−) · λ

)
⊗ βy,q(b1, . . . , bu−1,−)

)

= µ
((
λrsβx,r(a1, . . . , as−1,−)

)
⊗ βy,q(b1, . . . , bu−1,−)

)

= λrsµ
((
βx,r(a1, . . . , as−1,−)

)
⊗ βy,q(b1, . . . , bu−1,−)

)

.

We will see a concrete example with the enveloping algebra V (A) = UΓ(Com)(A) in Section 9. In
the special case F = Fp, the equality λrs = λ holds (since rs is a power of p), and thus UΓ(P)(A) is
an F-algebra.

Notation 6.7. We will allow the notation:

βx,r(a1, . . . , aj−1,−, aj+1, . . . , as) := β
σjx,r

σ∗
j
(a1, . . . , aj−1, aj+1, . . . , as,−) ∈ UΓ(P)(A).

Definition 6.8. Denote by UAb(Γ(P)) ⊂ UΓ(P)(A) the vector subspace spanned by the elements
βx,(n)(−). Note that UAb(Γ(P)) is a unital associative subring and does not depend on A.

Note that any abelian Γ(P)-algebra M can be equipped with a left UAb(Γ(P)) action by:

βx,(n) ⊗m 7→ βx(m),

and conversely, any left UAb(Γ(P))-module M has a structure of abelian Γ(P)-algebra given by:

βx(m) := βx,(n)(−) ·m.
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Since those assignments are inverse to one another, we obtain:

Proposition 6.9. The category of abelian Γ(P)-algebra is equivalent to the category of left modules
over UAb(Γ(P)).

We also obtain the straightforward corollary:

Corollary 6.10. Let V be an F-vector space. Then, UAb(Γ(P)) ⊗ V is the free abelian Γ(P)-algebra
generated by V .

Similarly, any A-module M can be equipped with a left UΓ(P)(A) action by:

βx,r(a1, . . . , as−1,−)⊗m 7→ βx,r(a1, . . . , as−1,m),

and conversely, any left UΓ(P)(A)-module M has an A-module structure given by:

βx,r(a1, . . . , as−1,m) := βx,r(a1, . . . , as−1,−) ·m.

Once again, those assignments are inverse to one another, and we obtain:

Theorem 6.11. The category of A-modules is equivalent to the category of left modules over UΓ(P)(A).

As a straightforward corollary, we also obtain:

Corollary 6.12. Let V be an F-vector space. Then, UΓ(P)(A)⊗ V is the free A-module generated by
V .

From what precedes, we also obtain:

Corollary 6.13. LetM be an abelian Γ(P)-algebra. Then, UΓ(P)(A)⊗UAb(Γ(P))
M is the free A-module

generated by M .

The sequence of morphisms F → UAb(Γ(P)) → UΓ(P)(A) then yields a commutative diagram of
free/forgetful adjunctions:

VectF

UAb(Γ(P))⊗−
//

UΓ(P)(A)⊗−

$$❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍

(Γ(P)-Alg)Ab

UΓ(P)(A)⊗UAb(Γ(P))
−

��

oo

A-Mod

OOdd❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍

where the right adjoints are usual restriction of scalars.
Recall from [LV12, §12.3.4] the description for the enveloping algebra UP(A) associated to a

P-algebra (without divided powers) A. It has a set of generators denoted by ν(a1, . . . , ak; 1) in
[LV12], for all ν ∈ P(k + 1), a1, . . . , ak ∈ A. Note that the norm map induces a monad morphism
Tr: S(P) → Γ(P) (see [Fre00, §1.1.14]). This map has been translated in terms of divided power
operations by the third author in [Iko23, Remark 6.3]. In consequence, we get the following:

Proposition 6.14. For all Γ(P)-algebra A, the norm map induces a natural F-linear ring homo-
morphism θ : UP(A) → UΓ(P)(A), sending ν(a1, . . . , ak; 1) ∈ UP(A) to βν,(1,...,1)(a1, . . . , ak,−) ∈
UΓ(P)(A).

Note that here, in the expressionUP(A), we have dropped the forgetful functor Γ(P)-Alg → P-Alg
which is induced by the norm map as well.
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7. Derivations, Module of Kähler differentials

One of the key notions in the construction of André–Quillen cohomology is the abelianization
functor, which is obtained as a left adjoint of the forgetful functor from the category of Beck A-
modules to the slice category over A which “forgets” the abelian group structure (see [Qui67, §2.5],
[Fra10]). In order to build and study such an abelianization functor, one needs to study morphisms
of Beck modules. In the usual algebraic case, these morphisms are naturally identified with a certain
set of algebraic derivations (see [Fra10,Bec67]). This justifies the terminology of Beck derivations for
the maps B →M which are obtained by composing a morphism B → A⋉M of Beck modules with
the projection ontoM . In the case of algebras over an operad, Beck derivations correspond again to
a natural notion of algebraic derivations (see [GH00, Proposition 2.2]). In these examples, the set
of derivations is then represented by a module ΩP(A) called the module of Kähler differentials of
A (see [LV12, §12.3.8]). In this section, we identify the set of Beck derivations over a Γ(P)-algebra,
as well as an analogue of the A-module of Kähler differentials in the divided power setting.

Definition 7.1. LetM be an A-module, and B
pr // A be a Γ(P)-algebra overA. A Beck derivation,

or simply derivation from B to M is a linear map d : B → M such that pr + d : B → A ⋉M is a
morphism of Γ(P)-algebra. We denote by DerA(B,M) the vector space of derivations from B to
M . We obtain a bifunctor

DerA : (Γ(P)-Alg/A)op ×A-Mod → VectF.

Proposition 7.2. A Beck derivation d : B →M is a linear map such that:

d(βx,r (b1, . . . , bs)) =

s∑

j=1

∑

l+l′=rj ,l′>0

βx,r◦j(l,l′)(pr(b1), . . . , pr(bj), d(bj), pr(bj+1), . . . , pr(bs)).

Proof. The map pr + d is a Γ(P)-algebra if and only if:

(pr + d)(βx,r (b1, . . . , bs)) = βx,r ((pr(b1), d(b1)), . . . , (pr(bs), d(bs)))

=



βx,r (pr(b1), . . . , pr(bs)) ,

s∑

j=1

∑

l,l′

βx,r◦j(l,l′)(pr(b1), . . . , pr(bj), d(bj), pr(bj+1), . . . , pr(bs)).



 ,

where l, l′ runs over the pairs of non-negative integers such that l + l′ = rj and l′ > 0, hence the
result. �

Definition 7.3. For any Γ(P)-algebra A, denote by dA the underlying vector space of A. Elements
of dA are denoted by da for a ∈ A.

The module of Kähler differentials of A is the following coequalizer in the category of A-modules:

UΓ(P)(A)⊗ Γ(P, A)
γ //

UΓ(P)(A)⊗evA

// UΓ(P)(A) ⊗ dA // // ΩΓ(P)(A) ,

where γ : UΓ(P)(A)⊗ Γ(P, A) → UΓ(P)(A) ⊗ dA is given by:

βx,r(a1, . . . , as−1,−)⊗ λβy,q(b1, . . . , bu) 7→

λrs
u∑

j=1

∑

l+l′=qj ,l′>0

µ
(

βx,r(a1, . . . , as−1,−)⊗ βy,q◦j(l,l′)(b1, . . . , bj ,−, bj+1, . . . , bu)
)

⊗ dbj ,

and where evA : Γ(P, A) → A is the structural Γ(P)-algebra evaluation map of A.



26 IOANNIS DOKAS, MARTIN FRANKLAND, AND SACHA IKONICOFF

Let us describe ΩΓ(P)(A) in more detail. For an element of the type βx,r(a1, . . . , aa−1,−) ⊗
da ∈ UΓ(P)(A) ⊗ dA, we will denote by βx,r(a1, . . . , aa−1, da) its image in ΩΓ(P)(A). Following
Notation 4.6, we will allow the notation:

βx,r(a1, . . . , ai−1, da, ai+1, . . . , as) := βσ∗
i ,r

σi (a1, . . . , ai−1, ai+1, . . . , as, da).

Then, by definition, ΩΓ(P)(A) is an A-module generated by the elements βx,r(a1, . . . , aa−1, da) under
certain relations, including the following:

d
(
βx,r(a1, . . . , as)

)
=

s∑

i=1

∑

l+l′=ri,l′>0

βx,r◦i(l,l′)(a1, . . . , aj−1, aj , daj , aj+1, . . . , as). (7.eq.1)

Definition 7.4. The universal derivation of A is the linear map d : A → ΩΓ(P)(A) induced by the
identity map A→ dA.

As a consequence of the relation (7.eq.1), we deduce:

Proposition 7.5. The universal derivation d : A→ ΩΓ(P)(A) is a Beck derivation.

The following result justifies the term “universal” derivation, and completes the analogy with the
classical module of Kähler differentials [LV12, 12.3.19]:

Proposition 7.6. ΩΓ(P)(A) represents the functor Der(A,−) : A-Mod → Ab sending M to the abelian
group of derivations from A to M .

Proof. We have to show that for all A-module M , there is a linear bijection, natural in M :

HomA-Mod(ΩΓ(P)(A),M) ∼= DerA(A,M).

Let f : ΩΓ(P)(A) → M be an A-module morphism. Consider the linear map D : A → M given by
D = f ◦ d, where d : A → ΩΓ(P)(A) is the universal derivation. Since the universal derivation is a
derivation, and since f is an A-module morphism, D is a derivation. The assignment f 7→ D yields
a linear map φ : HomA-Mod(ΩΓ(P)(A),M) → DerA(A,M), natural in M .

Reciprocally, let D : A→M be a derivation. We can consider D as a linear map dA→M . This
extends uniquely into an A-module morphism UΓ(P)(A)⊗dA→M . The fact that D is a derivation
ensures that this passes to the coequalizer into an A-module morphism f : ΩΓ(P)(A) → M . This
assignment D 7→ f yields a linear map ψ : DerA(A,M) → HomA-Mod(ΩΓ(P)(A),M). It is easy to
check that φ and ψ are mutually inverse and natural in M . �

To conclude this section, let us link this new notion of Kähler differentials for a Γ(P)-algebra

to the usual notion of Kähler differentials for a P-algebra. Recall that U
Γ(P)
P : Γ(P)-Alg → P-Alg

denotes the forgetful functor from Γ(P)-algebras to P-algebras. Then, if A is a Γ(P)-algebra,

ΩP(A) := ΩP(U
Γ(P)
P (A)) is the usual U

Γ(P)
P (A)-module of Kähler differentials of the P-algebra

U
Γ(P)
P (A), as in [LV12, 12.3.8].

Proposition 7.7. The map θ ⊗ dA : UP(A) ⊗ dA → UΓ(P)(A) ⊗ dA, where θ is defined in Proposi-
tion 6.14, induces a map θ : ΩP(A) → ΩΓ(P)(A) given by

ν(a1, . . . , dai, . . . , as) 7→ βν,(1,...,1)(a1, . . . , dai, . . . , as).

We leave to the reader to check that the given map passes to the coequalizers.

8. Quillen cohomology

We now have all the ingredients to describe Quillen (co)homology of Γ(P)-algebras, as listed in
Section 2.
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Lemma 8.1. Let f : B → A be a morphism of Γ(P)-algebras. Via the equivalence from Theorem 5.2,
the pushforward along f is given by f!(M) = UΓ(P)(A)⊗UΓ(P)(B) M .

Proof. The universal enveloping algebra UΓ(P) provides a functor Γ(P)-Alg → As+ -Alg to unital
rings. The ring homomorphism UΓ(P)(f) : UΓ(P)(B) → UΓ(P)(A) makes UΓ(P)(A) into a right
UΓ(P)(B)-module. Via the equivalence from Theorem 6.11, the pushforward adjunction

B-Mod
f! //

A-Mod
f∗

oo

corresponds to the classical restriction/extension of scalars along UΓ(P)(f). �

Theorem 8.2. Let A be a Γ(P)-algebra.

(1) The following two functors form an adjoint pair:

Γ(P)-Alg/A

UΓ(P)(A)⊗UΓ(P)(−)ΩΓ(P)(−)
//
A-Mod.

A⋉−
oo

(2) The adjunction simplicially prolongs to a Quillen pair.

Proof. (1) Via the equivalences from Theorem 5.2 and Theorem 6.11, the statement follows from
combining Proposition 7.6, Lemma 8.1, and Lemma 2.4.

(2) Via the equivalence from Theorem 6.11, the right adjoint A⋉− is the forgetful functor

(Γ(P)-Alg/A)ab → Γ(P)-Alg/A.

The claim then follows from [Fra15, Proposition 3.40]. �

9. Example: The operad Com

In this section, we apply our general construction for Beck modules, universal enveloping alge-
bra, Beck derivations and Kähler differentials for divided power algebras over the operad Com of
associative, commutative (non-unital) algebra. We check that these correspond to the construction
obtained by the first author in [Dok09,Dok23].

For readability, we will divide this section into two subsections. In the first one, we recall the
definition for classical divided power algebras. We refer the reader to [Car56,Rob65] and [Ber74,
§I] for more details. We then review the characterisation of Beck modules, universal enveloping
algebra, Beck derivations and Kähler differentials for these objects obtained by the first author
[Dok09,Dok23].

In the second subsection, we show how these characterisations correspond to those given in this
article for a general operad P, once we set P = Com.
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9.1. Classical definition and state of the art

Definition 9.1. Let (A, I) be a commutative ring together with an ideal I ⊂ A. A system of divided
powers on I is a collection of maps γi : I → A, where i ≥ 0, such that the following identities hold:

γ0(a) = 1, (9.eq.1)

γ1(a) = a, γi(a) ∈ I, i ≥ 1, (9.eq.2)

γi(a+ b) =

k=i∑

k=0

γk(a)γi−k(b), a, b ∈ I, i ≥ 0, (9.eq.3)

γi(ab) = aiγi(b), a ∈ A, i ≥ 0, (9.eq.4)

γi(a)γj(a) =
(i+ j)!

i!j!
γi+j(a), a ∈ I, i, j ≥ 0, (9.eq.5)

γi(γj(a)) =
(ij)!

i!(j!)i
γij(a), a ∈ I, i ≥ 0, j ≥ 1. (9.eq.6)

We say that (I, γ) is a PD ideal of A. We call divided power ring the data of a triple (A, I, γ) where
A is a ring, and (I, γ) is a PD ideal. A morphism of divided power rings

f : (A, I, γ) → (B, J, δ)

is a ring homomorphism f : A → A′ such that f(I) ⊂ J and such that f(γi(a)) = δi(f(a)) for all
i ≥ 0 and a ∈ I.

Note that the identities (9.eq.2) and (9.eq.5) imply that an = n!γn(a), where n ∈ N and a ∈ I.
In particular, in a divided power ring of characteristic 0, γn(a) =

an

n! for all a ∈ I. This justifies the
name “divided powers”. In prime characteristic p, one has ap = 0, for all a ∈ I.

Notation 9.2. Given an augmented F-algebra A with augmentation ǫ : A→ F, denote the augmen-
tation kernel by A+ = ker(A→ F).

Given a non-unital F-algebra B, denote by B+ = F ⊕ B the augmented algebra obtained by
formally adjoining a unit.

We follow the notation A+ = ker(A→ F) used in [Sou87] and [Dok09], though some authors use
a different notation, notably A in [LV12, §1.1].

We now fix a field F of prime characteristic p 6= 0. We restrict to the case of divided power rings
(A, I, γ) such that A is an augmented F-algebra A = F⊕A+, and I = A+. In this setting, Soublin
showed that the divided power structure is entirely determined by a map π playing the role of γp:

Proposition 9.3 ([Sou87]). The category of divided power augmented F-algebras (A,A+, γ) is equiv-
alent to the category p-Com with objects the pairs (A, π), where A is an augmented algebra with
augmentation ideal A+, and where π : A+ → A+ is a set map satisfying:

ap = 0, a ∈ A+, (9.eq.7)

π(a+ b) = π(a) + π(b) +

k=p−1
∑

k=1

(−1)k

k
akbp−k, a, b ∈ A+, (9.eq.8)

π(ab) = 0, a, b ∈ A+, (9.eq.9)

π(λa) = λpπ(a), a ∈ A+, λ ∈ F, (9.eq.10)

and where morphisms α : (A, π) → (A′, π′) are homomorphism of augmented algebras α : A → A′

such that α ◦ π = π′ ◦ α.
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Beck modules

Fix a divided power augmented F-algebra A, or equivalently, an object (A, π) of the category
p-Com defined above. Then, the first author obtained the following characterisation for Beck A-
modules:

Theorem 9.4 ([Dok09]). The category of Beck A-modules is equivalent to the category M whose
objects are pairs (M,π) where M is a A-module and π : M → M is a p-semilinear map such that
π(am) = 0 for all a ∈ A+ and m ∈ M and whose morphisms (M,π) → (M ′, π′) are A-module
homomorphisms α : M →M ′ such that π′ ◦ α = α ◦ π.

Enveloping algebra

Let us now build the universal enveloping algebra of A, which is the representing object for the
category of Beck A-modules. Let Rf be the polynomial ring consisting of the set of polynomials
∑i=m

i=0 λif
i where λi ∈ F, f is an indeterminate and fλ = λpf .

We define the ring V (A) as the ring whose underlying F-vector space is the tensor product
V (A) := A⊗F Rf and the multiplication is given by:

(a⊗ 1)(a′ ⊗ 1) = (aa′ ⊗ 1), a, a′ ∈ A,

(1⊗ q)(1⊗ q′) = (1⊗ qq′), q, q′ ∈ Rf ,

(a⊗ 1)(1 ⊗ f) = (a⊗ f), a ∈ A,

(1⊗ f)(a⊗ 1) = 0, a ∈ A+,

(1⊗ f)(λ⊗ 1) = (λp ⊗ f), λ ∈ F.

Then, the first author obtained the following:

Theorem 9.5 ([Dok09]). The category of Beck A-modules is equivalent to the category of left V (A)-
modules.

Beck derivations

Let A′ ∈ p-Com/A be a divided powers algebra over A and (M,π) a Beck A-module. The first
author obtained the following:

Proposition 9.6 ([Dok09]). The abelian group of Beck derivations of A′ into M is given by

Derp(A
′, (M,π)) = {d ∈ Der(A′,M)| d(π(a)) = π(d(a)) − ap−1d(a), a ∈ A′

+}.

Kähler differentials

We then get the following characterisation for the module of Kähler differentials:

Theorem 9.7 ([Dok09]). The module of Kähler differentials for the augmented divided power F-
algebra A is the V (A)-module Ωp-Com(B) with the following presentation: the generators are the
symbols da for a ∈ A, and the relations are

d(λa+ µb) = λda+ µdb, (9.eq.11)

d(ab) = adb+ bda, (9.eq.12)

d(π(c)) = fdc− cp−1dc, (9.eq.13)

where a, b ∈ A, λ, µ ∈ F, and c ∈ A+.

9.2. Operadic point of view

Let us now show how we recover these notions from Sections5, 6 and 7. Recall that the operad
Com of non-unital commutative algebras is defined as a symmetric sequence by

Com(n) =

{

Tn, if n > 0,

0, if n = 0,
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where Tn denotes the trivial representation of dimension 1 generated by an element we denote by
Xn, and with partial compositions given by Xn ◦i Xk = Xn+k−1. We get the following:

Theorem 9.8 ([Fre00]). A Γ(Com)-algebra is a (non-unital) associative, commutative algebra B
equipped, for all i > 0, with a set map γi : B → B satisfying the relations (9.eq.2) to (9.eq.6) from
Definition 9.1.

Note that there is a slight abuse of notation here: relation (9.eq.3) should be replaced by:

γi(a+ b) = γi(a) + γi(b) +

k=i−1∑

k=1

γk(a)γi−k(b).

The category of Γ(Com)-algebras is then equivalent to the category of divided power augmented
F-algebras. Indeed, if B is a Γ(Com)-algebra, then B+ = F⊕B is equipped with a unique structure
of divided power augmented F-algebra (B+, B, δ) such that δi(b) = γi(b) for all i > 0 and b ∈ B.
Conversely, if (A,A+, γ) is an augmented divided power F-algebra, then, the collection of maps γi
for i > 0 equips A+ with a structure of Γ(Com)-algebra as above. Following Soublin’s theorem, a
Γ(Com)-algebra is equivalently characterised as a (non-unital) associative, commutative algebra B
equipped with a map π : B → B satisfying relations (9.eq.7) to (9.eq.10) of Proposition 9.3.

Let us now use the characterisation of Γ(Com)-algebra from Theorem 3.3. Following [Iko20], if
B is a Γ(Com)-algebra, its multiplication is given by βX2,(1,1), and π, which represents the divided
power operation γp, is given by βXp,(p).

Abelian algebras, Beck modules

Following Definition 4.1, an abelian Γ(Com)-algebra M is a vector space M endowed with a
trivial multiplication mm′ = 0 and a semilinear map π : M →M satisfying π(λm) = λpπ(m).

Following Definition 4.5, a B-module M becomes a module M over the commutative algebra
B, endowed with a trivial multiplication, and a semilinear map π : M → M satisfying π(λm) =
λpπ(m) and such that π(bm) = 0. This last property comes from relation (βAM8), noticing that
|S(p)⋄(1,1)/Sp ≀ (S(1,1))| = p!, and using (βAM6):

π(bm) = βXp,(p)(βX2,(1,1)(b,m)),

= βp!X2p,(p,p)(b,m),

= p!βX2p,(p,p)(b,m) = 0.

Enveloping algebra

From Definition 6.1 the universal enveloping algebra UΓ(Com)(B) is spanned by symbols

βXn,r(b1, . . . , bs−1,−) with r1 + · · ·+ rs = n.

We can reduce this generating family: using the relations of Definition 6.1, and the same reasoning
as in [Iko20, §3.3] and [Sou87], UΓ(Com)(B) is spanned by symbols βX1,(1)(−) (the unit), βX2,(2)(b,−)
for b ∈ B, and βXp,(p)(−).

We can then show that there is an isomorphism between UΓ(Com)(B) and V (B+), where V (B)
was defined in Section 9.1. This isomorphism sends βX1,(1)(−) to 1⊗1, βX2,(1,1)(b,−) ∈ UΓ(Com)(B)
to b⊗ 1, and βXp,(p)(−) ∈ UΓ(Com)(B) to 1⊗ f .

Note that B injects into UΓ(Com)(B), by identifying b ∈ B to βX2,(1,1)(b,−). For a B-module
(i.e., a UΓ(Com)(B)-module) M , we will denote by bm := βX2,(1,1)(b,m) = βX2,(1,1)(b,−) ·m, and
π(m) := βXp,(p)(m), for b ∈ B, m ∈M .
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Beck derivations

Following Proposition 7.2, a Beck derivation d : B → M is a linear map d : B → M satisfying
d(ab) = adb+ bda and

d(π(b)) =

p
∑

i=1

βXp,(p−i,i)(b, d(b)).

Note that, for all i such that 2 ≤ i ≤ p− 1,

Xp =
1

i!
i!Xp =

1

i!

∑

τ∈Sp−i×Si/Sp−i×S
×i
1

τXp,

and so,

βXp,(p−i,i)(b, db) = β 1
i!

∑

τ∈Sp−i×Si/Sp−i×S
×i
1

τXp,(p−i,i)(b, db)

=
1

i!
β∑

τ∈Sp−i×Si/Sp−i×S
×i
1

τXp,(p−i,i)(b, db),

and according to relation (βM4), β∑
τ∈Sp−i×Si/Sp−i×S

×i
1

τXp,(p−i,i)(b, db) = 0. So,

d(π(b)) = βXp,(p−1,1)(b, db) + βXp,(0,p)(b, db),

= βX2,(1,1)(βXp−1,(p−1)(b), db) + βXp,(p)(db),

=
bp−1

(p− 1)!
db+ π(db).

Finally, since in characteristic p, (p − 1)! = −1 (see Wilson’s Theorem [DF04, §13.5 Exercise 6]),
one has:

d(π(b)) = π(d(b)) − bp−1d(b).

We recover the characterisation of Beck derivations given in [Dok09].

Kähler Differentials

Following Definition 7.3, the module of Kähler differentials ΩΓ(Com)(B) of B is the UΓ(Com)(B)-
module generated by elements db for b ∈ B, linear in b, under the relations:

d(ab) = d(βX2,(1,1)(a, b)) = βX2,(1,1)(−, b)⊗ da+ βX2,(1,1)(a,−)⊗ db = bda+ adb,

d(π(b)) = d(βXp,(p)(b)) =

p
∑

i=1

βXp,(p−i,i)(b,−) ⊗ db.

For this last relation, note that the term corresponding to i = 1 is:

βXp,(p−1,1)(b,−)⊗ b = βX2,(1,1)(βXp−1,(p−1)(b),−)⊗ db =
1

(p − 1)!
bp−1db = −bp−1db.

the term corresponding to i = p is

βXp,(0,p)(b,−)⊗ b = βXp,(p)(−)⊗ db = π(db).

For all i ∈ {2, . . . , p − 1}, we have again Xp = i1iXp =
∑

σ∈Sp−i×Si/Sp−i×S1×Si−1

1
iXp. So,

βXp,(p−i,i)(b,−) =
∑

σ∈Sp−i×Si/Sp−i×S1×Si−1

1
iXp is one of the elements described in Definition 6.1

in point (7), and so, is equal to 0 in UΓ(Com)(B). Finally, this last relation reads:

d(π(b)) = π(db) − bp−1db.

We can show that this module of Kähler differentials ΩΓ(Com)(B) is isomorphic to the module of

Kähler differentials Ωp-Com(B
+) of the augmented divided power F-algebra B+. This isomorphism

is transparent on elements db, adb, and sends π(db) to f · db.
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10. Example: The operad Lie

In this section, we apply our general construction for Beck modules, universal enveloping algebra,
Beck derivations and Kähler differentials for divided power algebras over the operad Lie of Lie
algebra. We check that these correspond to the construction obtained by the first author in [Dok04].
For readability, we will divide this section into two subsections: in the first one, we recall the
definition for restricted Lie algebras. We refer the reader to [Jac62] for more details. We then
review the characterisation of Beck modules, Beck derivations for these objects obtained by the first
author [Dok04].

In the second subsection, we show how these characterisations correspond to those given in this
article for a general operad P, once we set P = Lie.

10.1. Classical definition and state of the art

We suppose that F is a field of prime characteristic p 6= 0.

Definition 10.1 ([Jac62, §V.7]). A restricted Lie algebra L = (L, (−)[p]) over F is a Lie algebra over

F together with a map (−)[p] : L→ L called the p-map such that the following relations hold

(αl)[p] = αp l[p] (10.eq.1)

[l, l′
[p]
] = [· · · [l, l′], l′], · · · , l′

︸ ︷︷ ︸
p

] (10.eq.2)

(l + l′)[p] = l[p] + l′
[p]

+

p−1
∑

i=1

si(l, l
′) (10.eq.3)

where isi(l, l
′) is the coefficient of λi−1 in adp−1

λl+l′(l). Here, adl : L→ L denotes the adjoint represen-

tation given by adl(l
′) := [l′, l], l, l′ ∈ L, α ∈ F. A Lie algebra homomorphism f : L → L′ is called

restricted if f(l[p]) = f(l)[p]. We denote by RLie the category of restricted Lie algebras over F.

Example 10.2. Let A be any associative algebra over a field F. We denote by ALie the induced Lie
algebra with the bracket given by [l, l′] := ll′ − l′l, for all l, l′ ∈ A. Then (ALie, (−)[p]) is a restricted

Lie algebra where (−)[p] is the p-th power l 7→ lp. Thus, there is a functor

(−)RLie : As → RLie

from the category of associative algebras to the category of restricted Lie algebras.

Example 10.3. Let G be an algebraic group over F. The associated Lie algebra Lie(G) of G is
endowed with the structure of restricted Lie algebra [Bor91, §I.3] [Wat79, §12.1].

Beck modules

Let L be a Lie algebra over F. A Lie module over L is a F-vector space M equipped with a
F-bilinear map L⊗F M →M : l ⊗m 7→ lm such that

[l, l′]m = l(l′m)− l′(lm), for all l, l′ ∈ L and m ∈M.

Definition 10.4. Let L be a restricted Lie algebra over F. A Lie L-module M is called restricted if
l[p]m = (l(· · · (l(l

︸ ︷︷ ︸
p

m) · · · ).

Let M be a restricted L-module. We denote by ML, the following L-submodule of M :

ML = {m ∈M : lm = 0 for all l ∈ L}.

The first author obtained the following characterisation for Beck L-modules.
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Theorem 10.5 ([Dok04]). The category of Beck L-modules is equivalent to the category M whose
objects are pairs (M,f) where M is a restricted L-module and f : M → ML is a p-semilinear map
from M into its submodule of invariants ML and whose morphisms (M1, f1) → (M2, f2) are L
homomorphisms α : M1 →M2 such that f2 ◦ α = α ◦ f1.

When no confusion arises, we will always denote by f : M →M the p-semilinear map of a Beck
L-module M .

Enveloping algebra

Let us now build the universal enveloping algebra of L, which is the representing object for the
category of Beck L-modules. Let L ∈ RLie be a restricted Lie algebra and U(L) its usual enveloping
algebra [Jac62, §V.1]. We first recall the construction of the restricted enveloping algebra u(L) which
is a representing object for restricted L-modules.

Definition 10.6. We denote by u(L) the quotient of the algebra U(L) by the relations lp − l[p] for
l ∈ L, which we call the restricted enveloping algebra of L.

This construction provides a functor u : RLie → As.

Theorem 10.7 ([Jac62, §V.7]). The category of restricted L-modules is equivalent to the category of
u(L)-modules.

Following N. Jacobson (see [Jac62, §V.2]), the functor u is part of an adjunction

u : RLie ⇄ As: (−)RLie

Following [Dok04], denote by w(L) the F-vector space Rf ⊗F u(L), where Rf is the polynomial
ring on one indeterminate f as in Section 9. Then, w(L) equipped with a ring structure such that
Rf → w(L) and u(L) → w(L) are ring homomorphisms, and such that:

(f ⊗ 1)(1⊗ l) := f ⊗ l and (1⊗ l)(f ⊗ 1) := 0

for all l ∈ L. The first author obtained the following characterization of Beck modules, which yields
UΓ(Lie)(L) = w(L).

Theorem 10.8 ([Dok04]). The category of Beck L-modules is equivalent to the category of left w(L)-
modules.

Lemma 10.9. The ring homomorphism θ : ULie(L) → UΓ(Lie)(L) from Proposition 6.14 is the com-
posite

U(L) ։ u(L) → w(L)

where U(L) ։ u(L) is the quotient map and u(L) → w(L) is the ring homomorphism x 7→ 1⊗ x.

Beck derivations

Let M be a Lie L-module, a derivation of L into M is a F-linear map D : L → M such that the
Leibniz formula holds

D([l, l′]) = lD(l′)− l′D(l)

for all l, l′ ∈ L. The set of such derivations is denoted by Der(L,M). Let L′ ∈ RLie/L be a
restricted Lie algebra over L, and (M,f) a Beck L-module. Then, the first author obtained the
following

Proposition 10.10 ([Dok04]). The abelian group of Beck derivations of L′ into M is given by:

Derp(L
′, (M,f)) := {d ∈ Der(L′,M) : d(l[p]) = l · · · l

︸ ︷︷ ︸

p−1

dl + f(d(l)), l ∈ L′}
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Kähler differentials

What we call the module of Kähler differentials of the Lie algebra L is, by analogy with the
case of commutative algebras, the L-Beck module ΩRLie(L) which represents the functor of Beck
derivations. It follows from Theorem 10.8, Proposition 10.10 and [Par68, Lemma 2.1] that the
module ΩRLie(L) of Kähler differentials is nothing else than the w(L)-module C(L) considered by
Pareigis in [Par68], cf. [Dok04, §1.3].

Theorem 10.11 ([Par68]). The module of Kähler differentials ΩRLie(L) for the restricted Lie algebra
L is the w(L)-module with the following presentation: the generators are the symbols dl for l ∈ L,
and the relations are:

d(λl + µl′) = λdl + µdl′, (10.eq.4)

d
(
[l, l′]

)
= ldl′ − l′dl, (10.eq.5)

d
(

l[p]
)

= f(dl) + lp−1dl. (10.eq.6)

10.2. Operadic point of view

Let us now show how we recover these notions from Sections 5, 6 and 7. Recall that Lie is the
operad generated by a binary operation [−,−] ∈ Lie(2) satisfying (1 2) · [−,−] = −[−,−] and the
Jacobi relation:

[−,−] ◦2 [−,−] + (1 2 3) · ([−,−] ◦2 [−,−]) + (1 3 2) · ([−,−] ◦2 [−,−]) = 0.

We fix a field F of prime characteristic p 6= 0.

Theorem 10.12 ([Fre00]). The category Γ(Lie)-Alg coincides with the category RLie of restricted Lie
algebras.

We now use the characterisation of Γ(Lie)-algebras using Theorem 3.3. Following [Iko23, Example
6.6.c)], if L is a Γ(Lie)-algebra, the Lie bracket on L is given by β[−,−],(1,1), and the p-map is given

by βFp,(p), where Fp ∈ Lie(p)Sp is the element:

∑

σ

[−,−] ◦1 [−,−] ◦1 · · · ◦1 [−,−]
︸ ︷︷ ︸

p−1

·σ,

where the sum runs over the σ ∈ Sp such that σ(1) = 1. Note that relation (10.eq.2) then reads:

β[−,−],(1,1)(β1P ,(1), βF,(p)) = β∑
σ σ[−,−]◦1···◦1[−,−],(1,p), (10.eq.1)

where σ ranges over S1 × Sp in the sum, which can also be written β[−,−],(1,1)(β1P ,(1), βF,(p)) =
βFp+1,(1,p).

Abelian algebras, Beck modules

Following Definition 4.1, an abelian Γ(Lie)-algebra M is a vector space M endowed with a trivial
Lie bracket [m,m′] = 0 and a semilinear map f : M →M satisfying f(λm) = λpf(m).

Following Definition 4.5, an L-module M becomes a vector space M equipped with a semilinear
map f : M →M and an action of L that we denote [l,m] for l ∈ L, m ∈M such that [l, f(m)] = 0.
This last relation comes from the following computation:

[l,m[p]] = β[−,−],(1,1)(l, βF,(p)(m)),

= β∑
σ σ[−,−]◦1···◦1[−,−],(1,p)(l,m),

Here we used the relation (10.eq.1). Now, using relation (βM4) of Definition 4.5, this is equal to 0.
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Enveloping algebra

Using the same reasoning as in [Fre00, Theorem 1.2.5], and the relations of Definition 6.1, we can
show that the universal enveloping algebra UΓ(Lie)(L) is generated by symbols β[−,−],(1,1)(l,−) for l ∈
L, βFp,(p)(−), and a unit β1Lie,(1)(−). We can then build an isomorphism between UΓ(Lie)(L) and the
universal enveloping algebra w(L) defined in Section 10.1. This isomorphism sends β[−,−],(1,1)(l,−) ∈
UΓ(Lie)(L) to 1⊗ l, and βFp,(p)(−) ∈ UΓ(Lie)(L) to f ⊗ 1.

Note that L injects into UΓ(Lie)(L), by identifying l ∈ L to β[−,−],(1,1)(l,−). For an L-module
(i.e., a UΓ(Lie)(L)-module) M , we will denote by [l,m] := β[−,−],(1,1)(l,m) = β[−,−],(1,1)(l,−) ·m, and
f(m) := βFp,(p)(m) = βFp,(p)(−) ·m for l ∈ L, m ∈M .

Beck derivations

Following Proposition 7.2, a Beck derivation d : L → M is a linear map d : L → M satisfying
d ([l, l′]) = β[−,−],(1,1)(l, dl

′) + β[−,−],(1,1)(dl, l
′) = [l, dl′]− [l′, dl], and

d
(

l[p]
)

=

p
∑

i=1

βFp,(p−i,i)(l, dl).

Note that, since Fp ∈ Lie(p)Sp , for all i such that 2 ≤ i ≤ p− 1,

Fp =
1

i!
i!Fp =

1

i!

∑

τ∈Sp−i×Si/Sp−i×S
×i
1

τFp,

and so,

βFp,(p−i,i)(l, dl) = β 1
i!

∑

τ∈Sp−i×Si/Sp−i×S
×i
1

τFp,(p−i,i)(l, dl)

=
1

i!
β∑

τ∈Sp−i×Si/Sp−i×S
×i
1

τFp,(p−i,i)(l, dl),

and according to relation (βM4), β∑
τ∈Sp−i×Si/Sp−i×S

×i
1

τFp,(p−i,i)(l, dl) = 0.

Kähler differentials

Following Definition 7.3, the module of Kähler differentials ΩΓ(Lie)(L) of L is the UΓ(Lie)(L)-
module generated by elements dl, l ∈ L, under the relations:

d(λl + µl′) = λdl + µdl′,

d([l, l′]) = d(β[−,−],(1,1)(l, l
′)) = β[−,−],(1,1)(−, l

′)⊗ dl + β[−,−],(1,1)(l,−)⊗ dl′ = [l, dl′]− [l′, dl],

d(f(l)) = d(βFp,(p)(l)) =

p
∑

i=1

βFp,(p−i,i)(b,−)⊗ db.

To compute the term corresponding to i = 1, note that, by [Fre00, Remark 1.2.8], βFp,(p−1,1)(l,−) ·
dl = βFp,(p−1,1)(l, dl) = [l, . . . [l

︸ ︷︷ ︸

p−1

, dl] . . . ]. the term corresponding to i = p is

βFp,(0,p)(l,−)⊗ l = βFp,(p)(−)⊗ dl = fdl.

For all i ∈ {2, . . . , p − 1}, note that again, Fp = i1iFp =
∑

σ∈Sp−i×Si/Sp−i×S1×Si−1

1
iFp. So,

βFp,(p−i,i)(l,−) = β∑
σ∈Sp−i×Si/Sp−i×S1×Si−1

1
i
Fp,(p−i,i)(l,−) is one of the elements described in Defi-

nition 6.1 in point (7), and so, is equal to 0 in UΓ(Lie)(L). Finally, this last relation reads:

d(fl) = f(dl) + [l, . . . [l
︸ ︷︷ ︸

p−1

, dl] . . . ].
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Finally, ΩΓ(Lie)(L) is indeed isomorphic to the module ΩRLie(L) defined in Section 10.1.

11. Comparisons

In this section, we identity some adjunctions involving Γ(P)-algebras and check that they induce
comparisons on Quillen cohomology. The next sections will focus on examples.

Lemma 11.1. Let C be a cocomplete closed symmetric monoidal category and P an operad in C.

(1) The free P-algebra monad S(P) : C → C preserves reflexive coequalizers and filtered colimits.
(2) The forgetful functor UP

C : P-Alg → C creates reflexive coequalizers and filtered colimits.

Proof. The first part is proved for instance in [Rez96, Proposition 2.3.5]. The second part follows
from the first part and [Bor94, Proposition 4.3.2]. �

Lemma 11.2. The forgetful functor U
Γ(P)
P : Γ(P)-Alg → P-Alg preserves and reflects regular epi-

morphisms.

Proof. Both categories are monadic over VectF, as illustrated in the diagram of forgetful functors

Γ(P)-Alg

U
Γ(P)
F

%%▲▲
▲
▲
▲
▲
▲
▲
▲
▲

U
Γ(P)
P // P-Alg

UP
F

��
VectF.

A regular epimorphism q : X ։ Y is the coequalizer of its kernel pair X ×Y X ⇒ X, which is a
reflexive pair, with common section the diagonal X → X ×Y X. By Lemma 11.1, the functor UP

F

preserves and reflects reflexive coequalizers, hence also regular epimorphisms.
In VectF, all regular epimorphisms (namely the surjective maps) split, assuming the axiom of

choice. Thus any functor VectF → VectF preserves regular epimorphisms, and the functor U
Γ(P)
F

preserves and reflects regular epimorphisms, by [Bor94, Theorem 4.3.5]. �

Remark 11.3. Working over a more general base commutative ring k instead of a field F, the
endofunctor Γ(P) : Modk → Modk need not preserve regular epimorphisms.

For example, take k = Z and the operad P in ModZ = Ab generated by one binary operation
µ ∈ P(2) subject to the relation µ · (12) = −µ. Then P is a reduced operad with P(2) = Zσ, which
denotes Z with Σ2-action by the sign. Consider the quotient map of abelian groups q : Z ։ Z/2.
We compute the Σ2-fixed points

(P(2) ⊗ Z⊗2)Σ2 ∼= (Zσ ⊗ Ztriv)
Σ2 = 0

(P(2) ⊗ (Z/2)⊗2)Σ2 ∼= ((Z/2)σ)
Σ2 = Z/2.

Thus the degree 2 summand of the map of abelian groups

Γ(P, q) : Γ(P,Z) → Γ(P,Z/2)

is the map 0 → Z/2, which is not surjective.

Since Γ(P)-Alg and P-Alg are algebraic categories, Lemma 11.2 ensures that the adjunction

F
Γ(P)
P : P-Alg ⇄ Γ(P)-Alg : U

Γ(P)
P (11.eq.1)

gives rise to the comparison diagrams described in [Fra15, Theorem 4.7].
Another source of comparisons will be given by morphisms of operads, as we now describe.
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Lemma 11.4. Let f : P → Q be a morphism between reduced operads in VectF. Consider the diagram
of four adjunctions

P-Alg

F
Γ(P)
P

��

f! // Q-Alg
f∗

oo

F
Γ(Q)
Q

��
Γ(P)-Alg

U
Γ(P)
P

OO

f! //
Γ(Q)-Alg.

f∗
oo

U
Γ(Q)
Q

OO

(1) The right adjoints commute, and therefore the left adjoints commute (up to natural isomor-
phism).

(2) Both restriction functors f∗ preserves and reflect regular epimorphisms.

Proof. (1) Via the explicit description of Γ(P)-algebras in Theorem 3.3, the restriction functor
f∗ : Γ(Q)-Alg → Γ(P )-Alg can be described as follows. Consider a Γ(Q)-algebra A with operations
βy,r : A

×s → A, given for all r = (r1, . . . , rs) and y ∈ Q(n)Σr with n = r1 + · · ·+ rs. Its restriction
f∗A has the same underlying F-vector space A, with Γ(P)-algebra structure given by the operations

βx,r = βf(x),r

for all x ∈ P(n)Σr and r as above. Note that the map on the arity n parts f : P(n) → Q(n) is
Σn-equivariant, hence restricts to fixed point subspaces f : P(n)Σr → Q(n)Σr .

(2) As observed in the proof of Lemma 11.2, in all four categories, regular epimorphisms are
preserved and reflected by the forgetful functor to VectF. More concretely, they are the morphisms
whose underlying map of vector spaces is surjective. �

Next, we want to compare Quillen cohomology of Γ(P)-algebras and P-algebras. Start with a

Γ(P)-algebra A and consider its underlying P-algebra U
Γ(P)
P A, also denoted A when the context

indicates the category. The diagram of adjunctions in [Fra15, §4.2.2] specializes to

P-Alg/A

ǫA!F
Γ(P)
P

��

AbA //
(P-Alg/A)ab

UA

oo

ǫA#F̃
Γ(P)
P

��
Γ(P)-Alg/A

U
Γ(P)
P

OO

AbA //
(Γ(P)-Alg/A)ab .

UA

oo

U
Γ(P)
P

OO

Using the identification of Beck modules and Kähler differentials in [LV12, Propositions 12.3.8
and 12.3.13] for the top row and Theorem 6.11 and Proposition 7.6 for the bottom row, the diagram
becomes

P-Alg/A

ǫA!F
Γ(P)
P

��

UPA⊗UP (−)ΩP (−)
//
UPA-Mod

A⋉−
oo

θ!

��
Γ(P)-Alg/A

U
Γ(P)
P

OO

UΓ(P)A⊗UΓ(P)(−)ΩΓ(P)(−)
//
UΓ(P)A-Mod.

A⋉−
oo

θ∗

OO (11.eq.2)

Here θ : UPA → UΓ(P)A is the F-linear ring homomorphism described in Proposition 6.14, θ∗

denotes restriction of scalars along θ, and θ! denotes extension of scalars θ!(M) = UΓ(P)A⊗UPAM .
Applying [Fra15, Propositions 4.13 and 4.14] yields the following.

Proposition 11.5. Let A be a Γ(P)-algebra.

(1) There is a natural (up to homotopy) comparison of cotangent complexes

LP
A → θ∗L

Γ(P)
A (11.eq.3)
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in simplicial UPA-modules.
(2) For each degree n ≥ 0, there is a natural comparison map of UPA-modules

HQP
n (A) → θ∗HQΓ(P)

n (A)

from Quillen homology of A as a P-algebra to Quillen homology of A as a Γ(P )-algebra.
(3) For M a left UΓ(P)A-module, there is a natural comparison map of abelian groups

HQn
Γ(P)(A;M) → HQn

P(A; θ
∗M) (11.eq.4)

from Quillen cohomology of A as a Γ(P)-algebra to Quillen cohomology of A as a P-algebra.
(4) If the map of simplicial UΓ(P)A-modules

θ!L
P
A → L

Γ(P)
A

adjunct to the map (11.eq.3) is a weak equivalence, then the comparison in Quillen coho-
mology (11.eq.4) is an isomorphism in all degrees n.

We can describe the comparison map of cotangent complexes (11.eq.3) more explicitly.

Proposition 11.6. (1) For any Γ(P)-algebra A, there is a natural map of UPA-modules

ΩP(A) → θ∗ΩΓ(P)(A)

given by
µ(a1, . . . , dai, . . . , an) 7→ βµ(1,...,1)(a1, . . . , dai, . . . , an)

for µ ∈ P(n), aj ∈ A.
(2) More generally, for any morphism of Γ(P)-algebras g : B → A, there is a natural map of

UPA-modules

UPA⊗UPB ΩP(B) // θ∗
(

UΓ(P)A⊗UΓ(P)B ΩΓ(P)(B)
)

AbUA(UB → UA) θ∗AbA(B → A)

(11.eq.5)

given by
µ(a1, . . . , dbi, . . . , an) 7→ βµ(1,...,1)(a1, . . . , dbi, . . . , an)

for µ ∈ P(n), aj ∈ A (j 6= i), and bi ∈ B.

(3) Given a cofibrant replacement C•
∼
−→ A in simplicial Γ(P)-algebras, the comparison maps

(11.eq.5) for Cn → A in simplicial degree n ≥ 0 yield the comparison map of cotangent

complexes LP
A → θ∗L

Γ(P)
A from (11.eq.3).

Proof. First, we show that the underlying vector space of UPA ⊗UPB ΩP(B) is spanned by the
elements of the form µ(a1, . . . , dbi, . . . , an). The tensor product UPA ⊗UPB ΩP(B) is spanned by
elements of the type:

µ(a1, . . . , ai−1,−, ai+1 . . . , an)⊗UPB ν(b1, . . . , dbj , . . . , bk),

With µ ∈ P(n), ν ∈ P(k), au ∈ A and bv ∈ B. However, noting that this element is equal to:

µ(a1, . . . , ai−1,−, ai+1 . . . , an)⊗UPB ν(b1, . . . , bj−1,−, bj+1, . . . , bk) · dbj,

tensoring over UPB means that this element is identified with:

µ(a1, . . . , ai−1,−, ai+1 . . . , an) · ν(g(b1), . . . , g(bj−1),−, g(bj+1), . . . , g(bk))⊗UPB dbj

which is equal to:

µ ◦i ν(a1, . . . , ai−1, g(b1), . . . , g(bj−1),−, g(bj+1), . . . , g(bk), ai+1 . . . , an)⊗UPB dbj.

We now see that UPA⊗UPB ΩP(B) is spanned by elements of the form:

µ(a1, . . . , ai−1,−, ai+1 . . . , an)⊗UPB dbi,
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Similarly, one shows that UΓ(P)A⊗UΓ(P)B ΩΓ(P)(B) is spanned by elements of the type:

βµ,r(a1, . . . , ai−1,−, ai+1, . . . , as)⊗UΓ(P)B dbi,

which we denote by βµ,r(a1, . . . , dbi, . . . , as). The expression of the comparison map is then induced
by that of the norm map θ from Proposition 6.14. �

Here the left adjoint induced on Beck modules θ! : UPA-Mod → UΓ(P)A-Mod is described in
terms of the ring homomorphism θ, but one might hope to describe it in terms of the original left

adjoint F
Γ(P)
P : P-Alg → Γ(P)-Alg. However, the left adjoint F

Γ(P)
P does not always pass to Beck

modules in the sense of [Fra15, Definition 3.29]. For example, we will see, in the case of divided

power algebras, that F
Γ(Com)
Com does not pass to Beck modules (see Proposition 12.3), while in the

case of restricted Lie algebras, F
Γ(Lie)
Lie does pass to Beck modules (see Proposition 13.4).

12. Divided power algebras versus commutative algebras

In this section, we take the operad P = Com and analyze the effect of the free-forget adjunction
Com-Alg ⇄ Γ(Com)-Alg.

We denote by Comaug the category of augmented F-algebras and use the equivalence Com-Alg ∼=
Comaug, as well as the equivalence Γ(Com)-Alg ∼= p-Com from Proposition 9.3. P. Berthelot defined
the notion of PD envelope of an ideal. In particular, it follows from [Ber74, §2.3] that the forgetful
functor

U
Γ(Com)
Com : p-Com → Comaug

admits a left adjoint functor

F
Γ(Com)
Com : Comaug → p-Com

given by F
Γ(Com)
Com (A) = Â, where Â denotes the PD envelope of the augmentation ideal A+ of

A. We denote by η the unit of this adjunction, which is a homomorphism of augmented algebras
ηA : A→ Â.

Let A be a divided power algebra, equivalently, an object of p-Com. Since Beck modules over an
augmented algebra B are just B-modules, A is the object UCom(A) representing Beck modules over
the underlying augmented algebra of A. Recall from Section 9 that V (A) = A⊗FRf represents Beck
modules over A. The F-linear ring homomorphism θ : A → V (A) is given by θ(a) = a⊗ 1. Denote
by Ω1

A the usual Kähler differentials over the underlying augmented algebra, whereas Ωp-Com(A)
was described in Theorem 9.7. The diagram of adjunctions (11.eq.2) specializes to

Comaug/A

ǫA!F
Γ(Com)
Com

��

A⊗(−)Ω
1
(−) //

A-Mod
A⋉−

oo

θ!

��
p-Com/A

U
Γ(Com)
Com

OO

V (A)⊗V (−)Ωp-Com(−)
//
V (A)-Mod.

A⋉−
oo

θ∗

OO

Let M be a V (A)-module. By Theorem 9.5 the V (A)-module M is associated to a pair (M,π),
where by M we denote M viewed as A-module and π : M → M is a p-semilinear map such that
π(am) = 0 holds for all a ∈ A+ and m ∈ M . Equivalently, the V (A)-module M is associated to
an abelian group object A⊕p M → A in (p-Com/A)ab, where A⊕p M is the semidirect product in
Com of A and M together with the map

π(a,m) = (π(a), π(m) − ap−1m), a ∈ A+, m ∈M.

Via Theorem 9.5, restriction of scalars along θ : A → V (A) is the functor sending a pair (M,π) to
M , forgetting the p-semilinear map π.
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Lemma 12.1. Let A ∈ Comaug be an augmented algebra, and M be a V (Â)-module. Then the functor

η∗AU
Γ(Com)
Com : (p-Com/Â)ab → (Comaug/A)ab

is given by

η∗AU
Γ(Com)
Com (M) = AM

where AM denotes M with the A-module structure induced by restriction of scalars along the mor-
phism ηA : A→ Â.

Proof. In the composite of functors

(p-Com/Â)ab

∼=Thm. 9.5
��

U
Γ(Com)
Com // (Comaug/UÂ)ab

∼=
��

η∗A // (Comaug/A)ab

∼=
��

V (Â)-Mod
θ∗ // Â-Mod

η∗A // A-Mod

the first step is restriction of scalars along the ring homomorphism θ : Â→ V (Â). The second step

is restriction of scalars along the ring homomorphism ηA : A → Â, since this is how pullbacks of
Beck modules are computed in commutative algebras. �

Proposition 12.2. (1) Let A ∈ Comaug an augmented commutative algebra and M be a V (Â)-
module. Then there is a comparison map

HQ∗
p-Com(Â;M) → HQ∗

Com(A;AM).

(2) Let B ∈ p-Com be a divided power algebra and M be a V (B)-module. Then there is a
comparison map

HQ∗
p-Com(B;M) → HQ∗

Com(B; θ∗M).

Proof. Part (1) follows from [Fra15, Proposition 4.12] and Lemma 12.1. Part (2) is a specialization
of Proposition 11.5 (3) to the operad P = Com. �

We now show that the p-envelope functor does not pass to Beck modules:

Proposition 12.3. In the case F = F2, the functor F
Γ(Com)
Com that freely adjoins divided power opera-

tions does not pass to Beck modules.

Proof. Take the commutative (unital) F2-algebra A = F2 and theA-moduleM = F2 whose generator
(only non-zero element) we denote by x. Viewing the A-module as a square-zero split extension

pr : A ⊕ M ։ A, apply the functor F
Γ(Com)
Com to obtain the split epimorphism of divided power

algebras

p̂r : Â⊕M ։ Â.

Then, Â⊕M is the free divided power algebra on one generator Γ(x), that is, its underlying vector
space is isomorphic to the vector space of polynomials F2[x], but the multiplication is induced by

xn ∗ xm =
(m+n

n

)
xn+m. The divided power algebra Â is still equal to F2. The kernel K = ker(p̂r) is

equal to the subalgebra of Γ(x) of non-constant polynomials. In K, we have for example, x ∗ x2 =
3x3 = x3. So K is not a square-zero algebra, thus the split epimorphism p̂r does not yield a Beck
module. �

To conclude this section, we will specify the comparison maps of Proposition 11.6 to the case of
divided power algebras. Let g : B → A be a morphism of non-unital divided power algebras. On
the one hand,

UComA⊗UComB ΩCom(B) = A+ ⊗B+ Ω1
B+
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is spanned by the elements adb for a ∈ A, b ∈ B, under relations expressing the fact that d is a
(linear) A+-derivation, that is:

{

d(λb+ b′) = λdb+ db′

d(bb′) = g(b)db′ + g(b′)db

and the action of A+ is given by the multiplication in A (a · a′db = (aa′)db). On the other hand,

UΓ(Com)A⊗UΓ(Com)B ΩΓ(Com)(B) = V (A+)⊗V (B+) Ωp-Com(B)

is spanned by elements afkdb for a ∈ A, b ∈ B and k ∈ N, under relation expressing the fact that
d is a Beck A-derivation in p-Com, that is, we also have

dγp(b) = fdb− g(b)p−1db.

The action of V (A+) is again given by the multiplication in V (A+), in particular, (a⊗fk) ·a′fk
′

db =

aa′p
k
fk+k′db. The comparison map

UComA⊗UComB ΩCom(B) → UΓ(Com)A⊗UΓ(Com)B ΩΓ(Com)(B)

from Proposition 11.6 is simply defined by adb 7→ af0db.

13. Restricted Lie algebras versus Lie algebras

Let F be a field of prime characteristic p. Let (H, (−)[p]) be a restricted Lie algebra. Then by
Theorem 10.8 a w(H)-module M is an associated to a pair (u(H)M,f), where u(H)M is M viewed

as a u(H)-module and f : u(H)M → u(H)M
H is a p-semilinear map. Equivalently, the w(H)-module

M is associated to the abelian group object

H ⋉f u(H)M → H

in (RLie /L)ab, where H ⋉f u(H)M denotes the semidirect product in RLie of H by u(H)M . In
particular,

H ⋉f u(H)M = {(h,m), h ∈ H, m ∈M}.

The Lie bracket is given by

[(h,m), (h′,m′)] = ([h, h′], hm′ − h′m)

and the p-map is given by

(h,m)[p] = (h[p], h · · · h
︸ ︷︷ ︸

p−1

m+ f(m)).

The notion of p-envelope of a Lie algebra has been studied in detail in [SF88, §2.5]. Let L be a

Lie algebra over F and U(L) its enveloping algebra. The p-envelope L̂ of a Lie algebra L is the

Lie subalgebra of U(L)Lie which contains L and all iterated associative p-th powers. Thus, L̂ is a

restricted Lie subalgebra of U(L)RLie. We note that L is an ideal in L̂. In [Mil75], A. A. Mil’ner

proves that L̂ has the following universal property: for all restricted Lie algebras A ∈ RLie and all
Lie algebra homomorphisms f : L → A, there is exactly one restricted Lie algebra homomorphism

f̂ : L̂→ A such that f̂ ◦ i = f ; see [SF88, §2.5, Theorem 2.5.2]. We then deduce that L̂ ∼= F
Γ(Lie)
Lie (L),

where L is a Lie algebra. It also follows from the universal properties of U(L) and u(L̂) that they
are isomorphic.

Denote by η the unit of the adjunction F
Γ(Lie)
Lie ⊣ U

Γ(Lie)
Lie and ι the unit of the adjunction u ⊣

(−)RLie. From the foregoing discussion, for L a Lie algebra, we get a Lie algebra homomorphism

ηL : L → L̂, and a restricted Lie homomorphism ιL̂ : L̂→ u(L̂) ∼= U(L).
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Lemma 13.1. Let L be a Lie algebra, and M be a w(L̂)-module. Then the functor

η∗LU
Γ(Lie)
Lie : (RLie /L̂)ab → (Lie /L)ab

is given by

η∗LU
Γ(Lie)
Lie (M) = U(L)M.

Proof. Let
L̂⋉f u(L̂)M → L̂

be an abelian group object in (RLie /L̂)ab. We have the pullback diagram

L×L̂ (L̂⋉f u(L̂)M) L̂⋉f u(L̂)M

L L̂.
ηL

Since L×L̂ (L̂⋉f u(L̂)M) is spanned by the elements (l, (l,m)) with l ∈ L and m ∈ u(L̂)M , we get:

η∗LU
Γ(Lie)
Lie (L⋉f u(L̂)M → L̂) = L×L̂ (L̂⋉f u(L̂)M) → L,

so, ψ : L×L̂(L̂⋉f u(L̂)M) → L is an abelian group object in (Lie /L)ab. The kernel of ψ is isomorphic

to U(L)M . �

Proposition 13.2. (1) Let L be a Lie algebra and M a w(L̂)-module. Then there is a comparison
map

HQ∗
RLie(L̂;M) → HQ∗

Lie(L; U(L)M).

(2) Let H be a restricted Lie algebra and M a w(H)-module. Then there is a comparison map

HQ∗
RLie(H;M) → HQ∗

Lie(H; θ∗M)

where θ : U(H) → w(H) is the ring homomorphism described in Lemma 10.9.

Proof. Part (1) follows from [Fra15, Proposition 4.12] and Lemma 13.1. Part (2) is a specialization
of Proposition 11.5 (3) to the operad P = Lie. �

Let us now show that the p-envelope functor passes to Beck modules. We will need the following
observation:

Remark 13.3. Let H be a restricted Lie algebra and xi ∈ H. By Jacobson’s formula on p-th powers
we have:

(
∑

i

xi

)[p]

−

(
∑

i

x
[p]
i

)

∈ [H,H].

Let L be a Lie algebra with basis (ei)i∈I over a field F. From the previous formula it follows by

induction that the elements of L̂ are of the type
∑

i∈I,ni≥0 Fe
pni

i ∈ U(L).

Proposition 13.4. For any field F of characteristic p, the p-envelope functor F
Γ(Lie)
Lie that freely adjoins

a p-map passes to Beck modules.

Proof. For a Lie algebra L, the restricted Lie algebra F
Γ(Lie)
Lie (L) is spanned by elements of the type

l[p
k], for l ∈ L and k ∈ N, where (−)[p

k] represents the k-th iteration of the p-map in F
Γ(Lie)
Lie (L).

Let L ⋉M → L be a Beck module over L, where M is an L-module. Consider the induced split

epimorphism F
Γ(Lie)
Lie (L ⋉ M) → F

Γ(Lie)
Lie (L). By [SF88, §2.5, Proposition 5.3], F

Γ(Lie)
Lie preserves

both surjections and injections. In particular, l[p
k] 7→ (l, 0)[p

k ] and m[pk] 7→ (0,m)[p
k ] induce split

injections F
Γ(Lie)
Lie (L) →֒ F

Γ(Lie)
Lie (L⋉M) and F

Γ(Lie)
Lie (M) →֒ F

Γ(Lie)
Lie (L⋉M).
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Under these injections, the abelian restricted Lie algebra F
Γ(Lie)
Lie (M) is a restricted F

Γ(Lie)
Lie (L)-

module. If f is the p-map in F
Γ(Lie)
Lie (M), then (F

Γ(Lie)
Lie (M), f) is a F

Γ(Lie)
Lie (L) Beck module.

We then get an injection g : F
Γ(Lie)
Lie (L)⋉f F

Γ(Lie)
Lie (M) →֒ F

Γ(Lie)
Lie (L⋉M) given by (l[p

k1 ],m[pk2 ]) 7→

(l, 0)[p
k1 ] + (0,m)[p

k2 ]. From Remark 13.3, we deduce that g is in fact an isomorphism, and so,

F
Γ(Lie)
Lie (L⋉M → L) has the structure of an F

Γ(Lie)
Lie (L) Beck module. �

To conclude this section, we will specify the comparison maps of Proposition 11.6 to the case
of restricted Lie algebra. Let g : L → H be a morphism of restricted lie algebra. Then, on the
one hand, ULieL ⊗ULieH ΩLie(H) is spanned by the elements ldh for l ∈ L, h ∈ H, under relations
expressing the fact that d is a (linear) L-derivation:

{

d(λh+ h′) = λdh+ dh′

d([h, h′]) = g(h)dh′ − g(h′)dh

and the action of L is given by the bracket in L (l·l′dh = [l, l′]). On the other hand, UΓ(Lie)L⊗UΓ(Lie)H

ΩΓ(Lie)(H) = w(L) ⊗w(H) ΩRLie(H) is spanned by elements fkldh for l ∈ U(L), h ∈ H and k ∈ N,
under relation expressing the fact that d is a Beck L-derivation in RLie, that is, we also have:

d(h[p]) = g(h) · · · g(h)
︸ ︷︷ ︸

p−1

dh+ fdh

and the action of w(L) is again given by the multiplication in w(L). In particular, for l ∈ L,

(fkl) · fk
′

l′dh = 0 as soon as k′ > 0. The comparison map

ULieL⊗ULieH ΩLie(H) → UΓ(Lie)L⊗UΓ(Lie)H ΩΓ(Lie)(H)

from Proposition 11.6 is simply defined by ldh 7→ f0ldh.

14. Associative algebras versus restricted Lie algebras

Let F be a field of prime characteristic p. Denote by η the unit of the adjunction u ⊢ (−)RLie.
Let (L, (−)[p]) be a restricted Lie algebra and let M be an u(L)-bimodule. We denote by u(L)M the
left u(L)-module obtained from M by the action l ·m := lm−ml, where the dotless notation is for
the left and right bimodule actions on M . Let A ∈ As be an associative algebra. We recall that the
category of Beck A-modules is equivalent to the category of A-bimodules (see [Bar96, §2.1]).

Lemma 14.1. Let L be a restricted Lie algebra, and M be a u(L)-bimodule. Then the functor

η∗L(−)RLie : (As /u(L))ab → (RLie /L)ab

is given by

η∗L(−)RLie(M) = u(L)M.

Proof. Consider the associative algebra obtained by semidirect product u(L)⋉M , whose multiplica-
tion is given by (u,m)(u′,m′) = (uu′, um′+mu′). The category of Beck u(L)-modules is equivalent
to the category of u(L)-bimodules. Under this equivalence, the u(L)-bimodule M is associated to
the abelian group object u(L) ⋉M → u(L) in (As/u(L))ab. The Lie bracket in (u(L) ⋉M)RLie is
given by

[(u,m), (u′,m′)] = (uu′ − u′u, um′ +mu′ − u′m−m′u),

and the p-map is given by

(u,m) 7→ (u,m)p.



44 IOANNIS DOKAS, MARTIN FRANKLAND, AND SACHA IKONICOFF

Therefore the p-map on elements of the form (0,m) is zero. We have a restricted Lie algebra
homomorphism ηL : L → u(L)RLie, and a pullback functor η∗L : RLie /u(L)RLie → RLie /L. We get
a pullback diagram

L×u(L)RLie
(u(L)⋉M)RLie (u(L)⋉M)RLie

L u(L)RLie,
ηL

and L ×u(L)RLie
(u(L) ⋉M)RLie is spanned by elements (l, (l,m)) for l ∈ L and m ∈ M . The Lie

bracket of this restricted Lie algebra is given by

[(l, (l,m)), (l′, (l′,m)] =
(
[l, l′], [(l,m), (l′,m′)]

)
,

and the p-map is given by

(l, (l,m)) 7→ (l[p], (l,m)p).

Therefore,

η∗L(−)RLie(u(L)⋉M → u(L)) = η∗L((u(L)⋉M)RLie → u(L)RLie) = L×u(L)RLie
(u(L)⋉M)RLie → L,

and φ : L×u(L)RLie
(u(L)⋉M)RLie → L is an abelian group object in (RLie/L)ab. The action of L

on M := ker φ is given by

l · (0, (0,m)) = [(l, (l, 0)), (0, (0,m))] = ([l, 0], [(l, 0), (0,m)]) = (0, (0, lm −ml)).

With this action, the module M is the restricted Lie module u(L)M . The p-map on M is trivial,
m 7→ 0. �

Theorem 14.2. Let L be a restricted Lie algebra and M a u(L)-bimodule. Then there is an isomor-
phism

HQ∗
As(u(L),M) ∼= HQ∗

RLie(L, u(L)M).

Proof. The restricted enveloping algebra functor u preserves weak equivalences (see [Pri70, 2.8]).
Thus by [Fra15, Proposition 4.12] the comparison map between Quillen cohomology in both cate-
gories is an isomorphism. �

For an associative algebra A over a field, Quillen cohomology agrees with Hochschild cohomology
up to a shift:

HQn
As(A;M) ∼= HHn+1(A;M) for n > 0

and a small change in degree 0 [Qui70, Proposition 3.6].

15. Good triple of operads and comparison maps in Quillen

(co)homology

J.-L. Loday defined and studied generalized bialgebras and triple of operads in [Lod08]. In this
section we prove a comparison isomorphism theorem for Quillen cohomology in the context of good
triple of operads. We suppose that the ground field F has characteristic zero. In that case, if P is
an operad then the norm map Tr: S(P) → Γ(P) is a natural isomorphism (see [Fre00]). Therefore
a Γ(P)-algebra doesn’t carry more structure than a P-algebra.

Let A, C be two algebraic operads. The primitive part of a coalgebra C over the operad C is
defined by

PrimC := {x ∈ C | δ(x) = 0, for any generating cooperation δ}.

There is a filtration on C given by

Fr(C) = {x ∈ C | δ(x) = 0, for any δ ∈ C(n), n > r}.
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We note that F1(C) is the primitive part of C. The above filtration is called the primitive filtration.
A coalgebra C is connected (or conilpotent) if C = ∪r≥1FrC. A Cc-A-bialgebra H is a vector space
which is a A-algebra and C-coalgebra such that the operations of A and cooperations of C acting
on H satisfy some compatibility relations.

Let (C,A,P) be a good triple of operads. Then P denotes the primitive operad PrimC A. The
primitive operad is a suboperad of A and there is an induced functor

G : A-Alg → P-Alg

which is a forgetful functor in a sense that the composition

A-Alg
G
−→ P-Alg → VectF

is the forgetful functor

A-Alg → VectF.

The functor G admits a left adjoint functor

U : P-Alg → A-Alg

called the universal enveloping functor. Let η be the unit of this adjunction. If P is a P-algebra
then there is a P-algebra morphism ηP : P → GU(P ). Moreover, the universal enveloping algebra
U(L) of a P-algebra L is a connected Cc-A-bialgebra and PrimU(L) = L.

Let Z = A/(P̄) be the quotient operad of A by the ideal generated by the (nontrivial) primitive
operations. Then J.-L. Loday proved a generalised Poincaré—Birkhoff—Witt theorem. In partic-
ular, it is proved in [Lod08, Theorem 3.1.4] that for any P-algebra L there is an isomorphism of
Z-algebras

Z(L) → gr U(L).

Let L,L′ be two simplicial P-algebras. A morphism f : L → L′ is a weak equivalence if it satisfies
π∗(f) : π∗(L) ≃ π∗(L

′).

Proposition 15.1. Let (C,A,P) be a good triple of operads. Then the universal enveloping functor
U : P-Alg → A-Alg preserves weak equivalences.

Proof. If L be a simplicial P-algebra then U(L) is a simplicial A-algebra. Using Dold-Kan corre-
spondence we denote by U(L) the associated chain complex. The primitive filtration on the universal
enveloping algebra makes U(L) a filtered complex. By Loday’s generalised Poincaré—Birkhoff—
Witt theorem the associated spectral sequence Er(U(L)) of U(L) satisfies

E0(U(L)) ≃ Z(L)

and

E1(U(L)) = H∗(Z(L)).

Let L,L′ be two simplicial P-algebras and f : L → L′ is a weak equivalence. The morphism
U(f) : U(L) → U(L′) preserves filtrations and it is induced a morphism of spectral sequences

Er(U(L)) → E′
r(U(L′)).

Since f is a weak equivalence it follows by a theorem of Dold [Dol58] that

H∗(Z(L)) ≃ H∗(Z(L′)).

Therefore

E1U(f) : E1(U(L)) → E1(U(L′))

is an isomorphism. The filtrations of U(L) and U(L′) are complete and bounded below. Hence the
spectral sequences converge and the induced map E∞U(f) is an isomorphism. It follows that U
preserves weak equivalences. �
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Let T be a operad and S a T -algebra. The category S-modules over T is equivalent to the
category of abelian group objects of T -Alg/S i.e the category of Beck S-modules in the category
of T -algebras (see [LV12], [GH00]). Hence the category of U(P )-modules over the operad A is
equivalent to the category of Beck U(P )-modules. Under this equivalence the U(P )-module M is
associated to the abelian group object U(P ) ⋉M → U(P ), where by U(P ) ⋉M we denote the
semidirect product of U(P ) by M in the category of A-algebras. We have the following pullback
diagram in the category of P-algebras,

P ×GU(P ) G(U(P ) ⋉M) G(U(P )⋉M)

P GU(P )
ηP

and

0 →M → P ×GU(P ) G(U(P )⋉M) → P → 0

is an abelian extension in the category of P-algebras. Therefore is induced on M a structure of
P -module over the operad P which we denote by PM .

Theorem 15.2. Let (C,A,P) be a good triple of operads. Let P be an P-algebra and M a Beck
U(P )-module. Then we have the following isomorphism

HQ∗
A-Alg(U(P ),M) ≃ HQ∗

P-Alg(P, PM).

Proof. By Proposition 15.1 we have that the enveloping algebra functor U preserves weak equiva-
lences. Then the theorem follows from [Fra15, Proposition 4.12]. �

If we consider the good triple (Com,As,Lie) then by Theorem 15.2 we recover in characteristic
zero a well know result (see [CE56, §XIII, Theorem 5.1]). In particular, let L be a Lie algebra over
F and M a U(L)-bimodule. By Theorem 15.2 we have the following isomorphism

HQ∗
As -Alg(U(L),M) ∼= HQ∗

Lie -Alg(L, LM).

where LM is M viewed as a left Lie L-module via the action l · m := lm − ml for all l ∈ L
and m ∈ M . Moreover, the Quillen cohomology for the category of associative algebras is shifted
Hochschild cohomology of associative algebras and Quillen cohomology of Lie algebras is shifted
Chevalley–Eilenberg cohomology of Lie algebras (cf. [Bar96]). In other words we have

HH∗
Hoch(U(L),M) ∼= H∗

Lie(L, LM).

In [Lod01] J.-L. Loday defined the notion of dendriform algebra which dichotomizes the notion of
associative algebra. A dendriform algebra H is a vector space over F equipped with two binary
operations ≺,≻ : H ⊗H → H such that

(x ≺ y) ≺ z = x ≺ (y ∗ z)

(x ≻ y) ≺ z = x ≻ (y ≺ z)

(x ∗ y) ≻ z = x ≻ (y ≻ z)

where x ∗ y = x ≻ y + x ≺ y and x, y, z ∈ H. The product ∗ is associative. One can notice
that a dendriform algebra is an associative algebra whose product splits into two binary operations
which satisfy the above identities. Dendriform algebras are Koszul dual to diassociative algebras
(see [LV12]). Besides, M. Gerstenhaber and A. Voronov in [GV95] introduced the notion of brace
algebras. We denote by D the operad associated to dendriform algebras and by B the operad
associated to brace algebras.

M. Ronco in [Ron02] proves a Milnor—Moore type theorem for dendriform algebras. In particular,
there is a good triple of operads (As,D,B). The concept of bimodule over a dendriform algebra is
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defined by M. Aguiar in [Agu04]. Cohomology of dendriform algebras with coefficients in bimodules
has been studied by A. Das in [Das22].

Let D be a dendriform algebra. The notion of Beck D-module is equivalent to the notion of
bimodule over D. By Theorem 15.2 we have the following.

Proposition 15.3. Let B be a B-algebra and M a Udend(B)-bimodule, where Udend(B) denote the
enveloping dendriform algebra of the brace algebra B. Then we have the following isomorphism

HQ∗
D-Alg(Udend(B),M) ∼= HQ∗

B-Alg(B,BM).

Remark 15.4. In prime characteristic, for classical bialgebras we proved Theorem 14.2. We notice
that the primitives of a classical bialgebra is a restricted Lie algebra i.e. a Γ(Lie)-algebra. If one
wants extend this result to the context of generalized bialgebras, the right framework seems to be
the category of Γ(P)-algebras.
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