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Abstract 
A prime example of quantum tunnelling is the semiclassical ‘energy spliJng’ of the levels of 
symmetrical double well potenMal, or equivalently the flipping rate of an instanton.  
Curiously the accepted expression for the ground state spliJng in terms of the (smooth) 
potenMal funcMon has not been pursued to the full explicitness available from classical 
mechanics.  This implicitness is recMfied here. 
 
 

 
 
Fig 1.  LeT: a symmetric double well potenMal with classical moMons of low energy ℏ"/2 
indicated.  The quantum ground state (a symmetric wavefuncMon) would have an energy 
slightly below this, and the next state (anMsymmetric) equally above.  Right: this quantum 
tunnelling ‘spliJng’ is naturally expressed in terms of classical moMon in an upturned 
potenMal, area S in phase space.  Also involved is the nearby peak-to-peak moMon, the 
lemon shaped ‘separatrix’ of area S0. 
 
The symmetric double well potenMal provides a prime example of semiclassical quantum 
tunnelling.  The first excited state energy is only slightly higher than the ground state energy 
– their energies are ‘split’ apart due to tunnelling (or weak coupling of the two individual 
wells).  Curiously the accepted spliJng formula in terms of the (smooth) potenMal funcMon 
has not been pursued to the full explicitness available from classical mechanics.  This 
implicitness1 is recMfied here.  (AlternaMvely expressed in terms of instantons, the average 
flipping rate due to tunnelling is implicit since it equals the energy spliJng, divided by 2%ℏ).   
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An expression for the lowest two energies is long known (an outline derivaMon is given in the 
final ‘appendix’ paragraph below): 
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Here w is explicit: it is a classical oscillaMon angular frequency " = √12"  where V” is the 
second derivaMve of potenMal V(q) at the well bases (where V=0).  However what has been 
lacking is a proper formula for S in the ‘tunnelling exponenMal’ exp	(−5/2ℏ).  S is famously 
expressed geometrically as the phase space area, the acMon, of the classical to-and-fro 
moMon in an upturned potenMal (fig 1) at an energy 7 = !

"ℏ" below the twin peaks (the 
upturned well bases).  It has hitherto been leT as an implicit expression, but an explicit 
formula is available for S as follows.  (The formula for S, (2) with (4), actually applies 
unchanged for semiclassical excited states too, but the prefactors of the exponenMal in (1) 
are different2,3, and the quanMzed energies E themselves are not fully explicit, in contrast to 
the ground state). 
 
S is slightly less than S0, the area of the separatrix (which is explicitly given by 5( =
2∫9212(:);:) with integraMon limits at the double well bases).  In fact  
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leading to 
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for the Mme period of the orbit needed shortly.  Here e is an as-yet-unknown constant with 
the dimensions of energy; it is to be found here, rendering the energy spliJng explicit.  The 
result is this, where P is the central momentum 9212,-.. 
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SubsMtuMng (4) into (2), and (2) into (1) yields the explicit energy spliJng.  Finding the Mme 
period T , (3), by an alternaMve argument now, will derive (4). 



 
Fig 2  Phase space (q,p), showing a quarter period moMon, with duraMon t2 that is sought, 
and three associated moMons, also while p<P (the shaded box), that can be used to find t2. 
 
Consider one quarter of the upturned double well orbit starMng from p=0, calling its start 
posiMon Q say, and ending at its maximum momentum P (fig 2).  The sought duraMon t2 for 
this (a quarter of the period) is to be compared with the known duraMon t1 for that same 
interval of p and starMng from the same posiMon Q of the upturned single well harmonic 
oscillator.  Corresponding ‘separatrix’ duraMons t2sep and t1sep, with release from an 
upturned peak point (double or single) and covering the same p interval 0 to P, are both 
infinite.  But crucially their difference t2sep – t1sep, is finite and calculable below, (6). The key 
fact is then that in the semiclassical limit, t2 – t1 = t2sep – t1sep.   
 
The 0 to P duraMon t1 is available from the acMon ∫ :;G/

(  with the hyperbola equaMon 
1"":"/2 = G"/21 +1""I"/2.  This acMon then needs to be differenMated with respect 
to the energy 1""I"/2 to obtain the exact duraMon of this segment of hyperbola.  It 
involves several terms with logs and square roots, but its leading term in the relevant limit 
Q®0 is simply  
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where the appropriate value of Q has been given by energy matching: 1""I"/2 = 	ℏ"/2.  
The other ingredient, t2–t1, equals, thanks to the ‘key fact’ above, 
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The reasoning for the first integrand term here is that the phase space velocity along the 
separatrix has a component p/m along the horizontal q direcMon, and therefore a 
component (p/m)(dp/dq) along the verMcal p direcMon.  The reciprocal of this lager has, 
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subtracted from it, the corresponding reciprocal for the upturned harmonic oscillator 
(straight separatrix).  Their difference has finite integral (its only singularity is an inverse 
square root one at p=P). 
 
The semiclassical Mme period for the whole orbit, rather than a quarter, is then 4´((5)+(6)), 
and this needs to be equated to (3), with 7 = !

"ℏ", to supply the desired energy constant e 
(4), for subsMtuMon into (2) and finally into (1). 
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(For the simple quarMc potenMal (q2-L2) 2 the integral in (7) is straighjorward, and 
reproduces the result of a sophisMcated asymptoMc path integral evaluaMon5 of the energy 
spliJng that is possible in that case.) 
 
This final ‘appendix’ paragraph is an outline derivaMon of (1).  MathemaMcally 
M	N(:)6!/"	exp	[− ∫ N(:)1

8ℏ/,& ;:] → (1"/%ℏ)!/5exp	[−1":"/2ℏ]	 as : → ∞ where  

N(:) = 921(1"":"/2 − ℏ"/2)/ℏ and M" = 1"/ℏ√4%S.    The right side is the exact 
ground state wavefuncMon of a harmonic oscillator.  Therefore the leT side, with the M as 
given, is the correct semiclassical (WKB) wavefuncMon tail for this ground state.  Consider 
the same leT side, with the same M, but with the double well potenMal (with a minimum at 
q=0, and " = √12"		there) replacing the 1"":"/2 in N(:).  This new leT side has a value 
at the middle (peak potenMal), wrigen schemaMcally M	N6!/" exp(−∫ N)	, and a 
semiclassical derivaMve −M	N9!/"exp	(−∫ N) there.  By Herring’s formula3,4, the energy 
spliJng is proporMonal to their product, specifically 	∆7 = 2(ℏ"/1)M"exp	(−2∫ N)	, which 
is the spliJng in (1).  (Factors of 4 from double contribuMons, and 1/2 from normalizaMon, 
have been accounted for). 
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