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Abstract 

The mechanical behavior of unsaturated porous media under non-isothermal conditions plays a 
vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and geother- 
mal energy harvest and foundations). Temperature increase can trigger localized failure and 
cracking in unsaturated porous media. This article investigates the shear banding and cracking in 
unsaturated porous media under non-isothermal conditions through a thermo-hydro-mechanical 
(THM) periporomechanics (PPM) paradigm. PPM is a nonlocal formulation of classical porome- 
chanics using integral equations, which is robust in simulating continuous and discontinuous defor- 
mation in porous media. As a new contribution, we formulate a nonlocal THM constitutive model 
for unsaturated porous media in the PPM paradigm in this study. The THM meshfree paradigm is 
implemented through an explicit Lagrangian meshfree algorithm. The return mapping algorithm 
is used to implement the nonlocal THM constitutive model numerically. Numerical examples are 
presented to assess the capability of the proposed THM mesh-free paradigm for modeling shear 
banding and cracking in unsaturated porous media under non-isothermal conditions. The numer- 
ical results are examined to study the effect of temperature variations on the formation of shear 
banding and cracking in unsaturated porous media. 
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1. Introduction 
 

The thermo-hydro-mechanical (THM) behavior of unsaturated porous media, such as soils, 
plays a crucial role in various engineering applications, including nuclear waste disposal storage, 
pavement design, fault propagation, landslides, geothermal energy utilization, and the perfor- 
mance of buried high-voltage cables (e.g., [1–7]). Temperature variations can significantly impact 
the mechanical and physical properties of unsaturated soils, influencing parameters such as shear 
strength, deformation characteristics, fluid flow behavior, and mass transport properties at mul- 
tiple length scales [8–16]. For instance, temperature changes can lead to complex behaviors in 
unsaturated soils, including volumetric strain or dilation, which may vary depending on factors 
like the overconsolidation ratio of the soil. Consequently, both physical experiments and numeri- 
cal simulations are essential tools for investigating and understanding the coupled multi-physical 
processes involved in solid deformation, fluid flow, and heat conduction within thermally unsat- 
urated soils (e.g., [9, 10, 17, 18]). These studies, such as the mesoscale finite element modeling 
of shear banding in thermal unsaturated soils [10] provide valuable insights into the behavior of 
unsaturated soils under the influence of temperature variations, contributing to more accurate 
and reliable engineering designs and assessments. In this study, as a new contribution, we develop 
a nonlocal mesh-free THM paradigm for modeling shear banding and cracking in unsaturated 
soils under elevated temperatures. For this purpose, we formulate a nonlocal THM constitutive 
model for unsaturated soils and implement the THM constitutive model into the meshfree peri- 
poromechanics (PPM) paradigm [19–28]. Next, we sequentially review the constitutive modeling 
of thermal unsaturated soils and the PPM paradigm. 
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Significant progress has been made in thermal constitutive modeling for unsaturated soils in 
recent decades, addressing the intricate interplay between thermal, mechanical, and hydraulic be- 
havior under non-isothermal conditions [29–34]. These advancements are pivotal in understanding 
the response of unsaturated soils in a wide range of geotechnical applications. Numerous constitu- 
tive models have been formulated, each tailored to capture specific aspects of thermal-mechanical 
coupling in unsaturated soils (e.g., [17, 35, 36]). Some constitutive models have integrated ther- 
mal effects into established critical state theories [37], while others have explicitly accounted for 
temperature-induced alterations in the water retention curve [32]. Unified models have emerged, 
unifying both mechanical and thermal aspects, e.g., leveraging concepts from bounding surface 
theory [29, 36]. In addition, micro-structural-based constitutive models have been developed to 
elucidate the influence of temperature on capillary stress at solid-water-air interfaces [33]. Note- 
worthy contributions include hierarchical models that hierarchically incorporate hydro-mechanical 
hardening and thermal softening and models tailored to study cyclic behavior under varying ther- 
mal conditions [17, 36]. Collectively, these thermal constitutive models provide invaluable tools 
for comprehensively characterizing the behavior of unsaturated soils in response to temperature 
fluctuations, contributing to safer and more efficient engineering designs and geotechnical assess- 
ments. These advanced constitute models for thermal unsaturated soils have been implemented 
into the finite element program [38], which is robust for modeling continuous deformation in un- 
saturated soils but not for discontinuities such as shear bands and cracks. In the present study, 
we formulate a nonlocal thermal constitutive model for unsaturated soils and implement it into 
the mesh-free PPM paradigm to better study shear banding and cracking in thermal unsaturated 
soils. 

PPM is a nonlocal formulation of classical coupled poromechanics, which is robust for modeling 
continuous and discontinuous mechanical and physical behavior of porous media [19–28, 39–42]. 
In PPM, equations of motion and mass balance are expressed as integral-differential equations 

[39, 40, 42]. PPM stands out for its natural ability to simulate multiphase discontinuities through 
field equations and material models [23, 26]. By using the stabilized multiphase correspondence 
principle, classical advanced constitutive models and physical laws are readily incorporated into 
PPM, enabling the modeling of coupled deformation, shear banding, and fracturing in porous 
media [19]. In PPM, the energy-based bond breakage criterion has been formulated for modeling 
cracks leveraging the effective force state concept [23, 26]. Furthermore, the large-deformation 

PPM through the updated Lagrangian framework was developed for unsaturated porous media in 
[27, 28]. The µPPM has been formulated to model dynamic shear bands and crack branching in 
porous media considering the rotational degree of freedom of the solid skeleton of porous media in 
[43–45]. In the present study, we investigate the shear banding and cracking in thermal unsaturated 
soils leveraging PPM. The PPM paradigm [19, 20] is used by incorporating a thermal constitutive 
model for unsaturated soils. 

In this study, we delve into the intricate phenomena of shear banding and cracking within 
unsaturated porous media under non-isothermal conditions. A notable contribution of this study 
is the implementation of a classical THM material model tailored for unsaturated porous media 
into the computational meshfree PPM paradigm. A pivotal aspect of this integration is the 

utilization of a stabilized multiphase correspondence principle that effectively mitigates the zero- 
energy mode instability. Our implementation of the THM PPM paradigm is realized through an 
explicit Lagrangian meshfree algorithm. The return mapping algorithm in computational plasticity 
is used to numerically implement the THM constitutive model. To assess the capabilities of our 
proposed THM meshfree paradigm, we present numerical examples that illustrate its efficacy in 

modeling shear banding and cracking phenomena within unsaturated porous media under non- 
isothermal conditions. Our numerical results offer valuable insights into the intricate interplay 

between temperature variations and the formation of shear bands and cracks within unsaturated 
porous media. 

The remainder of this article is organized as follows. Section 2 presents the mathematical 
formulation of the THM PPM framework including the thermal elastoplastic material model. 
Section 3 is dedicated to the numerical implementation of the proposed PPM paradigm. Section 
4 presents numerical examples to assess the accuracy of the numerical implementation at the 
material point level and utilize the THM PPM paradigm to model dynamic shear banding and 
fracturing in unsaturated porous media under non-isothermal conditions, followed by a summary in 
Section 5. Throughout this work, we adopt the sign convention in continuum mechanics, wherein 
tensile forces and deformations under tension are considered positive. For pore fluid pressure, 

compression is positive, and tension is negative. 
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2. Mathematical formulation 

In this section, we introduces the governing equation, the stabilized constitutive correspondence 
principle, the thermal elastoplastic material model, and the energy-based bond breakage criterion. 
In this study, we assume that the matric suction and temperature are known variables, i.e., one- 
way coupling. We also assume that no phase change exists between the three phases, i.e., solid, 
water and air. 

 
2.1. Governing equation 

In PPM, the porous media is represented by a set of mixed material points. A material point 
X has mechanical and physical interactions with any material point X’ within its neighborhood, 
i.e., a spherical domain H with a radius of 𝛿 called horizon. The bond 𝜉 between material points X 

and X’ is defined as 𝜉= X’- X in the reference configuration. For notation simplicity, the 
variables with no prime are associated with X and the variables with a prime means the variables 
associated with X’ For a partially saturated porous medium (i.e., solid, water, and air), assuming a 
weightless air phase, the total density is defined as 

 

where 𝜙 is the porosity, 𝜌s is the intrinsic density of the solid skeleton, Sr is the degree of satura- 

tion, and 𝜌w is the intrinsic density of water. In this study, the degree of saturation is determined 
through a temperature-dependent water retention model for unsaturated soils at elevated temper- 
atures [17], which reads 

 

where 𝜈 is the specific volume of unsaturated porous media, s is matric suction, a1, b1, n and m 
are material parameters, and 𝛾𝜃 is a temperature-dependent air-entry matric suction. This 
variable can be determined by 

 
 

where a2 and b2 are material parameters, 𝜃0 is a reference temperature, and 𝜃 is the temperature 
of the mixture. 

The motion equation for this porous medium in the PPM framework is written as 

 

where 𝜌 is the total density as defined in (1), ü is the acceleration, T  and T’ are the total force 
states (i.e., along the bond) , and g is the gravity acceleration. Through the effective state concept 
[42] and assuming that matric suction and temperature are given, the motion equation for the 
porous media can degenerate into the motion equation for the solid phase as 

 

where 𝜌s i s  the partial density of the solid phase, and T and T’ are the effective force states. 

Assuming the passive air pressure (i.e., zero air pressure), the effective force state at X is defined 

as 



4  

It is noted that the impact of temperature and matric suction on the mechanical behavior of 
unsaturated soils are considered through the thermal constitutive model given the temperature and 
matric suction. In what follows, we present the kinematics of the solid phase. 

 

2.2. Kinematics 

In PPM, the Lagrangian coordinate is used to modeling the solid phase [23]. Let y and y’ be 

the positions of material points X and X’ in the current configuration, respectively. Let u and 

u’ be the displacements of material points X and X’, respectively. The deformation state and 

the displacement states are defined as 

 

Given Y , the deformation gradient tensor in PPM [22] is defined as 

 

where 𝜔 is a weighting function, and K is the shape tensor [42]. The shape tensor is defined as 

 

It is noted that the shape tensor K is defined referred to the reference configuration. Then, it 
follows from (10), (9), and (8), the rate form of the deformation gradient tensor can be written as 

 

From (9) and (11), the velocity gradient tensor is determined as 

 

Given (12), the rate of deformation tensor D can be computed as 

 

According to the polar decomposition theorem, the nonlocal deformation gradient F can be de- 
composed as 

 

where R is the rotation tensor that is a proper orthogonal tensor, and U is the right stretch tensor 
that is a symmetric positive-definite tensor. The unrotated rate of deformation tensor d can be 
obtained by 

 

where the superscript T is the transpose operator. 
Given the unrotated rate of deformation tensor, the strain increment can be written as 
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where Δ𝑡 is the time increment. Finally, given (9) the porosity [46] in the current configuration is 
written as 

 
where J is the Jacobian of the nonlocal deformation gradient and ¢0 is the initial porosity. We 
note that in this study the soil water retention curve is dependent on the porosity as introduced 
in Section 2.3.2. Next, we introduce the stabilized constitutive correspondence principle through 
which the advanced thermal constitutive model is implemented into the meshfree PPM paradigm. 

 
2.3. Correspondence THM constitutive model 

To complete (5), a constitutive model is needed to determine the effective force state. In this 

study, the stabilized constitutive correspondence principle [19] is used to implement an advanced 
thermal constitutive model for unsaturated soils. 

 

2.3.1. Constitutive correspondence principle 

The constitutive correspondence principle is based on the notion that the internal energy in 
a porous body from the local formulation in classical poromechanics is equal to that from the 
nonlocal formulation in periporomechanics. We refer to [19, 24, 42] for the detailed derivation. 

The effective force state in PPM can be written in terms of the effective Piola stress as 

 

where P is the effective Piola stress, which can be obtained from the local constitutive model given 
the nonlocal deformation gradient. It is note that, assuming passive air pressure (i.e., atmospheric 
air pressure), the effective stress a is written as 

 

where a is the total Cauchy stress tensor, pw is pore water pressure, and 1 is the second-order 

identity tensor. Thus, it follows from (18), (6), and (19) that the fluid force state can be written 
as 

 

Note that in (20) the small deformation of solid is assumed. 
From (18) the effective force state can be computed from a thermal elasto-plastic constitutive 

model for unsaturated soils given matric suction, temperature change, and the nonlocal deforma- 
tion gradient. The effective Piola stress can be written in terms of the unrotated Cauchy stress 
as 

 

The unrotated effective Cauchy stress reads 

 

where 𝜎 can be determined from an advanced thermal constitutive model for unsaturated soils. 
Next, we introduce the thermal elastoplastic model for unsaturated soils. 

 
2.3.2. Thermal elastoplastic model for unsaturated soils 

In this study, the thermal elastoplastic constitutive model is formulated based on the critical 
state soil mechanics. Following the small strain theory, the total strain is additively decomposed 
to elastic and plastic components as 
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where 𝜀𝑒 is the elastic strain tensor and 𝜀𝑝 is the plastic strain tensor. For the thermal elastic 
model, the total elastic strain is assumed to consist of the mechanical elastic strain and the 
thermal elastic strain. Thus, the total elastic strain is additively decomposed into to mechanical 
and thermal parts as 

 

where  𝜀𝑒
𝑚𝑒is the mechanical elastic strain and 𝜀𝑒

𝜃 is the thermal elastic strain. Given a 
temperature change, the thermal elastic strain is determined as 

 

where 𝐵𝜃 is the volumetric thermal expansion coefficient, which is assumed as a constant in this 
study, 𝜃 is the temperature of soils, and 𝜃 0 is a reference temperature. Given the total elastic 
strain, the effective stress can be written through a linear thermal elastic model as 

 

where C is the fourth-order linear elastic stiffness tensor that reads 

 
where i, j, k, l = 1, 2, 3, K is the elastic bulk modulus, and µ is Poisson’s ratio. 

Next, we present the thermal plastic model. First, we define the effective mean stress p and 
the deviatoric stress q as 

 

Where || ||is the norm of a tensor. Following the modified Cam-Clay model [17], the yield function 
is written as 

 

where M is the slope of the critical state line and pc is the apparent preconsolidation pressure. 
In this study, the apparent preconsolidation pressure depends on the volumetric plastic strain, 
matric suction, and temperature changes [17]. Specifically, the apparent preconsolidation pressure 
reads 

 
where 

 

and 𝜁 is a bonding variable related to water meniscus between grains, N is the specific volume of 

the soil under a unit saturated preconsolidaiton pressure, c1 and c2 are constants [47], pc,0 is the 
apparent preconsolidation pressure at the reference temperature. It is noted that the parameter 𝑐𝜁 
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is the ratio between the specific volume of the virgin compression curve in the partially saturated 
state to the corresponding specific volume in the fully saturated state. The bonding variable 𝜁 [17] 
at the reference temperature (i.e., ambient temperature) is defined as 

 

where (1   Sr) accounts for the number of water menisci per unit soil volume and fˆ(s) is the 
stabilizing normal force exerted by a single water meniscus. The latter is written as 

 

where patm is the atmospheric pressure. 
Adopting the associative flow rule, the total THM plastic strain is written as 

 
where 𝜆̇ is a plastic multiplier, which is determined by the consistency condition. Next, we 
introduce the energy-based bond breakage criterion. 

 

2.4. Energy-based bond breakage criterion 

In this study, the energy-based bond breakage criterion [24] is adopted to detect the bond 
breakage in the THM PPM framework. The effective force state is used to determine the defor- 
mation energy. Thus, the energy density in a bond  is obtained as 

 
 

where t is the load time. In PPM, the broken bond is modeled through the influence function at 
the constitutive model level. In this study, the influence function for bond ⇠ is defined as 

 
 

where cr is the critical bond energy density. Following linear elastic fracture mechanics, the 
critical bond energy density can be calculated from the critical energy release rate as 

 

where  G cr is the critical energy per unit fracture area. In PPM, when a bond breaks, it will 
not sustain any mechanical load. The local damage parameter D at a material point is defined 
as 

 

In this study, it is assumed that the crack initiates when D > 0.5 at a material point. In the 
following section, we present the numerical implementation of the THM PPM paradigm. 

 

3. Numerical implementation 

The THM PPM paradigm is implemented numerically through an explicit Newmark scheme 
[38, 48] in time and a Lagrangian meshfree method in space. The return mapping algorithm in 
computational plasticity is adopted for implementing the nonlocal thermal elasto-plastic consti- 
tutive model at the material point level. Algorithm 1 summarizes the global explicit meshfree 
numerical scheme and the local return mapping algorithm at the material point. 
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3.1. Global integration in time 

In this part, we present the time integration of the governing equations at each material point. 
In this study, the explicit Newmark scheme is adopted. Let un, u˙n, and ü n  be the displacement, 
velocity, and acceleration vectors at time step n. The predictors of displacement and velocity in 
a general Newmark scheme read 

 

where 𝐵1 and 𝐵2  are the numerical integration parameters. Given (42) and (43), the effective force 
state can be determined from the thermal elastoplastic constitutive model introduced in Section 
2.3.2. Then, the acceleration at time step n + 1 is determined by 

 

where n+1 is the mass of the solid at time step n + 1 and Tn+1 is the effective force at time 
step n + 1. The two terms for a material point i are written as 

 

where Ni is the number of neighbor material points of material point i. From (44), the displace- 
ment and velocity at time step n + 1 can be obtained as 

 

In this study, the explicit central difference solution scheme is adopted, i.e., 𝐵1  = 1/2 and 
𝐵2 = 0. The energy balance check is used to ensure numerical stability of the algorithm in time. 

The internal energy, external energy, and kinetic energy of the system at time step n + 1 are 
written as 

 

The energy conservation criterion requires 

 

where "ˆ is a small tolerance on the order of 10-2 [48]. 

3.2. Implementation of the material model 

This part deals with the numerical implementation of the thermal elasto-plastic model at the 
material point level through the return mapping algorithm (e.g., [10, 18]). First, we present the 
procedure for determining the strain increment at a material point i. Given (43), the deformation 
state on bond ij at time step n + 1 is written as 

 

Then, the nonlocal deformation gradient at material point i at time step n + 1 is computed by 
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The spatial velocity gradient at material point i at time step n + 1 is written as 

 

The rate of deformation tensor at time step n + 1 is written as 

 

Given (56), the unrotated rate of deformation tensor dn+1,i can be written as 
 

 

where Rn+1,i is rigid body rotation at material point i at time step n + 1. Then, the incremental 
strain tensor at material point i at time step n + 1 is computed as 

 

Second, we present the procedure for updating the effective stress, given the increments of me- 
chanical strain, temperature, and/or matric suction, through the return mapping algorithm. For 
brevity in notation, the subscript i of the material point is omitted in the following presentation. 

Let sn, ✓n and "e 

be the suction, temperature, and elastic strain, respectively, at material point 
i at time step n. Let tl"me, tl✓, and tls be incremental mechanical strain tensor, temperature, 
and matric suction from time steps n to n + 1. Here, we assume no return mapping on the suction 
and temperature [17, 47]. In this case, the matric suction and temperature at time step n + 1 can 
be written as 

 
Given (60), the incremental thermal elastic strain tl"n+1 is defined as 

 

By freezing plastic deformation, the trial elastic strain is written as 

 

Then, the trial specific volume, degree of saturation, and bonding variable at time step n + 1 can 
be updated as 

 

The trial preconsolidatation pressure at time step n + 1 can be obtained from equation(31). To 
conduct the return mapping algorithm in the elastic strain space we define the unknown vector as 
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where 𝜀𝑣,𝑛+1
𝑒  is the elastic volume strain, 𝜀𝑑,𝑛+1

𝑒  is the elastic deviatoric strain, and Δ𝜆 is the 

plastic multiplier at time step n + 1. The residual vector is defined as

 

The elements of the residual vector are defined as 

 

where 𝜀𝑣,𝑛+1
𝑒,𝑡𝑟  is the trial elastic volume strain and 𝜀𝑑,𝑛+1

𝑒,𝑡𝑟  is the trial elastic deviatoric strain at 

time step n + 1. The unknown vector x can be solved following the Newton’s method as follows. 

 

where k is the iteration number. The tangent matrix in (71) reads 

 

After solving the elastic strain, the effective stress at time step n + 1 can be updated through 

(26). The unrotated effective stress is  

 
From (21), the effective Piola stress at time step n + 1 can be computed. Then, the effective force 

state at time step n + 1 can be written as 
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4. Numerical examples 
 

In this section, we present three numerical examples to showcase the effectiveness of the THM 
PPM paradigm in modeling shear banding and cracking in unsaturated porous media under THM 
conditions. Example 1 focuses on the isoerror map to assess the accuracy of the proposed re- 
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turn mapping algorithm at the material point level. Example 2 addresses shear banding in an 
unsaturated elasto-plastic porous material under biaxial compression and varying temperature 
conditions. Example 3 examines crack formation in a disk specimen of an unsaturated elastic 
porous material under displacement control loading with increasing temperature. 

 
4.1. Accuracy assessment with isoerror maps 

This example evaluates the precision of the return mapping algorithm at the material point 
level through numerical testing. To gauge the accuracy of our proposed implicit algorithm, we 
employ isoerror maps [49]. The relative error is defined as follows: 

 
where Error represents the algorithm’s output and 𝜎∗ denotes the exact solution, determined for 
specific strain and temperature increments. Following the methodology in [49], the exact solution 
is attained by repeatedly subdividing increments until further division yields negligible changes 
in the numerical result. It is important to note, as pointed out in [49], that while this approach 
effectively evaluates the algorithm’s overall accuracy, it is not a substitute for a comprehensive 
analysis of accuracy and stability [49]. For this numerical test, the input material parameters 
[17, 47] are as follows: bulk modulus K = 83 MPa, shear modulus µ = 18 MPa, reference 
pressure pc,0 = -35 kPa, reference specific volume 1.9, elastic thermal coefficient 6.67 × 10−4, 

swelling/recompression index  0.03, compression index 0.11, critical state line slope M = 1, 
plastic thermal parameter 0.23, a1 = 0.038 kPa-1, b1 = 3.49, a2 =  335oC, b2 = 1, n = 

0.718, m = 0.632, N = 2.76, initial temperature 25oC, c1 = 0.185, and c2 = 1.42. 
We consider three distinct cases, each with specific initial conditions. For all cases, the initial 

effective isotropic compression stress is set uniformly at -150 kPa, and the preconsolidation 

pressure is established at -250 kPa. For Case 1, the initial temperature is 25 oC, with a constant 

matric suction of 50 kPa. For Cases 2 and 3, the initial temperature is raised to 50 oC, and the 
constant matric suction is increased to 100 kPa. For all three cases, the maximum temperature 
increment is set at 10 oC, and the maximum volumetric strain increment is -2%. To visualize the 
accuracy, we utilize isoerror maps plotted on a plane defined by the volumetric strain increment 
and the temperature increment. These maps employ a color bar to represent the error percentage. 
Figure 1 displays the isoerror maps for Case 1. Figure 2 illustrates the isoerror maps for Case 2. 
Figure 3 shows the isoerror maps for Case 3. The results in Figures 1 - 3 indicate that greater 
algorithmic accuracy can be achieved by adopting smaller increments in both temperature and 
strain. 
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4.2. Shear banding under non-isothermal conditions 

This example deals with the shear banding in thermal unsaturated porous media under dynamic 
loading conditions. Specifically, we investigate the influence of the effects of temperature and 

matric suction on shear banding. Figure 4 illustrates the model setup for this example. A vertical 
displacement of uy = 10 mm is applied to the top boundary at a rate of 50 mm/s. A constant 
lateral confining pressure of 35 kPa is enforced on the left and right boundaries. The thermal 
elastoplastic constitutive model is utilized for this example. The input material parameters for 
the base simulation are: solid phase density 2000 kg/m3, bulk modulus K = 83 MPa, shear 
modulus µ = 18 MPa, , elastic thermal coefficient 6.67 × 10−4, reference pressure pc,0 = -20 kPa, 

reference specific volume 1.9, swelling index 0.03, compression index 0.11, critical state line 
slope M = 1, plastic thermal parameter -0.23, a1 = 0.038 kPa  , b1 = 3.49, a2 = -335 C, 
b2 = 1, n = 0.718, m = 0.632, N = 2.76,  initial temperature 25 C, c1 = 0.185, and c2 = 1.42. 
The specimen is discretized into a grid of  25 × 50  material points using a uniform grid spacing of 
4 mm. The horizon is set to 8 mm, and the time increment is 1 × 10−4 s.  
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For the base simulation, a constant temperature of 25oC is prescribed within the problem 

domain. The matric suction decreases from 25 kPa to 10 kPa at a rate of 7.5 kPa/s. The 

results of the base simulation are presented in Figures 5 - 8. Figure 5 plots the loading curve on 

the top boundary, demonstrating a softening stage after the peak load due to the reduction of 

matric suction. Figure 6 displays the curve of deviatoric stress with vertical strain and the stress 

path (in the p q space) of the point at the specimen center. The results indicate that the deviator 

stress increases with mean stress until it reaches the critical state line, after which it starts to 

decrease due to softening. Figure 7 presents snapshots of the equivalent plastic shear strain in the 

deformed configuration at three loading stages. Figure 8 provides snapshots of the plastic 

volumetric strain at the same three loading stages. It is important to note that a magnification 

factor of 5 is applied to all contours in this example. The results in Figures 7 and 8 demonstrate 

the development of two conjugate shear bands originating from the specimen center. Notably, in 

our nonlocal PPM framework, the initiation of shear banding does not require a weak element, as 

typically seen in finite element modeling of shear banding. Figure 8 shows that the plastic 

volumetric strain in the shear zone is positive, indicating dilatation. 
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To investigate the impact of spatial discretization on the results, we examine two different 
spatial discretization schemes: one with a grid of 25 × 50points and ∆𝑥 =4 mm (referred to 
as grid 1), and the other with a grid of 40 × 80 points and ∆𝑥 = 2.5 mm (referred to as 
grid 2). Both simulations utilize the same horizon value of 8 mm, while all other conditions and 
parameters remain consistent with the base simulation. Figure 9 presents a comparison of the 

loading curves obtained from the two simulations. These two loading curves are identical until 
the onset of the softening stage. Figure 10 displays the contours of equivalent plastic shear strain 

at uy = 10 mm for both simulations, while Figure 11 shows the contours of plastic volumetric 
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strains at the same displacement level. The results from Figures 10 and 8 suggest that the choice 
of spatial discretization has a relatively minor influence on shear band formation, primarily due 
to the adoption of the same nonlocal length scale. In the subsequent sections, we investigate the 
impact of temperature on shear banding in unsaturated porous media at elevated temperatures. 
Three scenarios are considered: (i) Elevated constant temperature (scenario 1), (ii) Increasing 
temperature at constant suction (scenario 2), and (iii) Increasing temperature under decreasing 
suction (scenario 3). 
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4.2.1. Scenario 1: Elevated constant temperature 

In this scenario, we explore the influence of temperature on shear banding under constant 
suction conditions. To achieve this, we conduct numerical simulations at three different temper- 

atures: 25oC, 50oC, and 75oC, all while maintaining a constant matric suction of 25 kPa. All 
other conditions and parameters remain consistent with the base simulation. The results of these 
simulations are presented in Figures 12 -15. Figure 12 compares the loading curves obtained 
from the three simulations. As shown in Figure 12, the loading capacity of the specimen decreases 

at higher temperatures due to the temperature-induced softening effect. Figure 13 illustrates the 

curves of deviator stress versus vertical strain and the stress paths at the specimen center from the 
three simulations. Regardless of the temperature, the stress paths at the same point demonstrate 
that the soil element reaches the same critical state line under loading. It’s noteworthy that the 
critical state line remains consistent due to the adoption of the Bishop-type effective stress model 
for unsaturated soils. Figure 14 displays the contours of equivalent plastic shear strain at uy = 10 
mm from the three simulations, while Figure 15 presents the contours of plastic volumetric strain 
at the same displacement level. These results imply that temperature affects the magnitudes of 

dilation and shear strain within the specimen under the same mechanical load. Specifically, higher 
temperatures lead to more significant dilation and shear strain compared to lower temperatures. In 
the subsequent section, we further investigate the impact of varying temperature on the formation 
of shear banding. 
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4.2.2. Scenario 2: Increasing temperature 

In this scenario, we examine the effect of temperature increase on the development of shear 
banding in unsaturated soils after the peak load. Specifically, we consider three different temper- 
ature changes applied after reaching the peak load of the base simulation: 25oC, 25oC, and 50oC, all 
while maintaining a constant suction level of 25 kPa. It is important to note that the simulation 
with tl✓ = 25oC is included for comparison purposes. All other conditions and input parameters 
remain consistent with the base simulation. The results are presented in Figures 16 - 
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19. Figure 16 provides a comparison of the loading curves obtained from the three simulations. 
As depicted in Figure 16, increasing the temperature after the peak load has a notable effect on 

the post-localization regime in unsaturated soils, with a larger temperature increase resulting in 
a more significant reduction in strength. Figure 17 displays the curves of deviatoric stress versus 

vertical strain and the stress paths at the specimen center from the three simulations. The re- 
sults in Figures 16 and 17 reinforce the influence of temperature increase on the post-localization 
behavior in unsaturated soils, where a larger temperature increase leads to a more pronounced 

strength reduction. Figure 18 presents the contours of equivalent plastic shear strain at uy = 10 
mm from the three simulations, while Figure 19 plots the contours of plastic volumetric strain at 
the same displacement level. These results, as shown in Figures 18 and 19, illustrate that a larger 
temperature increase, under the same conditions, results in more significant dilation and shear 

strain within the shear banding zone. In the subsequent section, we delve into the combined effect 
of varying temperature and suction on shear banding. 
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4.2.3. Scenario 3: Increasing temperature and decreasing suction 

In this scenario, we investigate the combined effect of increasing temperature and decreasing 
suction on shear banding instability in unsaturated soils. To achieve this, we consider three 
different temperature changes:  0oC, 25oC, and 50oC, while concurrently decreasing suction from 
25 kPa to 10 kPa. All other parameters and loading conditions are kept consistent with the 
base simulation, and the results are presented in Figures 20 - 23. Figure 20 displays the loading 
curves obtained from the three simulations. As shown in Figure 20, there is a notable reduction in 
loading capacity under the combined effect of temperature increase and suction reduction during 

the post-localization regime of unsaturated soils. Figure 21 presents the curves of deviatoric stress 
versus vertical strain and the stress paths from the three simulations. These results, depicted in 
Figure 21, further emphasize the impact of the coupling effect, showing that the soil reaches at 

critical state line at the same point for all three temperature-suction scenarios. Figure 22 compares 
the contours of equivalent plastic shear strain at uy = 10 mm in the deformed configuration for 
the three simulations. Meanwhile, Figure 23 compares the contours of plastic volumetric strain at 
uy = 10 mm. The results in Figures 20 - 23 illustrate a significant reduction in loading capacity 

under the coupling effect of temperature increase and suction reduction during the post-localization 

regime in unsaturated soils. In summary, these findings highlight the complex interplay between 
temperature and suction on shear banding instability in unsaturated soils. 
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4.3. Cracking in an elastic unsaturated disk specimen 

In this example, we focus on cracking phenomena in unsaturated elastic porous materials. 
The modeling of cracking is based on an energy-based bond breakage criterion. Specifically, we 
simulate cracking in a disk specimen. Figure 24 illustrates the disk specimen and its loading 
scheme. The disk has a radius of 200 mm and a thickness of 5 mm. As depicted in Figure 24, 
vertical displacement loads are applied to the top and bottom plates of the disk. The displacement 

load on each plate is set at u = 2.0 mm, with a loading rate of u˙ = 200 mm/s. The short-range 
forces within the PPM framework are employed to simulate the contact between the disk and the 

rigid plates [21]. The matric suction present in the specimen is s = 10 kPa. For this example, 
we adopt a thermo-elastic material model. The material parameters include: solid phase density 

of 2000 kg/m3, bulk modulus K = 83 MPa, shear modulus µ = 18 MPa.. In the base simulation 

scenario, the temperature is increased by 50oC. The energy-based bond breakage criterion is 

implemented with a critical 

energy release rate, Gcr = 20 N/m. The specimen discretization involves 10408 points arranged 
in a uniform grid, with a spacing of 2.5 mm. The horizon size is set to 6 = 4tlx. The simulation 
uses a time increment of 1 × 10−5 s. 

 

 
First, we present the results of the base simulation conducted under ambient temperature 

conditions. Figure 25 displays the loading curve applied to the top plate of the specimen, revealing 
a peak load of approximately 0.2 kN. To illustrate the progression of crack formation within the 
specimen, we provide contours of displacements at three distinct loading stages. Figure 26 depicts 
the vertical displacement contours on the deformed specimen at these stages, with a uniform 
magnification factor of 5 applied to all contours in this example. Similarly, Figure 27 presents 
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the horizontal displacement contours under the same conditions. Analysis of the results shown in 
Figures 26 and 27 indicates the initiation of a crack at the specimen’s center, which then extends 

towards the top and bottom of the disk. Notably, there is a discontinuity in the x-direction 
displacement along the vertical center line, whereas the vertical displacement remains continuous 
along the horizontal center line. This observation aligns with the expectations set by classical 

Brazilian testing, suggesting that the crack results from the discontinuous deformation in the x 

direction, as further evidenced by the deformed configurations depicted in Figures 26 and 27. 
Furthermore, Figure 28 illustrates the vertical normal stress contours on the deformed specimen 
at the three stages, highlighting the maximum compression stress occurring under the plate. 
Figure 29 focuses on the contours of horizontal normal stress elucidating that the specimen 

experiences tension in the x direction, with the crack process zone around the crack tip being 
under horizontal tension and vertical compression. Figure 30 shows the contours of the damage 
parameter at the same three stages. The results from Figures 28 to 30 collectively indicate that the 
crack formation is primarily due to tensile stress perpendicular to the specimen’s vertical center 
line. 
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Second, in the base simulation we also investigate the influence of spatial discretization on the 

results by employing two distinct spatial discretization schemes. The first scheme utilizes 6224 
points with a grid spacing (tlx) of 3.3 mm (referred to as grid 1), while the second scheme involves 
10408 points with tlx = 2.5 mm (referred to as grid 2). Both schemes adopt the same horizon size, 
6 = 10 mm. The comparative results of these two discretization schemes are presented in Figures 
31 through 36. Figure 31 displays the vertical loading curves obtained from simulations using both 
spatial discretization schemes. For a detailed comparison, we present contours of displacement 

and stress at a uniform displacement load (u = 1.25 mm) for both simulations as follows. Figure 
32 compares the vertical displacement contours. Figure 33 contrasts the horizontal displacement 
contours. Figure 34 showcases the differences in vertical stress contours (o-yy). Figure 35 illustrates 
the comparison in horizontal stress contours (o-xx). Figure 36 compares the damage parameter 
contours at the same displacement load for both discretization schemes. The results from these 
comparisons suggest that, given a consistent horizon size, the choice of spatial discretization scheme 
exerts a minimal influence on the crack formation in the disk specimen under vertical compression 
loading. 
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Third, we investigate the effect of temperature variations on the cracking behavior in unsat- 

urated elastic porous materials, specifically at 0oC, 25oC, and 50oC. The other simulation 
parameters, including loading and spatial discretization, remain identical to those in the base sim- 
ulation. The outcomes of this investigation are showcased in Figures 37 to 42. Figure 37 compares 
the loading curves from the simulations conducted at the three different temperatures, revealing 

a decrease in the peak load of the disk specimen with increasing temperature. The contours of 
vertical displacement at a uniform displacement load (u = 1.25 mm) across the three simulations 
are compared in Figure 38, while Figure 39 does the same for horizontal displacement. These 
figures illustrate that the rise in temperature increases the horizontal displacement, leading to a 
longer crack, whereas the vertical displacement is comparatively less influenced by temperature 
changes under the same loading conditions. The contours of vertical and horizontal stresses (o-yy 

and o-xx, respectively) at u = 1.25 mm for the three simulations are presented in Figures 40 and 

41. Finally, Figure 42 compares the contours of the damage variable at the same displacement 
load. Collectively, the results from Figures 40 to 42 indicate that the combination of tempera- 
ture increase and mechanical loading significantly impacts the timing and progression of crack 
initiation and development in the specimen 
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5. Summary 

In this article, our investigation centers on shear banding and cracking in unsaturated porous 
media under non-isothermal conditions, utilizing a THM framework within PPM. A significant 
advancement of this study is the development of a nonlocal THM constitutive model specifically 
designed for unsaturated porous media in the PPM context. We have implemented the THM 
paradigm using an explicit Lagrangian meshfree algorithm, complemented by a return mapping 
algorithm for the numerical implementation of the nonlocal THM constitutive model. We have 
evaluated the performance and applicability of our proposed THM meshfree paradigm through 

a series of numerical examples. The results from these examples demonstrate the effectiveness 

and reliability of our THM PPM approach in accurately modeling the complex behaviors of shear 
banding and cracking in unsaturated porous media under varying thermal conditions. Impor- 
tantly, our findings provide deep insights into the sophisticated relationship between temperature 
changes and the development of shear bands and cracks in such porous media under THM loading, 
highlighting the nuanced interdependencies in these phenomena. 
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